Pacific Journal of Mathematics

TWO CLASSES OF PSEUDOSYMMETRIC CONTACT METRIC 3-MANIFOLDS

FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

Volume 239 No. 1 January 2009

TWO CLASSES OF PSEUDOSYMMETRIC CONTACT METRIC 3-MANIFOLDS

FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

We classify the pseudosymmetric contact metric 3-manifolds that satisfy $\nabla_{\xi}\tau = 0$, and also the pseudosymmetric contact metric 3-manifolds of constant type satisfying $\nabla_{\xi} \tau = 2a\tau \phi$, where *a* is a smooth function.

1. Introduction

According to R. Deszcz [1992], a Riemannian manifold (M^m, g) is pseudosymmetric if the curvature tensor *R* satisfies the condition $R(X, Y) \cdot R = L\{(X \wedge Y) \cdot R\}$, where *L* is a smooth function, the endomorphism field $X \wedge Y$ is defined by

(1-1) $(X \wedge Y)Z = g(Y, Z)X - g(Z, X)Y$ $(X \wedge Y)Z = g(Y, Z)X - g(Z, X)Y$ $(X \wedge Y)Z = g(Y, Z)X - g(Z, X)Y$ $(X \wedge Y)Z = g(Y, Z)X - g(Z, X)Y$ $(X \wedge Y)Z = g(Y, Z)X - g(Z, X)Y$

for all vectors fields *X*, *Y*, *Z* on *M*, and the dot means that $R(X, Y)$ and $X \wedge Y$ act as derivations on *R*.

If *L* is constant, *M* said to be a pseudosymmetric manifold of constant type; if $L = 0$, then *M* is a semisymmetric manifold. [Hence](#page-21-2) [a pseud](#page-21-3)osymmetric manifold is a natural generalization of a semisymmetric manifold [Szabó 1982; 1985], which in turn is a generalization of a lo[cally s](#page-21-4)ymmetric space, that is, one with $\nabla R = 0$; see [Takagi 1972].

Three-dimensional pse[udosym](#page-20-1)metric spaces of constant type have been studied by many researchers, beginning with O. [Kowal](#page-20-2)ski and M. Sekizawa [1996b; 1996a; 1997; 1998]. Later, N. Hashimoto and M. Sekizawa classified 3-dimensional, conformally flat pseudosymmetric spaces of c[onstan](#page-20-3)t type [2000], while G. Calvaruso gave the complete classification of conformally flat pseudosymmetric spaces of constant type for dimensions greater than two [2006]. J. T. Cho and J. Inoguchi studied pseudosymmetric contact homogeneous 3-manifolds [2005].

It is well known that in the geometry of a contact metric manifold, the tensors $\tau = L_{\xi} g$ and $\nabla_{\xi} \tau$, introduced by S. S. Chern and R. S. Hamilton [1985], play a fundamental role. The condition $\nabla_{\xi} \tau = 2a\tau \phi$, where *a* is a constant and $(\tau \phi)(X, Y)$ is

MSC2000: primary 53D10, 53C25, 53C15; secondary 53C35.

Keywords: contact metric 3-manifolds, pseudosymmetric manifolds.

interpreted as $\tau(\phi X, Y)$, is necessary for a contact metric 3-manifold to be homogeneous. We call a 3-dimensional contact metric manifold a 3-τ -*a* manifold if it satisfies $\nabla_{\xi} \tau = 2a\tau \phi$, where *a* is a smooth function; if $a = 0$, we call it a 3- τ manifold. The condition $\nabla_{\xi} \tau = 0$ appeared first in [Chern and Hamilton 1985] in [the study of c](#page-20-4)ompact contact 3-manifolds, while Perrone [1990] proved that it is the critical point condition for the functional "integral of the scalar curvature" defined on the set of all metrics associated to the fixed contact form η . Moreover, this condition $\nabla_{\xi} \tau = 0$ is equivalent to the condition requiring equality of the sectional curvature of all planes at a given point and perpendicular to the contact distribution [Gouli-Andreou and Xenos 1998a].

This article studies contact metric 3-manifolds in which

- (i) *M* is a pseudosymmetric manifold and $\nabla_{\xi} \tau = 0$, where $\tau = L_{\xi} g$; or
- (ii) *M* is a pseudosymmetric manifold of constant type with $\nabla_{\xi} \tau = 2a\tau \phi$, where *a* is a smooth function on *M*.

2. Preliminaries

Let (M^m, g) for $m \geq 3$ be a connected Riemannian smooth manifold. We denote by ∇ the Levi-Civita connection of *M^m* and by *R* the corresponding Riemannian curvature tensor given by $R(X, Y) = [\nabla_X, \nabla_Y] - \nabla_{[X, Y]}$.

A Riemannian manifold (M^m, g) for $m \geq 3$ is said to be *pseudosymmetric* in the sense of R. Deszcz $[1992]$ if at every point of *M* the curvature tensor satisfies the equation

$$
(2-1) \qquad (R(X,Y)\cdot R)(X_1,X_2,X_3) = L\{((X\wedge Y)\cdot R)(X_1,X_2,X_3)\},
$$

where

$$
(2-2) (R(X, Y) \cdot R)(X_1, X_2, X_3) =
$$

\n
$$
R(X, Y)(R(X_1, X_2)X_3) - R(R(X, Y)X_1, X_2)X_3
$$

\n
$$
- R(X_1, R(X, Y)X_2)X_3 - R(X_1, X_2)(R(X, Y)X_3),
$$

\n
$$
(2-3) ((X \wedge Y) \cdot R)(X_1, X_2, X_3) =
$$

\n
$$
(X \wedge Y)(R(X_1, X_2)X_3) - R((X \wedge Y)X_1, X_2)X_3
$$

\n
$$
- R(X_1, (X \wedge Y)X_2)X_3 - R(X_1, X_2)((X \wedge Y)X_3),
$$

and $X \wedge Y$ is given by (1-1). In particular, if $L = 0$, then *M* is semisymmetric. For details and examples of pseudosymmetric manifolds, see [Belkhelfa et al. 2002] and [Deszcz 1992].

A contact manifold is a differentiable manifold M^{2n+1} together with a global 1-form η (a *contact form*) such that $\eta \wedge (d\eta)^n \neq 0$ everywhere. Since $d\eta$ is of rank 2*n*, there exists a unique vector field ξ on M^{2n+1} (the *Reeb* or *characteristic*

vector field of the *contact structure* η) satisfying $\eta(\xi) = 1$ and $d\eta(\xi, X) = 0$ for all *X*. The distribution defined by the subspace $X \in T_pM$: $\eta(X) = 0$ for $p \in M$ is called a *contact distribution*. Every contact manifold has an underlying *almost contact structure* (η, ϕ, ξ) , where ϕ is a global tensor field of type $(1, 1)$, such that

(2-4)
$$
\eta(\xi) = 1
$$
, $\phi \xi = 0$, $\eta \circ \phi = 0$, $\phi^2 = -I + \eta \otimes \xi$.

A Riemannian metric *g* (the *associated metric*) can be defined such that

(2-5)
$$
\eta(X) = g(X, \xi) \quad \text{and} \quad d\eta(X, Y) = g(X, \phi Y)
$$

for all vector fields *X* and *Y* on M^{2n+1} . We note that *g* and ϕ are not unique for a given contact form η , but *g* and ϕ are canonically related to each other. We refer to $(M^{2n+1}, \eta, \xi, \phi, g)$ as a *contact metric structure*.

We denote by *S* the Ricci tensor of type (0, 2), by *Q* the corresponding Ricci operator satisfying $g(QX, Y) = S(X, Y)$, and by $r = \text{Tr } Q$ the scalar curvature. We also define the tensor fields *l*, *h* and τ by the relations

(2-6)
$$
l = R(\cdot, \xi)\xi, \quad h = \frac{1}{2}L_{\xi}\phi, \quad \tau = L_{\xi}g,
$$

where *L* is the Lie differentiation. On every contact metric manifold M^{2n+1} , we have the important formulas

(2-7)
$$
h\xi = l\xi = 0
$$
, $\eta \circ h = 0$, $\text{Tr } h = \text{Tr } h\phi = 0$, $h\phi = -\phi h$,

(2-8)
$$
hX = \lambda X
$$
 implies $h\phi X = -\lambda \phi X$,

(2-9)
$$
\nabla_{\xi} \phi = 0
$$
, $\nabla_X \xi = -\phi X - \phi h X$, $\text{Tr} l = g(Q\xi, \xi) = 2n - \text{Tr} h^2$,

$$
(2-10) \qquad \tau = 2g(\phi \cdot, h \cdot), \quad \nabla_{\xi} \tau = 2g(\phi \cdot, \nabla_{\xi} h \cdot).
$$

A contact metric manifold $M^{2n+1}(\phi, \xi, \eta, g)$ for which ξ is a Killing vector field, that is, for which $L_{\xi} g = 0$, is called a K-contact manifold. A contact metric manifold is K-contact if and only if $\tau = 0$ (or equivalently $h = 0$).

If we take the product $M^{2n+1} \times \mathbb{R}$, then the contact structure on M^{2n+1} gives rise to an almost complex structure *J* on $M^{2n+1} \times \mathbb{R}$ given by

$$
J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt}).
$$

If this structure is integrable, then the contact structure is said to be normal and M^{2n+1} is called Sasakian. A contact metric manifold is Sasakian if and only if $R(X, Y)\xi = \eta(Y)X - \eta(X)Y$ for all vectors fields *X*, *Y* on the manifold. If $\dim M^{2n+1} = 3$ then a K-contact manifold is Sasakian and the converse also holds. More details on contact manifolds are found in [Blair 2002].

Let (M, ϕ, ξ, η, g) be a contact metric 3-manifold. Let *U* be the open subset of points $p \in M$ such that $h \neq 0$ in a neighborhood of p. Let U_0 be the open subset of points $p \in M$ such that $h = 0$ in a neighborhood of p. That h is a smooth function

on *M* [implies](#page-20-6) $U \cup U_0$ [is an open and dense subset of](#page-20-4) *M*, so any property satisfied in *U*₀ ∪ *U* is also satisfied in *M*. For any point $p ∈ U ∪ U$ ₀, there exists a local orthonormal basis $\{e, \phi e, \xi\}$ of smooth eigenvectors of *h* in a neighborhood of *p* (this we call a ϕ -basis). On *U*, we put $he = \lambda e$, where λ is a nonvanishing smooth function assumed to be positive. From $(2-8)$ we have $h\phi e = -\lambda \phi e$.

Lemma 2.1 [Calvaruso and Perrone 2002; Gouli-Andreou and Xenos 1998a]. *On the open set U we have*

$$
\nabla_{\xi} e = a\phi e, \qquad \nabla_{e} e = b\phi e, \qquad \nabla_{\phi e} e = -c\phi e + (\lambda - 1)\xi,
$$

$$
\nabla_{\xi} \phi e = -ae, \qquad \nabla_{e} \phi e = -be + (1 + \lambda)\xi, \qquad \nabla_{\phi e} \phi e = ce,
$$

$$
\nabla_{\xi} \xi = 0, \qquad \nabla_{e} \xi = -(1 + \lambda)\phi e, \qquad \nabla_{\phi e} \xi = (1 - \lambda)e,
$$

$$
(2-11) \qquad \nabla_{\xi} h = -2ah\phi + (\xi \cdot \lambda)s
$$

where a is a smooth function,

(2-12)
$$
b = \frac{1}{2\lambda}((\phi e \cdot \lambda) + A) \quad \text{with } A = \eta(Qe) = S(\xi, e),
$$

$$
c = \frac{1}{2\lambda}((e \cdot \lambda) + B) \quad \text{with } B = \eta(Q\phi e) = S(\xi, \phi e),
$$

and s is the type $(1, 1)$ *tensor field defined by* $s\xi = 0$, $se = e$ *and* $s\phi e = -\phi e$.

From Lemma 2.1 and the formula $[X, Y] = \nabla_X Y - \nabla_Y X$, we can prove that

(2-13)
\n
$$
[e, \phi e] = \nabla_e \phi e - \nabla_{\phi e} e = -be + c\phi e + 2\xi,
$$
\n
$$
[e, \xi] = \nabla_e \xi - \nabla_{\xi} e = -(a + \lambda + 1)\phi e,
$$
\n
$$
[\phi e, \xi] = \nabla_{\phi e} \xi - \nabla_{\xi} \phi e = (a - \lambda + 1)e,
$$

and from $(1-1)$ we estimate

(2-14)
$$
(e \wedge \phi e)e = -\phi e, \quad (e \wedge \xi)e = -\xi, \quad (\phi e \wedge \xi)\xi = \phi e,
$$

$$
(e \wedge \phi e)\phi e = e, \quad (e \wedge \xi)\xi = e, \quad (\phi e \wedge \xi)\phi e = -\xi,
$$

while $(X \wedge Y)Z = 0$ whenever $X \neq Y \neq Z \neq X$ and $X, Y, Z \in \{e, \phi e, \xi\}.$

By direct computations, we calculate the nonvanishing independent components of the type (1, 3) Riemannian curvature tensor field *R*:

$$
R(\xi, e)\xi = -Ie - Z\phi e, \qquad R(e, \phi e)e = -C\phi e - B\xi,
$$

\n
$$
R(\xi, \phi e)\xi = -Ze - D\phi e, \qquad R(\xi, e)\phi e = -Ke + Z\xi,
$$

\n
$$
R(e, \phi e)\xi = Be - A\phi e, \qquad R(\xi, \phi e)\phi e = He + D\xi,
$$

\n
$$
R(\xi, e)e = K\phi e + I\xi, \qquad R(e, \phi e)\phi e = Ce + A\xi,
$$

\n
$$
R(\xi, \phi e)e = -H\phi e + Z\xi,
$$

where

$$
C = -b^2 - c^2 + \lambda^2 - 1 + 2a + (e \cdot c) + (\phi e \cdot b), \quad Z = \xi \cdot \lambda,
$$

(2-16) $H = b(\lambda - a - 1) + (\xi \cdot c) + (\phi e \cdot a), \qquad I = -2a\lambda - \lambda^2 + 1,$
 $K = c(\lambda + a + 1) + (\xi \cdot b) - (e \cdot a), \qquad D = 2a\lambda - \lambda^2 + 1.$

Setting $X = e$, $Y = \phi e$ and $Z = \xi$ in the Jacobi identity $[[X, Y], Z] + [[Y, Z], X] +$ $[[Z, X], Y] = 0$ and using $(2-13)$, we get

(2-17)
$$
b(a + \lambda + 1) - (\xi \cdot c) - (\phi e \cdot \lambda) - (\phi e \cdot a) = 0,
$$

$$
c(a - \lambda + 1) + (\xi \cdot b) + (e \cdot \lambda) - (e \cdot a) = 0,
$$

or equivalently $A = H$ and $B = K$.

We give the components of the Ricci operator Q with respect to a ϕ -basis:

(2-18)
\n
$$
Qe = (\frac{1}{2}r - 1 + \lambda^2 - 2a\lambda)e + Z\phi e + A\xi,
$$
\n
$$
Q\phi e = Ze + (\frac{1}{2}r - 1 + \lambda^2 + 2a\lambda)\phi e + B\xi,
$$
\n
$$
Q\xi = Ae + B\phi e + 2(1 - \lambda^2)\xi,
$$

where

(2-19)
$$
r = \text{Tr } Q = 2(1 - \lambda^2 - b^2 - c^2 + 2a + (e \cdot c) + (\phi e \cdot b)).
$$

The relations $(2-16)$ and $(2-19)$ yield

$$
(2-20) \qquad C = -b^2 - c^2 + \lambda^2 - 1 + 2a + (e \cdot c) + (\phi e \cdot b) = 2\lambda^2 - 2 + r/2
$$

Definition 2.2 [Gouli-Andreou et al. 2008]. Let M^3 be a 3-dimensional contact metric manifold. Let $h = \lambda h^+ - \lambda h^-$ be the spectral decomposition of h on U. If

$$
\nabla_{h^-X}h^-X=[\xi,h^+X]
$$

for all vector fields *X* on M^3 and all points of an open subset *W* of *U*, and if $h = 0$ on the points of M^3 that do not belong to *W*, then the manifold is said to be a *semi-K contact* manifold.

From Lemma 2.1 and the relations $(2-13)$, the condition above for $X = e$ leads to $[\xi, e] = 0$; for $X = \phi e$ [it leads to](#page-20-7) $\nabla_{\phi e} \phi e = 0$. He[nce on a sem](#page-4-1)i-K contact manifold we have $a + \lambda + 1 = c = 0$. If we apply the deformation $e \rightarrow \phi e$, $\phi e \rightarrow e$, $\xi \to -\xi$, $\lambda \to -\lambda$, $b \to c$ and $c \to b$, then the contact metric structure remains the same. Hence the condition for a 3-dimensional contact metric manifold to be semi-K contact is equivalent to $a - \lambda + 1 = b = 0$.

Remark 2.3. If $M^3 = U_0$ (as in [Gouli-Andreou and Xenos 1998b]), Lemma 2.1 is expressed in a similar form, where $\lambda = 0$, *e* is a unit vector field belonging to the contact distribution, the Equation $(2-11)$ is identically zero, and the functions *A*, *B*, *D*, *H*, *I*, *K* and *Z* satisfy

$$
A = B = Z = H = K = 0,
$$
 $I = D = 1,$ $C = \frac{1}{2}r - 2.$

Proposition 2.4. *For a* 3*-dimensional contact metric manifold*, *we have*

(2-21) $Q\phi = \phi Q$ if and only if $\xi \cdot \lambda = 2b\lambda - (\phi e \cdot \lambda) = 2c\lambda - (e \cdot \lambda) = a\lambda = 0$. *Proof.* By (2-4), (2-12), (2-16) and (2-20), the relations (2-18) yield

$$
(Q\phi - \phi Q)e = 2Ze + 4a\lambda\phi e + B\xi,
$$

$$
(Q\phi - \phi Q)\phi e = 4a\lambda e - 2Z\phi e - A\xi,
$$

$$
(Q\phi - \phi Q)\xi = Be - A\phi e.
$$

[Proposi](#page-20-2)tion 2.4 follows immediately.

3. Pseudosymmetric contact metric 3-manifolds

Let (M, η, g, ϕ, ξ) be a contact metric 3-manifold. In the case $M = U_0$, that is, when (ξ, η, ϕ, g) is a Sasakian structure, *M* is a pseudosymmetric space of constant type [Cho and Inoguchi 2005]. Next, assume that *U* is not empty, and let $\{e, \phi e, \xi\}$ be a ϕ -basis as in Lemma 2.1.

Lemma 3.1. A contact metric 3-manifold (M, η, g, ϕ, ξ) is pseudosymmetric if *and only if*

$$
B(\xi \cdot \lambda) + (-2a\lambda - \lambda^2 + 1)A = LA,
$$

\n
$$
A(\xi \cdot \lambda) + (2a\lambda - \lambda^2 + 1)B = LB,
$$

\n
$$
(\xi \cdot \lambda)(\frac{1}{2}r + 2\lambda^2 - 2) + AB = L(\xi \cdot \lambda),
$$

and

$$
A^{2} - |(\xi \cdot \lambda)|^{2} + (2a\lambda - \lambda^{2} + 1)(-2a\lambda - 3\lambda^{2} + 3 - \frac{1}{2}r)
$$

= $L(-2a\lambda - 3\lambda^{2} + 3 - \frac{1}{2}r),$

$$
B^{2} - |(\xi \cdot \lambda)|^{2} + (-2a\lambda - \lambda^{2} + 1)(2a\lambda - 3\lambda^{2} + 3 - \frac{1}{2}r)
$$

= $L(2a\lambda - 3\lambda^{2} + 3 - \frac{1}{2}r),$

where L is the function in the pseudosymmetry definition (2-1)*. Proof.* Setting $X_1 = e$, $X_2 = \phi e$ and $X_3 = \xi$ in Equation (2-1), we obtain

$$
(R(X, Y) \cdot R)(e, \phi e, \xi) = L((X \wedge Y) \cdot R)(e, \phi e, \xi)).
$$

First we set $X = e$ and $Y = \phi e$. By virtue of (2-2), (2-3), (2-14) and (2-15) we obtain

$$
(B(\xi \cdot \lambda) + (-2a\lambda - \lambda^2 + 1)A)e + (A(\xi \cdot \lambda) + (2a\lambda - \lambda^2 + 1)B)\phi e = L(Ae + B\phi e),
$$

from which the first two equations of the lemma follow at once.

Similarly, setting $X = \phi e$ and $Y = \xi$ we obtain

$$
(A2 - |(\xi \cdot \lambda)|2 + (2a\lambda - \lambda2 + 1)(-2a\lambda - 3\lambda2 + 2 - \frac{1}{2}r))e
$$

+ ((\xi \cdot \lambda)(\frac{1}{2}r + 2\lambda² - 2) + AB) \phi e = L((-2a\lambda - 3\lambda² + 2 - \frac{1}{2}r)e + (\xi \cdot \lambda)\phi e),

from which we get the next two equations.

[Fi](#page-5-3)nall[y, settin](#page-5-1)g $X = e$ and $Y = \xi$ we have

$$
(B2 - |(\xi \cdot \lambda)|2 + (-2a\lambda - \lambda2 + 1)(2a\lambda - 3\lambda2 + 2 - \frac{1}{2}r))\phi e
$$

+ ((\xi \cdot \lambda)(\frac{1}{2}r + 2\lambda² - 2) + AB)e = L((2a\lambda - 3\lambda² + 2 - \frac{1}{2}r)\phi e + (\xi \cdot \lambda)e),

from which we obtain the last equation.

Using Equations $(2-16)$ and $(2-20)$, the five equations take the more convenient form

$$
ZB + IA = LA,
$$

(3-1)
$$
ZA + DB = LB
$$
, $A^2 - Z^2 + D(I - C) = L(I - C)$,
 $ZC + AB = LZ$, $B^2 - Z^2 + I(D - C) = L(D - C)$.

Remark 3.2. If $L = 0$, the manifold is semisymmetric and $(3-1)$ is in accordance with [Calvaruso and Perrone 2002, Equations (3.1)–(3.5)].

[Pr](#page-20-8)oposition 3.3. *Let M*³ *be a* 3*-dimensional contact metric manifold satisfying* $Q\phi = \phi Q$. Then M^3 is a pseudosymmetric space of constant type.

Proof. In [2005], Cho and Inoguchi have proved that contact metric 3-manifolds that satisfy $Q\phi = \phi Q$ are pseudosymmetric. We can improve their result by proving that these manifolds are also pseudosymmetric of constant type. We know from [Blair et al. 199[0\] that for these man](#page-21-7)ifolds the Ricci operator has the form $\overline{Q}X = \alpha X + \beta \eta(X)\xi$ or equivalently the Ricci tensor is given by the equation

$$
(3-2) \t\t S = \alpha g + \beta \eta \otimes \eta,
$$

where $\alpha = (r - Tr*l*)/2$, $\beta = (3 Tr*l* - r)/2$ and the ϕ -sectional curvature and Tr*l* are both constant f[unctions. Also, from \[Kou](#page-20-2)fogiorgos 1995] we have that the φ-sectional curvature is given by the equation *r*/2−Tr*l*, and hence in contact metric 3-manifolds with $Q\phi = \phi Q$, the function $r = \text{Tr } Q$ is also constant; obviously the fu[nction](#page-7-1)s α and β in (3-2) are constant as well. The manifold is quasi-Einstein and hence pseudosymmetric, and because β is constant it is pseudosymmetric of constant type, that is, *L* is constant; see also [Cho and Inoguchi 2005].

Remark 3.4. If the manifold M^3 is Sasakian, we know from Cho and Inoguchi [2005] that $M³$ is a pseudosymmetric space of constant type. Also, by using Remark 2.3, the system $(3-1)$ is reduced to the equation $(C-1)(L-1) = 0$. Hence a Sasakian 3-manifold satisfying the condition $R(X, Y) \cdot R = L((X \wedge Y) \cdot R)$ with $L \neq 1$ is a space of constant scalar curvature $r = 6$, where *L* is some constant function on M^3 .

4. Pseudosymmetric contact metric 3-manifolds with $\nabla_{\xi} \tau = 0$

Theorem 4.1. *Let M*³ *be a* 3*-dimensional pseudosymmetric contact metric mani*fold satisfying $\nabla_{\xi} \tau = 0$. Then M^3 is of constant type, and it is either Sasakian, flat, *or locally isometric to either* SU(2) *or* SL(2, *R*), *where these two Lie groups are equipped with a left invariant metric.*

Proof. We consider the open subsets

(4-1)
\n
$$
U_0 = \{p \in M : \lambda = 0 \text{ in a neighborhood of } p\},
$$
\n
$$
U = \{p \in M : \lambda \neq 0 \text{ in a neighborhood of } p\}
$$

of *M*. Suppose $M = U_0$, that is, (ξ, η, ϕ, g) is a Sasakian structure. In [2005], Cho and Inoguchi proved that *M* is a pseudosymmetric space of constant type.

If *U* is not empty, let { e , ϕe , ξ } be a ϕ -basis. In contact metric 3-manifolds, the assumption $\nabla_{\xi} \tau = 0$ is equivalent to $a = Z = 0$; see [Gouli-Andreou and Xenos 1998a]. Hence (3-1) becomes

$$
AB = 0
$$

\n
$$
B(D - L) = 0, \t A2 + D(D - C) = L(D - C),
$$

\n
$$
A(D - L) = 0, \t B2 = A2,
$$

or equivalently

(4-2)
$$
Z = A = B = a = 0,
$$

$$
(D - L)(D - C) = 0,
$$

where the functions A , B , C , D , I and Z are given by $(2-12)$ and $(2-16)$. Using Proposition 2.4 we obtain $Q\phi = \phi Q$, and hence the manifold is pseudosymmetric of constant type (by [Cho and Inoguchi 2005] and Proposition 3.3). The equation $(D - L)(D - C) = 0$ does not contribute any further information to our problem, and hence the proof is completed by [Blair et al. 1990, Theorem 3.3] and [Blair and Chen 1992, Main Theorem].

5. Pseudosymmetric contact metric 3-manifolds of constant type with $\nabla_{\xi} \tau = 2a \tau \phi$

Theorem 5.1. *Let M*³ *be a* 3*-dimensional pseudosymmetric contact metric manifold of constant type satisfying the condition* $\nabla_{\xi} \tau = 2a\tau \phi$ *, where a is a smooth function. Then the functions a and* Tr*l are constant on M*³ , *and M*³ *is either*

- *Sasakian*;
- *flat*;
- *locally isometric to either* SU(2) *or* SL(2, *R*), *where both Lie groups are equipped with a left invariant metric*;
- *semi-K contact of constant type L* = −4, *with* Tr*l* =0 *and with constant scalar curvature* $r = -4$ *;*
- *semi-K contact of constant type* $L = a^2$, *with* $Tr l = -2a(2 + a)$;
- *of constant scalar curvature* $r = 4a$ *and of constant type* $L = 2a$ *, with* $Tr l = 0$;
- *of constant scalar [curva](#page-8-0)ture* $r = 2a(4 a)$ *[and of cons](#page-20-2)tant type* $L = a^2$ *, with* $Tr l = 2a(2 - a);$
- *of constant scalar curvature r* = $2a(4-a)$ *a[nd of co](#page-3-1)nstant type* $L = \text{Tr } l a^2$, *[w](#page-7-1)ith* $\text{Tr } l = 2a(2 - a)$.

Proof. We consider again the open subsets of $(4-1)$. If $M = U_0$, then *M* is Sasakian and hence it is a pseudosymmetric space of constant type [Cho and Inoguchi 2005]. Next, assume that *U* is not empty, and let { e , ϕe , ξ } be a ϕ -basis. Using (2-10) and (2-11), we can prove that the assumption $\nabla_{\xi} \tau = 2a\tau \phi$ is equivalent to $Z = \xi \cdot \lambda = 0$, and hence the system $(3-1)$ becomes

$$
AB = 0,
$$

\n $DB = LB,$ $A^2 + D(I - C) = L(I - C),$
\n $IA = LA,$ $B^2 + I(D - C) = L(D - C),$

or using $(2-16)$, it is

$$
0 = AB,
$$

\n
$$
0 = B(2a\lambda - \lambda^2 + 1 - L),
$$

\n
$$
0 = A(-2a\lambda - \lambda^2 + 1 - L),
$$

\n
$$
0 = A^2 + (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (2a\lambda - \lambda^2 + 1 - L),
$$

\n
$$
0 = B^2 + (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (-2a\lambda - \lambda^2 + 1 - L),
$$

\n
$$
0 = Z = \xi \cdot \lambda
$$

To study this system we consider these open subsets of *U*:

 $U' = \{p \in U : A = 2b\lambda - (\phi e \cdot \lambda) = 0 \text{ in a neighborhood of } p\},\$ $U_3 = \{p \in U : A \neq 0 \text{ in a neighborhood of } p\},\$

where $U' \cup U_3$ is open and dense in the closure of U. In U', we have $0 = (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))(2a\lambda - \lambda^2 + 1 - L),$ $0 = B(2a\lambda - \lambda^2 + 1 - L),$ $0 = B^2 + (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))$ \times ($-2a\lambda - \lambda^2 + 1 - L$), $0 = Z = \xi \cdot \lambda$.

We consider these open subsets of U' :

 $U_1 = \{p \in U' : B = 2c\lambda - (e \cdot \lambda) = 0 \text{ in a neighborhood of } p\},\$ $U_2 = \{p \in U' : B \neq 0 \text{ in a neighborhood of } p\},\$

where $U_1 \cup U_2$ is open and dense in the closure of *U'*. Because $B \neq 0$ in U_2 , we have $2a\lambda - \lambda^2 + 1 - L = 0$ there. Hence U_1 can also be described as the set of $p \in U$ satisfying

$$
0 = 2b\lambda - (\phi e \cdot \lambda), \qquad 0 = 2c\lambda - (e \cdot \lambda) = 0, \qquad 0 = \xi \cdot \lambda,
$$

\n
$$
0 = (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))(-2a\lambda - \lambda^2 + 1 - L),
$$

\n
$$
0 = (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))(2a\lambda - \lambda^2 + 1 - L),
$$

in a neighborhood of *p*, whereas U_2 is the set of $p \in U$ satisfying

$$
0 = 2b\lambda - (\phi e \cdot \lambda), \qquad 0 = 2a\lambda - \lambda^2 + 1 - L, \qquad 0 = \xi \cdot \lambda,
$$

\n
$$
0 = (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))
$$

\n
$$
\times (-2a\lambda - \lambda^2 + 1 - L) + B^2
$$

in a neighborhood of *p*. In *U*₃ we have $A \neq 0$ (or equivalently $B = 2c\lambda - (e \cdot \lambda) = 0$) and the system becomes

$$
0 = -2a\lambda - \lambda^2 + 1 - L,
$$

\n
$$
0 = A^2 + (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))
$$

\n
$$
\times (2a\lambda - \lambda^2 + 1 - L),
$$

\n
$$
\times (2a\lambda - \lambda^2 + 1 - L),
$$

$$
0=Z=\xi\cdot\lambda.
$$

The set U_3 is also described as the set of $p \in U$ for which there is a neighborhood satisfying

$$
0 = 2c\lambda - (e \cdot \lambda), \qquad 0 = -2a\lambda - \lambda^2 + 1 - L, \qquad 0 = \xi \cdot \lambda,
$$

\n
$$
0 = A^2 + (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b))
$$

\n
$$
\times (2a\lambda - \lambda^2 + 1 - L).
$$

We shall study the initial system at each U_i for $i = 1, 2, 3$.

In *U*₁, we have
\n(5-1)
$$
(\phi e \cdot \lambda) = 2b\lambda
$$
,
\n(5-2) $(e \cdot \lambda) = 2c\lambda$,
\n(5-3) $0 = \xi \cdot \lambda$,
\n(5-4) $0 = (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (-2a\lambda - \lambda^2 + 1 - L)$,
\n(5-5) $0 = (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (2a\lambda - \lambda^2 + 1 - L)$.

Differe[ntiatin](#page-11-1)[g the eq](#page-11-2)uations $(5-1)$ and $(5-2)$ with respect to *e* and ϕe , respectively, and subtracting we get $[e, \phi e] \lambda = 2b(e \cdot \lambda) + 2\lambda(e \cdot b) - 2c(\phi e \cdot \lambda) - 2\lambda(\phi e \cdot c)$ or, because of $(2-13)$, $(5-1)$, $(5-2)$ and $(5-3)$,

$$
(5-6) \qquad \qquad e \cdot b = \phi e \cdot c.
$$

Differe[ntiatin](#page-11-0)g t[he equ](#page-11-2)ations (5-1), (5-3) with respect to ξ and ϕe , respectively, and subtracting, we get $[\xi, \phi e]\lambda = 2\lambda(\xi \cdot b)$ [or, bec](#page-5-4)aus[e of](#page-11-1) (2-13), (2-17) and (5-2),

(5-7)
$$
\xi \cdot b = c(\lambda - a - 1),
$$

$$
(5-8) \t\t e \cdot a = 2c\lambda.
$$

Differentia[ting th](#page-11-3)e eq[uation](#page-11-4)s (5-2) and (5-3) with respect to ξ and e , respectively, and subtracting, we get $[\xi, e]\lambda = 2\lambda(\xi \cdot c)$ or, because of (2-13), (2-17) and (5-1),

(5-9)
$$
\xi \cdot c = b(\lambda + a + 1),
$$

$$
\phi e \cdot a = -2b\lambda.
$$

In order to study the system of $(5-4)$ and $(5-5)$ we consider these open subsets of U_1 :

$$
V = \{ p \in U_1 : 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0
$$

in a neighborhood of $p \},$

$$
V' = \{ p \in U_1 : 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) \neq 0
$$

in a neighborhood of $p \},$

where $V \cup V'$ is open and dense in the closure of U_1 . In the set *V*, the Equation (5-5) also holds; hence we consider these open subsets of *V*:

$$
V_1 = \left\{ p \in V : -2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0 \text{ in a neighborhood of } p \right\}
$$

and

$$
V_2 = \{ p \in V : 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, 2a\lambda - \lambda^2 + 1 - L = 0 \quad \text{in a neighborhood of } p \},
$$

where $V_1 \cup V_2$ is open and dense in the closure of *V*. Similarly for *V'*, where $-2a\lambda - \lambda^2 + 1 - L = 0$, we consider the open subsets

$$
V_3 = \{ p \in V' : -2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0,
$$

\n
$$
-2a\lambda - \lambda^2 + 1 - L = 0 \quad \text{in a neighborhood of } p \},
$$

\n
$$
V_4 = \{ p \in V' : -2a\lambda - \lambda^2 + 1 - L = 0,
$$

\n
$$
2a\lambda - \lambda^2 + 1 - L = 0 \quad \text{in a neighborhood of } p \},
$$

where $V_3 \cup V_4$ is open and dense in the closure of V' and the set $\bigcup V_i$ is open and dense in the closure of U_1 . We shall prove that the functions λ and a are constant [at](#page-11-5) every V_i for $i = 1, 2, 3, 4$

Now

in
$$
V_1
$$
,
$$
\begin{cases}\n-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\
2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0.\n\end{cases}
$$

Subtracting these two equations, we deduce that $a = 0$ in $V_1 \subset U$. Hence from $(5-8)$ and $(5-10)$ we have $c = b = 0$, and from $(5-1)$ and $(5-2)$ we have $\phi e \cdot \lambda = e \cdot \lambda = 0$. These, together with (5-3), give $\lambda =$ constant in V_1 . Moreover, if we put $a = b = c = 0$ in one of the equations of the set V_1 , we finally get $\lambda^2 = 1$ and the structure is flat.

Next,

(5-11) in
$$
V_2
$$

$$
\begin{cases} 2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\ 2a\lambda - \lambda^2 + 1 - L = 0, \end{cases}
$$

(5-12) in V_3
$$
\begin{cases} -2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b) = 0, \\ -2a\lambda - \lambda^2 + 1 - L = 0. \end{cases}
$$

In V_2 we differentiate the equation $2a\lambda - \lambda^2 + 1 - L = 0$ with respect to ξ , ϕe and e , and because of $(5-3)$, $(5-8)$, $(5-10)$ we obtain respectively

$$
(5-13) \qquad \qquad \xi \cdot a = 0,
$$

$$
(5-14) \qquad \qquad b(a-2\lambda) = 0,
$$

 $ac = 0,$

while in *V*₃ from $-2a\lambda - \lambda^2 + 1 - L = 0$ we obtain Equation (5-13), and

(5-16)
$$
ba = 0
$$
, $c(a + 2\lambda) = 0$.

Differentiating the relations (5-8) and [\(5-13\)](#page-4-0) [with r](#page-11-6)es[pect to](#page-11-7) ξ and e , respectively, and subtracting, we get $[\xi, e]a = 2\lambda(\xi \cdot c)$ or, because of (2-13), (5-9) and (5-10),

(5-17)
$$
b(\lambda + a + 1) = 0.
$$

Similarly, differentiating (5-10) and (5-13) with respect to ξ and φ*e*, respectively, and subtracting, we have $[\xi, \phi e]a = -2\lambda(\xi \cdot b)$ or, because of (2-13), (5-7) and (5-8),

(5-18)
$$
c(\lambda - a - 1) = 0.
$$

To study the system of $(5-17)$ and $(5-18)$, we consider these open subsets of V_2 :

 $G = \{p \in V_2 : b = 0 \text{ in a neighborhood of } p\},\$ $G' = \{ p \in V_2 : b \neq 0 \text{ in a neighborhood of } p \},\$

where $G \cup G'$ is open and dense in the closure of V_2 .

In *G* we have $c(\lambda - a - 1) = 0$, hence we consider these open subsets of *G*:

$$
G_1 = \{ p \in G : c = 0 \text{ in a neighborhood of } p \},
$$

$$
G_2 = \{ p \in G : c \neq 0 \text{ in a neighborhood of } p \},
$$

where $G_1 \cup G_2$ is open and dense in the closure of *G*. These sets are described more specifically as

 $G_1 = \{p \in G \subset V_2 : b = c = 0 \text{ in a neighborhood of } p\},\$

 $G_2 = \{p \in G \subset V_2 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p\}.$

The set *G'* (where $b \neq 0$ or equivalently $\lambda + a + 1 = 0$) is decomposed similarly as

$$
G_3 = \{ p \in G' : c = 0 \text{ in a neighborhood of } p \},
$$

$$
G_4 = \{ p \in G' : c \neq 0 \text{ in a neighborhood of } p \},
$$

where $G_3 \cup G_4$ [is o](#page-11-0)[pen an](#page-11-2)[d dens](#page-11-7)[e in the](#page-11-5) clos[ure of](#page-12-0) G' . These can also be written

 $G_3 = \{ p \in G' \subset V_2 : c = \lambda + a + 1 = 0 \text{ in a neighborhood of } p \},\$ $G_3 = \{ p \in G' \subset V_2 : c = \lambda + a + 1 = 0 \text{ in a neighborhood of } p \},\$ $G_3 = \{ p \in G' \subset V_2 : c = \lambda + a + 1 = 0 \text{ in a neighborhood of } p \},\$

 $G_4 = \{ p \in G' \subset V_2 : \lambda + a + 1 = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \}.$

We have $V_2 \subset U$ where $\lambda \neq 0$; hence $G_4 = \emptyset$.

In G_1 , $b = c = 0$. From (5-1), (5-2), (5-3), (5-8), (5-10) and (5-13), we can conclude that λ and *a* ar[e const](#page-5-0)ant in G_1 , and from the first of (5-11), we have $(\lambda - 1)(a - \lambda - 1) = 0$. We consider these open subsets of *G*₁:

 $K_1 = \{p \in G_1 : \lambda = 1 \text{ in a neighborhood of } p\},\$

 $K_2 = \{p \in G_1 : \lambda \neq 1 \text{ in a neighborhood of } p\}.$

In K_1 , we get $Tr l = 0$, $L = 2a$, and, from (2-19), $r = 4a$. In K_2 , we have $a - \lambda - 1 = 0$, $\text{Tr } l = 2a(2 - a)$, $L = a^2$, and $r = 2a(4 - a)$.

In G_2 , $b = \lambda - a - 1 = 0$. Using this to eliminate *a* [fro](#page-12-1)m the second equation of (5-11), we obtain $\lambda^2 - 2\lambda + 1 - L = 0$. We suppose that there is a point *p* in G_2 at which $e \cdot \lambda \neq 0$. Then there is a neighborhood *S* of *p* in which $e \cdot \lambda \neq 0$. We differentiate $\lambda^2 - 2\lambda + 1 - L = 0$ with respect to *e* twice and obtain $e \cdot \lambda = 0$ in *S*, a contradiction. Hence $e \cdot \lambda = 0$ (and $c = 0$), and from (5-1) and (5-3), we conclude that λ is constant in G_2 and similarly $a = \lambda - 1$. In particular, from (5-11), we obtain $\lambda = 1$ and $a = 0$; hence the structure is flat.

We have proved that λ and *a* are constant on G_1 and G_2 . The set $G_1 \cup G_2$ is open and dense in the closure of *G*. Hence λ and *a* are constant everywhere in *G*.

In G_3 , $c = \lambda + a + 1 = 0$. Using this to eliminate *a* from the second equation of (5-11), we obtain $-3\lambda^2 - 2\lambda + 1 - L = 0$. If we assume that there is a point *p* in *G*₃ at which $\phi e \cdot \lambda \neq 0$, then there is a neighborhood *S* of *p* in which $\phi e \cdot \lambda \neq 0$. We differentiate $-3\lambda^2 - 2\lambda + 1 - L = 0$ with respect to ϕe twice and obtain $\phi e \cdot \lambda = 0$ in *S*, a contradiction. Thus $\phi e \cdot \lambda = 0$ everywhere in G_3 , which gives $b = 0$. We note that $\xi \cdot \lambda = \phi e \cdot \lambda = e \cdot \lambda = 0$, so λ is constant in G_3 , and obviously $a = -\lambda - 1$. Moreover, if we put $b = c = 0$ and $a = -\lambda - 1$ in the [system](#page-12-2) (5-11), we get $\lambda^2 = 1$ (hence Tr $l = 0$), $a = 0$ or -2 , and $L = -2a(a + 1)$. If $a = 0$, we obtain a flat structure, while if $a = -2$, we have a semi-K contact structure with constant scalar curvature $r = 4a = -8$.

The functions λ and *a* are constant in *G* and *G'*. The set $G \cup G'$ is open and dense in the closure of V_2 ; hence λ and *a* are constant in V_2 , and Equations (5-14) and $(5-15)$ are satisfied because $b = c = 0$.

We similarly consider these open subsets of V_3 :

 $G'_1 = \{ p \in V_3 : b = c = 0 \text{ in a neighborhood of } p \},\$ $G'_2 = \{ p \in V_3 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_2 = \{ p \in V_3 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_2 = \{ p \in V_3 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_2 = \{ p \in V_3 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_2 = \{ p \in V_3 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_2 = \{ p \in V_3 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_2 = \{ p \in V_3 : b = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_3 = \{ p \in V_3 : c = \lambda + a + 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_3 = \{ p \in V_3 : c = \lambda + a + 1 = 0 \text{ in a neighborhood of } p \},\$ $G'_3 = \{ p \in V_3 : c = \lambda + a + 1 = 0 \text{ in a neighborhood of } p \},\$ $G_4' = \{ p \in V_3 : \lambda + a + 1 = \lambda - a - 1 = 0 \text{ in a neighborhood of } p \}.$

The set $\bigcup G_i'$ i_i is open and dense subset of V_3 and $G'_4 = \emptyset$.

In G' μ'_1 , $b = c = 0$. From (5-1), (5-2), (5-3), (5-8), (5-10) and (5-13) we can conclude that λ and *a* [are con](#page-5-0)stant in G' $\frac{1}{1}$. From the first of (5-12) we have $(\lambda + 1)(a + \lambda - 1) = 0$. We consider these open subsets of *G*['] $\frac{1}{1}$:

$$
K'_1 = \{ p \in G'_1 : \lambda = -1 \text{ in a neighborhood of } p \},
$$

$$
K'_2 = \{ p \in G'_1 : \lambda \neq -1 \text{ in a neighborhood of } p \}.
$$

In K_1' ¹₁, we get Tr $l = 0$, $L = 2a$, and, from (2-19), $r = 4a$. In K'_2 we have $a + \lambda - 1 = 0$, $\text{Tr } l = 2a(2 - a)$, $L = a^2$, and $r = 2a(4 - a)$.

In G_2' α_2 , $b = \lambda - a - 1 = 0$. Using this to eliminate *a* from the second equation of (5-12), we obtain $-3\lambda^2 + 2\lambda + 1 - L = 0$. If we assume $e \cdot \lambda \neq 0$, we may differentiate this equation twice with respect to *e*, obtaining $e \cdot \lambda = 0$, a contradiction. Hence $e \cdot \lambda = 0$ (and $c = 0$), and from (5-1) and (5-3) we can conclude that λ is constant in G' χ_2' and similarly $a = \lambda - 1$. In particular, from the system (5-12), we have $\lambda^2 = 1$ (hence $Tr l = 0$), $a = 0$ or -2 , and $L = -2a(a + 1)$. If $a = 0$ we obtain a flat structure, and if $a = -2$ we have a semi-K contact structure with constant scalar curvature $r = 4a = -8$.

In G' α_3 , $c = \lambda + a + 1 = 0$ $c = \lambda + a + 1 = 0$ $c = \lambda + a + 1 = 0$. Using this to eliminate *a* from the second equation of V_3 , we get $\lambda^2 + 2\lambda + 1 - L = 0$. If we assume $\phi e \cdot \lambda \neq 0$, we may differentiate this equation with twice respect to ϕe , obtaining $\phi e \cdot \lambda = 0$, a contradiction. Thus $\phi e \cdot \lambda = 0$ everywhere in G_2' ²₃, which gives *b* = 0. We note that $\xi \cdot \lambda = \phi e \cdot \lambda = e \cdot \lambda = 0$. Thus λ is constant in G_2' α_3' , and obviously $a = -\lambda - 1$. Moreover, if we put $b = c = 0$ and $a = -\lambda - 1$ in the sy[ste](#page-5-0)m (5-12), we get $\lambda = -1$ and $a = 0$; hence the structure is flat.

As in case of V_2 , we have that the functions λ and a are constant in V_3 , and the equations (5-16) are satisfied because $b = c = 0$.

In *V*₄, $2a\lambda - \lambda^2 + 1 - L = 0$ and $-2a\lambda - \lambda^2 + 1 - L = 0$. Working as in the set V_1 , we find that $a = 0$ (hence Theorem 4.1 applies), $b = c = 0$, and λ is constant in *V*₄, that is, $\lambda^2 = 1 - L \ge 0$. Also, from (2-19), $r = \text{Tr } l = 2L$.

The functions λ and *a* are constant in each V_i for $i = 1, 2, 3, 4$, and the set $\bigcup V_i$ is open and dense in the closure of U_1 . Hence λ and a are constant in U_1 .

In U_2 ,

(5-1) $\qquad \phi e \cdot \lambda = 2b\lambda,$

$$
(5-3) \t 0 = \xi \cdot \lambda,
$$

$$
(5-19) \t 0 = 2a\lambda - \lambda^2 + 1 - L,
$$

(5-20)
$$
0 = B^2 + (2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (-2a\lambda - \lambda^2 + 1 - L).
$$

We differentiate (5-19) with respect to ξ , ϕe , and e and because of (5-1) and (5-3) we obtain respectively

$$
(5-21) \t\t 0 = \xi \cdot a,
$$

(5-22) φ*e* · *a* = 2*b*λ − 2*ab*,

(5-23)
$$
0 = (a - \lambda)(e \cdot \lambda) + \lambda(e \cdot a) = 0.
$$

We differentiate Equations (5-1) and (5-3) with respect to ξ and ϕe respectively and subtract. Then, because of $(5-3)$, $(2-13)$ and $(2-17)$, we obtain

(5-24)
$$
(3\lambda - a - 1)(e \cdot \lambda) - 2\lambda(e \cdot a) = 2\lambda c(\lambda - a - 1)
$$

We consider the system of $(5-23)$ and $(5-24)$ with unknown functions the derivatives of $e \cdot \lambda$ and $e \cdot a$. [We consi](#page-15-1)der [these o](#page-15-2)pen subsets of U_2 :

$$
F_1 = \{ p \in U_2 \subset U : -a - \lambda + 1 \neq 0 \text{ in a neighborhood of } p \},
$$

$$
F_2 = \{ p \in U_2 \subset U : -a - \lambda + 1 = 0 \text{ in a neighborhood of } p \}.
$$

In the neighborhood F_1 solving the system of $(5-23)$ and $(5-24)$, we obtain

$$
(5-25) \qquad (-a - \lambda + 1)(e \cdot \lambda) = -2\lambda c(\lambda - a - 1).
$$

[F](#page-16-1)[ro](#page-15-3)m $(2-17)$, $(5-1)$ and $(5-22)$, we obtain

(5-26)
$$
\xi \cdot c = -b(3\lambda - 3a - 1).
$$

We differentiate (5-3), (5-25) with respect to *e* and ξ , respectively, and subtract. The[n usin](#page-11-1)g (5-3), (5-21), we obtain $(-a - \lambda + 1)[e, \xi] \lambda = 2\lambda(\lambda - a - 1)(\xi \cdot c)$ or, by (2-13), (5-1), (5-26), and $\lambda \neq 0$ (as $F_1 \subset U$), we finally obtain

(5-27)
$$
b(a^2 + \lambda^2 - a\lambda + a - \lambda) = 0
$$

We work in the open subset F_1 and suppose that there is a point p in F_1 at which $b \neq 0$ (or equivalently, by (5-1), $\phi e \cdot \lambda \neq 0$). [The fu](#page-15-4)nction *b* is smooth, and because of its continuity there is an open [neighb](#page-11-1)orhood *S* of *p* such that $S \subset F_1$ and $b \neq 0$ everywhere in *S*. Hence from (5-27) we have in *S*

$$
(5-28) \t a2 + \lambda2 - a\lambda + a - \lambda = 0.
$$

We differentiate this equation with respect to ϕe , use (5-1) and (5-22), and with the assumption $b \neq 0$ obtain $2a^2 - 2a\lambda - \lambda^2 + a = 0$. This last equation together with (5-28) gives $-3\lambda^2 - a + 2\lambda = 0$. We differentiate this equation with respect to ϕe . Then using (5-1) and (5-22), we get $2b(-6\lambda^2 + a + \lambda) = 0$ or equivalently $-6\lambda^2 + a + \lambda = 0$ $-6\lambda^2 + a + \lambda = 0$ $-6\lambda^2 + a + \lambda = 0$. The equations $-3\lambda^2 - a + 2\lambda = 0$ and $-6\lambda^2 + a + \lambda = 0$ give $-9\lambda^2 + 3\lambda = 0$. We differentiate this equation twice with respect to ϕe and obtain $\phi e \cdot \lambda = 0$ or equivalently $b = 0$ everywher[e in](#page-16-0) *S*, a contradiction. Hence, from (5-27) we deduce that $b = 0$ everywhere in F_1 .

Equation (5-1) and $b = 0$ give $\phi e \cdot \lambda = 0$, which together with (5-3) gives [ξ, ϕe] $\lambda = 0$, or because of (2-13), $(\lambda - a - 1)(e \cdot \lambda) = 0$. Let's suppose that there is a point $q \in F_1$ at which $e \cdot \lambda \neq 0$. Then, there is a neighborhood *Y* of *q* in which $e \cdot \lambda \neq 0$. In *Y* we then have $\lambda - a - 1 = 0$, and hence from (5-25) we have $(-a - \lambda + 1)(e \cdot \lambda) = 0$, which in $Y \subset F_1$ gives $e \cdot \lambda = 0$, a contradiction. Hence $e \cdot \lambda = 0$ everywhere in F_1 . Then $\xi \cdot \lambda = \phi e \cdot \lambda = e \cdot \lambda = 0$ implies that λ is constant in F_1 . From (5-21), (5-22) and (5-23) we obtain that *a* is constant in F_1 and from

[\(](#page-15-5)5-25) we have $c(\lambda - a - 1) = 0$. We consider these two open subsets of F_1 :

$$
J_1 = \{ p \in F_1 : c = 0 \text{ in a neighborhood of } p \},
$$

$$
J_2 = \{ p \in F_1 : c \neq 0 \text{ in a neighborhood of } p \}.
$$

In *J*₁, Equation (5-20) yields $a(\lambda - 1)(a - \lambda - 1) = 0$, where *a* and λ are constant and $b = 0$. [We consider](#page-8-1) these two open s[ubsets o](#page-5-0)f J_1 :

> $H_1 = \{p \in J_1 : a = 0 \text{ in a neighborhood of } p\},\$ $H_2 = \{p \in J_1 : a \neq 0 \text{ in a neighborhood of } p\}.$

In H_1 , we have $\nabla_{\xi} \tau = 0$ (hence Theorem 4.1 applies) and from (2-19) $r = 2L$. In *H*₂ we have $(\lambda - 1)(a - \lambda - 1) = 0$ $(\lambda - 1)(a - \lambda - 1) = 0$ $(\lambda - 1)(a - \lambda - 1) = 0$, [and hen](#page-5-0)ce we consider these two open subsets of H_2 :

> $H_3 = \{p \in J_1 : \lambda = 1 \text{ in a neighborhood of } p\},\$ $H_4 = \{p \in J_1 : \lambda \neq 1 \text{ in a neighborhood of } p\}$

In H_3 , we have Tr $l = 0$, $L = 2a$ by (5-19), and $r = 4a$ by (2-19). In H_4 we obtain $a - \lambda - 1 = 0$ $a - \lambda - 1 = 0$ $a - \lambda - 1 = 0$, $\text{Tr } l = 2a(2 - a)$, $L = a^2$, and $r = 2a(4 - a)$.

In J_2 , we have $b = a - \lambda + 1 = 0$ (a semi-K contact structure with constant *a* and λ); hence Tr $l = -2a(2 + a)$, $L = a^2$ by (5-19), and $c^2 + a(e \cdot c) + 4a^2 = 0$ by (5-20). The set $J_1 \cup J_2$ $J_1 \cup J_2$ is open and dense inside the closure of F_1 ; hence we conclude that $b = 0$ and that *a* and λ are constan[t in](#page-15-1) F_1 .

In the open set F_2 we have $-a - \lambda + 1 = 0$, which together with (5-19) gives $-3\lambda^2 + 2\lambda + 1 - L = 0$. If we assume $e \cdot \lambda \neq 0$, we may differentiate this equation twice with respect to *e* and obtain $e \cdot \lambda = 0$, a contradiction. Hence $e \cdot \lambda = 0$. Similarly we can deduce that $\phi e \cdot \lambda = 0$ (so (5-1) implies $b = 0$), and hence λ is constant in *F*₂. Obviously $a = -\lambda + 1$ is constant in *F*₂. The system of (5-23) and (5-24) gives $ca = 0$. We consider these two open subsets of F_2 :

$$
Q_1 = \{ p \in F_2 : c = 0 \text{ in a neighborhood of } p \},
$$

$$
Q_2 = \{ p \in F_2 : c \neq 0 \text{ in a neighborhood of } p \}.
$$

In Q_1 , (5-19) implies $L = \text{Tr } l - a^2$, where $\text{Tr } l = 2a(2 - a)$ and $r = 2a(4 - a)$. In Q_2 , we have a 3- τ manifold structure with $Tr l = L = 0$.

We have proved that λ and *a* are constant in F_1 and F_2 . Since $F_1 \cup F_2$ is open and dense inside the closure of U_2 , we conclude that λ and a are constant in U_2 .

In U_3 ,

(5-2)
$$
2c\lambda = (e \cdot \lambda),
$$

\n(5-3) $0 = \xi \cdot \lambda,$
\n(5-29) $0 = -2a\lambda - \lambda^2 + 1 - L,$
\n(5-30) $0 = A^2 + (-2a\lambda - 2\lambda^2 + 2 + b^2 + c^2 - 2a - (e \cdot c) - (\phi e \cdot b)) \times (2a\lambda - \lambda^2 + 1 - L).$

[W](#page-11-0)e [differe](#page-11-2)ntiate the relation $(5-29)$ with respect to ξ , *e* and ϕe , and because of $(5-2)$ and $(5-3)$ we obtain respectively $(5-21)$,

$$
(5-31) \t\t e \cdot a = -2ac - 2c\lambda,
$$

(5-32)
$$
0 = (a + \lambda)(\phi e \cdot \lambda) + \lambda(\phi e \cdot a).
$$

We differentiate $(5-2)$ and $(5-3)$ with respect to ξ and e respectively and subtract. Then by (5-21), we obtain [ξ , e] $\lambda = 2\lambda(\xi \cdot c)$, or because of (2-13) and (2-17),

(5-33)
$$
(3\lambda + a + 1)(\phi e \cdot \lambda) + 2\lambda(\phi e \cdot a) = 2\lambda b(\lambda + a + 1).
$$

Meanwhile from $(2-17)$, $(5-2)$ and $(5-31)$, we obtain

(5-34)
$$
\xi \cdot b = -c(3a + 3\lambda + 1).
$$

Now consider the system of (5-32) and (5-33) and th[ese two](#page-18-2) open subsets of *U*3:

$$
F'_1 = \{ p \in U_3 \subset U : a - \lambda - 1 \neq 0 \text{ in a neighborhood of } p \},
$$

$$
F'_2 = \{ p \in U_3 \subset U : a - \lambda - 1 = 0 \text{ in a neighborhood of } p \}.
$$

[In th](#page-15-3)e open set F_1' $\frac{1}{1}$ of *p* in which $a - \lambda - 1 \neq 0$, we may solve the system of (5-32) and (5-33) to obtain

(5-35)
$$
(a - \lambda - 1)(\phi e \cdot \lambda) = -2\lambda b(\lambda + a + 1).
$$

We differentiate (5-3) and (5-35) with respect to φ*e* and ξ respectively and subtract. [Then by](#page-16-2) (5-3) and (5-21) we obtain $(a - \lambda - 1)[\phi e, \xi]$ λ = 2λ(λ + *a* + 1)(ξ · *b*) or, because of (2-13), $(a - \lambda - 1)(a - \lambda + 1)(e \cdot \lambda) = 2\lambda(\lambda + a + 1)(\xi \cdot b)$ $(a - \lambda - 1)(a - \lambda + 1)(e \cdot \lambda) = 2\lambda(\lambda + a + 1)(\xi \cdot b)$ $(a - \lambda - 1)(a - \lambda + 1)(e \cdot \lambda) = 2\lambda(\lambda + a + 1)(\xi \cdot b)$. Then, using (5-2), (5-34) and $\lambda \neq 0$ (in $F'_1 \subset U$), we get

$$
c(a^2 + \lambda^2 + a\lambda + a + \lambda) = 0.
$$

As in the case of Equation (5-27) we can deduce in F_1' t_1' that $c = 0$. Equation (5-2), because $c = 0$, gives $e \cdot \lambda = 0$. This together with (5-3) gives $[e, \xi] \lambda = 0$ or, because of (2-13), $(a + \lambda + 1)(\phi e \cdot \lambda) = 0$. Suppose that there is a point $q \in F_1'$ i_1 at which $\phi e \cdot \lambda \neq 0$. Then there is a neighborhood *S* of *q* in which $\phi e \cdot \lambda \neq 0$, and hence $a + \lambda + 1 = 0$. Because $a + \lambda + 1 = 0$, Equation (5-35) gives $(a - \lambda - 1)(\phi e \cdot \lambda) = 0$. Working in $S \subset F_1'$ u'_1 , where $a - \lambda - 1 \neq 0$, we can conclude that $\phi e \cdot \lambda = 0$, a contradiction. Hence, $\phi e \cdot \lambda = 0$ everywhere in F'_1 ¹/₁. In the neighborhood F_1' i_1 , we have $\xi \cdot \lambda = \phi e \cdot \lambda = e \cdot \lambda = 0$ or equivalently λ is constant in F'_1 I_1' . From $(5-21)$, $(5-31)$ and $(5-33)$, we obtain that *a* is constant in F_1' $1'$, and from $(5-32)$ we have $b(\lambda + a + 1) = 0$ $b(\lambda + a + 1) = 0$ $b(\lambda + a + 1) = 0$. We consider these two open subsets of F_1' $\frac{1}{1}$:

> $J'_1 = \{ p \in F'_1 \}$ j'_{1} : $b = 0$ in a neighborhood of p , $J'_2 = \{p \in F'_1\}$ j'_{1} : $b \neq 0$ in a neighborhood of *p*}.

In J'_1 I'_1 , we obtain from (5-30) that $a(\lambda + 1)(a + \lambda - 1) = 0$, where *a* and λ are constant and $c = 0$. We consider these two open subsets of J_1 $\frac{1}{1}$:

$$
H'_1 = \{ p \in J'_1 : a = 0 \text{ in a neighborhood of } p \},
$$

$$
H'_2 = \{ p \in J'_1 : a \neq 0 \text{ in a neighborhood of } p \}.
$$

In H_1' ¹₁, we obtain $\nabla_{\xi} \tau = 0$ (hence Theorem 4.1 applies). and $r = 2L$. In H_2' y_2' , we have $(\lambda + 1)(a + \lambda - 1) = 0$ $(\lambda + 1)(a + \lambda - 1) = 0$ $(\lambda + 1)(a + \lambda - 1) = 0$. We c[onsider](#page-5-0) these two open subsets of *H*₂ $\frac{1}{2}$:

> $H_3' = \{p \in J_1 : \lambda = -1 \text{ in a neighborhood of } p\},\$ $H_4' = \{ p \in J_1 : \lambda \neq -1 \text{ in a neighborhood of } p \}.$ $H_4' = \{ p \in J_1 : \lambda \neq -1 \text{ in a neighborhood of } p \}.$ $H_4' = \{ p \in J_1 : \lambda \neq -1 \text{ in a neighborhood of } p \}.$

In H'_3 J'_3 , we have Tr $l = 0$, $L = 2a$ by (5-29), and $r = 4a$ by (2-19). In H'_4 $\frac{7}{4}$, we obtain $a + \lambda - 1 = 0$, Tr $l = 2a(2 - a)$, $L = a^2$ and $r = 2a(4 - a)$.

In J'_2 we have $c = a + \lambda + 1 = 0$ (a semi-[K contac](#page-18-0)t structure with constant *a* and λ) and hence Tr $l = -2a(2 + a)$. Then $L = a^2$ from (5-29), and from (5-30) we obtain $b^2 + a(\phi e \cdot b) + 4a^2 = 0$ with *a* a constant. The set $J'_1 \cup J'_2$ $i₂$ is open and dense inside the clos[ure of](#page-18-1) F_1' α' ; hence we can conclude that $c = 0$ and that *a* and λ are consta[nt in](#page-18-2) F_1' $1'$

In the open set F'_2 we have $a - \lambda - 1 = 0$, which together with (5-29) gives $-3\lambda^2 - 2\lambda + 1 - L = 0$. If we assume $\phi e \cdot \lambda \neq 0$, we may differentiate this equation twice with respect to *e*, obtaining $\phi e \cdot \lambda = 0$, a contradiction. Hence $\phi e \cdot \lambda = 0$. Similarly we find that $e \cdot \lambda = 0$, and hence λ is constant in F'_{λ} ². Obviously *a* = $λ$ + 1 is constant in F'_{2} $2₂$. The system of (5-32) and (5-33) gives *ba* = 0. We consider these two open subsets of F_2' $\frac{7}{2}$:

$$
Q'_1 = \{ p \in F'_2 : b = 0 \text{ in a neighborhood of } p \},
$$

$$
Q'_2 = \{ p \in F'_2 : b \neq 0 \text{ in a neighborhood of } p \}.
$$

In Q_1' I_1' , (5-29) implies $L = \text{Tr } l - a^2$, where $\text{Tr } l = 2a(2 - a)$ and $r = 2a(4 - a)$. In Q_2' γ_2 , we have a 3- τ manifold structure with $Tr l = L = 0$.

[We h](#page-3-2)ave proved that λ and *a* are constant in F_1' I_1' and F_2' $F'_1 \cup F'_2$ i_2 ['] is open and dense inside the closure of U_3 . Hence we conclude that λ and a are constant in U_3 .

Finally because λ and *a* are constant in each U_i for $i = 1, 2, 3$, and because the set $\bigcup U_i$ is open and dense inside of the closure of *U*, we conclude that λ and *a* are constant in *U*. Then by (2-9), Tr $l = 2(1 - \lambda^2)$ is also constant in *U* and obviously on M^3 . .

Acknowledgments

The authors thank Professors R. Deszcz, J. Inoguchi, C. Özgür and Ph. J. Xenos for useful information on pseudosymmetric manifolds. They also thank the referee for use[ful remarks.](http://www.ams.org/mathscinet-getitem?mr=2004a:53019)

[References](http://www.emis.de/cgi-bin/MATH-item?1011.53001)

- [Belkhelfa et al. 2002] M. Belkhelfa, R. Deszcz, M. Głogowska, M. Hotloś, D. Kowalczyk, and L. Verstraelen, "On some type of curvature conditions", [pp. 179–194 in](http://www.ams.org/mathscinet-getitem?mr=94b:53062) *PDEs, submanifolds and affine differential geometry* (Warsaw, 2000), edited by B. Opozda et al., Banach Center Publ. 57, Polish Acad. Sci., Warsaw, 2002. MR 2004a:53019 [Zbl 1023.53013](http://dx.doi.org/10.2996/kmj/1138039284)
- [\[Blair 2002\]](http://dx.doi.org/10.2996/kmj/1138039284) D. E. Blair, *Riemannian geometry of conta[ct and symplect](http://www.ams.org/mathscinet-getitem?mr=91j:53015)ic manifolds*, Progress in Mathematics 203, Birkhäuser, Boston, 2002. MR 2002m:53120 Zbl 1011.53001
- [Blair and Chen 1992] D. E. Blair and H. Chen, "A classification of 3-dimensional contact metric manifolds with *Q*φ =φ*Q*, II", *Bul[l. Inst. Math. Ac](http://www.ams.org/mathscinet-getitem?mr=98h:53075)[ad. Sinica](http://www.emis.de/cgi-bin/MATH-item?0904.53006)* 20:4 (1992), 379–383. MR 94b:53062 Zbl 07[67.53023](http://dx.doi.org/10.1007/s10587-006-0045-1)
- [Blair et al. 1990] D. [E. Blair, T. Koufogio](http://www.ams.org/mathscinet-getitem?mr=2007m:53043)rgos, and R. Sharma, "A classification of 3-dimensional contact metric manifolds with *Q*φ = φ*Q*", *Kodai Math. J.* 13:3 (1990), 391–401. MR 91j:53015 Zbl 0716.53041
- [Boeckx et al. 1996] E. Boeckx, O. Kowalski, and L. Vanhecke, *Riemannian manifolds of conullity two*, World Scientific Publishing Co., River Edge, NJ, 1996. MR 98h:53075 Zbl 0904.53006
- [Calvaruso 2006] G. Calvaruso, "Con[formally flat ps](http://www.ams.org/mathscinet-getitem?mr=87b:53060)[eudo-symmetric](http://www.emis.de/cgi-bin/MATH-item?0561.53039) spaces of constant type", *Czechoslovak Math. J.* 56:131 (2006), 649–657. MR 2007m:53043
- [Calvaruso and P[errone 2002\]](http://www.ams.org/mathscinet-getitem?mr=2006c:53085) G. C[alvaruso and D. P](http://www.emis.de/cgi-bin/MATH-item?1081.53018)errone, "Semi-symmetric contact metric threemanifolds", *Yokohama Math. J.* 49:2 (2002), 149–161. MR 2003g:53137 Zbl 1047.53017
- [\[Chern and Ha](http://www.emis.de/cgi-bin/MATH-item?0808.53012)milton 1985] S. S. Chern and R. S. Hamilton, "On Riemannian metrics adapted to three-dimensional contact manifolds", pp. 279–308 in *[Workshop Bonn](http://dx.doi.org/10.1007/BF01237607) 1984*, edited by F. Hirze[bruch](http://dx.doi.org/10.1007/BF01237607) et al., Lecture Notes in Math. 1111[, Springer, Ber](http://www.ams.org/mathscinet-getitem?mr=99e:53035)[lin, 1985.](http://www.emis.de/cgi-bin/MATH-item?0905.53024) MR 87b:53060 Zbl 0561.53039
- [Cho and Inoguchi 2005] J. T. Cho and J.-I[. Inoguchi, "Pseudo-symmetri](http://dx.doi.org/10.1007/BF01221239)c contact 3-manifolds", *J. Korean Math. Soc.* 42:5 (2005), [913–932.](http://www.ams.org/mathscinet-getitem?mr=99k:53091) MR 2[006c:53085](http://www.emis.de/cgi-bin/MATH-item?0918.53014) Zbl 1081.53018
- [Deszcz 1992] R. Deszcz, "On pseudosymmetric spaces", *Bull. Soc. Math. Belg. Sér. A* 44:1 (1992), 1–34. MR 96c:53068 Zbl 0808.53012
- [Gouli-Andreou and Xenos 1998a] F. Gouli-Andreou and P. J. Xenos, "On 3-dimensional contact metric manifolds with $∇_ξτ = 0", J. Geom.$ 62:1-2 (1998), 154–165. MR 99e:53035 Zbl 0905.53024
- [Gouli-Andreou and Xenos 1998b] F. Gouli-Andreou and P. J. Xenos, "On a class of 3-dimensional contact metric manifolds", *J. Geom.* 63:1-2 (1998), 64–75. MR 99k:53091 Zbl 0918.53014

[Go[uli-Andreou et a](http://www.ams.org/mathscinet-getitem?mr=95m:53040)l. 2008] [F. Gouli](http://www.emis.de/cgi-bin/MATH-item?0833.53032)-Andreou, J. Karatsobanis, and P. Xenos, "Conformally flat 3-τ -*a* manifolds", *Differ. Geom. Dyn. Syst.* 10 (2008), 107–131. MR 2390006

- [Hashimoto and Sekizawa 2000] N. Hashimoto and M. Sekizawa, "Three-dimensional conformally [flat pseudo-s](http://www.ams.org/mathscinet-getitem?mr=97d:53053)[ymmetric spaces](http://www.emis.de/cgi-bin/MATH-item?0903.53015) of constant type", *Archivum Math.* (*Brno*) 36:4 (2000), 279–286. MR 2001k:53053 Zbl 1054.53060
- [Koufogiorgos 1995] [T. Koufogiorgos,](#page-20-9) "On a class of contact Riemannian 3-manifolds", *Results Math.* 27:1-2 (1995), 51–62. MR 95m:53040 Zbl 0833.53032
- [Kowalski and Sekizawa 1996a] O. Kowalski and M. Sekizawa, "Local isometry classes of Rie[manni](http://www.emis.de/cgi-bin/MATH-item?0889.53026)an 3-manifolds with constant Ricci eigenvalues $\rho_1 = \rho_2 \neq \rho_3 > 0$ ", *Archivum Math.* (*Brno*) 32:2 (1996), 137–145. MR 97d:53053 Zbl 0903.53015
- [Kowalski and Sekizawa 1996b] O. Kowalski and M. Sekizawa, "Three-dimensional Riemannian [manif](http://www.emis.de/cgi-bin/MATH-item?0945.53020)olds of *c*-conullity two", Chapter 11 of [Boeckx et al. 1996], 1996.
- [[Kowalski and Sekizawa 1997\]](http://dx.doi.org/10.2996/kmj/1138039163) O. Kowalski and M. Sekizawa, "Pseudo-symmetric spaces of con[stant type in d](http://www.ams.org/mathscinet-getitem?mr=91b:58038)[imension three—](http://www.emis.de/cgi-bin/MATH-item?0709.53034) elliptic spaces", *Rendiconti Mat. Appl.* (7) 17:3 (1997), 477–512. MR 99a:53032 [Zbl 0889.53026](http://projecteuclid.org/getRecord?id=euclid.jdg/1214437486)
- [Kowalski and Sekizawa 1998] O. Ko[walski and M. S](http://www.ams.org/mathscinet-getitem?mr=84e:53060)[ekizawa, "Pseudo](http://www.emis.de/cgi-bin/MATH-item?0508.53025)-symmetric spaces of con[stant type in dimension three — non-elliptic spaces",](http://dx.doi.org/10.1007/BF00233102) *Bull. Tokyo Gakugei Univ.* (4) 50 (1998), 1–28. MR 99j:53040 Zbl 0945.5302[0](http://www.ams.org/mathscinet-getitem?mr=87c:53099)
- [Perrone 1990] D. Perrone, ["Torsion and critical metrics on contact three](http://dx.doi.org/10.2748/tmj/1178241595)-manifolds", *Kodai Math. J.* 13:1 (1990), 88–100. [MR 91b:58038](http://www.ams.org/mathscinet-getitem?mr=47:7655) [Zbl 0709.53034](http://www.emis.de/cgi-bin/MATH-item?0237.53041)
- [Szabó 1982] Z. I. Szabó, "Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, I: The local version", *J. Differential Geom.* 17:4 (1982), 531–582. MR 84e:53060 Zbl 0508.53025
- [Szabó 1985] Z. I. Szabó, "Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R = 0$, II: Global versions", *Geom. Dedicata* 19:1 (1985), 65–108. MR 87c:53099 Zbl 0612.53023
- [Takagi 1972] H. Takagi, "An example of Riemannian manifolds satisfying *R*(*X*, *Y*)· *R* = 0 but not ∇ *R* = 0", *Tôhoku Math. J.* (2) 24 (1972), 105–108. MR 47 #7655 Zbl 0237.53041

Received March 3, 2008.

FLORENCE GOULI-ANDREOU DEPARTMENT OF MATHEMATICS ARISTOTLE UNIVERSITY OF THESSALONIKI 54124 THESSALONIKI **GREECE**

fgouli@math.auth.gr

EVAGGELIA MOUTAFI DEPARTMENT OF MATHEMATICS ARISTOTLE UNIVERSITY OF THESSALONIKI 54124 THESSALONIKI **GREECE**

moutafi@sch.gr