Pacific Journal of Mathematics

TWO CLASSES OF PSEUDOSYMMETRIC CONTACT METRIC 3-MANIFOLDS

FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

Volume 239 No. 1

January 2009

TWO CLASSES OF PSEUDOSYMMETRIC CONTACT METRIC 3-MANIFOLDS

FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

We classify the pseudosymmetric contact metric 3-manifolds that satisfy $\nabla_{\xi} \tau = 0$, and also the pseudosymmetric contact metric 3-manifolds of constant type satisfying $\nabla_{\xi} \tau = 2a\tau\phi$, where *a* is a smooth function.

1. Introduction

According to R. Deszcz [1992], a Riemannian manifold (M^m, g) is pseudosymmetric if the curvature tensor *R* satisfies the condition $R(X, Y) \cdot R = L\{(X \wedge Y) \cdot R\}$, where *L* is a smooth function, the endomorphism field $X \wedge Y$ is defined by

(1-1)
$$(X \wedge Y)Z = g(Y, Z)X - g(Z, X)Y$$

for all vectors fields X, Y, Z on M, and the dot means that R(X, Y) and $X \wedge Y$ act as derivations on R.

If *L* is constant, *M* said to be a pseudosymmetric manifold of constant type; if L = 0, then *M* is a semisymmetric manifold. Hence a pseudosymmetric manifold is a natural generalization of a semisymmetric manifold [Szabó 1982; 1985], which in turn is a generalization of a locally symmetric space, that is, one with $\nabla R = 0$; see [Takagi 1972].

Three-dimensional pseudosymmetric spaces of constant type have been studied by many researchers, beginning with O. Kowalski and M. Sekizawa [1996b; 1996a; 1997; 1998]. Later, N. Hashimoto and M. Sekizawa classified 3-dimensional, conformally flat pseudosymmetric spaces of constant type [2000], while G. Calvaruso gave the complete classification of conformally flat pseudosymmetric spaces of constant type for dimensions greater than two [2006]. J. T. Cho and J. Inoguchi studied pseudosymmetric contact homogeneous 3-manifolds [2005].

It is well known that in the geometry of a contact metric manifold, the tensors $\tau = L_{\xi}g$ and $\nabla_{\xi}\tau$, introduced by S. S. Chern and R. S. Hamilton [1985], play a fundamental role. The condition $\nabla_{\xi}\tau = 2a\tau\phi$, where *a* is a constant and $(\tau\phi)(X, Y)$ is

MSC2000: primary 53D10, 53C25, 53C15; secondary 53C35.

Keywords: contact metric 3-manifolds, pseudosymmetric manifolds.

interpreted as $\tau(\phi X, Y)$, is necessary for a contact metric 3-manifold to be homogeneous. We call a 3-dimensional contact metric manifold a $3-\tau$ -*a* manifold if it satisfies $\nabla_{\xi}\tau = 2a\tau\phi$, where *a* is a smooth function; if a = 0, we call it a $3-\tau$ manifold. The condition $\nabla_{\xi}\tau = 0$ appeared first in [Chern and Hamilton 1985] in the study of compact contact 3-manifolds, while Perrone [1990] proved that it is the critical point condition for the functional "integral of the scalar curvature" defined on the set of all metrics associated to the fixed contact form η . Moreover, this condition $\nabla_{\xi}\tau = 0$ is equivalent to the condition requiring equality of the sectional curvature of all planes at a given point and perpendicular to the contact distribution [Gouli-Andreou and Xenos 1998a].

This article studies contact metric 3-manifolds in which

- (i) *M* is a pseudosymmetric manifold and $\nabla_{\xi} \tau = 0$, where $\tau = L_{\xi}g$; or
- (ii) *M* is a pseudosymmetric manifold of constant type with $\nabla_{\xi} \tau = 2a\tau\phi$, where *a* is a smooth function on *M*.

2. Preliminaries

Let (M^m, g) for $m \ge 3$ be a connected Riemannian smooth manifold. We denote by ∇ the Levi-Civita connection of M^m and by R the corresponding Riemannian curvature tensor given by $R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$.

A Riemannian manifold (M^m, g) for $m \ge 3$ is said to be *pseudosymmetric* in the sense of R. Deszcz [1992] if at every point of M the curvature tensor satisfies the equation

(2-1)
$$(R(X, Y) \cdot R)(X_1, X_2, X_3) = L\{((X \wedge Y) \cdot R)(X_1, X_2, X_3)\},$$

where

$$(2-2) \quad (R(X, Y) \cdot R)(X_1, X_2, X_3) = R(X, Y)(R(X_1, X_2)X_3) - R(R(X, Y)X_1, X_2)X_3 - R(X_1, R(X, Y)X_2)X_3 - R(X_1, X_2)(R(X, Y)X_3),$$

$$(2-3) \quad ((X \wedge Y) \cdot R)(X_1, X_2, X_3) = (X \wedge Y)(R(X_1, X_2)X_3) - R((X \wedge Y)X_1, X_2)X_3 - R(X_1, (X \wedge Y)X_2)X_3 - R(X_1, X_2)((X \wedge Y)X_3),$$

and $X \wedge Y$ is given by (1-1). In particular, if L = 0, then *M* is semisymmetric. For details and examples of pseudosymmetric manifolds, see [Belkhelfa et al. 2002] and [Deszcz 1992].

A contact manifold is a differentiable manifold M^{2n+1} together with a global 1-form η (a *contact form*) such that $\eta \wedge (d\eta)^n \neq 0$ everywhere. Since $d\eta$ is of rank 2n, there exists a unique vector field ξ on M^{2n+1} (the *Reeb* or *characteristic*

vector field of the contact structure η) satisfying $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$ for all X. The distribution defined by the subspace $X \in T_p M : \eta(X) = 0$ for $p \in M$ is called a *contact distribution*. Every contact manifold has an underlying *almost contact structure* (η, ϕ, ξ) , where ϕ is a global tensor field of type (1, 1), such that

(2-4)
$$\eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta \circ \phi = 0, \quad \phi^2 = -I + \eta \otimes \xi$$

A Riemannian metric g (the associated metric) can be defined such that

(2-5)
$$\eta(X) = g(X,\xi) \text{ and } d\eta(X,Y) = g(X,\phi Y)$$

for all vector fields X and Y on M^{2n+1} . We note that g and ϕ are not unique for a given contact form η , but g and ϕ are canonically related to each other. We refer to $(M^{2n+1}, \eta, \xi, \phi, g)$ as a *contact metric structure*.

We denote by *S* the Ricci tensor of type (0, 2), by *Q* the corresponding Ricci operator satisfying g(QX, Y) = S(X, Y), and by r = Tr Q the scalar curvature. We also define the tensor fields *l*, *h* and τ by the relations

(2-6)
$$l = R(\cdot,\xi)\xi, \quad h = \frac{1}{2}L_{\xi}\phi, \quad \tau = L_{\xi}g,$$

where *L* is the Lie differentiation. On every contact metric manifold M^{2n+1} , we have the important formulas

(2-7)
$$h\xi = l\xi = 0, \quad \eta \circ h = 0, \quad \text{Tr} \, h = \text{Tr} \, h\phi = 0, \quad h\phi = -\phi h,$$

(2-8)
$$hX = \lambda X$$
 implies $h\phi X = -\lambda\phi X$,

(2-9)
$$\nabla_{\xi}\phi = 0, \quad \nabla_X\xi = -\phi X - \phi h X, \quad \operatorname{Tr} l = g(Q\xi,\xi) = 2n - \operatorname{Tr} h^2,$$

(2-10)
$$\tau = 2g(\phi, h), \quad \nabla_{\xi}\tau = 2g(\phi, \nabla_{\xi}h).$$

A contact metric manifold $M^{2n+1}(\phi, \xi, \eta, g)$ for which ξ is a Killing vector field, that is, for which $L_{\xi}g = 0$, is called a K-contact manifold. A contact metric manifold is K-contact if and only if $\tau = 0$ (or equivalently h = 0).

If we take the product $M^{2n+1} \times \mathbb{R}$, then the contact structure on M^{2n+1} gives rise to an almost complex structure J on $M^{2n+1} \times \mathbb{R}$ given by

$$J\left(X, f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta(X)\frac{d}{dt}\right).$$

If this structure is integrable, then the contact structure is said to be normal and M^{2n+1} is called Sasakian. A contact metric manifold is Sasakian if and only if $R(X, Y)\xi = \eta(Y)X - \eta(X)Y$ for all vectors fields X, Y on the manifold. If dim $M^{2n+1} = 3$ then a K-contact manifold is Sasakian and the converse also holds. More details on contact manifolds are found in [Blair 2002].

Let (M, ϕ, ξ, η, g) be a contact metric 3-manifold. Let U be the open subset of points $p \in M$ such that $h \neq 0$ in a neighborhood of p. Let U_0 be the open subset of points $p \in M$ such that h = 0 in a neighborhood of p. That h is a smooth function

on *M* implies $U \cup U_0$ is an open and dense subset of *M*, so any property satisfied in $U_0 \cup U$ is also satisfied in *M*. For any point $p \in U \cup U_0$, there exists a local orthonormal basis $\{e, \phi e, \xi\}$ of smooth eigenvectors of *h* in a neighborhood of *p* (this we call a ϕ -basis). On *U*, we put $he = \lambda e$, where λ is a nonvanishing smooth function assumed to be positive. From (2-8) we have $h\phi e = -\lambda \phi e$.

Lemma 2.1 [Calvaruso and Perrone 2002; Gouli-Andreou and Xenos 1998a]. *On the open set U we have*

$$\nabla_{\xi}e = a\phi e, \qquad \nabla_{e}e = b\phi e, \qquad \nabla_{\phi e}e = -c\phi e + (\lambda - 1)\xi,$$

$$\nabla_{\xi}\phi e = -ae, \qquad \nabla_{e}\phi e = -be + (1 + \lambda)\xi, \qquad \nabla_{\phi e}\phi e = ce,$$

$$\nabla_{\xi}\xi = 0, \qquad \nabla_{e}\xi = -(1 + \lambda)\phi e, \qquad \nabla_{\phi e}\xi = (1 - \lambda)e,$$

(2-11)
$$\nabla_{\xi}h = -2ah\phi + (\xi \cdot \lambda)s$$

where a is a smooth function,

(2-12)
$$b = \frac{1}{2\lambda}((\phi e \cdot \lambda) + A) \quad \text{with } A = \eta(Qe) = S(\xi, e),$$
$$c = \frac{1}{2\lambda}((e \cdot \lambda) + B) \quad \text{with } B = \eta(Q\phi e) = S(\xi, \phi e),$$

and *s* is the type (1, 1) tensor field defined by $s\xi = 0$, se = e and $s\phi e = -\phi e$.

From Lemma 2.1 and the formula $[X, Y] = \nabla_X Y - \nabla_Y X$, we can prove that

(2-13)

$$[e, \phi e] = \nabla_e \phi e - \nabla_{\phi e} e = -be + c\phi e + 2\xi,$$

$$[e, \xi] = \nabla_e \xi - \nabla_\xi e = -(a + \lambda + 1)\phi e,$$

$$[\phi e, \xi] = \nabla_{\phi e} \xi - \nabla_\xi \phi e = (a - \lambda + 1)e,$$

and from (1-1) we estimate

(2-14)
$$\begin{array}{l} (e \wedge \phi e)e = -\phi e, \quad (e \wedge \xi)e = -\xi, \quad (\phi e \wedge \xi)\xi = \phi e, \\ (e \wedge \phi e)\phi e = e, \quad (e \wedge \xi)\xi = e, \quad (\phi e \wedge \xi)\phi e = -\xi, \end{array}$$

while $(X \land Y)Z = 0$ whenever $X \neq Y \neq Z \neq X$ and $X, Y, Z \in \{e, \phi e, \xi\}$.

By direct computations, we calculate the nonvanishing independent components of the type (1, 3) Riemannian curvature tensor field *R*:

$$R(\xi, e)\xi = -Ie - Z\phi e, \qquad R(e, \phi e)e = -C\phi e - B\xi,$$

$$R(\xi, \phi e)\xi = -Ze - D\phi e, \qquad R(\xi, e)\phi e = -Ke + Z\xi,$$

$$R(e, \phi e)\xi = Be - A\phi e, \qquad R(\xi, \phi e)\phi e = He + D\xi,$$

$$R(\xi, e)e = K\phi e + I\xi, \qquad R(e, \phi e)\phi e = Ce + A\xi,$$

$$R(\xi, \phi e)e = -H\phi e + Z\xi,$$

where

$$C = -b^{2} - c^{2} + \lambda^{2} - 1 + 2a + (e \cdot c) + (\phi e \cdot b), \quad Z = \xi \cdot \lambda,$$

(2-16)
$$H = b(\lambda - a - 1) + (\xi \cdot c) + (\phi e \cdot a), \qquad I = -2a\lambda - \lambda^{2} + 1,$$

$$K = c(\lambda + a + 1) + (\xi \cdot b) - (e \cdot a), \qquad D = 2a\lambda - \lambda^{2} + 1.$$

Setting X = e, $Y = \phi e$ and $Z = \xi$ in the Jacobi identity [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 and using (2-13), we get

(2-17)
$$b(a+\lambda+1) - (\xi \cdot c) - (\phi e \cdot \lambda) - (\phi e \cdot a) = 0,$$
$$c(a-\lambda+1) + (\xi \cdot b) + (e \cdot \lambda) - (e \cdot a) = 0,$$

or equivalently A = H and B = K.

We give the components of the Ricci operator Q with respect to a ϕ -basis:

(2-18)

$$Qe = (\frac{1}{2}r - 1 + \lambda^2 - 2a\lambda)e + Z\phi e + A\xi,$$

$$Q\phi e = Ze + (\frac{1}{2}r - 1 + \lambda^2 + 2a\lambda)\phi e + B\xi,$$

$$Q\xi = Ae + B\phi e + 2(1 - \lambda^2)\xi,$$

where

(2-19)
$$r = \operatorname{Tr} Q = 2(1 - \lambda^2 - b^2 - c^2 + 2a + (e \cdot c) + (\phi e \cdot b)).$$

The relations (2-16) and (2-19) yield

(2-20)
$$C = -b^2 - c^2 + \lambda^2 - 1 + 2a + (e \cdot c) + (\phi e \cdot b) = 2\lambda^2 - 2 + r/2$$

Definition 2.2 [Gouli-Andreou et al. 2008]. Let M^3 be a 3-dimensional contact metric manifold. Let $h = \lambda h^+ - \lambda h^-$ be the spectral decomposition of h on U. If

$$\nabla_{h^- X} h^- X = [\xi, h^+ X]$$

for all vector fields X on M^3 and all points of an open subset W of U, and if h = 0 on the points of M^3 that do not belong to W, then the manifold is said to be a *semi-K contact* manifold.

From Lemma 2.1 and the relations (2-13), the condition above for X = e leads to $[\xi, e] = 0$; for $X = \phi e$ it leads to $\nabla_{\phi e} \phi e = 0$. Hence on a semi-K contact manifold we have $a + \lambda + 1 = c = 0$. If we apply the deformation $e \rightarrow \phi e$, $\phi e \rightarrow e$, $\xi \rightarrow -\xi$, $\lambda \rightarrow -\lambda$, $b \rightarrow c$ and $c \rightarrow b$, then the contact metric structure remains the same. Hence the condition for a 3-dimensional contact metric manifold to be semi-K contact is equivalent to $a - \lambda + 1 = b = 0$.

Remark 2.3. If $M^3 = U_0$ (as in [Gouli-Andreou and Xenos 1998b]), Lemma 2.1 is expressed in a similar form, where $\lambda = 0$, *e* is a unit vector field belonging to

the contact distribution, the Equation (2-11) is identically zero, and the functions A, B, D, H, I, K and Z satisfy

$$A = B = Z = H = K = 0,$$
 $I = D = 1,$ $C = \frac{1}{2}r - 2.$

Proposition 2.4. For a 3-dimensional contact metric manifold, we have

(2-21) $Q\phi = \phi Q$ if and only if $\xi \cdot \lambda = 2b\lambda - (\phi e \cdot \lambda) = 2c\lambda - (e \cdot \lambda) = a\lambda = 0$.

Proof. By (2-4), (2-12), (2-16) and (2-20), the relations (2-18) yield

 $(Q\phi - \phi Q)e = 2Ze + 4a\lambda\phi e + B\xi,$ $(Q\phi - \phi Q)\phi e = 4a\lambda e - 2Z\phi e - A\xi,$ $(Q\phi - \phi Q)\xi = Be - A\phi e.$

Proposition 2.4 follows immediately.

3. Pseudosymmetric contact metric 3-manifolds

Let (M, η, g, ϕ, ξ) be a contact metric 3-manifold. In the case $M = U_0$, that is, when (ξ, η, ϕ, g) is a Sasakian structure, M is a pseudosymmetric space of constant type [Cho and Inoguchi 2005]. Next, assume that U is not empty, and let $\{e, \phi e, \xi\}$ be a ϕ -basis as in Lemma 2.1.

Lemma 3.1. A contact metric 3-manifold (M, η, g, ϕ, ξ) is pseudosymmetric if and only if

$$B(\xi \cdot \lambda) + (-2a\lambda - \lambda^2 + 1)A = LA,$$

$$A(\xi \cdot \lambda) + (2a\lambda - \lambda^2 + 1)B = LB,$$

$$(\xi \cdot \lambda)(\frac{1}{2}r + 2\lambda^2 - 2) + AB = L(\xi \cdot \lambda),$$

and

$$A^{2} - |(\xi \cdot \lambda)|^{2} + (2a\lambda - \lambda^{2} + 1)(-2a\lambda - 3\lambda^{2} + 3 - \frac{1}{2}r) = L(-2a\lambda - 3\lambda^{2} + 3 - \frac{1}{2}r),$$

$$B^{2} - |(\xi \cdot \lambda)|^{2} + (-2a\lambda - \lambda^{2} + 1)(2a\lambda - 3\lambda^{2} + 3 - \frac{1}{2}r) = L(2a\lambda - 3\lambda^{2} + 3 - \frac{1}{2}r),$$

where *L* is the function in the pseudosymmetry definition (2-1). Proof. Setting $X_1 = e$, $X_2 = \phi e$ and $X_3 = \xi$ in Equation (2-1), we obtain

$$(R(X, Y) \cdot R)(e, \phi e, \xi) = L\big(((X \wedge Y) \cdot R)(e, \phi e, \xi)\big)$$

First we set X = e and $Y = \phi e$. By virtue of (2-2), (2-3), (2-14) and (2-15) we obtain

$$(B(\xi \cdot \lambda) + (-2a\lambda - \lambda^2 + 1)A)e + (A(\xi \cdot \lambda) + (2a\lambda - \lambda^2 + 1)B)\phi e = L(Ae + B\phi e),$$

from which the first two equations of the lemma follow at once.

Similarly, setting $X = \phi e$ and $Y = \xi$ we obtain

$$\begin{aligned} \left(A^2 - |(\xi \cdot \lambda)|^2 + (2a\lambda - \lambda^2 + 1)(-2a\lambda - 3\lambda^2 + 2 - \frac{1}{2}r)\right)e \\ &+ \left((\xi \cdot \lambda)(\frac{1}{2}r + 2\lambda^2 - 2) + AB\right)\phi e = L\left((-2a\lambda - 3\lambda^2 + 2 - \frac{1}{2}r)e + (\xi \cdot \lambda)\phi e\right), \end{aligned}$$

from which we get the next two equations.

Finally, setting X = e and $Y = \xi$ we have

$$(B^2 - |(\xi \cdot \lambda)|^2 + (-2a\lambda - \lambda^2 + 1)(2a\lambda - 3\lambda^2 + 2 - \frac{1}{2}r))\phi e + ((\xi \cdot \lambda)(\frac{1}{2}r + 2\lambda^2 - 2) + AB)e = L((2a\lambda - 3\lambda^2 + 2 - \frac{1}{2}r)\phi e + (\xi \cdot \lambda)e),$$

from which we obtain the last equation.

Using Equations (2-16) and (2-20), the five equations take the more convenient form

(3-1)
$$ZB + IA = LA,$$

 $ZA + DB = LB,$ $A^2 - Z^2 + D(I - C) = L(I - C),$
 $ZC + AB = LZ,$ $B^2 - Z^2 + I(D - C) = L(D - C).$

Remark 3.2. If L = 0, the manifold is semisymmetric and (3-1) is in accordance with [Calvaruso and Perrone 2002, Equations (3.1)–(3.5)].

Proposition 3.3. Let M^3 be a 3-dimensional contact metric manifold satisfying $Q\phi = \phi Q$. Then M^3 is a pseudosymmetric space of constant type.

Proof. In [2005], Cho and Inoguchi have proved that contact metric 3-manifolds that satisfy $Q\phi = \phi Q$ are pseudosymmetric. We can improve their result by proving that these manifolds are also pseudosymmetric of constant type. We know from [Blair et al. 1990] that for these manifolds the Ricci operator has the form $QX = \alpha X + \beta \eta(X) \xi$ or equivalently the Ricci tensor is given by the equation

$$(3-2) S = \alpha g + \beta \eta \otimes \eta,$$

where $\alpha = (r - \text{Tr} l)/2$, $\beta = (3 \text{Tr} l - r)/2$ and the ϕ -sectional curvature and Tr *l* are both constant functions. Also, from [Koufogiorgos 1995] we have that the ϕ -sectional curvature is given by the equation r/2 - Tr l, and hence in contact metric 3-manifolds with $Q\phi = \phi Q$, the function r = Tr Q is also constant; obviously the functions α and β in (3-2) are constant as well. The manifold is quasi-Einstein and hence pseudosymmetric, and because β is constant it is pseudosymmetric of constant type, that is, L is constant; see also [Cho and Inoguchi 2005].

Remark 3.4. If the manifold M^3 is Sasakian, we know from Cho and Inoguchi [2005] that M^3 is a pseudosymmetric space of constant type. Also, by using Remark 2.3, the system (3-1) is reduced to the equation (C-1)(L-1) = 0. Hence

a Sasakian 3-manifold satisfying the condition $R(X, Y) \cdot R = L((X \wedge Y) \cdot R)$ with $L \neq 1$ is a space of constant scalar curvature r = 6, where L is some constant function on M^3 .

4. Pseudosymmetric contact metric 3-manifolds with $\nabla_{\xi} \tau = 0$

Theorem 4.1. Let M^3 be a 3-dimensional pseudosymmetric contact metric manifold satisfying $\nabla_{\xi} \tau = 0$. Then M^3 is of constant type, and it is either Sasakian, flat, or locally isometric to either SU(2) or SL(2, *R*), where these two Lie groups are equipped with a left invariant metric.

Proof. We consider the open subsets

(4-1) $U_0 = \{ p \in M : \lambda = 0 \text{ in a neighborhood of } p \},$ $U = \{ p \in M : \lambda \neq 0 \text{ in a neighborhood of } p \}$

of *M*. Suppose $M = U_0$, that is, (ξ, η, ϕ, g) is a Sasakian structure. In [2005], Cho and Inoguchi proved that *M* is a pseudosymmetric space of constant type.

If U is not empty, let $\{e, \phi e, \xi\}$ be a ϕ -basis. In contact metric 3-manifolds, the assumption $\nabla_{\xi} \tau = 0$ is equivalent to a = Z = 0; see [Gouli-Andreou and Xenos 1998a]. Hence (3-1) becomes

$$AB = 0$$

 $B(D-L) = 0,$ $A^2 + D(D-C) = L(D-C),$
 $A(D-L) = 0,$ $B^2 = A^2,$

or equivalently

(4-2)
$$Z = A = B = a = 0,$$
$$(D - L)(D - C) = 0,$$

where the functions A, B, C, D, I and Z are given by (2-12) and (2-16). Using Proposition 2.4 we obtain $Q\phi = \phi Q$, and hence the manifold is pseudosymmetric of constant type (by [Cho and Inoguchi 2005] and Proposition 3.3). The equation (D-L)(D-C) = 0 does not contribute any further information to our problem, and hence the proof is completed by [Blair et al. 1990, Theorem 3.3] and [Blair and Chen 1992, Main Theorem].

5. Pseudosymmetric contact metric 3-manifolds of constant type with $\nabla_{\xi} \tau = 2a\tau\phi$

Theorem 5.1. Let M^3 be a 3-dimensional pseudosymmetric contact metric manifold of constant type satisfying the condition $\nabla_{\xi}\tau = 2a\tau\phi$, where a is a smooth function. Then the functions a and Tr l are constant on M^3 , and M^3 is either

- Sasakian;
- *flat*;
- locally isometric to either SU(2) or SL(2, *R*), where both Lie groups are equipped with a left invariant metric;
- semi-K contact of constant type L = -4, with $\operatorname{Tr} l = 0$ and with constant scalar curvature r = -4;
- semi-K contact of constant type $L = a^2$, with $\operatorname{Tr} l = -2a(2+a)$;
- of constant scalar curvature r = 4a and of constant type L = 2a, with Tr l = 0;
- of constant scalar curvature r = 2a(4 a) and of constant type $L = a^2$, with $\operatorname{Tr} l = 2a(2 a)$;
- of constant scalar curvature r = 2a(4-a) and of constant type $L = \text{Tr } l a^2$, with Tr l = 2a(2-a).

Proof. We consider again the open subsets of (4-1). If $M = U_0$, then M is Sasakian and hence it is a pseudosymmetric space of constant type [Cho and Inoguchi 2005]. Next, assume that U is not empty, and let $\{e, \phi e, \xi\}$ be a ϕ -basis. Using (2-10) and (2-11), we can prove that the assumption $\nabla_{\xi}\tau = 2a\tau\phi$ is equivalent to $Z = \xi \cdot \lambda = 0$, and hence the system (3-1) becomes

$$AB = 0,$$

 $DB = LB,$ $A^{2} + D(I - C) = L(I - C),$
 $IA = LA,$ $B^{2} + I(D - C) = L(D - C),$

or using (2-16), it is

To study this system we consider these open subsets of U:

$$U' = \{ p \in U : A = 2b\lambda - (\phi e \cdot \lambda) = 0 \text{ in a neighborhood of } p \}.$$
$$U_3 = \{ p \in U : A \neq 0 \text{ in a neighborhood of } p \},$$

where $U' \cup U_3$ is open and dense in the closure of *U*. In *U'*, we have $0 = (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))(2a\lambda - \lambda^2 + 1 - L),$ $0 = B(2a\lambda - \lambda^2 + 1 - L),$ $0 = B^2 + (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (-2a\lambda - \lambda^2 + 1 - L),$ $0 = Z = \xi \cdot \lambda.$

We consider these open subsets of U':

 $U_1 = \{ p \in U' : B = 2c\lambda - (e \cdot \lambda) = 0 \text{ in a neighborhood of } p \},\$ $U_2 = \{ p \in U' : B \neq 0 \text{ in a neighborhood of } p \},\$

where $U_1 \cup U_2$ is open and dense in the closure of U'. Because $B \neq 0$ in U_2 , we have $2a\lambda - \lambda^2 + 1 - L = 0$ there. Hence U_1 can also be described as the set of $p \in U$ satisfying

$$0 = 2b\lambda - (\phi e \cdot \lambda), \qquad 0 = 2c\lambda - (e \cdot \lambda) = 0, \qquad 0 = \xi \cdot \lambda, 0 = (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))(-2a\lambda - \lambda^2 + 1 - L), 0 = (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))(2a\lambda - \lambda^2 + 1 - L),$$

in a neighborhood of p, whereas U_2 is the set of $p \in U$ satisfying

$$\begin{split} 0 &= 2b\lambda - (\phi e \cdot \lambda), \qquad 0 = 2a\lambda - \lambda^2 + 1 - L, \qquad 0 = \xi \cdot \lambda, \\ 0 &= (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \\ &\qquad \qquad \times (-2a\lambda - \lambda^2 + 1 - L) + B^2 \end{split}$$

in a neighborhood of p. In U_3 we have $A \neq 0$ (or equivalently $B = 2c\lambda - (e \cdot \lambda) = 0$) and the system becomes

$$0 = -2a\lambda - \lambda^{2} + 1 - L,$$

$$0 = A^{2} + (-2a\lambda - 2\lambda^{2} + 2 + b^{2} + c^{2} - 2a - (e \cdot c) - (\phi e \cdot b)) \times (2a\lambda - \lambda^{2} + 1 - L),$$

```
0 = Z = \xi \cdot \lambda.
```

The set U_3 is also described as the set of $p \in U$ for which there is a neighborhood satisfying

$$0 = 2c\lambda - (e \cdot \lambda), \qquad 0 = -2a\lambda - \lambda^2 + 1 - L, \qquad 0 = \xi \cdot \lambda, 0 = A^2 + (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (2a\lambda - \lambda^2 + 1 - L).$$

We shall study the initial system at each U_i for i = 1, 2, 3.

In U_1 , we have

(5-1)
$$(\phi e \cdot \lambda) = 2b\lambda$$
,
(5-2) $(e \cdot \lambda) = 2c\lambda$,
(5-3) $0 = \xi \cdot \lambda$,
(5-4) $0 = (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (-2a\lambda - \lambda^2 + 1 - L),$
(5-5) $0 = (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (2a\lambda - \lambda^2 + 1 - L).$

Differentiating the equations (5-1) and (5-2) with respect to *e* and ϕe , respectively, and subtracting we get $[e, \phi e]\lambda = 2b(e \cdot \lambda) + 2\lambda(e \cdot b) - 2c(\phi e \cdot \lambda) - 2\lambda(\phi e \cdot c)$ or, because of (2-13), (5-1), (5-2) and (5-3),

$$(5-6) e \cdot b = \phi e \cdot c.$$

Differentiating the equations (5-1), (5-3) with respect to ξ and ϕe , respectively, and subtracting, we get $[\xi, \phi e] \lambda = 2\lambda(\xi \cdot b)$ or, because of (2-13), (2-17) and (5-2),

(5-7)
$$\xi \cdot b = c(\lambda - a - 1),$$

(5-8)
$$e \cdot a = 2c\lambda$$
.

Differentiating the equations (5-2) and (5-3) with respect to ξ and e, respectively, and subtracting, we get $[\xi, e]\lambda = 2\lambda(\xi \cdot c)$ or, because of (2-13), (2-17) and (5-1),

(5-9)
$$\xi \cdot c = b(\lambda + a + 1),$$

(5-10)
$$\phi e \cdot a = -2b\lambda.$$

In order to study the system of (5-4) and (5-5) we consider these open subsets of U_1 :

$$V = \left\{ p \in U_1 : 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0 \\ \text{in a neighborhood of } p \right\},$$
$$V' = \left\{ p \in U_1 : 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) \neq 0 \\ \text{in a neighborhood of } p \right\},$$

where $V \cup V'$ is open and dense in the closure of U_1 . In the set V, the Equation (5-5) also holds; hence we consider these open subsets of V:

$$V_{1} = \{ p \in V : -2a\lambda - 2\lambda^{2} + 2 + b^{2} + c^{2} - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\ 2a\lambda - 2\lambda^{2} + 2 + b^{2} + c^{2} - 2a - (e \cdot c) - (\phi e \cdot b) = 0 \\ \text{in a neighborhood of } p \}$$

and

$$V_2 = \left\{ p \in V : 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\ 2a\lambda - \lambda^2 + 1 - L = 0 \quad \text{in a neighborhood of } p \right\},$$

where $V_1 \cup V_2$ is open and dense in the closure of V. Similarly for V', where $-2a\lambda - \lambda^2 + 1 - L = 0$, we consider the open subsets

$$V_{3} = \left\{ p \in V' : -2a\lambda - 2\lambda^{2} + 2 + b^{2} + c^{2} - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\ -2a\lambda - \lambda^{2} + 1 - L = 0 & \text{in a neighborhood of } p \right\},$$

$$V_{4} = \left\{ p \in V' : -2a\lambda - \lambda^{2} + 1 - L = 0, \\ 2a\lambda - \lambda^{2} + 1 - L = 0 & \text{in a neighborhood of } p \right\},$$

where $V_3 \cup V_4$ is open and dense in the closure of V' and the set $\bigcup V_i$ is open and dense in the closure of U_1 . We shall prove that the functions λ and a are constant at every V_i for i = 1, 2, 3, 4

Now

in
$$V_1$$
,
$$\begin{cases} -2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\ 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0. \end{cases}$$

Subtracting these two equations, we deduce that a = 0 in $V_1 \subset U$. Hence from (5-8) and (5-10) we have c = b = 0, and from (5-1) and (5-2) we have $\phi e \cdot \lambda = e \cdot \lambda = 0$. These, together with (5-3), give $\lambda = \text{constant in } V_1$. Moreover, if we put a = b = c = 0 in one of the equations of the set V_1 , we finally get $\lambda^2 = 1$ and the structure is flat.

Next,

(5-11) in
$$V_2$$

(5-12) in V_3

$$\begin{cases}
2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\
2a\lambda - \lambda^2 + 1 - L = 0, \\
-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\
-2a\lambda - \lambda^2 + 1 - L = 0.
\end{cases}$$

In V_2 we differentiate the equation $2a\lambda - \lambda^2 + 1 - L = 0$ with respect to ξ , ϕe and e, and because of (5-3), (5-8), (5-10) we obtain respectively

 $(5-13) \qquad \qquad \xi \cdot a = 0,$

$$(5-14) b(a-2\lambda) = 0,$$

$$(5-15)$$
 $ac = 0,$

while in V_3 from $-2a\lambda - \lambda^2 + 1 - L = 0$ we obtain Equation (5-13), and

(5-16)
$$ba = 0, \quad c(a+2\lambda) = 0.$$

Differentiating the relations (5-8) and (5-13) with respect to ξ and e, respectively, and subtracting, we get $[\xi, e]a = 2\lambda(\xi \cdot c)$ or, because of (2-13), (5-9) and (5-10),

(5-17)
$$b(\lambda + a + 1) = 0.$$

Similarly, differentiating (5-10) and (5-13) with respect to ξ and ϕe , respectively, and subtracting, we have $[\xi, \phi e]a = -2\lambda(\xi \cdot b)$ or, because of (2-13), (5-7) and (5-8),

(5-18)
$$c(\lambda - a - 1) = 0.$$

To study the system of (5-17) and (5-18), we consider these open subsets of V_2 :

 $G = \{ p \in V_2 : b = 0 \text{ in a neighborhood of } p \},\$ $G' = \{ p \in V_2 : b \neq 0 \text{ in a neighborhood of } p \},\$

where $G \cup G'$ is open and dense in the closure of V_2 .

In *G* we have $c(\lambda - a - 1) = 0$, hence we consider these open subsets of *G*:

 $G_1 = \{p \in G : c = 0 \text{ in a neighborhood of } p\},\$

 $G_2 = \{ p \in G : c \neq 0 \text{ in a neighborhood of } p \},\$

where $G_1 \cup G_2$ is open and dense in the closure of G. These sets are described more specifically as

 $G_1 = \{ p \in G \subset V_2 : b = c = 0 \text{ in a neighborhood of } p \},\$

 $G_2 = \{ p \in G \subset V_2 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \}.$

The set G' (where $b \neq 0$ or equivalently $\lambda + a + 1 = 0$) is decomposed similarly as

 $G_3 = \{p \in G' : c = 0 \text{ in a neighborhood of } p\},\$

 $G_4 = \{ p \in G' : c \neq 0 \text{ in a neighborhood of } p \},\$

where $G_3 \cup G_4$ is open and dense in the closure of G'. These can also be written

 $G_3 = \{ p \in G' \subset V_2 : c = \lambda + a + 1 = 0 \text{ in a neighborhood of } p \},\$

 $G_4 = \{ p \in G' \subset V_2 : \lambda + a + 1 = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \}.$

We have $V_2 \subset U$ where $\lambda \neq 0$; hence $G_4 = \emptyset$.

In G_1 , b = c = 0. From (5-1), (5-2), (5-3), (5-8), (5-10) and (5-13), we can conclude that λ and a are constant in G_1 , and from the first of (5-11), we have $(\lambda - 1)(a - \lambda - 1) = 0$. We consider these open subsets of G_1 :

 $K_1 = \{ p \in G_1 : \lambda = 1 \text{ in a neighborhood of } p \},\$

 $K_2 = \{ p \in G_1 : \lambda \neq 1 \text{ in a neighborhood of } p \}.$

In K_1 , we get Tr l = 0, L = 2a, and, from (2-19), r = 4a. In K_2 , we have $a - \lambda - 1 = 0$, Tr l = 2a(2 - a), $L = a^2$, and r = 2a(4 - a).

In G_2 , $b = \lambda - a - 1 = 0$. Using this to eliminate *a* from the second equation of (5-11), we obtain $\lambda^2 - 2\lambda + 1 - L = 0$. We suppose that there is a point *p* in G_2 at which $e \cdot \lambda \neq 0$. Then there is a neighborhood *S* of *p* in which $e \cdot \lambda \neq 0$. We differentiate $\lambda^2 - 2\lambda + 1 - L = 0$ with respect to *e* twice and obtain $e \cdot \lambda = 0$ in *S*, a contradiction. Hence $e \cdot \lambda = 0$ (and c = 0), and from (5-1) and (5-3), we conclude that λ is constant in G_2 and similarly $a = \lambda - 1$. In particular, from (5-11), we obtain $\lambda = 1$ and a = 0; hence the structure is flat.

We have proved that λ and a are constant on G_1 and G_2 . The set $G_1 \cup G_2$ is open and dense in the closure of G. Hence λ and a are constant everywhere in G.

In G_3 , $c = \lambda + a + 1 = 0$. Using this to eliminate *a* from the second equation of (5-11), we obtain $-3\lambda^2 - 2\lambda + 1 - L = 0$. If we assume that there is a point *p* in G_3 at which $\phi e \cdot \lambda \neq 0$, then there is a neighborhood *S* of *p* in which $\phi e \cdot \lambda \neq 0$. We differentiate $-3\lambda^2 - 2\lambda + 1 - L = 0$ with respect to ϕe twice and obtain $\phi e \cdot \lambda = 0$ in *S*, a contradiction. Thus $\phi e \cdot \lambda = 0$ everywhere in G_3 , which gives b = 0. We note that $\xi \cdot \lambda = \phi e \cdot \lambda = e \cdot \lambda = 0$, so λ is constant in G_3 , and obviously $a = -\lambda - 1$. Moreover, if we put b = c = 0 and $a = -\lambda - 1$ in the system (5-11), we get $\lambda^2 = 1$ (hence Tr l = 0), a = 0 or -2, and L = -2a(a + 1). If a = 0, we obtain a flat structure, while if a = -2, we have a semi-K contact structure with constant scalar curvature r = 4a = -8.

The functions λ and a are constant in G and G'. The set $G \cup G'$ is open and dense in the closure of V_2 ; hence λ and a are constant in V_2 , and Equations (5-14) and (5-15) are satisfied because b = c = 0.

We similarly consider these open subsets of V_3 :

$$G'_1 = \{p \in V_3 : b = c = 0 \text{ in a neighborhood of } p\},$$

$$G'_2 = \{p \in V_3 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p\},$$

$$G'_3 = \{p \in V_3 : c = \lambda + a + 1 = 0 \text{ in a neighborhood of } p\},$$

$$G'_4 = \{p \in V_3 : \lambda + a + 1 = \lambda - a - 1 = 0 \text{ in a neighborhood of } p\}.$$

The set $\bigcup G'_i$ is open and dense subset of V_3 and $G'_4 = \emptyset$.

In G'_1 , b = c = 0. From (5-1), (5-2), (5-3), (5-8), (5-10) and (5-13) we can conclude that λ and a are constant in G'_1 . From the first of (5-12) we have $(\lambda + 1)(a + \lambda - 1) = 0$. We consider these open subsets of G'_1 :

$$K'_1 = \{ p \in G'_1 : \lambda = -1 \text{ in a neighborhood of } p \},\$$

$$K'_2 = \{ p \in G'_1 : \lambda \neq -1 \text{ in a neighborhood of } p \}.$$

In K'_1 , we get Tr l = 0, L = 2a, and, from (2-19), r = 4a. In K'_2 we have $a + \lambda - 1 = 0$, Tr l = 2a(2-a), $L = a^2$, and r = 2a(4-a).

In G'_2 , $b = \lambda - a - 1 = 0$. Using this to eliminate *a* from the second equation of (5-12), we obtain $-3\lambda^2 + 2\lambda + 1 - L = 0$. If we assume $e \cdot \lambda \neq 0$, we may differentiate

this equation twice with respect to e, obtaining $e \cdot \lambda = 0$, a contradiction. Hence $e \cdot \lambda = 0$ (and c = 0), and from (5-1) and (5-3) we can conclude that λ is constant in G'_2 and similarly $a = \lambda - 1$. In particular, from the system (5-12), we have $\lambda^2 = 1$ (hence Tr l = 0), a = 0 or -2, and L = -2a(a + 1). If a = 0 we obtain a flat structure, and if a = -2 we have a semi-K contact structure with constant scalar curvature r = 4a = -8.

In G'_3 , $c = \lambda + a + 1 = 0$. Using this to eliminate *a* from the second equation of V_3 , we get $\lambda^2 + 2\lambda + 1 - L = 0$. If we assume $\phi e \cdot \lambda \neq 0$, we may differentiate this equation with twice respect to ϕe , obtaining $\phi e \cdot \lambda = 0$, a contradiction. Thus $\phi e \cdot \lambda = 0$ everywhere in G'_3 , which gives b = 0. We note that $\xi \cdot \lambda = \phi e \cdot \lambda = e \cdot \lambda = 0$. Thus λ is constant in G'_3 , and obviously $a = -\lambda - 1$. Moreover, if we put b = c = 0and $a = -\lambda - 1$ in the system (5-12), we get $\lambda = -1$ and a = 0; hence the structure is flat.

As in case of V_2 , we have that the functions λ and a are constant in V_3 , and the equations (5-16) are satisfied because b = c = 0.

In V_4 , $2a\lambda - \lambda^2 + 1 - L = 0$ and $-2a\lambda - \lambda^2 + 1 - L = 0$. Working as in the set V_1 , we find that a = 0 (hence Theorem 4.1 applies), b = c = 0, and λ is constant in V_4 , that is, $\lambda^2 = 1 - L \ge 0$. Also, from (2-19), r = Tr l = 2L.

The functions λ and a are constant in each V_i for i = 1, 2, 3, 4, and the set $\bigcup V_i$ is open and dense in the closure of U_1 . Hence λ and a are constant in U_1 .

In U_2 ,

(5-1) $\phi e \cdot \lambda = 2b\lambda,$ (5-3) $0 = \xi \cdot \lambda,$ (5-19) $0 = 2a\lambda - \lambda^2 + 1 - L,$ (5-20) $0 = B^2 + (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (-2a\lambda - \lambda^2 + 1 - L),$

We differentiate (5-19) with respect to ξ , ϕe , and e and because of (5-1) and (5-3) we obtain respectively

$$(5-21) 0 = \xi \cdot a,$$

(5-22)
$$\phi e \cdot a = 2b\lambda - 2ab,$$

(5-23)
$$0 = (a - \lambda)(e \cdot \lambda) + \lambda(e \cdot a) = 0.$$

We differentiate Equations (5-1) and (5-3) with respect to ξ and ϕe respectively and subtract. Then, because of (5-3), (2-13) and (2-17), we obtain

(5-24)
$$(3\lambda - a - 1)(e \cdot \lambda) - 2\lambda(e \cdot a) = 2\lambda c(\lambda - a - 1)$$

We consider the system of (5-23) and (5-24) with unknown functions the derivatives of $e \cdot \lambda$ and $e \cdot a$. We consider these open subsets of U_2 :

$$F_1 = \{ p \in U_2 \subset U : -a - \lambda + 1 \neq 0 \text{ in a neighborhood of } p \},\$$

$$F_2 = \{ p \in U_2 \subset U : -a - \lambda + 1 = 0 \text{ in a neighborhood of } p \}.$$

In the neighborhood F_1 solving the system of (5-23) and (5-24), we obtain

(5-25)
$$(-a - \lambda + 1)(e \cdot \lambda) = -2\lambda c(\lambda - a - 1).$$

From (2-17), (5-1) and (5-22), we obtain

(5-26)
$$\xi \cdot c = -b(3\lambda - 3a - 1).$$

We differentiate (5-3), (5-25) with respect to e and ξ , respectively, and subtract. Then using (5-3), (5-21), we obtain $(-a - \lambda + 1)[e, \xi]\lambda = 2\lambda(\lambda - a - 1)(\xi \cdot c)$ or, by (2-13), (5-1), (5-26), and $\lambda \neq 0$ (as $F_1 \subset U$), we finally obtain

(5-27)
$$b(a^2 + \lambda^2 - a\lambda + a - \lambda) = 0$$

We work in the open subset F_1 and suppose that there is a point p in F_1 at which $b \neq 0$ (or equivalently, by (5-1), $\phi e \cdot \lambda \neq 0$). The function b is smooth, and because of its continuity there is an open neighborhood S of p such that $S \subset F_1$ and $b \neq 0$ everywhere in S. Hence from (5-27) we have in S

(5-28)
$$a^2 + \lambda^2 - a\lambda + a - \lambda = 0.$$

We differentiate this equation with respect to ϕe , use (5-1) and (5-22), and with the assumption $b \neq 0$ obtain $2a^2 - 2a\lambda - \lambda^2 + a = 0$. This last equation together with (5-28) gives $-3\lambda^2 - a + 2\lambda = 0$. We differentiate this equation with respect to ϕe . Then using (5-1) and (5-22), we get $2b(-6\lambda^2 + a + \lambda) = 0$ or equivalently $-6\lambda^2 + a + \lambda = 0$. The equations $-3\lambda^2 - a + 2\lambda = 0$ and $-6\lambda^2 + a + \lambda = 0$ give $-9\lambda^2 + 3\lambda = 0$. We differentiate this equation twice with respect to ϕe and obtain $\phi e \cdot \lambda = 0$ or equivalently b = 0 everywhere in *S*, a contradiction. Hence, from (5-27) we deduce that b = 0 everywhere in *F*₁.

Equation (5-1) and b = 0 give $\phi e \cdot \lambda = 0$, which together with (5-3) gives $[\xi, \phi e]\lambda = 0$, or because of (2-13), $(\lambda - a - 1)(e \cdot \lambda) = 0$. Let's suppose that there is a point $q \in F_1$ at which $e \cdot \lambda \neq 0$. Then, there is a neighborhood Y of q in which $e \cdot \lambda \neq 0$. In Y we then have $\lambda - a - 1 = 0$, and hence from (5-25) we have $(-a - \lambda + 1)(e \cdot \lambda) = 0$, which in $Y \subset F_1$ gives $e \cdot \lambda = 0$, a contradiction. Hence $e \cdot \lambda = 0$ everywhere in F_1 . Then $\xi \cdot \lambda = \phi e \cdot \lambda = e \cdot \lambda = 0$ implies that λ is constant in F_1 . From (5-21), (5-22) and (5-23) we obtain that a is constant in F_1 and from

(5-25) we have $c(\lambda - a - 1) = 0$. We consider these two open subsets of F_1 :

$$J_1 = \{ p \in F_1 : c = 0 \text{ in a neighborhood of } p \},\$$

$$J_2 = \{ p \in F_1 : c \neq 0 \text{ in a neighborhood of } p \}.$$

In J_1 , Equation (5-20) yields $a(\lambda - 1)(a - \lambda - 1) = 0$, where *a* and λ are constant and b = 0. We consider these two open subsets of J_1 :

 $H_1 = \{ p \in J_1 : a = 0 \text{ in a neighborhood of } p \},\$ $H_2 = \{ p \in J_1 : a \neq 0 \text{ in a neighborhood of } p \}.$

In H_1 , we have $\nabla_{\xi} \tau = 0$ (hence Theorem 4.1 applies) and from (2-19) r = 2L. In H_2 we have $(\lambda - 1)(a - \lambda - 1) = 0$, and hence we consider these two open subsets of H_2 :

 $H_3 = \{ p \in J_1 : \lambda = 1 \text{ in a neighborhood of } p \},\$ $H_4 = \{ p \in J_1 : \lambda \neq 1 \text{ in a neighborhood of } p \}$

In H_3 , we have Tr l = 0, L = 2a by (5-19), and r = 4a by (2-19). In H_4 we obtain $a - \lambda - 1 = 0$, Tr l = 2a(2 - a), $L = a^2$, and r = 2a(4 - a).

In J_2 , we have $b = a - \lambda + 1 = 0$ (a semi-K contact structure with constant a and λ); hence Tr l = -2a(2+a), $L = a^2$ by (5-19), and $c^2 + a(e \cdot c) + 4a^2 = 0$ by (5-20). The set $J_1 \cup J_2$ is open and dense inside the closure of F_1 ; hence we conclude that b = 0 and that a and λ are constant in F_1 .

In the open set F_2 we have $-a - \lambda + 1 = 0$, which together with (5-19) gives $-3\lambda^2 + 2\lambda + 1 - L = 0$. If we assume $e \cdot \lambda \neq 0$, we may differentiate this equation twice with respect to e and obtain $e \cdot \lambda = 0$, a contradiction. Hence $e \cdot \lambda = 0$. Similarly we can deduce that $\phi e \cdot \lambda = 0$ (so (5-1) implies b = 0), and hence λ is constant in F_2 . Obviously $a = -\lambda + 1$ is constant in F_2 . The system of (5-23) and (5-24) gives ca = 0. We consider these two open subsets of F_2 :

$$Q_1 = \{ p \in F_2 : c = 0 \text{ in a neighborhood of } p \},\$$
$$Q_2 = \{ p \in F_2 : c \neq 0 \text{ in a neighborhood of } p \}.$$

In Q_1 , (5-19) implies $L = \text{Tr} l - a^2$, where Tr l = 2a(2-a) and r = 2a(4-a). In Q_2 , we have a 3- τ manifold structure with Tr l = L = 0.

We have proved that λ and a are constant in F_1 and F_2 . Since $F_1 \cup F_2$ is open and dense inside the closure of U_2 , we conclude that λ and a are constant in U_2 . In U_3 ,

(5-2)
$$2c\lambda = (e \cdot \lambda),$$

(5-3) $0 = \xi \cdot \lambda,$
(5-29) $0 = -2a\lambda - \lambda^2 + 1 - L,$
(5-30) $0 = A^2 + (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (2a\lambda - \lambda^2 + 1 - L),$

We differentiate the relation (5-29) with respect to ξ , *e* and ϕe , and because of (5-2) and (5-3) we obtain respectively (5-21),

$$(5-31) e \cdot a = -2ac - 2c\lambda,$$

(5-32)
$$0 = (a + \lambda)(\phi e \cdot \lambda) + \lambda(\phi e \cdot a).$$

We differentiate (5-2) and (5-3) with respect to ξ and *e* respectively and subtract. Then by (5-21), we obtain $[\xi, e]\lambda = 2\lambda(\xi \cdot c)$, or because of (2-13) and (2-17),

(5-33)
$$(3\lambda + a + 1)(\phi e \cdot \lambda) + 2\lambda(\phi e \cdot a) = 2\lambda b(\lambda + a + 1).$$

Meanwhile from (2-17), (5-2) and (5-31), we obtain

(5-34)
$$\xi \cdot b = -c(3a+3\lambda+1).$$

Now consider the system of (5-32) and (5-33) and these two open subsets of U_3 :

$$F'_1 = \{ p \in U_3 \subset U : a - \lambda - 1 \neq 0 \text{ in a neighborhood of } p \},$$

$$F'_2 = \{ p \in U_3 \subset U : a - \lambda - 1 = 0 \text{ in a neighborhood of } p \}.$$

In the open set F'_1 of p in which $a - \lambda - 1 \neq 0$, we may solve the system of (5-32) and (5-33) to obtain

(5-35)
$$(a - \lambda - 1)(\phi e \cdot \lambda) = -2\lambda b(\lambda + a + 1).$$

We differentiate (5-3) and (5-35) with respect to ϕe and ξ respectively and subtract. Then by (5-3) and (5-21) we obtain $(a - \lambda - 1)[\phi e, \xi]\lambda = 2\lambda(\lambda + a + 1)(\xi \cdot b)$ or, because of (2-13), $(a - \lambda - 1)(a - \lambda + 1)(e \cdot \lambda) = 2\lambda(\lambda + a + 1)(\xi \cdot b)$. Then, using (5-2), (5-34) and $\lambda \neq 0$ (in $F'_1 \subset U$), we get

$$c(a^2 + \lambda^2 + a\lambda + a + \lambda) = 0.$$

As in the case of Equation (5-27) we can deduce in F'_1 that c = 0. Equation (5-2), because c = 0, gives $e \cdot \lambda = 0$. This together with (5-3) gives $[e, \xi]\lambda = 0$ or, because of (2-13), $(a + \lambda + 1)(\phi e \cdot \lambda) = 0$. Suppose that there is a point $q \in F'_1$ at which $\phi e \cdot \lambda \neq 0$. Then there is a neighborhood S of q in which $\phi e \cdot \lambda \neq 0$, and hence $a + \lambda + 1 = 0$. Because $a + \lambda + 1 = 0$, Equation (5-35) gives $(a - \lambda - 1)(\phi e \cdot \lambda) = 0$. Working in $S \subset F'_1$, where $a - \lambda - 1 \neq 0$, we can conclude that $\phi e \cdot \lambda = 0$, a contradiction. Hence, $\phi e \cdot \lambda = 0$ everywhere in F'_1 . In the neighborhood F'_1 , we have $\xi \cdot \lambda = \phi e \cdot \lambda = e \cdot \lambda = 0$ or equivalently λ is constant in F'_1 . From (5-21), (5-31) and (5-33), we obtain that *a* is constant in F'_1 , and from (5-32) we have $b(\lambda + a + 1) = 0$. We consider these two open subsets of F'_1 :

 $J'_1 = \{ p \in F'_1 : b = 0 \text{ in a neighborhood of } p \},$ $J'_2 = \{ p \in F'_1 : b \neq 0 \text{ in a neighborhood of } p \}.$

In J'_1 , we obtain from (5-30) that $a(\lambda + 1)(a + \lambda - 1) = 0$, where a and λ are constant and c = 0. We consider these two open subsets of J'_1 :

$$H'_1 = \{ p \in J'_1 : a = 0 \text{ in a neighborhood of } p \},$$

$$H'_2 = \{ p \in J'_1 : a \neq 0 \text{ in a neighborhood of } p \}.$$

In H'_1 , we obtain $\nabla_{\xi} \tau = 0$ (hence Theorem 4.1 applies). and r = 2L. In H'_2 , we have $(\lambda + 1)(a + \lambda - 1) = 0$. We consider these two open subsets of H'_2 :

$$H'_{3} = \{ p \in J_{1} : \lambda = -1 \text{ in a neighborhood of } p \},\$$

$$H'_{4} = \{ p \in J_{1} : \lambda \neq -1 \text{ in a neighborhood of } p \}.$$

In H'_3 , we have Tr l = 0, L = 2a by (5-29), and r = 4a by (2-19). In H'_4 , we obtain $a + \lambda - 1 = 0$, Tr l = 2a(2 - a), $L = a^2$ and r = 2a(4 - a).

In J'_2 we have $c = a + \lambda + 1 = 0$ (a semi-K contact structure with constant a and λ) and hence $\operatorname{Tr} l = -2a(2+a)$. Then $L = a^2$ from (5-29), and from (5-30) we obtain $b^2 + a(\phi e \cdot b) + 4a^2 = 0$ with a a constant. The set $J'_1 \cup J'_2$ is open and dense inside the closure of F'_1 ; hence we can conclude that c = 0 and that a and λ are constant in F'_1 .

In the open set F'_2 we have $a - \lambda - 1 = 0$, which together with (5-29) gives $-3\lambda^2 - 2\lambda + 1 - L = 0$. If we assume $\phi e \cdot \lambda \neq 0$, we may differentiate this equation twice with respect to *e*, obtaining $\phi e \cdot \lambda = 0$, a contradiction. Hence $\phi e \cdot \lambda = 0$. Similarly we find that $e \cdot \lambda = 0$, and hence λ is constant in F'_2 . Obviously $a = \lambda + 1$ is constant in F'_2 . The system of (5-32) and (5-33) gives ba = 0. We consider these two open subsets of F'_2 :

 $Q'_1 = \{ p \in F'_2 : b = 0 \text{ in a neighborhood of } p \},$ $Q'_2 = \{ p \in F'_2 : b \neq 0 \text{ in a neighborhood of } p \}.$

In Q'_1 , (5-29) implies $L = \text{Tr} l - a^2$, where Tr l = 2a(2-a) and r = 2a(4-a). In Q'_2 , we have a 3- τ manifold structure with Tr l = L = 0. We have proved that λ and a are constant in F'_1 and F'_2 , while $F'_1 \cup F'_2$ is open and dense inside the closure of U_3 . Hence we conclude that λ and a are constant in U_3 .

Finally because λ and a are constant in each U_i for i = 1, 2, 3, and because the set $\bigcup U_i$ is open and dense inside of the closure of U, we conclude that λ and a are constant in U. Then by (2-9), Tr $l = 2(1 - \lambda^2)$ is also constant in U and obviously on M^3 .

Acknowledgments

The authors thank Professors R. Deszcz, J. Inoguchi, C. Özgür and Ph. J. Xenos for useful information on pseudosymmetric manifolds. They also thank the referee for useful remarks.

References

- [Belkhelfa et al. 2002] M. Belkhelfa, R. Deszcz, M. Głogowska, M. Hotloś, D. Kowalczyk, and L. Verstraelen, "On some type of curvature conditions", pp. 179–194 in *PDEs, submanifolds and affine differential geometry* (Warsaw, 2000), edited by B. Opozda et al., Banach Center Publ. **57**, Polish Acad. Sci., Warsaw, 2002. MR 2004a:53019 Zbl 1023.53013
- [Blair 2002] D. E. Blair, *Riemannian geometry of contact and symplectic manifolds*, Progress in Mathematics **203**, Birkhäuser, Boston, 2002. MR 2002m:53120 Zbl 1011.53001
- [Blair and Chen 1992] D. E. Blair and H. Chen, "A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$, II", *Bull. Inst. Math. Acad. Sinica* **20**:4 (1992), 379–383. MR 94b:53062 Zbl 0767.53023
- [Blair et al. 1990] D. E. Blair, T. Koufogiorgos, and R. Sharma, "A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$ ", *Kodai Math. J.* **13**:3 (1990), 391–401. MR 91j:53015 Zbl 0716.53041
- [Boeckx et al. 1996] E. Boeckx, O. Kowalski, and L. Vanhecke, *Riemannian manifolds of conulity two*, World Scientific Publishing Co., River Edge, NJ, 1996. MR 98h:53075 Zbl 0904.53006
- [Calvaruso 2006] G. Calvaruso, "Conformally flat pseudo-symmetric spaces of constant type", *Czechoslovak Math. J.* **56**:131 (2006), 649–657. MR 2007m:53043
- [Calvaruso and Perrone 2002] G. Calvaruso and D. Perrone, "Semi-symmetric contact metric threemanifolds", *Yokohama Math. J.* **49**:2 (2002), 149–161. MR 2003g:53137 Zbl 1047.53017
- [Chern and Hamilton 1985] S. S. Chern and R. S. Hamilton, "On Riemannian metrics adapted to three-dimensional contact manifolds", pp. 279–308 in *Workshop Bonn 1984*, edited by F. Hirzebruch et al., Lecture Notes in Math. **1111**, Springer, Berlin, 1985. MR 87b:53060 Zbl 0561.53039
- [Cho and Inoguchi 2005] J. T. Cho and J.-I. Inoguchi, "Pseudo-symmetric contact 3-manifolds", J. Korean Math. Soc. 42:5 (2005), 913–932. MR 2006c:53085 Zbl 1081.53018
- [Deszcz 1992] R. Deszcz, "On pseudosymmetric spaces", *Bull. Soc. Math. Belg. Sér. A* **44**:1 (1992), 1–34. MR 96c:53068 Zbl 0808.53012
- [Gouli-Andreou and Xenos 1998a] F. Gouli-Andreou and P. J. Xenos, "On 3-dimensional contact metric manifolds with $\nabla_{\xi} \tau = 0$ ", *J. Geom.* **62**:1-2 (1998), 154–165. MR 99e:53035 Zbl 0905.53024
- [Gouli-Andreou and Xenos 1998b] F. Gouli-Andreou and P. J. Xenos, "On a class of 3-dimensional contact metric manifolds", *J. Geom.* **63**:1-2 (1998), 64–75. MR 99k:53091 Zbl 0918.53014

- [Gouli-Andreou et al. 2008] F. Gouli-Andreou, J. Karatsobanis, and P. Xenos, "Conformally flat $3-\tau$ -a manifolds", *Differ. Geom. Dyn. Syst.* **10** (2008), 107–131. MR 2390006
- [Hashimoto and Sekizawa 2000] N. Hashimoto and M. Sekizawa, "Three-dimensional conformally flat pseudo-symmetric spaces of constant type", *Archivum Math. (Brno)* **36**:4 (2000), 279–286. MR 2001k:53053 Zbl 1054.53060
- [Koufogiorgos 1995] T. Koufogiorgos, "On a class of contact Riemannian 3-manifolds", *Results Math.* 27:1-2 (1995), 51–62. MR 95m:53040 Zbl 0833.53032
- [Kowalski and Sekizawa 1996a] O. Kowalski and M. Sekizawa, "Local isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho_1 = \rho_2 \neq \rho_3 > 0$ ", *Archivum Math. (Brno)* **32**:2 (1996), 137–145. MR 97d:53053 Zbl 0903.53015
- [Kowalski and Sekizawa 1996b] O. Kowalski and M. Sekizawa, "Three-dimensional Riemannian manifolds of *c*-conullity two", Chapter 11 of [Boeckx et al. 1996], 1996.
- [Kowalski and Sekizawa 1997] O. Kowalski and M. Sekizawa, "Pseudo-symmetric spaces of constant type in dimension three — elliptic spaces", *Rendiconti Mat. Appl.* (7) **17**:3 (1997), 477–512. MR 99a:53032 Zbl 0889.53026
- [Kowalski and Sekizawa 1998] O. Kowalski and M. Sekizawa, "Pseudo-symmetric spaces of constant type in dimension three — non-elliptic spaces", *Bull. Tokyo Gakugei Univ.* (4) **50** (1998), 1–28. MR 99j:53040 Zbl 0945.53020
- [Perrone 1990] D. Perrone, "Torsion and critical metrics on contact three-manifolds", *Kodai Math. J.* **13**:1 (1990), 88–100. MR 91b:58038 Zbl 0709.53034
- [Szabó 1982] Z. I. Szabó, "Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, I: The local version", *J. Differential Geom.* **17**:4 (1982), 531–582. MR 84e:53060 Zbl 0508.53025
- [Szabó 1985] Z. I. Szabó, "Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, II: Global versions", *Geom. Dedicata* **19**:1 (1985), 65–108. MR 87c:53099 Zbl 0612.53023
- [Takagi 1972] H. Takagi, "An example of Riemannian manifolds satisfying $R(X, Y) \cdot R = 0$ but not $\nabla R = 0$ ", *Tôhoku Math. J.* (2) **24** (1972), 105–108. MR 47 #7655 Zbl 0237.53041

Received March 3, 2008.

FLORENCE GOULI-ANDREOU DEPARTMENT OF MATHEMATICS ARISTOTLE UNIVERSITY OF THESSALONIKI 54124 THESSALONIKI GREECE

fgouli@math.auth.gr

EVAGGELIA MOUTAFI DEPARTMENT OF MATHEMATICS ARISTOTLE UNIVERSITY OF THESSALONIKI 54124 THESSALONIKI GREECE moutafi@sch.gr