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THE EQUIVARIANT CHOW RINGS OF QUOT SCHEMES

TOM BRADEN, LINDA CHEN AND FRANK SOTTILE

We give a presentation for the (integral) torus-equivariant Chow ring of the
quot scheme, a smooth compactification of the space of rational curves of
degree d in the Grassmannian. For this presentation, we refine Evain’s ex-
tension of the method of Goresky, Kottwitz, and MacPherson to express the
torus-equivariant Chow ring in terms of the torus-fixed points and explicit
relations coming from the geometry of families of torus-invariant curves.
As part of this calculation, we give a complete description of the torus-
invariant curves on the quot scheme and show that each family is a product
of projective spaces.

1. Introduction

Let k be an algebraically closed field and let d , n, r be nonnegative integers with
r < n. We study the quot scheme Qd := Qd(r, n) parametrizing quotient sheaves
on P1 of the trivial vector bundle On

P1 which have rank r and degree d . When
r > 0, this is a compactification of the space Md of parametrized rational curves of
degree d on the Grassmannian G(r, n) of r -dimensional quotients of kn . Indeed,
a morphism from P1 to G(r, n) of degree d is equivalent to a quotient bundle
On

P1 → T of rank r and degree d.
Strømme [1987] showed that Qd(r, n) is a smooth, projective, rational variety of

dimension r(n− r)+ nd. He described the decomposition into Białynicki-Birula
cells induced by an action of a one-dimensional torus on Qd , thereby determin-
ing its Betti numbers. He also gave a presentation of its integral Chow ring (his
Theorem 5.3) in terms of generators and relations. However, the set of generators
is far from minimal, and the relations are given by the annihilator of a certain class,
and are therefore nonexplicit. He also gave a more elementary set of generators
for its rational Chow ring.

Later, Bertram [1997] used the geometry of Qd to determine the (small) quantum
cohomology ring of the Grassmannian. He used a recursive description of the
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boundary Qd \Md to show that the 3-point genus zero Gromov–Witten invariants of
the Grassmannian are equal to particular intersection numbers on Qd . By studying
certain types of intersections on quot schemes, he obtained a quantum Schubert
calculus for the Grassmannian. However, he did not need to compute the full
cohomology ring of Qd .

Our main result is a presentation of the T -equivariant Chow ring A∗T (Qd) for an
action of the torus

T = Tkn × TP1

on Qd , where Tkn = (Gm)n acts diagonally on kn and TP1 = Gm acts primitively
on P1. Since the ordinary Chow ring A∗(Qd) is the quotient of A∗T (Qd) by the
image of A>0

T (p), this also determines A∗(Qd). When k = C, the cycle class map
induces an isomorphism between Chow and cohomology rings, so our result also
determines the T -equivariant and ordinary cohomology rings of Qd .

Our presentation gives A∗T (Qd) as an explicit subring of a direct sum of polyno-
mial rings. This arises from an analysis of the localization map. When an algebraic
torus T acts on a smooth variety X with a finite fixed point set X T , the inclusion
i : X T ↪→ X induces the localization map of (integral) equivariant Chow rings

i∗ : A∗T (X)→ A∗T (X T )=
⊕
p∈X T

A∗T (p).

Each summand A∗T (p) is canonically isomorphic to the symmetric algebra S of the
character group of T . If X is projective, then i∗ is injective, so computing the ring
A∗T (X) reduces to computing the image of i∗.

When k = C, one can consider the corresponding localization map for ratio-
nal equivariant cohomology. In this case, a result of Chang and Skjelbred [1974]
implies that the image of the localization map is cut out by the images of the
T -equivariant cohomology of components of the one-skeleton of X : the set of
points that are fixed by some codimension one subtorus of T . These components
are closures of families of T -invariant curves. In particular, when X has finitely
many one-dimensional T -orbits (whose closures are T -invariant curves), Goresky,
Kottwitz, and MacPherson [1998] used this to describe the image of the localization
map for equivariant cohomology. Each T -invariant curve gives a relation, and these
GKM relations cut out the image. Brion [1997] showed that this remains true for
rational equivariant Chow rings of varieties over any algebraically closed field.

Our action of T on Qd has finitely many fixed points, but there are infinitely
many T -invariant curves. The GKM relations remain valid, but are now insufficient
to cut out the image of the localization map, even over Q; there will be extra
relations coming from connected components of the one-skeleton of Qd . Brion
[1997] adapted the result of Chang and Skjelbred to Chow groups, showing that
the relations given by these families are sufficient to cut out A∗T (X)Q. Determining



THE EQUIVARIANT CHOW RINGS OF QUOT SCHEMES 203

these relations explicitly is more difficult than for the GKM relations, however, and
few cases have been worked out in detail.

One case for which the relations are known is when X is a Hilbert scheme of
points on a toric surface, which has families of T -invariant curves. Following a
suggestion of Brion, Evain [2007] used Edidin and Graham’s [1998b] version of
the Atiyah–Bott–Berline–Vergne localization formula for equivariant Chow groups
to give relations in terms of ideal-membership. The relations come from elements
of the T -equivariant Chow rings of the families of T -invariant curves.

We discuss this in Section 5, and give a more explicit formula for Evain’s re-
lations which holds when each component Y of X T ′ for T ′ ⊂ T of codimension
one has smooth T -invariant subvarieties Z whose classes [Z ] generate A∗T (Y ).
We derive necessary and sufficient linear relations over Q from Evain’s ideal-
membership relations. Lastly, we show that if the T -weights of the tangent space
at each fixed point are not too dependent (see Theorem 5.5), then Evain’s relations
also determine the integral Chow ring.

All these additional hypotheses hold for Qd . In fact, the components Y we get are
quite simple: all are products of projective spaces. As a result, we obtain explicit
descriptions of the equivariant Chow ring of Qd , both rationally and integrally.

To describe the combinatorics of fixed points in QT
d , we use the following no-

tations. For an element a = (a1, . . . , an) ∈ Zn , we define |a| =
∑

i ai . We use
addition and subtraction on Zn considered as an abelian group, and denote the
identity element by 0= (0, . . . , 0). If a∈ (Z≥0)

n , we set a! =
∏

i ai !, where 0! = 1.
Finally, we use the partial order a≤ b to mean ai ≤ bi for all i .

In Section 2, we give an explicit parametrization of the fixed point set QT
d by a

set F of triples (δ, a, b), where

• δ ∈ {0, 1}n takes the value 1 exactly n− r times, so that |δ| = n− r , and

• a, b are elements of (Z≥0)
n which satisfy |a| + |b| = d and for which δi = 0

implies ai = 0 and bi = 0.

The fixed points are maximally degenerate quotient sheaves supported at 0 and∞;
the data a and b describe the structure of the stalks as modules over OP1 and as
representations of T .

Recall that A∗T (p) = S, the symmetric algebra of the character group of T .
We have S = Z[e1, . . . , en, f], where e1, . . . , en , and f are dual to the obvious
basis coming from the decomposition T = Tkn × TP1 . In particular, f restricts to
the identity character on TP1 and to the trivial character of Tkn . We write SQ for
S⊗Z Q and sometimes SZ for S, when we wish to emphasize our ring of scalars.
We write SF for the set of tuples of polynomials ( f(δ,a,b) ∈ S | (δ, a, b)∈F). Then
SF
= A∗T (QT

d ), under the identification of F with QT
d . We exhibit the image of the

localization map as a subring of SF.
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In Section 3 we describe a finite set of T -invariant curves which span the tangent
space at each fixed point. In Section 4, we describe the families of T -invariant
curves and their closures. Based on this description, our relations for the image of
i∗Qd

are

I For any pair (δ, a, b), (δ′, a′, b′) ∈F with δ = δ′, a= a′ and b= b′ except in
positions i and j , and δi = δ′j = 1 and δ j = δ′i = 0, we have

f(δ,a,b) ≡ f(δ′,a′,b′) mod e j − ei + (a′j − ai )f.

(Note that (a′j − ai )=−(b′j − bi ), since ai + bi = a′j + b′j .)

II (a) For any pair (δ, a, b), (δ, a′, b)∈F with a, a′ agreeing except in positions
i and j , we have

f(δ,a,b) ≡ f(δ,a′,b) mod e j − ei + (a′j − ai )f.

(b) For any pair (δ, a, b), (δ, a, b′)∈F with b, b′ agreeing except in positions
i and j , we have

f(δ,a,b) ≡ f(δ,a,b′) mod e j − ei + (bi − b′j )f.

(c) If we have (δ, a, b), (δ, a′, b), (δ, a, b′)∈F satisfying both of the previous
conditions (with the same i and j), and in addition a′j−ai = bi−b′j , then

D f(δ,a,b)− D f(δ,a′,b)− D f(δ,a,b′)+ D f(δ,a′,b′) ≡ 0 mod e j − ei + (a′j − ai )f,

where D is the differentiation in the direction of e∨j , the dual basis vector
to e j .

(c)′ Under the hypotheses of II(c),

f(δ,a,b)− f(δ,a′,b)− f(δ,a,b′)+ f(δ,a′,b′) ≡ 0 mod (e j − ei + (a′j − ai )f)2.

III For every (δ, a, b) ∈ F and every 0≤ b′ < b,∑
b′≤c≤b

(−1)|c|

(b− c)!(c−b′)!
D|b|−|b

′
|−1 f(δ,a+c,b−c) ≡ 0 mod f,

where D is the differentiation in the direction of f∨, the dual basis vector to f.

III′ For every (δ, a, b) ∈ F, b 6= 0,∑
0≤c≤b

(−1)|c|

c!(b− c)!
f(δ,a+c,b−c) ≡ 0 mod f|b|.

By this, we mean that the left-hand side, which a priori is an element of SQ,
actually lies in f|b|SZ.
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Relations I, II(a), and II(b) are standard GKM relations, while the rest come
from families of T -invariant curves. In particular, relations II(c)/II(c)′ (respec-
tively III/III′) come from certain families whose closures are isomorphic to P1

×P1

(respectively arbitrary products of projective spaces).

Theorem 1.1. The rational equivariant Chow ring A∗T (Qd)Q is isomorphic to the
set of tuples f = ( f(δ,a,b)) ∈ SF

Q
subject to the relations I, II(a)–(c), and III.

The integral equivariant Chow ring A∗T (Qd) is isomorphic to the set of tuples
f = ( f(δ,a,b)) ∈ SF

Z subject to the relations I, II(a)(b)(c)′, and III′.

We prove Theorem 1.1 in Section 5E. Since the equivariant Chow ring deter-
mines the ordinary Chow ring for smooth spaces, this gives in principle a complete
description of the Chow ring of Qd . The resulting computation of Betti numbers is
the same as Strømme’s computation.

Strømme’s generators of the rational cohomology ring of Qd were Künneth com-
ponents of the Chern classes of the tautological vector bundle S on P1

×Qd defined
by the universal exact sequence

0→ S→ On
P1×Qd

→ T→ 0,

where the restriction of T to P1
×{p}∼=P1 is the quotient sheaf of On

P1 represented
by p ∈Qd . In Section 6, we describe the equivariant Chern classes of S in A∗T (Qd)

and thus lifts of Strømme’s generators to the equivariant Chow groups. In Section 7
we work this out explicitly for Q2(0, 2), using Theorem 1.1 to describe the equi-
variant and ordinary Chow rings and giving explicit lifts of Strømme’s generators
as localized classes.

2. Torus-fixed points of Qd

Let e1, . . . , en denote the standard basis of kn . Write Tkn for the group of diagonal
matrices in this basis. Let [x, y] be coordinates on P1 with x vanishing at 0 and y
at ∞. For TP1 acting on P1 with fixed points 0 and ∞, the torus T := Tkn × TP1

acts on Qd naturally as indicated by the given splitting.
The T -fixed points are indexed by triples (δ, a, b) in the set F of Section 1. The

fixed point corresponding to (δ, a, b) is the sequence of sheaves on P1,

S(δ,a,b)→ On
P1 → T(δ,a,b),

where S(δ,a,b) is the image of the map

n⊕
i=1

OP1(−ai − bi )
diag(δi xai ybi )
−−−−−−−−→ On

P1 .

We identify this fixed point with the subsheaf S(δ,a,b) of On
P1 .
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We introduce the following notation. For natural numbers a, b, let Sa,b be the
subsheaf of OP1 which is the image of the map

OP1(−a− b)
xa yb

−−−→ OP1 .

Under the identification of modules over OP1 with saturated graded modules of
the homogeneous coordinate ring k[x, y], Sa,b is the ideal of k[x, y] generated by
xa yb. The quotient OP1/Sa,b is the skyscraper sheaf

Ta,b = OP1/ma
0 ⊕OP1/mb

∞

on P1 supported at 0 and at∞. Here, mp is the sheaf of ideals cutting out the point
p ∈ P1. Then

S(δ,a,b) =

⊕
δi=1

Sai ,bi · ei , and

T(δ,a,b) =

⊕
δ j=1

Ta j ,b j · e j ⊕
⊕
δ j=0

OP1 · e j .

In the sum, δ j = 0 means those j in {1, . . . , n} with δ j = 0, and the same for δ j = 1.
The tangent space to Qd at this fixed point is

Hom(S(δ,a,b), T(δ,a,b)).

Let ê1, . . . , ên be the basis dual to e1, . . . , en . For each i, j , set

Ei j := êi ⊗ e j ∈ Hom(kn, kn).

These Ei j form a basis for Hom(kn, kn).

Theorem 2.1. The tangent space T(δ,a,b)Qd is canonically identified with

(2-1)
⊕
δi=1

⊕
δ j=0

Hom(Sai ,bi , OP1) ·Ei j ⊕
⊕
δi=1

⊕
δ j=1

Hom(Sai ,bi , Ta j ,b j ) ·Ei j .

We now give T -bases (bases of T -eigenvectors) for these summands and de-
termine the corresponding weights. Fix a basis for the character group of T as
follows. Extend the action of Tkn on On

P1 to T by letting the factor TP1 act trivially.
Then we abuse notation and denote the character of T acting on the i-th basis
vector ei by the same symbol ei . Thus the dual basis element êi has T -weight −ei .

Similarly, extend the action of TP1 on P1 to an action of T by letting Tkn act
trivially, and denote by f the character of T corresponding to the action on the dense
orbit P1

\ {0,∞}. More precisely, we can let TP1 ∼= C∗ act on the homogeneous
coordinates k[x, y] of P1 by q · x = qx and q · y = y. Thus T acts on the rational
function z := x/y with weight f, and on the monomial za

= xa y−a with weight af.
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The first sum of (2-1) involves spaces of the form Hom(Sa,b, OP1)= H 0(S∗a,b).
This space of sections has a monomial T -basis

{zc
| −a ≤ c ≤ b}.

For example, H 0(S∗1,2)= k ·{z−1, z0
= 1, z, z2

}. Thus if δi = 1 and δ j = 0, then the
piece Hom(Sai ,bi , OP1) ·Ei j of the tangent space has a monomial T -basis zc

·Ei j

for all −ai ≤ c ≤ bi . The basis element zc
·Ei j has T -weight

(2-2) e j − ei + c f.

The second sum of (2-1) involves spaces of the form Hom(Sa,b, Tα,β). Since
Tα,β is a skyscraper sheaf supported at 0 and ∞, a map φ ∈ Hom(Sa,b, Tα,β) is
determined by its actions at 0 and at∞. At 0, z = x/y is a local parameter, so the
map φ becomes

φ : zaC[z] → C[z]/〈zα
〉,

and thus has the form z−a f (z) where f (z) has degree less than α. At∞, z−1 is a
local parameter, and the map φ has the form zbg(z−1) where g(z) is a polynomial
of degree less than β. Thus Hom(Sa,b, Tα,β) has the monomial T -basis

k · {z(α−c)−a
| 1≤ c ≤ α} ⊕ k · {zb−(β−c)

| 1≤ c ≤ β},

where elements in the first summand act by zero on the stalk at∞, and elements
of the second summand act by zero at 0.

Thus, if δi = δ j = 1, then the summand Hom(Sai ,bi , Ta j ,b j ) ·Ei j of (2-1) has a
monomial T -basis

{z(a j−c)−ai ·Ei j | 1≤ c ≤ a j } ∪ {z(b j−c)−bi ·Ei j | 1≤ c ≤ b j }

with corresponding T -weights

(2-3) e j − ei + ((a j − c)− ai )f and e j − ei + (bi − (b j − c))f.

We note that this discussion gives a basis for T(δ,a,b) Qd consisting of∑
δ j=0

∑
δi=1

(ai + bi + 1)+
∑
δi=1

∑
δ j=1

(a j + b j )= (n− r) · (d + r)+ r · d

= r · (n− r)+ nd = dim Qd

elements, which shows that Qd is smooth at the T -fixed point S(δ,a,b), and hence
everywhere, since Qd is projective. In Section 3, we will describe T -invariant
curves in Qd containing S(δ,a,b) whose tangent directions at S(δ,a,b) coincide with
this given T -basis of T(δ,a,b) Qd .

Example 2.2. The quot scheme Q := Q2(0, 2) of rank 0 and degree 2 quotients
of O2

P1 has dimension r(n − r)+ dn = 2 · 0+ 2 · 2 = 4. Note that the associated
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Grassmannian is a point. Since r = 0, the index δ is the same for each fixed point,
δ1 = δ2 = 1, and so the fixed points are indexed by quadruples (a1, a2, b1, b2)

of nonnegative integers whose sum is 2. Thus there are ten fixed points. We
represent the fixed point (a1, a2, b1, b2) by two columns of boxes superimposed
on a horizontal line where the i-th column has ai boxes above the horizontal line
and bi boxes below it. For example,

↔ (2, 0, 0, 0), ↔ (1, 1, 0, 0), and ↔ (1, 0, 0, 1).

The fixed point corresponding to is the exact sequence of sheaves on P1,

O(−2) · e1
x2

−−→ O · e1 −→ O/m2
0 · e1

0 −→ ⊕ ⊕ ⊕ −→ 0,

O · e2
1
−−→ O · e2 −→ 0

where O = OP1 . The tangent space at this fixed point is the sum of the two 2-
dimensional T -invariant spaces of homomorphisms having the indicated T -bases:

Hom(O, O/m2
0) ·E21 = k{1, z} ·E21,

Hom(x2O, O/m2
0) ·E11 = k{z−2, z−1

} ·E11.

As before, z := x/y is a local parameter at 0 and z−1 is a local parameter at ∞.
These basis elements have four distinct T -weights

e1− e2, e1− e2+ f, and − f, −2f.

The fixed point corresponding to is the exact sequence of sheaves on P1,

O(−1) · e1
x
−→ O · e1 −→ O/m0 · e1

0 −→ ⊕ ⊕ ⊕ −→ 0.

O(−1) · e2
y
−→ O · e2 −→ O/m∞ · e2

The tangent space at this fixed point is the sum of four 1-dimensional T -invariant
spaces of homomorphisms having bases and weights as indicated from the follow-
ing table:

T -eigenspace basis T -weight

Hom(xO, O/m0) ·E11 z−1
·E11 −f

Hom(xO, O/m∞) ·E12 1 ·E12 e2− e1

Hom(yO, O/m0) ·E21 1 ·E21 e1− e2

Hom(yO, O/m∞) ·E22 z ·E22 f



THE EQUIVARIANT CHOW RINGS OF QUOT SCHEMES 209

3. T -invariant curves

A flat family S→ P1 equipped with a T -action whose fibre S(s, t) over a point
[s, t] ∈ P1 is a free subsheaf of On

P1 of rank n − r and degree −d gives a T -
equivariant map fS : P1

→ Qd . When the family S is not trivial (T -equivariantly
isomorphic to a product S0 ×P1 with T acting trivially on the base P1), then its
image is a T -invariant curve in Qd .

Here, we describe a collection of T -invariant curves whose tangent directions
at each T -fixed point (δ, a, b) form a basis for T(δ,a,b) Qd . We exhibit each curve
as a subsheaf S of On

P1×P1 of rank n− r and degree (−d,−1) with

S(1, 0)= S(δ,a,b), and S(0, 1)= S(δ′,a′,b′),

where (δ′, a′, b′) is some other T -fixed point on Qd . Each subsheaf S is T -
invariant, and so defines a T -invariant curve on Qd connecting the two fixed points.
Requiring that the second component of the degree is−1 guarantees that the family
is not trivial.

We will show in the proof of Theorem 3.2 below that the differentials d fS at the
fixed points [0, 1], [1, 0] ∈ P1 are nonzero for each subsheaf S that we consider.
This implies that the maps fS are closed immersions with image a smooth T -
invariant curve. Further, we show that the tangent spaces to these curves form
a basis of the tangent space at each T -fixed point which is compatible with the
decomposition (2-1) (in fact, it coincides with the further decomposition of each
summand of (2-1) into one-dimensional spaces spanned by monomials which was
described following Theorem 2.1).

Each sheaf S has one of three types: I, II, or III. We describe them below
and then argue that they have the desired properties. We write O for OP1×P1 . We
use the correspondence between sheaves over O and saturated modules over the
bihomogeneous coordinate ring k[x, y][s, t] of P1

[x,y]×P1
[s,t]. Then On is the rank

n free module with basis e1, e2, . . . , en .

Type I: Let (δ′, a′, b′) be another fixed point where the data (δ, a, b) and (δ, a′, b′)
agree except in positions i and j , with δi = δ′j = 1 and δ j = δ′i = 0. Note that
ai +bi = a′j +b′j . Let S be the subsheaf of On which agrees with both S(δ,a,b) and
S(δ′,a′,b′) except for its component in O ·ei+O ·e j , where it is the rank 1 and degree
−(ai + bi ) subsheaf generated by the single element

(3-1) sxai ybi · ei + t xa′j yb′j · e j .

Type II: Let (δ′, a′, b′) be another T -fixed point where δ= δ′, b= b′, and the data
a and a′ agree except in positions i and j with i 6= j . We suppose that i and j have
been chosen so that ai < a′i . Then a j > a′j and c := a′i − ai = a j − a′j > 0. Set

γ := ai + bi + c− a j − b j .
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If γ ≥ 0, let S be the subsheaf of On which agrees with both S(δ,a,b) and S(δ′,a′,b′)
except for its components in O · ei +O · e j , where it is the subsheaf generated by

(3-2) xai+c ybi · ei , xa j yb j · e j , and sxai ybi · ei + t xa j−c yb j+γ
· e j .

When γ < 0, replace the third generator by sxai ybi−γ
· ei + t xa j−c yb j · e j .

The remaining sheaves of Type II are obtained by interchanging the roles of a
and b. That is, δ = δ′, a = a′ and b, b′ agree except in positions i 6= j , and we
further have that c := b′i − bi = b j − b′j > 0. Set

γ := ai + bi + c− a j − b j .

If γ ≥ 0, let S be as before, except with the generators (3-2) replaced by

(3-3) xai ybi+c
· ei , xa j yb j · e j , and sxai ybi · ei + t xa j+γ yb j−c

· e j .

If γ < 0, then the third generator will be sxai−γ ybi · ei + t xa j yb j−ce j .

Type III: Let (δ′, a′, b′) be another T -fixed point where δ = δ′ and the data (a, b)

and (a′, b′) agree except in position i . Thus δi 6= 0 and ai + bi = a′i + b′i . Let
S be the subsheaf of On which agrees with both S(δ,a,b) and S(δ′,a′,b′), except for
its component in O · ei , where it is the rank 1 and degree −(ai + bi ) subsheaf
generated by

(3-4) sxai ybi · ei + t xa′i yb′i · ei .

Theorem 3.1. The subsheaves S of On
P1×P1 of types I, II, and III are T -invariant

and free of rank n− r and degree (−d,−1). They satisfy

S(1, 0)= S(δ,a,b), and S(0, 1)= S(δ′,a′,b′),

and hence define T -invariant curves on Qd .

Proof. The generators of S are T -invariant, except for those described by (3-1),
(3-2), (3-3), and (3-4). But T acts transitively on those generators for s · t 6= 0.
Therefore, each sheaf S is T -invariant. In all cases, S has degree −1 with respect
to P1

[s,t].
The theorem is clear for the sheaves of types I and III, as they are constant on

P1
[s,t], except for the rank 1 components (3-1) and (3-4), each of which has degree

(−(ai + bi ),−1). Specializing these generators at [s, t] = [1, 0] and [0, 1] shows
that S(1, 0)= S(δ,a,b) and S(0, 1)= S(δ′,a′,b′).

We use a Gröbner basis argument for the sheaves of type II. The Hilbert function
for a submodule M of O2 equals the Hilbert function for the module of leading
terms of any Gröbner basis of M . As explained in [Eisenbud 1995, Chapter 15], a
weight ω selecting these leading terms induces a Gm-action on O2 whose restriction
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to the Gröbner basis of M generates a flat family over A1 whose special fibre is
the module of leading terms.

For now, set s= t = 1. If ei > e j , then the generators (3-2) form a Gröbner basis
for any position-over-monomial ordering, and the third generator has leading term
xai ybi · ei . As c > 0, the module of leading terms is generated by xai ybi · ei and
xa j yb j · e j , and so it has rank 2 and degree −(ai + bi + a j + b j ). The weight ω

with ω(ei ) = 0 and ω(e j ) =−1 induces the leading terms and has corresponding
Gm-action t ·(ei , e j )= (ei , te j ), for t ∈Gm . This action on S(1, 1) is the flat family
of modules over A1 generated by

xai+c ybi · ei , xa j yb j · e j , and xai ybi · ei + t xa j−c yb j+γ
· e j ,

which is just the part of S in O · ei +O · e j restricted to the affine subset U of P1
[s,t]

where s 6= 0. Thus S|U is a flat family over U of free subsheaves of On
P1 of rank

n− r and degree −d, and S(1, 0)= S(δ,a,b).
When s = t = 1 the generators (3-2) form a Gröbner basis when ei < e j , where

the third generator has leading term xa j−c yb j+γ
· e j . The module of leading terms

is generated by

xai+c ybi · ei , xa j yb j · e j , and xa j−c yb j+γ
· e j .

Since γ ≥ 0 and c > 0, saturating the ideal of k[x, y] generated by xa j yb j and
xa j−c yb j+γ by the irrelevant maximal ideal generated by x and y gives the ideal
generated by xa j−c yb j . Thus the module of leading terms is generated by

xai+c ybi · ei , and xa j−c yb j · e j .

As before, restricting S to the affine set of points [s, t] of P1 where t 6= 0 gives
a flat family of subsheaves of On

P1 of rank n− r and degree −d with special fibre
S(0, 1)=S(δ′,a′,b′). The same arguments suffice for the module generated by (3-3).

�

Theorem 3.2. All of the T -invariant curves induced by the sheaves S of types I,
II, and III are smooth. For any T -fixed point S(δ,a,b) in Qd , the set of tangent
directions to the curves which contain this point corresponds to the T -basis of
T(δ,a,b) Qd defined in Section 2, and this correspondence is T -equivariant, respect-
ing the weights. More specifically, at the T -fixed point S(δ,a,b),

I. The weight of Type I curve (3-1) is

e j − ei + (a′j − ai )f,

and such curves correspond to the first summand of (2-1).
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II. The weight of Type II curve (3-2) is

e j − ei + (a′j − ai )f,

the weight of Type II curve (3-3) is

e j − ei + (bi − b′j )f,

and such curves correspond to the second summand of (2-1) when i 6= j .

III. The weight of Type III curve (3-4) is

(a′j − ai )f,

and such curves correspond to the second summand of (2-1) when i = j .

Proof. In what follows, we work locally near [1, 0] by setting s = 1. The same
arguments handle the other fixed point [0, 1].

Note that the generator (3-1) of a Type I sheaf may be rewritten

xai ybi ·
(
ei + t · xa′j−ai yb′j−bi Ei j (ei )

)
.

This shows that the differential d fS at [1, 0] maps onto the span of the T -basis
element xa′j−ai yb′j−bi Ei j of Hom(Sai ,bi · ei , OP1 · e j ). Thus the Type I curves are
smooth, and their tangent spaces at S(δ,a,b) span the component of T(δ,a,b) Qd given
by the first summand of (2-1). (Recall that in Type I, we have δi = δ′j = 1 and
δ j = δ′i = 0.)

A similar analysis shows that the tangent space at t = 0 of the Type III curve
defined by (3-4) is spanned by xa′i−ai yb′i−bi Ei i , and so the tangent spaces at S(δ,a,b)

of Type III curves span the component of T(δ,a,b) Qd given by the second summand
of (2-1) when i = j .

For a curve of type II, note that the family of sheaves described by (3-2) is
constant in a neighborhood of∞. In a neighborhood of 0, it is given by

xai+cei , xa j e j , and xai ·
(
ei + t x (a j−c)−ai Ei j (ei )

)
.

Thus x (a j−c)−ai Ei j spans the tangent space at t = 0. A similar argument near ∞
for the sheaves described by (3-3) shows that the tangent spaces of Type II curves
at S(δ,a,b) span the component of T(δ,a,b) Qd given by the second summand of (2-1)
when i 6= j . �

A moment graph of a T -variety is a graph whose vertices correspond to T -
fixed points and whose edges correspond to T -invariant curves, embedded into
R⊗Hom(T, Z) so that the edge corresponding to a T -invariant curve is parallel to
the weight of the action of T on the curve. More specifically, if C is a T -invariant
curve joining fixed points p and q , then the edge from p to q in the moment graph
is a positive multiple of the T -weight of TpC . When k = C and we fix a Kähler



THE EQUIVARIANT CHOW RINGS OF QUOT SCHEMES 213

form, there is a moment map µ : Qd→ t∗ and the image of the T -fixed points and
T -invariant curves is a moment graph.

When there are finitely many T -invariant curves, the Goresky–Kottwitz–Mac-
Pherson method to compute equivariant cohomology is conveniently expressed in
terms of a moment graph, with one relation for each edge. When there are infinitely
many T -invariant curves, there are additional relations coming from families of
T -invariant curves, so it is better to work with the moment multigraph, where
each family of T -invariant curves (which will appear as a connected component
of parallel edges in the moment graph) is considered to form a single multiedge
with more than 2 vertices, given by the fixed points in the closure of the family. To
have a structure which determines the equivariant cohomology or Chow groups, we
should label each multiedge with the topological type of the corresponding family.

Guillemin and Zara [2001; 2002; 2003] have explored the combinatorial prop-
erties of moment graphs.

Example 3.3. Figure 1 represents a moment multigraph of Q2(0, 2). Since the
T -fixed points

and

have the same image in this and in any moment multigraph, we displace their
images from their true positions for clarity. Similarly, some images of T -invariant
curves are displaced or drawn as arcs.

The T -basis of the tangent space at has weights

{e1− e2, e1− e2+ f,−f,−2f}.

-
e1− e2

6
f

Figure 1. A moment multigraph of Q2(0, 2).
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These correspond to the following four T -invariant curves:

Generators of submodules of O2 t = 0 s = 0 Weight Type

x2e1, x2e2, te1+ se2 x2e1, 1 · e2 e1, x2e2 1 · e1− e2 II
x2e1, x2e2, t xe1+ sye2 x2e1, 1 · e2 xe1, xe2 e1− e2+ f II
(sx2
+ t xy)e1, e2 x2e1, 1 · e2 xye1, 1 · e2 −f III

(sx2
+ t y2)e1, e2 x2e1, 1 · e2 y2e1, 1 · e2 −2f III

The T -basis to the tangent space at has weights

{±f,±(e2− e1)}.

These correspond to the following four T -invariant curves:

Generators of submodules of O2 t = 0 s = 0 Weight Type

(sx + t y)e1, ye2 xe1, ye2 ye1, ye2 −f III
xye1, ye2, sxe1+ t xe2 xe1, ye2 xye1, e2 e2− e1 II
xe1, xye2, t ye1+ sye2 xe1, ye2 e1, xye2 e1− e2 II
xe1, (sy+ t x)e2 xe1, ye2 xe1, xe2 f III

4. Families of T -invariant curves

Suppose that Z is a T -invariant curve on Qd . Let T ′ be the identity component
of the stabilizer in T of a general point of Z . It is a codimension one subtorus of
T , so we can choose an isomorphism T/T ′ ' Gm . The action of T on Z factors
through the resulting quotient

T −→ T/T ′ ' Gm .

This composition η : T → Gm is a primitive weight. When T is smooth, it is a
multiple of the weight of the action of T on the tangent space to Z at either fixed
point.

Let Y be the component of the T ′-fixed point locus QT ′
d which contains Z ; since

Qd is smooth, so is Y . Then Y \ Y T is foliated by one-dimensional orbits of T
whose closures are T -invariant curves. We call Y the family of T -invariant curves
on Qd which contains Z . If

p ∈ Y T
⊂ QT

d

is a T -fixed point of Y , then TpY is a T -invariant linear subspace of Tp Qd which
is fixed pointwise by T ′. In particular, all weights of the T -action on TpY are
multiples of η.

To classify families of T -invariant curves, we first determine which T -weights
of Tp Qd are parallel, using Theorem 3.2. If the weight of a curve is not parallel to
the weight of any other curve, the curve is isolated.
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Theorem 4.1. Two T -invariant curves S, S′ of types I, II, or III containing the
fixed point S(δ,a,b) have parallel T -weights if and only if either

(1) both S and S′ have Type III or

(2) both S and S′ have Type II, and
(a) S connects S(δ,a,b) to S(δ,a′,b),
(b) S′ connects S(δ,a,b) to S(δ,a,b′), and
(c) a and a′ agree except in positions i and j with i 6= j , b and b′ agree except

in positions i and j (same i, j), ai + bi = a′j + b′j .

Proof. For (1), note that the weight of T on a Type III curve is parallel to f.
If a curve does not have type III, then its weight has the form

e j − ei + c f,

where δi = 1 and either δ j = 0 if it has type I or δ j = 1 if it has type II. Thus
S and S′ have the same weight and type, δ = δ′, and the indices i and j in their
definitions coincide.

Weights of curves of types I and II correspond to (2-2) and (2-3), respectively.
Inspecting (2-2) shows that no two curves of type I can have the same weight.
Inspecting (2-3) reveals that either a given curve S of type II has a unique weight,
or else there is exactly one other Type II curve S′ with the same weight, and the
two curves are as described in the statement of the theorem. �

We show that all Type III curves at a fixed point lie in a single family of T -
invariant curves, and if two Type II curves have the same weight then they lie in
a 2-dimensional family. Together with the isolated T -invariant curves, this shows
that the tangent spaces at a given fixed point p to families of T -invariant curves
are the subspaces of Tp Qd which are stabilized by codimension 1 subtori of T . It
follows that these families contain all T -invariant curves in Qd .

To see this, fix a weight and consider the family Y of all T -invariant curves
meeting p that have that weight or a parallel weight. The common kernel of these
parallel weights is a codimension 1 subtorus T ′ of T , which stabilises this family
pointwise. Since Qd is smooth, Y is smooth, and its tangent space at p is necessarily
the T ′-fixed subspace of the tangent space of Qd at p. In particular the dimension
of Y is the dimension of this T ′-fixed subspace. Since the families described in
Theorem 4.1 whose weights annihilate T ′ have dimension equal to the dimension
of the T ′-fixed subspace, there can be no other T ′-stable curves.

Vertical families. The vertical family containing S(δ,a,b) is parametrized by the
product of projective spaces∏

δi=1

PH 0(O(ai + bi ))'
∏
δi=1

P ai+bi .
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It contains exactly the fixed points S(δ′,a′,b′) where δ= δ′, and a′+b′= a+b, along
with all Type III curves which connect them. This includes all Type III curves at
each of these fixed points.

Consider the family S of submodules of On
P1 generated by

{ei si | δi = 1, si ∈ H 0(O(ai + bi ))}.

The base of this family is ∏
δi=1

PH 0(O(ai + bi )),

all subsheaves have rank n − r and degree −d , and the foliation by T -invariant
curves is given by the T -action on the base.

Horizontal families. If there exist i, j, c, c′ such that 1 ≤ c ≤ a j , 1 ≤ c′ ≤ b j ,
and ai + bi + c+ c′ = a j + b j , then the point S(δ,a,b) lies in a horizontal family
parametrized by the product of two projective lines. Let

a′i = ai + c, a′j = a j − c, b′i = bi + c′, b′j = b j − c′.

Let ([s, t], [σ, τ ]) be the coordinates of P1
× P1, and let S be the submodule of

On
P1 which, except for its components in O · ei + O · e j , agrees with S(δ,a,b). The

component of S in O · ei +O · e j is the subsheaf generated by

e j xa j yb j , sei xa′i ybi + te j xa j yb′j , σei xai yb′i + τe j x
a′j yb j , and ei xa′i yb′i .

Similar reasoning as for Theorem 3.1 shows that this defines a family of T -invariant
curves over the base P1

×P1 with coordinates ([s, t], [σ, τ ]). It contains four T -
fixed points: setting t = τ = 0 gives the fixed point S(δ,a,b), setting t = σ = 0 gives
the fixed point S(δ,a′,b), setting s = τ = 0 gives the fixed point S(δ,a,b′), and setting
s = σ = 0 gives the fixed point S(δ,a′,b′). This family also contains the four Type
II curves connecting these four fixed points, given by setting exactly one of s, t, σ ,
or τ equal to zero. Furthermore, the data (δ, a, b) and (δ′, a′, b′) satisfy Theorem
4.1(2)(c), and any two T -invariant curves S and S′ as in Theorem 4.1(2) lie in a
unique horizontal family.

We summarize the results of this section, in which we identified the fixed point
loci of codimension 1 subtori of T .

Theorem 4.2. The connected components of the fixed point loci of codimension 1
subtori of T which contain the fixed point S(δ,a,b) are

(1) Type I curves, which are isolated;

(2) Type II curves whose weight at S(δ,a,b) is unique, which are also isolated;
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(3) horizontal families, which occur only when there are two curves of type II
containing S(δ,a,b) with the same weight (these are isomorphic to P1

×P1 and
contain these two Type II curves);

(4) one vertical family, which is isomorphic to a product of n−r projective spaces
and has dimension equal to d (all curves of type III which contain S(δ,a,b) lie
in this family).

5. Algebraic extension of GKM theory

We discuss equivariant localization and an extension of the Goresky–Kottwitz–
MacPherson relations when there are finitely many fixed points but infinitely many
T -invariant curves.

We work with equivariant Chow rings; similar results hold for equivariant co-
homology. In fact, when k = C, X is smooth and projective, and X T is finite, the
two theories coincide.

We first recall some properties of T -equivariant Chow rings as developed by
Edidin and Graham [1998a] and Brion [1997]. Next, we outline Evain’s [2007]
development of ideas of Brion which extends the GKM relations to describe the
T -equivariant Chow ring of a smooth variety with finitely many T -fixed points
when there are infinitely many T -invariant curves. This description involves ideal-
membership relations, one for each generator of the equivariant Chow ring of each
family of T -invariant curves. When the generators are given by smooth subvari-
eties, these relations may be expressed in terms of tangent weights. This gives one
form of our presentation for A∗T (Qd) in Theorem 1.1.

We next give a variant of these relations using differential operators, which gives
the other form of our presentation for A∗T (Qd).

We then compute these relations for products of projective spaces, and finally
deduce Theorem 1.1.

5A. Torus equivariant Chow rings. When a linear algebraic group G acts on a
smooth scheme X , Edidin and Graham [1998a] defined the equivariant Chow ring
A∗G(X), using Totaro’s algebraic approximation to the classifying space of G. It
satisfies functorial properties under equivariant maps analogous to those for ordi-
nary Chow rings [Fulton 1998], including proper pushforwards and pullbacks by
local complete intersection morphisms.

When the group is a torus T , Brion [1997] gave an alternative development
of this theory which includes versions of the localization theorems that hold for
equivariant cohomology. He gave the following presentation for the equivariant
Chow ring, analogous to the usual presentation of Chow groups. The equivariant
Chow ring A∗T (p) of a point p is the integral symmetric algebra S of the character
group T̂ of T . Equivariant pullback makes A∗T (X) into an S-module.
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Proposition 5.1 [Brion 1997, Theorem 2.1]. The S-module A∗T (X) is defined by
generators [Y ], for each T -invariant subvariety Y , and by relations

[divY ( f )] −χ [Y ]

for each rational function f on Y which is a T -eigenvector of weight χ ; here χ is
considered as an element of S in degree 1.

The usual Chow ring may be recovered from the S-module A∗T (X), as the quotient
by the ideal S+ of S generated by the character group T̂ .

Proposition 5.2 [Brion 1997, Corollary 2.3.1].

A∗(X)= A∗T (X)⊗S Z= A∗T (X)/S+A∗T (X).

The analogous statement in equivariant cohomology requires stronger hypothe-
ses.

When k = C, the connection between Chow groups and cohomology is given
by the cycle map

A∗T (X)→ H∗T,c(X, Z)

to compactly supported (Borel–Moore) equivariant cohomology. If X is projective
and the fixed point set X T is finite, then the cycle map is an isomorphism.

Some statements below hold only for the rational equivariant Chow ring

A∗T (X)Q := A∗T (X)⊗Z Q.

This is a module over the rational equivariant Chow ring A∗T (p)Q of a point p,
which is the symmetric algebra SQ of T̂Q := T̂ ⊗Z Q.

5B. Localization. We now assume that X T is finite, and that X has a decompo-
sition into T -invariant affine cells C1, . . . , Cm which can be ordered so that for
i = 1, . . . , m, the union C1 ∪ · · · ∪Ci is Zariski open. We will call such varieties
filtrable; this is close to the terminology of Brion [1997], but he did not require X T

to be finite, and his cells were allowed to be vector bundles over components of
X T . If X is smooth and projective and X T is finite, then Białynicki-Birula [1973]
showed that it is filtrable.

Let i : X T
→ X be the inclusion of the subscheme of T -fixed points of X .

Proposition 5.3 [Brion 1997, Corollary 3.2.1]. The S-module A∗T (X) is free. The
map

i∗ : A∗T (X)→ A∗T (X T )

is an injection.

Brion also established Chow ring versions of the results of Chang and Skjelbred
and of Goresky, Kottwitz, and MacPherson concerning the image of the localization
map.
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Proposition 5.4 [Brion 1997, Sections 3.3 and 3.4]. (a) The image of the local-
ization map i∗ : A∗T (X)Q→ A∗T (X T )Q is the intersection of the images of the
localization maps

i∗T ′ : A∗T (X T ′)Q→ A∗T (X T )Q,

where T ′ runs over all codimension one subtori of T .

(b) When T acts with finitely many fixed points and has finitely many invariant
curves, then the image of the localization map

i∗ : A∗T (X)Q→ A∗T (X T )Q ' (SQ)X T

is the set of all tuples ( f p)p∈X T ∈ (SQ)X T
such that whenever p and q belong

to the same irreducible T -invariant curve C , we have f p ≡ fq modulo χ ,
where χ is the weight of the action of T on TpC.

Statement (a) is analogous to a theorem of Chang and Skjelbred [1974] for
equivariant cohomology. This result, together with the easy calculation of the
equivariant Chow groups of P1, immediately gives (b), which is the Chow analog
of the GKM relations for equivariant cohomology.

In general this result does not hold with Z coefficients. For instance, suppose
that dim X = 2, x ∈ X T , and the weights of T on the tangent space Tx X are aχ

and a′χ ′, where χ, χ ′ ∈ T̂ are linearly independent primitive characters. Then
condition (b) would say that if ( f p) ∈ A∗T (X T ) has f p = 0 for p 6= x , then it is in
the image of i∗ if fx is a multiple of lcm(a, a′)χχ ′. In fact, fx must be a multiple
of aa′χχ ′.

This is essentially the only obstruction to working with Z coefficients, at least
if the fixed point set is finite. We say that the tangent weights of a T -variety X are
almost coprime if whenever two T -weights of Tp X for p ∈ X T are divisible by
the same integer a > 1, then they are parallel. With this added hypothesis, Brion’s
proof of Proposition 5.4 works over Z.

Theorem 5.5. Let X be a smooth filtrable T -variety whose tangent weights are
almost coprime. Then Proposition 5.4 holds with rational Chow groups replaced
by integral Chow groups.

5C. Evain’s relations. When T does not have finitely many invariant curves on X ,
then statement (b) of Proposition 5.4 fails, but by (a) we can still compute A∗T (X)

if we know the images of i∗T ′ for all codimension one subtori T ′ of T . A finite set of
such T ′ suffices, namely those which fix at least one T -invariant curve pointwise.
Brion [1997] and Goldin and Holm [2001] have computed cases where the com-
ponents of X T ′ are low-dimensional. Evain [2007] recently described relations in
the general case:
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Let Y = X T ′ for T ′ a codimension one subtorus of T . By [Iversen 1972], Y is
smooth. For p ∈ Y T

= X T , let

eT
p (Y )= eT (T Y )|p

be the localization of the equivariant Euler class of T Y at p. Under the identifica-
tion A∗T (p)= S, this is the product of the T -weights on the tangent space TpY .

Proposition 5.6 [Evain 2007, Corollary 27]. A class α = (αp)p∈Y T in SY T
lies in

i∗T ′ A
∗

T (Y ) if and only if

(5-1)
∑
p∈Y T

αpβp

eT
p (Y )

∈ S

for every β ∈ i∗T ′ A
∗

T (Y ).

Remark (On Evain’s proof). The condition (5-1) is necessary, since if π is the
projection of Y to a point, then the sum is simply π∗(α · β), by the integration
formula of Edidin and Graham [1998b]. Note that since π∗ is S-linear, it is enough
to take β in a generating set of the S-module i∗A∗T (Y ).

By [Białynicki-Birula 1973], there are two T -invariant cell decompositions C+p
and C−p for p ∈Y T of Y and an ordering of the fixed points Y T such that the matrix
with entries in S whose (p, q)-entry is

π∗([C+p ] · [C
−

q ])

is unitriangular. Either set of classes [C+p ] or [C−p ] forms a basis for the S-module
A∗T (Y ), and expressing the elements α and β in these two bases proves sufficiency.

Combining Proposition 5.6 with Proposition 5.4 and Theorem 5.5 gives the cri-
terion for membership in i∗A∗T (X):

Theorem 5.7. A class α = (αp)p∈X T ∈ (SQ)X T
lies in the image i∗A∗T (X)Q of the

localization map if and only if for all Y = X T ′ for T ′ a codimension one subtorus
of T we have ∑

p∈Y T

αpβp

eT
p (Y )

∈ SQ,

for all β in a set of SQ-module generators for i∗T ′ A
∗

T (Y )Q.
If the tangent weights of X are almost coprime, the same statement holds over Z.

Remark. When X is smooth, the relations in Theorem 5.7 can also be taken for
Y running over all irreducible components of the union of the fixed points and the
T -invariant curves, since such Y are just the connected components of the T ′-fixed
loci X T ′ for some codimension one subtorus T ′ of T . We call this union of fixed
points and T -invariant curves the one-skeleton of X .
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To apply Theorem 5.7, we need to know explicit generators of A∗T (Y ), or more
precisely their localizations to Y T . By Proposition 5.1, one class of generators
are the equivariant fundamental cycles [Z ] of T -invariant subvarieties Z of the
components Y . These are easy to compute when Z is smooth, since if p ∈ Z T we
have

[Z ]p = eT
p (NZ Y ),

the equivariant Euler class of the normal bundle to Z in Y , while if p ∈ Y T
\ Z T ,

then [Z ]p = 0. It follows that

[Z ]p
eT

p (Y )
=

1
eT

p (Z)

if p ∈ Z T .
To see this, note that [Z ]p ∈ A∗T (p) is the pullback of [Z ] along the regular

embedding i p,Y : p→ Y . We factor i p,Y as the composition

p
i p,Z
−−−→ Z

iZ
−−→ Y.

The class [Z ] ∈ A∗T (Y ) is the pushforward along iZ of the unit class

1= [Z ] ∈ A∗T (Z),

and so we have

[Z ]p = i∗p,Z i∗Z iZ ,∗1= i∗p,Z eT (NZ Y )= eT
p (NZ Y ),

by the self-intersection formula for Chow rings.
Thus if we can find for each Y a collection ZY of smooth T -invariant subvarieties

of Y so that the classes [Z ] for Z ∈ ZY generate A∗T (Y ) as an S-module, we get
the more explicit version of Theorem 5.7:

Theorem 5.8. A class α = (αp)p∈X T ∈ (SQ)X T
lies in i∗A∗T (X)Q if and only if

(5-2)
∑
p∈Z T

αp

eT
p (Z)

∈ SQ,

for all Z ∈ ZY and all components Y of the one-skeleton of X. If the tangent
weights of X are almost coprime, the same statement holds over Z.

The necessity of (5-2) does not require the argument above, since if (αp)= i∗α
for α ∈ A∗T (X), then the sum is just π∗(α|Z ), where π is the projection of Z to a
point.

Obvious candidates for the subvarieties [Z ] are the closures of the Białynicki-
Birula cells, since their classes form an S-basis for A∗T (Y ). Unfortunately, they
are not in general smooth — this was the case for Evain. However, for the quot
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schemes we study, they are smooth, as the connected components Y are products
of projective spaces. More generally we can ask that for each component Y of X T ′

there is a torus TY containing T which acts on Y with finitely many orbits, so that
Y is a smooth toric variety. The closures of the cells will be TY -orbit closures, and
therefore smooth.

The relations of Theorem 5.8 are the same as those found by Goldin and Holm
[2001] for equivariant cohomology of Hamiltonian T -spaces in the case where the
spaces X T ′ are at most four-dimensional (over R).

5D. Evain’s relations as differential operators. We rewrite this algebraic crite-
rion in a different form. Suppose that Y is a component of X T ′ and Z ⊂ Y is a
smooth T -invariant subvariety. The action of T on Y factors through a character
η : T → C∗, so the weights of T on Tp Z for p ∈ Z T are nonzero scalar multiples
of η. Thus there exist numbers dp = dp(Z) so that

eT
p (Z)= dp(Z) · ηdim Z .

The terms in (5-2) have a common denominator ηdim Z , and so we may rewrite it
as ∑

p∈Z T

αp

dp(Z)
∈ ηdim Z SQ.

We can rewrite this condition using a linear differential operator. The ring SQ is
the symmetric algebra of T̂Q, or dually the ring of polynomial functions on T̂ ∗

Q
.

Choose ζ ∈ T̂ ∗
Q

for which ζ(η) 6= 0. Then the operator D = Dζ of differentiation
in the direction of ζ acts on SQ. If f ∈ SQ is divisible by η, then ηk divides f if
and only if ηk−1 divides D f , so the relation (5-2) is equivalent to∑

p∈Z T

dp(Z)−1 D jαp ≡ 0 mod η,

for all 0≤ j < dim Z .
We give a variant of Theorem 5.8 which uses the last relation, but only with the

maximum order derivative j = dim Z − 1. In exchange, we must apply it using
more subvarieties Z .

Suppose that Y is a smooth component of the one-skeleton of X , let η be the
associated character of T , and consider the two Białynicki-Birula cell decomposi-
tions

{C−p | p ∈ Y T
}, and {C+p | p ∈ Y T

}

induced by the T -action. Each cell C=C+p , C−p is isomorphic to the T -vector space
TpC ⊂ TpY . Suppose that within each cell C = C+p we can find T -invariant affine
subspaces C p,1, . . . C p,dim C with dim C p,i = i and which have smooth closures
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Z p,i = C p,i . As before, this will be true if each Y is a toric variety for a larger
torus TY containing T , since we can take each Z p,i to be the closure of a TY -orbit.

Theorem 5.9. With these assumptions, a class α = (αp)p∈X T ∈ (SQ)X T
lies in

i∗A∗T (X)Q if and only if

(5-3)
∑

q∈Z T

dq(Z)−1 Ddim Z−1αq ≡ 0 mod η,

for all Z = Z p,i and for all components Y of the one-skeleton of X.

Proof. The necessity of the conditions (5-3) follows from the previous discussion.
To show they are sufficient, let U be an open union of the cells C−p and note that

Z p,i ⊂ U if and only if p ∈ U . We use induction on the number of cells in U to
show that the image of i∗U : A∗T (U )Q→ A∗T (U T )Q is the set (αx)|x∈U T satisfying
(5-3) for all Z p,i ⊂U .

When U is a single cell, this is immediate, as i∗U is an isomorphism and there
are no Z p,i ’s contained in U . Otherwise, suppose α= (αx)|x∈U T satisfies (5-3) for
all Z p,i ⊂U . Let C−p ⊂U be a closed cell, and put U ′=U \C−p . There is an exact
sequence[Brion 1997, Proposition 3.2]

(5-4) 0→ A∗T (U )Q

ρ
−→ A∗T (U ′)Q× A∗T (C−p )Q→ A∗T (C−p )Q/(eT (N ))→ 0,

where eT (N ) is the equivariant Euler class of the normal bundle N to C−p in X .
Under the isomorphism A∗T (C−p )∼= S, this is just the product of all the T -weights
of N . The components of ρ are the restriction maps, while the map

A∗T (C−p )Q→ A∗T (C−p )Q/(eT (N ))

is the natural quotient.
By the inductive hypothesis, α|(U ′)T lies in the image of i∗U ′ . The map A∗T (U )→

A∗T (U ′) is surjective and so we can write α = i∗U β + γ , with β ∈ A∗T (U ) and
γ |(U ′)T = 0. Since i∗U β satisfies the relations (5-3), so does γ . It will be enough to
show that γ is in the image of i∗U . But using the exact sequence (5-4), we see that
this holds if and only if γp is a multiple of cT

d (N ), which is a nonzero multiple of
ηd , where d = codim C−p = dim C+p . But the relation (5-3) implies that Dkγp ≡ 0
(mod η) for 0≤ k < d. The result follows. �

Example 5.10. Let T = Gm act on X = Pr by

t · [x0 : x1 : · · · : xr ] = [x0 : t x1 : · · · : tr xr ]

in homogeneous coordinates, where t ∈ T . For each 0≤ j ≤ r , let p j ∈ X T denote
the T -fixed point corresponding to the j-th standard basis vector e j . The tangent
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space Tp j X is Cn/C · e j , with the action of T given by t · ek = tk− j ek . Thus

ep j (X)= (−1) j j !(r − j)!ηr ,

where η is the identity character. More generally, if 0≤ l ≤ n ≤ r , let

Zl,m = P Span{el, el+1, . . . , em}.

The same calculation gives

ep j (Zl,m)= (−1) j−l( j − l)!(m− j)!ηm−l .

We can apply Theorem 5.8 using the smooth subvarieties Z0,l , for 1 ≤ l ≤ r .
Then i∗A∗T (X)⊂ A∗T (X T ) is the set of tuples α = (α0, . . . , αr ) where

(5-5)
∑

0≤ j≤l

(−1) jα j

j !(l − j)!
∈ ηl S,

for all 1≤ l ≤ r .
On the other hand, we can apply Theorem 5.9 using all the subvarieties Zl,m .

If D is differentiation on S in the direction of η∨, then α lies in the image of i∗ if
and only if

(5-6)
∑

l≤ j≤m

(−1) j−l Dm−l−1α j

( j − l)!(m− j)!
∈ ηS,

for all 0≤ l < m ≤ r . We could take one more derivative and ask that the resulting
sums vanish, but this would not generalize to actions of higher-dimensional tori.

When X = P1 we get exactly the GKM relation for a primitive action.

Example 5.11. These same arguments apply to products of projective spaces. Let
r = (r1, . . . , rn), and let X = Pr1 × · · · × Prn , where the action of t ∈ T = Gm

on a point ([x1
0 : x

1
1 : · · · : x

1
r1
], . . . , [xn

0 : x
n
1 : · · · : x

n
rn
]) is given by multiplying x i

j

by t j . The fixed points have the form pj = (p j1, . . . , p jn ), where p ji is the ji -th
fixed point in Pri , in the notation of Example 5.10, and j = ( j1, . . . , jn) satisfies
0≤ j≤ r, meaning that 0≤ ji ≤ ri for all 1≤ i ≤ n.

For l, m ∈ Zn with 0 ≤ li ≤ mi ≤ ri for all i , set Z l,m = Zl1,m1 × · · · × Zln,mn .
For each l ≤ j ≤ m, the tangent space to Z l,m at pj is

⊕n
i=1 Tp ji

Zli ,mi . Using the
computation from Example 5.10, we see that

eT
pj
(Z l,m)= (−1)|j|(j− l)!(m− j)!η|m|−|l|.

Recall that for an n-tuple a= (a1, . . . , an), we put a! = a1! · · · an!.
As in Example 5.10, we can either apply Theorem 5.8 using the subvarieties

Z0,l, or Theorem 5.9 using all the Z l,m. The resulting conditions for a tuple α =
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(αj)0≤j≤r to be in the image of the localization map are just (5-5) and (5-6), where
the variables now represent elements of Zn rather than scalars.

5E. Proof of Theorem 1.1.

Proof. We combine these localization results with the geometry of the quot scheme
from Sections 2, 3, and 4 to produce a proof of Theorem 1.1.

The only nonprimitive tangent weights are those with i = j in (2-3), which are
multiples of f. These correspond to Type III curves. Thus the tangent weights
are almost coprime, so Theorem 5.8 gives a correct description of the integral
equivariant Chow ring.

The relations I, II(a) and II(b) are the GKM relations for the T -invariant curves
of types I and II, as described in Section 3 using the identification of the T -weights
of these curves with the tangent weights given by Theorem 3.2.

The relations II(c)/II(c)′ come from the horizontal families of T -invariant curves
of type II. As described in Section 4, these are isomorphic to P1

×P1, where the
action on each factor is by the same primitive character. As in Example 5.11,
we can apply the relation in Theorem 5.8 with Y = P1

× P1 to get the relations
II(c)/II(c)′. We get one new relation using Z = Y ; smaller T -invariant subvarieties
contained in Y are either T -invariant curves, whose relations are already covered
by II(a) and II(b), or points, which give no relation.

Finally, the relations III and III′ come from the vertical families. As described
in Section 4, the vertical family containing S(δ,a,b) is isomorphic to∏

δi=1

PH 0(O(ai + bi ))'
∏
δi=1

Pai+bi ,

and the fixed points in the family are those S(δ,a′,b′) with a′ + b′ = a+ b. The
codimension one subtorus Tkn ⊂ T acts trivially on the family, and the remaining
action of TP1 is the one described in Example 5.11, using the monomial basis of
H 0(O(ai + bi )). Example 5.11 then gives exactly the relations III and III′. This
proves Theorem 1.1. �

6. Equivariant Chern classes on Qd

Recall that P1
×Qd has a universal exact sequence of sheaves

0→ S→ On
P1×Qd

→ T→ 0

with S the tautological vector bundle of rank n− r .
Since both Qd and P1 have cell decompositions, we have a Künneth decompo-

sition of Chow rings,

A∗(P1
×Qd)' A∗(P1)⊗Z A∗(Qd).
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Let π : P1
×Qd→Qd be the projection. For each 1≤ i ≤ n−r we may decompose

the Chern class ci (S) as

(6-1) ci (S)= π∗ti + hπ∗ui−1,

where ti , ui ∈ Ai (Qd) and h is the class of a point in A1(P1) pulled back to P1
×Qd .

Note that u0 = −d. Strømme [1987] proved that A∗(Qd)Q is generated by the
classes

{t1, . . . , tk, u1, . . . , uk−1}.

For each 1≤ i≤n−r , the equivariant Chern class cT
i (S) localizes at a fixed point

p to the i-th elementary symmetric polynomial ei in the T -weights of the fibre of
S at p. The fixed points of P1

×Qd correspond to {0,∞}×F. For (δ, a, b) ∈ F,
the bundle S(δ,a,b) on P1 is a sum of line bundles Sa j ,b j e j for δ j = 1. Since Sa,b

has weight af at 0 and −bf at∞, the localizations of cT
i (S) are

cT
i,0,(δ,a,b) = ei ({e j + a j f | δ j = 1}) at (0, (δ, a, b)),

cT
i,∞,(δ,a,b) = ei ({e j − b j f | δ j = 1}) at (∞, (δ, a, b)).

We also have a Künneth decomposition in equivariant Chow cohomology:

A∗T (P1
×Qd)

∼
←−− A∗T (P1)⊗S A∗T (Qd).

To see this, just imitate the argument for ordinary Chow cohomology; the equi-
variant Chow cohomology of a variety with an algebraic cell decomposition will
be a free S-module, with a module basis given by the closures of the cells.

An equivariant Künneth decomposition of cT
i (S) analogous to (6-1) requires the

choice of a lift of the class of a point to A1
T (P1). Localizing a class x ∈ A1

T (P1)

gives an ordered pair (x0, x∞) ∈ Zf⊕ Zf. Lifts of classes from A1(P1) are only
well-defined modulo the span of (f, f). Three possible choices for lifting the class
of a point are

(i) (−f, 0), (i i) (0, f), and (i i i) 1
2(−f, f).

The symmetric lift (i i i) requires rational coefficients. We will use this lift to ex-
press our formulas.

Given a lift h ∈ A1
T (P1) of the class of a point, the formula (6-1) defines equi-

variant lifts of the classes ti , ui−1. Strømme’s result together with Proposition 5.2
implies that these classes generate A∗T (X)Q as an SQ-algebra.

Proposition 6.1. The symmetric choice (i i i) of lift h ∈ A1
T (P1) of the class of a

point gives the following formula for the Künneth components ti , ui−1 of the equi-
variant Chern class cT

i (S) of the bundle S, expressed in terms of their localizations
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at the fixed point of Qd indexed by p := (δ, a, b):

ti,p =
1
2

(
cT

i,0,p + cT
i,∞,p

)
, and ui−1,p =

1
f
(
cT

i,∞,p − cT
i,0,p

)
.

7. Equivariant Chow ring of the quot scheme Q2(0, 2)

We use Theorem 1.1 to describe the equivariant Chow ring of Q2 := Q2(0, 2). We
first give a basis for A∗T (Q2) as a module over S = Z[e1, e2, f].

The equivariant Chow ring is the collection of tuples ( f p | p ∈QT
2 )∈ SQT

2 which
satisfy the relations of Theorem 1.1. If p and q are connected by an edge in the
moment multigraph (see Figure 1) with weight χ , then f p − fq lies in the ideal
generated by χ . These are the standard GKM relations.

There are two multiedges with four vertices in the multigraph, namely the verti-
cal and horizontal lines of symmetry. They should be seen as flattened quadrangles,
since they are images of subvarieties isomorphic to P1

× P1. Each gives rise to
an additional relation as follows. Suppose that the quadrangle has four vertices
a, b, c, d:

-χ a
b
c

d.(((
hhh

hhh
(((

(Here, the edges are parallel with direction χ .) Then the tuples ( f p) must satisfy

fa − fb− fc+ fd ∈ χ2S.

These are relations of types II(c)′ (horizontal) and III′ (vertical) of Theorem 1.1.
The remaining multiedges with more than two vertices are the left and right

vertical edges, both with three vertices. They should be seen as flattened triangles,
since they come from subvarieties isomorphic to P2. The additional relations they
induce are described as follows. Let the three fixed points on the multiedge be
a, b, c, with b between a and c. Then

1
2 fa − fb+

1
2 fc ∈ f2S.

This is relation of type III′ of Theorem 1.1.
When k = C, we can construct an S-module basis for equivariant cohomology

using equivariant Morse theory; as is well-known, a generic projection of the mo-
ment map to a line will give a Morse function which is perfect for equivariant
cohomology. This results in an inductive algorithm to produce a basis, which is
nicely expounded in [Tymoczko 2005] (see also [Guillemin and Zara 2001]). Pick
a direction vector v (corresponding to an element of the Lie algebra tR) which
does not annihilate the direction vector of any edge. Orient each edge to have
positive pairing with v; this is the Hasse diagram of a partial order on the fixed
points induced by v. Then, using the relations described above, we can inductively
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c

f ( )

Figure 2. An S-module basis for A∗T (Q2(0, 2)).

construct a triangular basis with respect to this ordering. That is, if f = f (p)

corresponds to the fixed point p, it vanishes at q ( fq = 0) unless p < q , and f p is
the product of weights of edges pointing down from p. While this algorithm was
motivated by Morse theory, it makes sense over any field k, if v is a linear function
on the character group of T which does not annihilate any edge of the moment
graph.

Set e := e1 − e2 and pick the vector v = f + εe, where ε > 0 is small. One
basis element is the identity f ( ), which localizes to 1 at each fixed point. We
display each of the remaining nine in Figure 2 as a localization diagram, writing
its localizations on a copy of a moment multigraph.
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0
ef
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0
−ef

0

0
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Figure 3. Generators for the SQ-algebra A∗T (Q2(0, 2))Q.

Set x := f ( ) − f, y := f ( ) − f, and z := f ( ) − f ( ). Figure 3
shows their localization diagrams. We show that they generate A∗T (Q2)Q as an SQ-
algebra by showing that each basis element f (p) of degree greater than 2 lies in
SQ[x, y, z]. Since

(7-1)

f ( )= 1
2 x(x + f),

f ( )= 1
2(y+ e)(y− x), and

f ( )+ f ( )= (y+ e)(x + f),

the four degree 2 basis elements lie in SQ[x, y, z]. The remaining three basis
elements also lie in SQ[x, y, z],

y f ( )= f ( ), x f ( )= f ( ), and (y− e) f ( )= f ( ).

Inspecting the localization diagrams of x , y, and z shows that the following 5
expressions vanish in A∗T (Q2):

xz, yz, x(x2
− f2), (y2

− e2)(y− x), and z2
− (y2

− e2)(x2
− f2).

In the lexicographic term order where z > y > x > e > f , these five polynomials
form a Gröbner basis for the ideal I of Q[e1, e2, f, x, y, z] they generate with
leading terms xz, yz, x3, y3, and z2. There are ten standard monomials

1, x, y, x2, xy, y2, z, x2 y, xy2, and x2 y2.

Since A∗T (Q2)Q is free over SQ =Q[e1, e2, f] of rank 10, we conclude that

A∗T (Q2)Q 'Q[e1, e2, f, x, y, z]/I.

Using Proposition 5.2, we obtain the presentation of the rational Chow ring

A∗(Q2)Q 'Q[x, y, z]/〈 xz, yz, x3, xy2
− y3, z2

− x2 y2
〉.
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e1+e2+2f

e1+e2+2f e1+e2+2f

e1+e2+f e1+e2+f

e1+e2 e1+e2

e1+e2
+f

e1+e2
+f

e1+e2

Localization of cT
1 (S) at 0 ∈ P1

e1+e2

e1+e2 e1+e2

e1+e2−f e1+e2−f

e1+e2−2f e1+e2−2f

e1+e2
−f

e1+e2
−f

e1+e2−2f

Localization of cT
1 (S) at∞∈ P1

Figure 4. First Chern class of S.

Looking at (7-1), we see that the integral Chow ring is not generated by x , y, and
z, so its presentation will be considerably more complicated.

We now consider Strømme’s generators. Figure 4 shows the localization dia-
gram of the first Chern class of S. By the formula of Proposition 6.1, we have

cT
1 (S)= e1+ e2+ x − 2h,

so that
t1 = e1+ e2+ x, and u0 =−2.

Figure 5 shows the localization diagram of the second Chern class of S. By the
formula of Proposition 6.1, we have

cT
2 (S)= e1e2+

1
2 x(y+ e1+ e2)+

1
2 z− h(y+ e1+ e2),

e1e2+(e1+e2)f+f2

e1e2+2e2f e1e2+2e1f

e1e2+e2f e1e2+e1f

e1e2 e1e2

e1e2
+e1f

e1e2
+e2f

e1e2

Localization of cT
2 (S) at 0 ∈ P1

e1e2

e1e2 e1e2

e1e2−e2f e1e2−e1f

e1e2−2e2f e1e2−2e1f

e1e2−(e1+e2)f+f2

e1e2
−e2f

e1e2
−e1f

Localization of cT
2 (S) at∞∈ P1

Figure 5. Second Chern class of S.



THE EQUIVARIANT CHOW RINGS OF QUOT SCHEMES 231

so that

t2 = e1e2+
1
2 x(y+ e1+ e2)+

1
2 z and u1 =−(y+ e1+ e2).

The corresponding classes in A∗(Q2) are

t1 = x, u1 =−y, and t2 = 1
2(z+ xy).

Remark. This shows that the claim in [Strømme 1987, Theorem 5.3] that the
classes ti , ui−1 generate the integral Chow ring is false.
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