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TWO CLASSES OF PSEUDOSYMMETRIC CONTACT METRIC
3-MANIFOLDS

FLORENCE GOULI-ANDREOU AND EVAGGELIA MOUTAFI

We classify the pseudosymmetric contact metric 3-manifolds that satisfy
∇ξτ = 0, and also the pseudosymmetric contact metric 3-manifolds of con-
stant type satisfying ∇ξτ = 2aτφ, where a is a smooth function.

1. Introduction

According to R. Deszcz [1992], a Riemannian manifold (Mm, g) is pseudosym-
metric if the curvature tensor R satisfies the condition R(X, Y )·R = L{(X ∧Y )·R},
where L is a smooth function, the endomorphism field X ∧ Y is defined by

(1-1) (X ∧ Y )Z = g(Y, Z)X − g(Z , X)Y

for all vectors fields X, Y, Z on M , and the dot means that R(X, Y ) and X ∧Y act
as derivations on R.

If L is constant, M said to be a pseudosymmetric manifold of constant type; if
L = 0, then M is a semisymmetric manifold. Hence a pseudosymmetric manifold
is a natural generalization of a semisymmetric manifold [Szabó 1982; 1985], which
in turn is a generalization of a locally symmetric space, that is, one with ∇ R = 0;
see [Takagi 1972].

Three-dimensional pseudosymmetric spaces of constant type have been studied
by many researchers, beginning with O. Kowalski and M. Sekizawa [1996b; 1996a;
1997; 1998]. Later, N. Hashimoto and M. Sekizawa classified 3-dimensional, con-
formally flat pseudosymmetric spaces of constant type [2000], while G. Calvaruso
gave the complete classification of conformally flat pseudosymmetric spaces of
constant type for dimensions greater than two [2006]. J. T. Cho and J. Inoguchi
studied pseudosymmetric contact homogeneous 3-manifolds [2005].

It is well known that in the geometry of a contact metric manifold, the tensors
τ = Lξ g and ∇ξτ , introduced by S. S. Chern and R. S. Hamilton [1985], play a fun-
damental role. The condition ∇ξτ = 2aτφ, where a is a constant and (τφ)(X, Y ) is
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interpreted as τ(φX, Y ), is necessary for a contact metric 3-manifold to be homo-
geneous. We call a 3-dimensional contact metric manifold a 3-τ -a manifold if it
satisfies ∇ξτ = 2aτφ, where a is a smooth function; if a = 0, we call it a 3-τ
manifold. The condition ∇ξτ = 0 appeared first in [Chern and Hamilton 1985] in
the study of compact contact 3-manifolds, while Perrone [1990] proved that it is the
critical point condition for the functional “integral of the scalar curvature” defined
on the set of all metrics associated to the fixed contact form η. Moreover, this
condition ∇ξτ = 0 is equivalent to the condition requiring equality of the sectional
curvature of all planes at a given point and perpendicular to the contact distribution
[Gouli-Andreou and Xenos 1998a].

This article studies contact metric 3-manifolds in which

(i) M is a pseudosymmetric manifold and ∇ξτ = 0, where τ = Lξ g; or

(ii) M is a pseudosymmetric manifold of constant type with ∇ξτ = 2aτφ, where
a is a smooth function on M .

2. Preliminaries

Let (Mm, g) for m ≥ 3 be a connected Riemannian smooth manifold. We denote
by ∇ the Levi-Civita connection of Mm and by R the corresponding Riemannian
curvature tensor given by R(X, Y ) = [∇X , ∇Y ] −∇[X,Y ].

A Riemannian manifold (Mm, g) for m ≥ 3 is said to be pseudosymmetric in
the sense of R. Deszcz [1992] if at every point of M the curvature tensor satisfies
the equation

(2-1) (R(X, Y ) · R)(X1, X2, X3) = L{((X ∧ Y ) · R)(X1, X2, X3)},

where

(R(X, Y ) · R)(X1, X2, X3) =(2-2)

R(X, Y )(R(X1, X2)X3) − R(R(X, Y )X1, X2)X3

− R(X1, R(X, Y )X2)X3 − R(X1, X2)(R(X, Y )X3),

((X ∧ Y ) · R)(X1, X2, X3) =(2-3)

(X ∧ Y )(R(X1, X2)X3) − R((X ∧ Y )X1, X2)X3

− R(X1, (X ∧ Y )X2)X3 − R(X1, X2)((X ∧ Y )X3),

and X ∧Y is given by (1-1). In particular, if L = 0, then M is semisymmetric. For
details and examples of pseudosymmetric manifolds, see [Belkhelfa et al. 2002]
and [Deszcz 1992].

A contact manifold is a differentiable manifold M2n+1 together with a global
1-form η (a contact form) such that η ∧ (dη)n

6= 0 everywhere. Since dη is of
rank 2n, there exists a unique vector field ξ on M2n+1 (the Reeb or characteristic
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vector field of the contact structure η) satisfying η(ξ) = 1 and dη(ξ, X) = 0 for
all X . The distribution defined by the subspace X ∈ Tp M : η(X) = 0 for p ∈ M
is called a contact distribution. Every contact manifold has an underlying almost
contact structure (η, φ, ξ), where φ is a global tensor field of type (1, 1), such that

(2-4) η(ξ) = 1, φξ = 0, η ◦ φ = 0, φ2
= −I + η ⊗ ξ.

A Riemannian metric g (the associated metric) can be defined such that

(2-5) η(X) = g(X, ξ) and dη(X, Y ) = g(X, φY )

for all vector fields X and Y on M2n+1. We note that g and φ are not unique for a
given contact form η, but g and φ are canonically related to each other. We refer
to (M2n+1, η, ξ, φ, g) as a contact metric structure.

We denote by S the Ricci tensor of type (0, 2), by Q the corresponding Ricci
operator satisfying g(Q X, Y ) = S(X, Y ), and by r = Tr Q the scalar curvature.
We also define the tensor fields l, h and τ by the relations

(2-6) l = R( · , ξ)ξ, h =
1
2 Lξφ, τ = Lξ g,

where L is the Lie differentiation. On every contact metric manifold M2n+1, we
have the important formulas

hξ = lξ = 0, η ◦ h = 0, Tr h = Tr hφ = 0, hφ = −φh,(2-7)

h X = λX implies hφX = −λφX,(2-8)

∇ξφ = 0, ∇Xξ = −φX − φh X, Tr l = g(Qξ, ξ) = 2n − Tr h2,(2-9)

τ = 2g(φ·, h·), ∇ξτ = 2g(φ·, ∇ξ h·).(2-10)

A contact metric manifold M2n+1(φ, ξ, η, g) for which ξ is a Killing vector
field, that is, for which Lξ g = 0, is called a K-contact manifold. A contact metric
manifold is K-contact if and only if τ = 0 (or equivalently h = 0).

If we take the product M2n+1
× R, then the contact structure on M2n+1 gives

rise to an almost complex structure J on M2n+1
× R given by

J
(
X, f d

dt

)
=

(
φX − f ξ, η(X) d

dt

)
.

If this structure is integrable, then the contact structure is said to be normal and
M2n+1 is called Sasakian. A contact metric manifold is Sasakian if and only
if R(X, Y )ξ = η(Y )X − η(X)Y for all vectors fields X, Y on the manifold. If
dim M2n+1

= 3 then a K-contact manifold is Sasakian and the converse also holds.
More details on contact manifolds are found in [Blair 2002].

Let (M, φ, ξ, η, g) be a contact metric 3-manifold. Let U be the open subset of
points p ∈ M such that h 6= 0 in a neighborhood of p. Let U0 be the open subset of
points p ∈ M such that h = 0 in a neighborhood of p. That h is a smooth function
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on M implies U ∪ U0 is an open and dense subset of M , so any property satisfied
in U0 ∪ U is also satisfied in M . For any point p ∈ U ∪ U0, there exists a local
orthonormal basis {e, φe, ξ} of smooth eigenvectors of h in a neighborhood of p
(this we call a φ-basis). On U , we put he = λe, where λ is a nonvanishing smooth
function assumed to be positive. From (2-8) we have hφe = −λφe.

Lemma 2.1 [Calvaruso and Perrone 2002; Gouli-Andreou and Xenos 1998a]. On
the open set U we have

(2-11)

∇ξ e = aφe, ∇ee = bφe, ∇φee = −cφe + (λ − 1)ξ,

∇ξφe = −ae, ∇eφe = −be + (1 + λ)ξ, ∇φeφe = ce,

∇ξξ = 0, ∇eξ = −(1 + λ)φe, ∇φeξ = (1 − λ)e,

∇ξ h = −2ahφ + (ξ · λ)s

where a is a smooth function,

(2-12)
b =

1
2λ

((φe · λ) + A) with A = η(Qe) = S(ξ, e),

c =
1

2λ
((e · λ) + B) with B = η(Qφe) = S(ξ, φe),

and s is the type (1, 1) tensor field defined by sξ = 0, se = e and sφe = −φe.

From Lemma 2.1 and the formula [X, Y ] = ∇X Y − ∇Y X , we can prove that

(2-13)

[e, φe] = ∇eφe − ∇φee = −be + cφe + 2ξ,

[e, ξ ] = ∇eξ − ∇ξ e = −(a + λ + 1)φe,

[φe, ξ ] = ∇φeξ − ∇ξφe = (a − λ + 1)e,

and from (1-1) we estimate

(2-14)
(e ∧ φe)e = −φe, (e ∧ ξ)e = −ξ, (φe ∧ ξ)ξ = φe,

(e ∧ φe)φe = e, (e ∧ ξ)ξ = e, (φe ∧ ξ)φe = −ξ,

while (X ∧ Y )Z = 0 whenever X 6= Y 6= Z 6= X and X, Y, Z ∈ {e, φe, ξ}.

By direct computations, we calculate the nonvanishing independent components
of the type (1, 3) Riemannian curvature tensor field R:

(2-15)

R(ξ, e)ξ = −I e − Zφe, R(e, φe)e = −Cφe − Bξ,

R(ξ, φe)ξ = −Ze − Dφe, R(ξ, e)φe = −K e + Zξ,

R(e, φe)ξ = Be − Aφe, R(ξ, φe)φe = He + Dξ,

R(ξ, e)e = Kφe + I ξ, R(e, φe)φe = Ce + Aξ,

R(ξ, φe)e = −Hφe + Zξ,
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where

(2-16)

C = −b2
− c2

+ λ2
− 1 + 2a + (e · c) + (φe · b), Z = ξ · λ,

H = b(λ − a − 1) + (ξ · c) + (φe · a), I = −2aλ − λ2
+ 1,

K = c(λ + a + 1) + (ξ · b) − (e · a), D = 2aλ − λ2
+ 1.

Setting X = e, Y = φe and Z = ξ in the Jacobi identity [[X, Y ], Z ]+[[Y, Z ], X ]+

[[Z , X ], Y ] = 0 and using (2-13), we get

(2-17)
b(a + λ + 1) − (ξ · c) − (φe · λ) − (φe · a) = 0,

c(a − λ + 1) + (ξ · b) + (e · λ) − (e · a) = 0,

or equivalently A = H and B = K .
We give the components of the Ricci operator Q with respect to a φ-basis:

(2-18)

Qe = ( 1
2r − 1 + λ2

− 2aλ)e + Zφe + Aξ,

Qφe = Ze + (1
2r − 1 + λ2

+ 2aλ)φe + Bξ,

Qξ = Ae + Bφe + 2(1 − λ2)ξ,

where

(2-19) r = Tr Q = 2(1 − λ2
− b2

− c2
+ 2a + (e · c) + (φe · b)).

The relations (2-16) and (2-19) yield

(2-20) C = −b2
− c2

+ λ2
− 1 + 2a + (e · c) + (φe · b) = 2λ2

− 2 + r/2

Definition 2.2 [Gouli-Andreou et al. 2008]. Let M3 be a 3-dimensional contact
metric manifold. Let h = λh+

− λh− be the spectral decomposition of h on U . If

∇h− X h−X = [ξ, h+X ]

for all vector fields X on M3 and all points of an open subset W of U , and if h = 0
on the points of M3 that do not belong to W , then the manifold is said to be a
semi-K contact manifold.

From Lemma 2.1 and the relations (2-13), the condition above for X = e leads to
[ξ, e] = 0; for X = φe it leads to ∇φeφe = 0. Hence on a semi-K contact manifold
we have a + λ + 1 = c = 0. If we apply the deformation e → φe, φe → e,
ξ → −ξ , λ → −λ, b → c and c → b, then the contact metric structure remains
the same. Hence the condition for a 3-dimensional contact metric manifold to be
semi-K contact is equivalent to a − λ + 1 = b = 0.

Remark 2.3. If M3
= U0 (as in [Gouli-Andreou and Xenos 1998b]), Lemma 2.1

is expressed in a similar form, where λ = 0, e is a unit vector field belonging to
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the contact distribution, the Equation (2-11) is identically zero, and the functions
A, B, D, H , I , K and Z satisfy

A = B = Z = H = K = 0, I = D = 1, C =
1
2r − 2.

Proposition 2.4. For a 3-dimensional contact metric manifold, we have

(2-21) Qφ = φQ if and only if ξ ·λ = 2bλ−(φe ·λ) = 2cλ−(e ·λ) = aλ = 0.

Proof. By (2-4), (2-12), (2-16) and (2-20), the relations (2-18) yield

(Qφ − φQ)e = 2Ze + 4aλφe + Bξ,

(Qφ − φQ)φe = 4aλe − 2Zφe − Aξ,

(Qφ − φQ)ξ = Be − Aφe.

Proposition 2.4 follows immediately. �

3. Pseudosymmetric contact metric 3-manifolds

Let (M, η, g, φ, ξ) be a contact metric 3-manifold. In the case M = U0, that is,
when (ξ, η, φ, g) is a Sasakian structure, M is a pseudosymmetric space of constant
type [Cho and Inoguchi 2005]. Next, assume that U is not empty, and let {e, φe, ξ}

be a φ-basis as in Lemma 2.1.

Lemma 3.1. A contact metric 3-manifold (M, η, g, φ, ξ) is pseudosymmetric if
and only if

B(ξ · λ) + (−2aλ − λ2
+ 1)A = L A,

A(ξ · λ) + (2aλ − λ2
+ 1)B = L B,

(ξ · λ)( 1
2r + 2λ2

− 2) + AB = L(ξ · λ),

and

A2
− |(ξ · λ)|2 + (2aλ − λ2

+ 1)(−2aλ − 3λ2
+ 3 −

1
2r)

= L(−2aλ − 3λ2
+ 3 −

1
2r),

B2
− |(ξ · λ)|2 + (−2aλ − λ2

+ 1)(2aλ − 3λ2
+ 3 −

1
2r)

= L(2aλ − 3λ2
+ 3 −

1
2r),

where L is the function in the pseudosymmetry definition (2-1).

Proof. Setting X1 = e, X2 = φe and X3 = ξ in Equation (2-1), we obtain

(R(X, Y ) · R)(e, φe, ξ) = L
(
((X ∧ Y ) · R)(e, φe, ξ)

)
.

First we set X = e and Y = φe. By virtue of (2-2), (2-3), (2-14) and (2-15) we
obtain

(B(ξ ·λ)+(−2aλ−λ2
+1)A)e+(A(ξ ·λ)+(2aλ−λ2

+1)B)φe = L(Ae+ Bφe),
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from which the first two equations of the lemma follow at once.
Similarly, setting X = φe and Y = ξ we obtain(

A2
− |(ξ · λ)|2 + (2aλ − λ2

+ 1)(−2aλ − 3λ2
+ 2 −

1
2r)

)
e

+
(
(ξ · λ)( 1

2r + 2λ2
− 2) + AB

)
φe = L

(
(−2aλ − 3λ2

+ 2 −
1
2r)e + (ξ · λ)φe

)
,

from which we get the next two equations.
Finally, setting X = e and Y = ξ we have(

B2
− |(ξ · λ)|2 + (−2aλ − λ2

+ 1)(2aλ − 3λ2
+ 2 −

1
2r)

)
φe

+
(
(ξ · λ)( 1

2r + 2λ2
− 2) + AB

)
e = L

(
(2aλ − 3λ2

+ 2 −
1
2r)φe + (ξ · λ)e

)
,

from which we obtain the last equation. �

Using Equations (2-16) and (2-20), the five equations take the more convenient
form

(3-1)

Z B + I A = L A,

Z A + DB = L B,

ZC + AB = L Z ,

A2
− Z2

+ D(I − C) = L(I − C),

B2
− Z2

+ I (D − C) = L(D − C).

Remark 3.2. If L = 0, the manifold is semisymmetric and (3-1) is in accordance
with [Calvaruso and Perrone 2002, Equations (3.1)–(3.5)].

Proposition 3.3. Let M3 be a 3-dimensional contact metric manifold satisfying
Qφ = φQ. Then M3 is a pseudosymmetric space of constant type.

Proof. In [2005], Cho and Inoguchi have proved that contact metric 3-manifolds
that satisfy Qφ = φQ are pseudosymmetric. We can improve their result by prov-
ing that these manifolds are also pseudosymmetric of constant type. We know
from [Blair et al. 1990] that for these manifolds the Ricci operator has the form
Q X = αX + βη(X)ξ or equivalently the Ricci tensor is given by the equation

(3-2) S = αg + βη ⊗ η,

where α = (r − Tr l)/2, β = (3 Tr l − r)/2 and the φ-sectional curvature and
Tr l are both constant functions. Also, from [Koufogiorgos 1995] we have that the
φ-sectional curvature is given by the equation r/2−Tr l, and hence in contact metric
3-manifolds with Qφ = φQ, the function r = Tr Q is also constant; obviously the
functions α and β in (3-2) are constant as well. The manifold is quasi-Einstein
and hence pseudosymmetric, and because β is constant it is pseudosymmetric of
constant type, that is, L is constant; see also [Cho and Inoguchi 2005]. �

Remark 3.4. If the manifold M3 is Sasakian, we know from Cho and Inoguchi
[2005] that M3 is a pseudosymmetric space of constant type. Also, by using
Remark 2.3, the system (3-1) is reduced to the equation (C −1)(L −1) = 0. Hence
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a Sasakian 3-manifold satisfying the condition R(X, Y ) · R = L((X ∧ Y ) · R) with
L 6= 1 is a space of constant scalar curvature r = 6, where L is some constant
function on M3.

4. Pseudosymmetric contact metric 3-manifolds with ∇ξτ = 0

Theorem 4.1. Let M3 be a 3-dimensional pseudosymmetric contact metric mani-
fold satisfying ∇ξτ = 0. Then M3 is of constant type, and it is either Sasakian, flat,
or locally isometric to either SU(2) or SL(2, R), where these two Lie groups are
equipped with a left invariant metric.

Proof. We consider the open subsets

(4-1)
U0 = {p ∈ M : λ = 0 in a neighborhood of p},

U = {p ∈ M : λ 6= 0 in a neighborhood of p}

of M . Suppose M = U0, that is, (ξ, η, φ, g) is a Sasakian structure. In [2005], Cho
and Inoguchi proved that M is a pseudosymmetric space of constant type.

If U is not empty, let {e, φe, ξ} be a φ-basis. In contact metric 3-manifolds, the
assumption ∇ξτ = 0 is equivalent to a = Z = 0; see [Gouli-Andreou and Xenos
1998a]. Hence (3-1) becomes

AB = 0

B(D − L) = 0,

A(D − L) = 0,

A2
+ D(D − C) = L(D − C),

B2
= A2,

or equivalently

(4-2)
Z = A = B = a = 0,

(D − L)(D − C) = 0,

where the functions A, B, C , D, I and Z are given by (2-12) and (2-16). Using
Proposition 2.4 we obtain Qφ = φQ, and hence the manifold is pseudosymmetric
of constant type (by [Cho and Inoguchi 2005] and Proposition 3.3). The equation
(D − L)(D − C) = 0 does not contribute any further information to our problem,
and hence the proof is completed by [Blair et al. 1990, Theorem 3.3] and [Blair
and Chen 1992, Main Theorem]. �

5. Pseudosymmetric contact metric 3-manifolds of constant type
with ∇ξτ = 2aτφ

Theorem 5.1. Let M3 be a 3-dimensional pseudosymmetric contact metric man-
ifold of constant type satisfying the condition ∇ξτ = 2aτφ, where a is a smooth
function. Then the functions a and Tr l are constant on M3, and M3 is either
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• Sasakian;

• flat;

• locally isometric to either SU(2) or SL(2, R), where both Lie groups are
equipped with a left invariant metric;

• semi-K contact of constant type L =−4, with Tr l =0 and with constant scalar
curvature r = −4;

• semi-K contact of constant type L = a2, with Tr l = −2a(2 + a);

• of constant scalar curvature r = 4a and of constant type L = 2a, with Tr l = 0;

• of constant scalar curvature r = 2a(4 − a) and of constant type L = a2, with
Tr l = 2a(2 − a);

• of constant scalar curvature r = 2a(4−a) and of constant type L = Tr l − a2,
with Tr l = 2a(2 − a).

Proof. We consider again the open subsets of (4-1). If M = U0, then M is Sasakian
and hence it is a pseudosymmetric space of constant type [Cho and Inoguchi 2005].
Next, assume that U is not empty, and let {e, φe, ξ} be a φ-basis. Using (2-10) and
(2-11), we can prove that the assumption ∇ξτ = 2aτφ is equivalent to Z = ξ ·λ= 0,
and hence the system (3-1) becomes

AB = 0,

DB = L B,

I A = L A,

A2
+ D(I − C) = L(I − C),

B2
+ I (D − C) = L(D − C),

or using (2-16), it is

0 = AB,

0 = B(2aλ − λ2
+ 1 − L),

0 = A(−2aλ − λ2
+ 1 − L),

0 = A2
+ (−2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b))

× (2aλ − λ2
+ 1 − L),

0 = B2
+ (2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b))

× (−2aλ − λ2
+ 1 − L),

0 = Z = ξ · λ

To study this system we consider these open subsets of U :

U ′
= {p ∈ U : A = 2bλ − (φe · λ) = 0 in a neighborhood of p},

U3 = {p ∈ U : A 6= 0 in a neighborhood of p},
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where U ′
∪ U3 is open and dense in the closure of U . In U ′, we have

0 = (−2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b))(2aλ − λ2

+ 1 − L),

0 = B(2aλ − λ2
+ 1 − L),

0 = B2
+ (2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b))

× (−2aλ − λ2
+ 1 − L),

0 = Z = ξ · λ.

We consider these open subsets of U ′:

U1 = {p ∈ U ′
: B = 2cλ − (e · λ) = 0 in a neighborhood of p},

U2 = {p ∈ U ′
: B 6= 0 in a neighborhood of p},

where U1 ∪ U2 is open and dense in the closure of U ′. Because B 6= 0 in U2, we
have 2aλ − λ2

+ 1 − L = 0 there. Hence U1 can also be described as the set of
p ∈ U satisfying

0 = 2bλ − (φe · λ), 0 = 2cλ − (e · λ) = 0, 0 = ξ · λ,

0 = (2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b))(−2aλ − λ2

+ 1 − L),

0 = (−2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b))(2aλ − λ2

+ 1 − L),

in a neighborhood of p, whereas U2 is the set of p ∈ U satisfying

0 = 2bλ − (φe · λ), 0 = 2aλ − λ2
+ 1 − L , 0 = ξ · λ,

0 = (2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b))

× (−2aλ − λ2
+ 1 − L) + B2

in a neighborhood of p. In U3 we have A 6= 0 (or equivalently B = 2cλ−(e·λ)= 0)
and the system becomes

0 = −2aλ − λ2
+ 1 − L ,

0 = A2
+ (−2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b))

× (2aλ − λ2
+ 1 − L),

0 = Z = ξ · λ.

The set U3 is also described as the set of p ∈ U for which there is a neighborhood
satisfying

0 = 2cλ − (e · λ), 0 = −2aλ − λ2
+ 1 − L , 0 = ξ · λ,

0 = A2
+ (−2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b))

× (2aλ − λ2
+ 1 − L).

We shall study the initial system at each Ui for i = 1, 2, 3.
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In U1, we have

(φe · λ) = 2bλ,(5-1)

(e · λ) = 2cλ,(5-2)

0 = ξ · λ,(5-3)

0 = (2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b))(5-4)

× (−2aλ − λ2
+ 1 − L),

0 = (−2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b))(5-5)

× (2aλ − λ2
+ 1 − L).

Differentiating the equations (5-1) and (5-2) with respect to e and φe, respectively,
and subtracting we get [e, φe]λ = 2b(e ·λ)+ 2λ(e · b)− 2c(φe ·λ)− 2λ(φe · c) or,
because of (2-13), (5-1), (5-2) and (5-3),

(5-6) e · b = φe · c.

Differentiating the equations (5-1), (5-3) with respect to ξ and φe, respectively,
and subtracting, we get [ξ, φe]λ = 2λ(ξ ·b) or, because of (2-13), (2-17) and (5-2),

ξ · b = c(λ − a − 1),(5-7)

e · a = 2cλ.(5-8)

Differentiating the equations (5-2) and (5-3) with respect to ξ and e, respectively,
and subtracting, we get [ξ, e]λ = 2λ(ξ · c) or, because of (2-13), (2-17) and (5-1),

ξ · c = b(λ + a + 1),(5-9)

φe · a = −2bλ.(5-10)

In order to study the system of (5-4) and (5-5) we consider these open subsets
of U1:

V =
{

p ∈ U1 : 2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b) = 0

in a neighborhood of p
}
,

V ′
=

{
p ∈ U1 : 2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b) 6= 0

in a neighborhood of p
}
,

where V ∪ V ′ is open and dense in the closure of U1. In the set V , the Equation
(5-5) also holds; hence we consider these open subsets of V :

V1 =
{

p ∈ V : −2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b) = 0,

2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b) = 0

in a neighborhood of p
}
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and

V2 =
{

p ∈ V : 2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b) = 0,

2aλ − λ2
+ 1 − L = 0 in a neighborhood of p

}
,

where V1 ∪ V2 is open and dense in the closure of V . Similarly for V ′, where
−2aλ − λ2

+ 1 − L = 0, we consider the open subsets

V3 =
{

p ∈ V ′
: − 2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b) = 0,

− 2aλ − λ2
+ 1 − L = 0 in a neighborhood of p

}
,

V4 =
{

p ∈ V ′
: − 2aλ − λ2

+ 1 − L = 0,

2aλ − λ2
+ 1 − L = 0 in a neighborhood of p

}
,

where V3 ∪ V4 is open and dense in the closure of V ′ and the set
⋃

Vi is open and
dense in the closure of U1. We shall prove that the functions λ and a are constant
at every Vi for i = 1, 2, 3, 4

Now

in V1,
{

−2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b) = 0,

2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b) = 0.

Subtracting these two equations, we deduce that a = 0 in V1 ⊂ U . Hence
from (5-8) and (5-10) we have c = b = 0, and from (5-1) and (5-2) we have
φe · λ = e · λ = 0. These, together with (5-3), give λ = constant in V1. Moreover,
if we put a = b = c = 0 in one of the equations of the set V1, we finally get λ2

= 1
and the structure is flat.

Next,

in V2

{ 2aλ − 2λ2
+ 2 + b2

+ c2
− 2a − (e · c) − (φe · b) = 0,

2aλ − λ2
+ 1 − L = 0,

(5-11)

in V3

{
− 2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b) = 0,

− 2aλ − λ2
+ 1 − L = 0.

(5-12)

In V2 we differentiate the equation 2aλ − λ2
+ 1 − L = 0 with respect to ξ , φe

and e, and because of (5-3), (5-8), (5-10) we obtain respectively

ξ · a = 0,(5-13)

b(a − 2λ) = 0,(5-14)

ac = 0,(5-15)

while in V3 from −2aλ − λ2
+ 1 − L = 0 we obtain Equation (5-13), and

(5-16) ba = 0, c(a + 2λ) = 0.
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Differentiating the relations (5-8) and (5-13) with respect to ξ and e, respectively,
and subtracting, we get [ξ, e]a = 2λ(ξ · c) or, because of (2-13), (5-9) and (5-10),

(5-17) b(λ + a + 1) = 0.

Similarly, differentiating (5-10) and (5-13) with respect to ξ and φe, respectively,
and subtracting, we have [ξ, φe]a =−2λ(ξ ·b) or, because of (2-13), (5-7) and (5-8),

(5-18) c(λ − a − 1) = 0.

To study the system of (5-17) and (5-18), we consider these open subsets of V2:

G = {p ∈ V2 : b = 0 in a neighborhood of p},

G ′
= {p ∈ V2 : b 6= 0 in a neighborhood of p},

where G ∪ G ′ is open and dense in the closure of V2.
In G we have c(λ − a − 1) = 0, hence we consider these open subsets of G:

G1 = {p ∈ G : c = 0 in a neighborhood of p},

G2 = {p ∈ G : c 6= 0 in a neighborhood of p},

where G1 ∪ G2 is open and dense in the closure of G. These sets are described
more specifically as

G1 = {p ∈ G ⊂ V2 : b = c = 0 in a neighborhood of p},

G2 = {p ∈ G ⊂ V2 : b = λ − a − 1 = 0 in a neighborhood of p}.

The set G ′ (where b 6= 0 or equivalently λ+a +1 = 0) is decomposed similarly as

G3 = {p ∈ G ′
: c = 0 in a neighborhood of p},

G4 = {p ∈ G ′
: c 6= 0 in a neighborhood of p},

where G3 ∪ G4 is open and dense in the closure of G ′. These can also be written

G3 = {p ∈ G ′
⊂ V2 : c = λ + a + 1 = 0 in a neighborhood of p},

G4 = {p ∈ G ′
⊂ V2 : λ + a + 1 = λ − a − 1 = 0 in a neighborhood of p}.

We have V2 ⊂ U where λ 6= 0; hence G4 = ∅.
In G1, b = c = 0. From (5-1), (5-2), (5-3), (5-8), (5-10) and (5-13), we can

conclude that λ and a are constant in G1, and from the first of (5-11), we have
(λ − 1)(a − λ − 1) = 0. We consider these open subsets of G1:

K1 = {p ∈ G1 : λ = 1 in a neighborhood of p},

K2 = {p ∈ G1 : λ 6= 1 in a neighborhood of p}.

In K1, we get Tr l = 0, L = 2a, and, from (2-19), r = 4a. In K2, we have
a − λ − 1 = 0, Tr l = 2a(2 − a), L = a2, and r = 2a(4 − a).
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In G2, b = λ−a −1 = 0. Using this to eliminate a from the second equation of
(5-11), we obtain λ2

− 2λ + 1 − L = 0 . We suppose that there is a point p in G2

at which e · λ 6= 0. Then there is a neighborhood S of p in which e · λ 6= 0. We
differentiate λ2

−2λ+1− L = 0 with respect to e twice and obtain e ·λ = 0 in S, a
contradiction. Hence e ·λ = 0 (and c = 0), and from (5-1) and (5-3), we conclude
that λ is constant in G2 and similarly a = λ − 1. In particular, from (5-11), we
obtain λ = 1 and a = 0; hence the structure is flat.

We have proved that λ and a are constant on G1 and G2. The set G1 ∪ G2 is
open and dense in the closure of G. Hence λ and a are constant everywhere in G.

In G3, c = λ+a +1 = 0. Using this to eliminate a from the second equation of
(5-11), we obtain −3λ2

− 2λ + 1 − L = 0. If we assume that there is a point p in
G3 at which φe ·λ 6= 0, then there is a neighborhood S of p in which φe ·λ 6= 0. We
differentiate −3λ2

−2λ+1− L = 0 with respect to φe twice and obtain φe ·λ = 0
in S, a contradiction. Thus φe · λ = 0 everywhere in G3, which gives b = 0. We
note that ξ ·λ = φe ·λ = e ·λ = 0, so λ is constant in G3, and obviously a = −λ−1.
Moreover, if we put b = c = 0 and a = −λ−1 in the system (5-11), we get λ2

= 1
(hence Tr l = 0), a = 0 or −2, and L = −2a(a + 1). If a = 0, we obtain a flat
structure, while if a = −2, we have a semi-K contact structure with constant scalar
curvature r = 4a = −8.

The functions λ and a are constant in G and G ′. The set G ∪ G ′ is open and
dense in the closure of V2; hence λ and a are constant in V2, and Equations (5-14)
and (5-15) are satisfied because b = c = 0.

We similarly consider these open subsets of V3:

G ′

1 = {p ∈ V3 : b = c = 0 in a neighborhood of p},

G ′

2 = {p ∈ V3 : b = λ − a − 1 = 0 in a neighborhood of p},

G ′

3 = {p ∈ V3 : c = λ + a + 1 = 0 in a neighborhood of p},

G ′

4 = {p ∈ V3 : λ + a + 1 = λ − a − 1 = 0 in a neighborhood of p}.

The set
⋃

G ′

i is open and dense subset of V3 and G ′

4 = ∅.
In G ′

1, b = c = 0. From (5-1), (5-2), (5-3), (5-8), (5-10) and (5-13) we
can conclude that λ and a are constant in G ′

1. From the first of (5-12) we have
(λ + 1)(a + λ − 1) = 0. We consider these open subsets of G ′

1:

K ′

1 = {p ∈ G ′

1 : λ = −1 in a neighborhood of p},

K ′

2 = {p ∈ G ′

1 : λ 6= −1 in a neighborhood of p}.

In K ′

1, we get Tr l = 0, L = 2a, and, from (2-19), r = 4a. In K ′

2 we have
a + λ − 1 = 0, Tr l = 2a(2 − a), L = a2, and r = 2a(4 − a).

In G ′

2, b = λ−a −1 = 0. Using this to eliminate a from the second equation of
(5-12), we obtain −3λ2

+2λ+1−L =0. If we assume e·λ 6=0, we may differentiate



TWO CLASSES OF PSEUDOSYMMETRIC CONTACT METRIC 3-MANIFOLDS 31

this equation twice with respect to e, obtaining e · λ = 0, a contradiction. Hence
e ·λ = 0 (and c = 0), and from (5-1) and (5-3) we can conclude that λ is constant in
G ′

2 and similarly a = λ− 1. In particular, from the system (5-12), we have λ2
= 1

(hence Tr l = 0), a = 0 or −2, and L = −2a(a + 1). If a = 0 we obtain a flat
structure, and if a = −2 we have a semi-K contact structure with constant scalar
curvature r = 4a = −8.

In G ′

3, c = λ + a + 1 = 0. Using this to eliminate a from the second equation
of V3, we get λ2

+ 2λ + 1 − L = 0. If we assume φe · λ 6= 0, we may differentiate
this equation with twice respect to φe, obtaining φe · λ = 0, a contradiction. Thus
φe·λ=0 everywhere in G ′

3, which gives b =0. We note that ξ ·λ=φe·λ= e·λ=0.
Thus λ is constant in G ′

3, and obviously a = −λ−1. Moreover, if we put b = c = 0
and a = −λ−1 in the system (5-12), we get λ = −1 and a = 0; hence the structure
is flat.

As in case of V2, we have that the functions λ and a are constant in V3, and the
equations (5-16) are satisfied because b = c = 0.

In V4, 2aλ − λ2
+ 1 − L = 0 and −2aλ − λ2

+ 1 − L = 0. Working as in the
set V1, we find that a = 0 (hence Theorem 4.1 applies), b = c = 0, and λ is constant
in V4, that is, λ2

= 1 − L ≥ 0. Also, from (2-19), r = Tr l = 2L .
The functions λ and a are constant in each Vi for i = 1, 2, 3, 4, and the set

⋃
Vi

is open and dense in the closure of U1. Hence λ and a are constant in U1.
In U2,

(5-1) φe · λ = 2bλ,

(5-3) 0 = ξ · λ,

0 = 2aλ − λ2
+ 1 − L ,(5-19)

0 = B2
+ (2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b))(5-20)
× (−2aλ − λ2

+ 1 − L).

We differentiate (5-19) with respect to ξ , φe, and e and because of (5-1) and (5-3)
we obtain respectively

0 = ξ · a,(5-21)

φe · a = 2bλ − 2ab,(5-22)

0 = (a − λ)(e · λ) + λ(e · a) = 0.(5-23)

We differentiate Equations (5-1) and (5-3) with respect to ξ and φe respectively
and subtract. Then, because of (5-3), (2-13) and (2-17), we obtain

(5-24) (3λ − a − 1)(e · λ) − 2λ(e · a) = 2λc(λ − a − 1)
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We consider the system of (5-23) and (5-24) with unknown functions the deriva-
tives of e · λ and e · a. We consider these open subsets of U2:

F1 = {p ∈ U2 ⊂ U : −a − λ + 1 6= 0 in a neighborhood of p},

F2 = {p ∈ U2 ⊂ U : −a − λ + 1 = 0 in a neighborhood of p}.

In the neighborhood F1 solving the system of (5-23) and (5-24), we obtain

(5-25) (−a − λ + 1)(e · λ) = −2λc(λ − a − 1).

From (2-17), (5-1) and (5-22), we obtain

(5-26) ξ · c = −b(3λ − 3a − 1).

We differentiate (5-3), (5-25) with respect to e and ξ , respectively, and subtract.
Then using (5-3), (5-21), we obtain (−a −λ+ 1)[e, ξ ]λ = 2λ(λ− a − 1)(ξ · c) or,
by (2-13), (5-1), (5-26), and λ 6= 0 (as F1 ⊂ U ), we finally obtain

(5-27) b(a2
+ λ2

− aλ + a − λ) = 0

We work in the open subset F1 and suppose that there is a point p in F1 at which
b 6= 0 (or equivalently, by (5-1), φe ·λ 6= 0). The function b is smooth, and because
of its continuity there is an open neighborhood S of p such that S ⊂ F1 and b 6= 0
everywhere in S. Hence from (5-27) we have in S

(5-28) a2
+ λ2

− aλ + a − λ = 0.

We differentiate this equation with respect to φe, use (5-1) and (5-22), and with
the assumption b 6= 0 obtain 2a2

− 2aλ − λ2
+ a = 0. This last equation together

with (5-28) gives −3λ2
− a + 2λ = 0. We differentiate this equation with respect

to φe. Then using (5-1) and (5-22), we get 2b(−6λ2
+ a + λ) = 0 or equivalently

−6λ2
+ a + λ = 0. The equations −3λ2

− a + 2λ = 0 and −6λ2
+ a + λ = 0 give

−9λ2
+3λ = 0. We differentiate this equation twice with respect to φe and obtain

φe · λ = 0 or equivalently b = 0 everywhere in S, a contradiction. Hence, from
(5-27) we deduce that b = 0 everywhere in F1.

Equation (5-1) and b = 0 give φe · λ = 0, which together with (5-3) gives
[ξ, φe]λ = 0, or because of (2-13), (λ− a − 1)(e ·λ) = 0. Let’s suppose that there
is a point q ∈ F1 at which e · λ 6= 0. Then, there is a neighborhood Y of q in
which e ·λ 6= 0. In Y we then have λ− a − 1 = 0, and hence from (5-25) we have
(−a − λ + 1)(e · λ) = 0, which in Y ⊂ F1 gives e · λ = 0, a contradiction. Hence
e ·λ = 0 everywhere in F1. Then ξ ·λ = φe ·λ = e ·λ = 0 implies that λ is constant
in F1. From (5-21), (5-22) and (5-23) we obtain that a is constant in F1 and from
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(5-25) we have c(λ − a − 1) = 0. We consider these two open subsets of F1:

J1 = {p ∈ F1 : c = 0 in a neighborhood of p},

J2 = {p ∈ F1 : c 6= 0 in a neighborhood of p}.

In J1, Equation (5-20) yields a(λ− 1)(a −λ− 1) = 0, where a and λ are constant
and b = 0. We consider these two open subsets of J1:

H1 = {p ∈ J1 : a = 0 in a neighborhood of p},

H2 = {p ∈ J1 : a 6= 0 in a neighborhood of p}.

In H1, we have ∇ξτ = 0 (hence Theorem 4.1 applies) and from (2-19) r = 2L . In
H2 we have (λ−1)(a −λ−1) = 0, and hence we consider these two open subsets
of H2:

H3 = {p ∈ J1 : λ = 1 in a neighborhood of p},

H4 = {p ∈ J1 : λ 6= 1 in a neighborhood of p}

In H3, we have Tr l = 0, L = 2a by (5-19), and r = 4a by (2-19). In H4 we obtain
a − λ − 1 = 0, Tr l = 2a(2 − a), L = a2, and r = 2a(4 − a).

In J2, we have b = a − λ + 1 = 0 (a semi-K contact structure with constant a
and λ); hence Tr l = −2a(2 + a), L = a2 by (5-19), and c2

+ a(e · c) + 4a2
= 0

by (5-20). The set J1 ∪ J2 is open and dense inside the closure of F1; hence we
conclude that b = 0 and that a and λ are constant in F1.

In the open set F2 we have −a − λ + 1 = 0, which together with (5-19) gives
−3λ2

+2λ+1− L = 0. If we assume e ·λ 6= 0, we may differentiate this equation
twice with respect to e and obtain e · λ = 0, a contradiction. Hence e · λ = 0.
Similarly we can deduce that φe · λ = 0 (so (5-1) implies b = 0), and hence λ is
constant in F2. Obviously a = −λ+1 is constant in F2. The system of (5-23) and
(5-24) gives ca = 0. We consider these two open subsets of F2:

Q1 = {p ∈ F2 : c = 0 in a neighborhood of p},

Q2 = {p ∈ F2 : c 6= 0 in a neighborhood of p}.

In Q1, (5-19) implies L = Tr l − a2, where Tr l = 2a(2 − a) and r = 2a(4 − a).
In Q2, we have a 3-τ manifold structure with Tr l = L = 0.

We have proved that λ and a are constant in F1 and F2. Since F1 ∪ F2 is open
and dense inside the closure of U2, we conclude that λ and a are constant in U2.
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In U3,

(5-2) 2cλ = (e · λ),

(5-3) 0 = ξ · λ,

0 = −2aλ − λ2
+ 1 − L ,(5-29)

0 = A2
+ (−2aλ − 2λ2

+ 2 + b2
+ c2

− 2a − (e · c) − (φe · b))(5-30)
× (2aλ − λ2

+ 1 − L).

We differentiate the relation (5-29) with respect to ξ , e and φe, and because of
(5-2) and (5-3) we obtain respectively (5-21),

e · a = −2ac − 2cλ,(5-31)

0 = (a + λ)(φe · λ) + λ(φe · a).(5-32)

We differentiate (5-2) and (5-3) with respect to ξ and e respectively and subtract.
Then by (5-21), we obtain [ξ, e]λ = 2λ(ξ · c), or because of (2-13) and (2-17),

(5-33) (3λ + a + 1)(φe · λ) + 2λ(φe · a) = 2λb(λ + a + 1).

Meanwhile from (2-17), (5-2) and (5-31), we obtain

(5-34) ξ · b = −c(3a + 3λ + 1).

Now consider the system of (5-32) and (5-33) and these two open subsets of U3:

F ′

1 = {p ∈ U3 ⊂ U : a − λ − 1 6= 0 in a neighborhood of p},

F ′

2 = {p ∈ U3 ⊂ U : a − λ − 1 = 0 in a neighborhood of p}.

In the open set F ′

1 of p in which a −λ−1 6= 0, we may solve the system of (5-32)
and (5-33) to obtain

(5-35) (a − λ − 1)(φe · λ) = −2λb(λ + a + 1).

We differentiate (5-3) and (5-35) with respect to φe and ξ respectively and subtract.
Then by (5-3) and (5-21) we obtain (a −λ− 1)[φe, ξ ]λ = 2λ(λ+ a + 1)(ξ · b) or,
because of (2-13), (a −λ−1)(a −λ+1)(e ·λ) = 2λ(λ+a +1)(ξ ·b). Then, using
(5-2), (5-34) and λ 6= 0 (in F ′

1 ⊂ U ), we get

c(a2
+ λ2

+ aλ + a + λ) = 0.

As in the case of Equation (5-27) we can deduce in F ′

1 that c = 0. Equation (5-2),
because c = 0, gives e ·λ= 0. This together with (5-3) gives [e, ξ ]λ= 0 or, because
of (2-13), (a + λ + 1)(φe · λ) = 0. Suppose that there is a point q ∈ F ′

1 at which
φe · λ 6= 0. Then there is a neighborhood S of q in which φe · λ 6= 0, and hence
a+λ+1 = 0. Because a+λ+1 = 0, Equation (5-35) gives (a−λ−1)(φe ·λ) = 0.
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Working in S ⊂ F ′

1, where a − λ − 1 6= 0, we can conclude that φe · λ = 0, a
contradiction. Hence, φe · λ = 0 everywhere in F ′

1. In the neighborhood F ′

1, we
have ξ · λ = φe · λ = e · λ = 0 or equivalently λ is constant in F ′

1. From (5-21),
(5-31) and (5-33), we obtain that a is constant in F ′

1, and from (5-32) we have
b(λ + a + 1) = 0. We consider these two open subsets of F ′

1:

J ′

1 = {p ∈ F ′

1 : b = 0 in a neighborhood of p},

J ′

2 = {p ∈ F ′

1 : b 6= 0 in a neighborhood of p}.

In J ′

1, we obtain from (5-30) that a(λ + 1)(a + λ − 1) = 0, where a and λ are
constant and c = 0. We consider these two open subsets of J ′

1:

H ′

1 = {p ∈ J ′

1 : a = 0 in a neighborhood of p},

H ′

2 = {p ∈ J ′

1 : a 6= 0 in a neighborhood of p}.

In H ′

1, we obtain ∇ξτ = 0 (hence Theorem 4.1 applies). and r = 2L . In H ′

2, we
have (λ + 1)(a + λ − 1) = 0. We consider these two open subsets of H ′

2:

H ′

3 = {p ∈ J1 : λ = −1 in a neighborhood of p},

H ′

4 = {p ∈ J1 : λ 6= −1 in a neighborhood of p}.

In H ′

3, we have Tr l = 0, L = 2a by (5-29), and r = 4a by (2-19). In H ′

4, we obtain
a + λ − 1 = 0, Tr l = 2a(2 − a), L = a2 and r = 2a(4 − a).

In J ′

2 we have c = a + λ + 1 = 0 (a semi-K contact structure with constant a
and λ) and hence Tr l = −2a(2 + a). Then L = a2 from (5-29), and from (5-30)
we obtain b2

+ a(φe · b) + 4a2
= 0 with a a constant. The set J ′

1 ∪ J ′

2 is open and
dense inside the closure of F ′

1; hence we can conclude that c = 0 and that a and λ

are constant in F ′

1.
In the open set F ′

2 we have a − λ − 1 = 0, which together with (5-29) gives
−3λ2

−2λ+1− L = 0. If we assume φe ·λ 6= 0, we may differentiate this equation
twice with respect to e, obtaining φe · λ = 0, a contradiction. Hence φe · λ = 0.
Similarly we find that e ·λ = 0, and hence λ is constant in F ′

2. Obviously a = λ+1
is constant in F ′

2. The system of (5-32) and (5-33) gives ba = 0. We consider these
two open subsets of F ′

2:

Q′

1 = {p ∈ F ′

2 : b = 0 in a neighborhood of p},

Q′

2 = {p ∈ F ′

2 : b 6= 0 in a neighborhood of p}.

In Q′

1, (5-29) implies L = Tr l − a2, where Tr l = 2a(2 − a) and r = 2a(4 − a).
In Q′

2, we have a 3-τ manifold structure with Tr l = L = 0.
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We have proved that λ and a are constant in F ′

1 and F ′

2, while F ′

1 ∪ F ′

2 is open
and dense inside the closure of U3. Hence we conclude that λ and a are constant
in U3.

Finally because λ and a are constant in each Ui for i = 1, 2, 3, and because the
set

⋃
Ui is open and dense inside of the closure of U , we conclude that λ and a are

constant in U . Then by (2-9), Tr l = 2(1−λ2) is also constant in U and obviously
on M3. �
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