Pacific Journal of Mathematics

DISTINGUISHED PRINCIPAL SERIES REPRESENTATIONS OF GL(*n*) OVER A *p*-ADIC FIELD

NADIR MATRINGE

Volume 239 No. 1 January 2009

DISTINGUISHED PRINCIPAL SERIES REPRESENTATIONS OF GL(*n*) OVER A *p*-ADIC FIELD

NADIR MATRINGE

Let K/F be a quadratic extension of *p*-adic fields, and χ a character of F^* . A representation (π, V) of $GL(n, K)$ is said to be χ -distinguished if there is a nonzero linear form *L* on *V* such that $L(\pi(h)v) = \chi \circ \det(h)L(v)$ for $h \in GL(n, F)$ and $v \in V$. We classify here distinguished principal series representations of $GL(n, K)$. Call $\eta_{K/F}$ the nontrivial character of F^* that is trivial on the norms of K^* , and σ the nontrivial element of the Galois group of *K* over *F*. A conjecture attributed to Jacquet asserts that admissible irreducible representations π of $GL(n, K)$ are such that the smooth dual π^{\vee} is isomorphic to $\pi \circ \sigma$ if and only if it is 1-distinguished or $\eta_{K/F}$ distinguished. Our classification gives a counterexample for $n \geq 3$.

1. Introduction

For K/F a quadratic extension of *p*-adic fields, let σ be the conjugation relative to this extension, and let $\eta_{K/F}$ be the character of F^* with kernel being norms of K^* .

Let π be a smooth irreducible representation of GL(*n*, *K*), let χ be a character of F^* , and let *m* be dimension of the space of linear forms on π 's space that [transf](#page-7-0)orm by χ under GL(*n*, *F*) with respect to the action $(L, g) \mapsto L \circ \pi(g)$. By [Flicker 1991, Proposition 11], *m* is known to be at most one. One says that π is χ-distinguished if *m* = 1; one says π is distinguished if it is 1-distinguished.

In this article, we give a description of distinguished principal series representations of $GL(n, K)$.

The result, Theorem 3.4, is that the irreducible distinguished representations of the principal series of $GL(n, K)$ [are \(up](#page-8-0) to isomorphism) those unitarily induced [from a char](#page-11-0)acter $\chi = (\chi_1, \ldots, \chi_n)$ of the maximal torus of diagonal matrices such that there exists an $r \leq n/2$ for which $\chi_{i+1}^{\sigma} = \chi_i^{-1}$ for $i = 1, 3, ..., 2r - 1$, and $\chi_i|_{F^*} = 1$ for $i > 2r$. For the quadratic extension \mathbb{C}/\mathbb{R} , it is known [Panichi 2001] that the analogous result is true for tempered representations.

For $n \geq 3$, this gives a counterexample (see Corollary 3.5) to a conjecture of Jacquet [Anandavardhanan 2005, Conjecture 1], which states that an irreducible

MSC2000: primary 22E50; secondary 22E35.

Keywords: distinguished representations, Jacquet's conjecture.

54 NADIR MATRIN[GE](#page-11-1)

[representati](#page-11-2)on π of GL(*n*, *K*) with central character trivial on F^* is isomorphic to $\check{\pi}^{\sigma}$ if and only if it is distinguished or $\eta_{K/F}$ [-distinguished \(wh](#page-11-3)ere $\eta_{K/F}$ is the character of order 2 of F^* , attached by local class field theor[y to](#page-9-0) the extension K/F). For discrete series r[eprese](#page-11-2)ntations, the conjecture is true, as proved in [Kable 2004].

Unitary irreducible distinguished principal series representations of GL(2, *K*) were described in [Hakim 1991]. The general case of distinguished irreducible principal series representations of GL(2, *K*) was treated in [Flicker and Hakim 1994]; we use this occasion to give a different proof. To do this, in Theorems 4.1 and 4.3, we extend a criterion of Hakim [1991, Theorem 4.1], which characterizes smooth unitary irreducible distinguished representations of GL $(2, K)$ in terms of γ factors at 1/2, to all smooth irreducible distinguished representations of GL(2, *K*).

2. Preliminaries

Let ϕ be a group automorphism and x an element of the group. We sometimes write x^{ϕ} instead of $\phi(x)$ and write $x^{-\phi}$ for the inverse of x^{ϕ} . If $\phi = x \mapsto h^{-1}xh$ for *h* in the group, then we may write x^{ϕ} as x^h .

Let *G* be a locally compact totally disconnected group, and let *H* be a closed subgroup of *G*.

We denote by Δ_G the module of *G* given by the relation $d_G(gx) = \Delta_G(g)d_G(x)$, where d_G is the right Haar measure on G .

Let *X* be a locally closed subspace of *G* with $H \cdot X \subset X$. If *V* is a complex vector space, we denote by $D(X, V)$ the space of smooth *V*-valued functions on *X* with compact support (if $V = \mathbb{C}$, we simply write $D(X)$).

Let ρ be a smooth representation of *H* in a complex vector space V_ρ . We denote by $D(H\backslash X, \rho, V_{\rho})$ the space of smooth V_{ρ} -valued functions f on X , with compact support modulo *H*, such that $f(hx) = \rho(h)f(x)$ for $h \in H$ and $x \in X$ (if ρ is a character, we simply write $D(H\backslash X, \rho)$.

We denote by $\text{ind}_{H}^{G}(\rho)$ the representation induced by right translations of *G* in $D(H\backslash G, (\Delta_G/\Delta_H)^{1/2}\rho, V_\rho).$

Let *F* be a nonarchimedean local field of characteristic zero, and let *K* be a quadratic extension of *F*. We have $K = F(\delta)$ with δ^2 in F^* .

We denote by $|\cdot|_K$ the absolute value on *K*.

We denote by σ the nontrivial element of the Galois group $G(K/F)$ of K over F , and we use the same letter to designate its action on $M_n(K)$.

We denote by $N_{K/F}$ the norm of the extension K/F , and we write $\eta_{K/F}$ for the nontrivial character of F^* that is trivial on $N_{K/F}(K^*)$.

Whenever *G* is an algebraic group defined over *F*, we denote by $G(K)$ its *K*-points and by *G*(*F*) its *F*-points.

[We d](#page-11-5)enote by G_n the group $GL(n)$, by B_n its standard Borel subgroup, by U_n its unipotent radical, and by T_n the standard maximal split torus of diagonal matrices.

We denote by *S* the space of matrices *M* in $G_n(K)$ satisfying $MM^{\sigma} = 1$.

Everything in this section is more or less contained in [Flicker 1992], but we give detailed proofs here for convenience of the reader.

Proposition 2.1 [Serre 1968, Chapter 10, Proposition 3]. *The map* $S_n : g \mapsto g^\sigma g^{-1}$ *is a homeomorphism between* $G_n(K)/G_n(F)$ *and S*.

Proposition 2.2. For its natural action on S, each orbit of $B_n(K)$ contains one *and only one element of* \mathfrak{S}_n *of order* 2 *or* 1.

Proof. We begin with the following:

Lemma 2.3. Let w be an element of $\mathfrak{S}_n \subset G_n(K)$ of order at most 2.

Let θ' *be the involution of* $T_n(K)$ *given by* $t \mapsto w^{-1}t^{\sigma}w$ *. Then any* $t \in T_n(K)$ *with* $t\theta'(t) = 1$ *is of the form* $a/\theta'(a)$ *for some* $a \in T_n(K)$ *.*

Proof of Lemma 2.3. There exists a $r \leq n/2$ such that, up to conjugacy,

$$
w = (1, 2)(3, 4) \cdots (2r - 1, 2r).
$$

We write $t = diag(z_1, z_1)$ $\zeta_1', \ldots, \zeta_r, \zeta_r', \zeta_{2r+1}, \ldots, \zeta_n$. Hence for $i \leq r$, we have $z_i \sigma(z'_i)$ χ'_{i} = 1, and $z_{j}\sigma(z_{j}) = 1$ for $j \ge 2r + 1$.

Hilbert's Theorem 90 says each z_j for $j \ge 2r + 1$ is of the form $u_{j-2r}/\sigma(u_{j-2r})$ for some $u_{j-2r} \in K^*$.

We then take *a* = diag(*z*₁, 1, . . . , *z*_{*r*}, 1, *u*₁, , *u*_{*n*−2*r*}). □

Lemma 2.4. *Let* N be an algebraic connected unipotent group over K. Let θ be *an involutive automorphism of N(K). If* $x \in N(K)$ *satisfies* $x\theta(x) = 1_N$ *, then there is an* $a \in N$ *such that* $x = \theta(a^{-1})a$.

Proof of Lemma 2.4. The group *N*(*K*) has a composition series $1_N = N_0 \subset N_1 \subset$ $\cdots \subset N_{n-1} \subset N_n = N(K)$ such that each quotient N_{i+1}/N_i is isomorphic to $(K, +)$ and such that each commutator subgroup $[N, N_{i+1}]$ is a subgroup of N_i .

Now we prove the lemma by induction on *n*. If $n = 1$, then $N(K)$ is isomorphic to $(K, +)$, one concludes taking $a = x/2$. For the induction step, suppose the lemma is true for every $N(K)$ of length *n*. Let $N(K)$ be of length $n + 1$.

By [the induction hy](#page-3-0)pothesis, one gets that there exists an element in $h \in N_1$ and an element *u* in $N(K)$ such that $x = \theta(u^{-1})uh$. Here *h* lies in the center of $N(K)$, because $[N(K), N_1] = 1_N$.

Because $x\theta(x) = 1$, we get $h\theta(h) = 1$. By the induction hypothesis again, we get $h = \theta(b^{-1})b$ for $b \in N_1$. We then take $a = ub$.

We return to the proof of Proposition 2.2.

For w in \mathfrak{S}_n , denote by U_w the subgroup of U_n generated by the elementary subgroups U_{α} , with α positive and $w\alpha$ negative; denote by U'_{w} the subgroup of U_{n}

generated by the elementary subgroups U_α , with α positive and $w\alpha$ positive. Then $U_n = U'_w U_w.$

Let *s* be in *S*. According to Bruhat's decomposition, there is a w in \mathfrak{S}_n , an *a* in *T_n*(*K*), an *n*₁ in *U_n*(*K*), and an n_2^+ $\frac{1}{2}$ in U_w such that $s = n_1 a w n_2^+$ i_2^+ ; this decomposition is unique.

Then $s = s^{-\sigma} = (n_2^+$ z^{+}_{2} ^{- σ} $w^{-1}a^{-\sigma}n_{1}$ ^{- σ}. Thus we have $aw = (aw)^{-\sigma}$, that is, $w^2 = 1$ and $a^w = a^{-\sigma}$.

Now we write $n_1^{-\sigma} = u^{-}u^{+}$ with $u^{-} \in U_w'$ and $u^{+} \in U_w$. Then, comparing *s* and $s^{-\sigma}$, we see u^+ must be equal to n_2^+ . H[ence](#page-3-1) $s = n_1 a w(u^-)^{-1} n_1^{-\sigma}$; thus we suppose $s = awn$, with *n* in U'_w .

From $s = s^{-\sigma}$, we have the relation $awn(aw)^{-1} = n^{-\sigma}$. Applying σ on each side, this becomes $(aw)^{-1}n^{\sigma}aw = n^{-1}$.

But $\theta : u \mapsto (aw)^{-1}u^{\sigma}aw$ [is an in](#page-6-0)[volutive automor](#page-3-2)phism of U'_w ; hence from Lemma 2.4, there is a *u'* in U'_w such that $n = \theta(u^{-1})u$. This gives $s = u^{-\sigma} a w u$, so that we suppose $s = aw$. Again $wa^{\sigma}w = a^{-1}$, and applying Lemma 2.3 to θ' : $x \mapsto wx^{\sigma}w$, we deduce that *a* is of the form $y\theta'(y^{-1})$, and $s = ywy^{-\sigma}$ \Box

Let $u \in M_2(K)$ equal $\left(\frac{1}{1} - \frac{\delta}{\delta}\right)$. We have $S_2(u) = \left(\frac{0}{1} - \frac{1}{0}\right)$; see Proposition 2.1.

We note for further use (in the proof of Proposition 3.3) that if we define the subgroup $\widetilde{T} := \{(\text{diag}(z, z^{\sigma}) \in G_2(K)| z \in K^*\},\$ then

$$
u^{-1}\tilde{T}u = T = \left\{ \begin{pmatrix} x & \delta^2 y \\ y & x \end{pmatrix} \in G_2(F) \middle| x, y \in F \right\}.
$$

For $r \leq n/2$, we denote by U_r the $n \times n$ matrix given by the block decomposition diag(*u*, ..., *u*, I_{n-2r}).

For w an element of \mathfrak{S}_n naturally injected in $G_n(K)$, we write $U_r^w = w^{-1}U_r w$.

Corollary 2.5. *The elements* U_r^w *for* $0 \le r \le n/2$, *and* $w \in \mathfrak{S}_n$ *give a complete set of representatives of classes of* $B_n(K)\backslash G_n(K)/G_n(F)$.

Let $G_n = \coprod_{w \in \mathfrak{S}_n} B_n w B_n$ be the Bruhat decomposition of G_n . We call a doubleclass *B*w*B* [a Bruhat cell.](#page-11-6)

Lemma 2.6. One can order the Bruhat cells C_1, C_2, \ldots, C_n so that for every $1 \leq i \leq n!$, the cell C_i is closed in $G_n - \coprod_{k=1}^{i-1} C_i$.

Proof. Choose $C_1 = B_n$. It is closed in G_n . Now let w_2 be an element of $\mathfrak{S}_n - \text{Id}$ with minimal length. Then from [Springer 1998, 8.5.5], the Bruhat cell Bw_2B is closed in $G_n - B_n$ in the Zariski topology; hence in the *p*-adic topology, we may take this cell to be C_2 . We conclude by repeating this process.

Corollary 2.7. One can order the classes A_1, \ldots, A_t of $B_n(K) \setminus G_n(K)/G_n(F)$ *so that* A_i *is closed in* $G_n(K) - \coprod_{k=1}^{i-1} A_i$.

Proof. From the proof of Proposition 2.2, we know that if *C* is a Bruhat cell of G_n , then $S_n \cap C$ is either empty or it corresponds through the homeomorphism S_n to a class *A* of $B_n(K) \setminus G_n(K)/G_n(F)$. The conclusion then follows from the previous lemma. □

Corollary 2.8. *Each* A_i *is locally closed in* $G_n(K)$ *in the Zariski topology.*

Lemma 2.9. *Let G*, *H*, *X*, *and* (ρ , V_{ρ}) *be as in the beginning of the section. The map*

$$
\Phi: D(X) \otimes V_{\rho} \to D(H \setminus X, \rho, V_{\rho}), \quad f \otimes v \mapsto \left(x \mapsto \int_H f(hx) \rho(h^{-1}) v dh\right)
$$

is surjective.

Proof. Let $v \in V_\rho$. Let *U* be an open subset of *G* intersecting *X* and small enough for $h \mapsto \rho(h)v$ to be trivial on $H \cap U U^{-1}$. Let f' be the function with support in *H*(*X* ∩ *U*) defined by $hx \mapsto \rho(h)v$. Such functions generate $D(H\backslash X, \rho, V_\rho)$ as a vector space.

Now let *f* be the function of $D(X, V_\rho)$ defined by $x \mapsto 1_{U \cap X}(x)v$. Then $\Phi(f)$ is a multiple of f' .

But for *x* in $U \cap X$, $\Phi(f)(x) = \int_H \rho(h^{-1}) f(hx) dh$ because $h \mapsto \rho(h)v$ is trivial on $H \cap UU^{-1}$. Also $h \mapsto f(hx)$ is a positive function that multiplies v, and $f(x) = V$. Thus $F(f)(x)$ is v multiplied by a strictly positive scalar.

Corollary 2.10. *Let Y be an H -stable closed subset of X. Then the restriction map from D*($H \setminus X$, ρ , V_{ρ}) *to D*($H \setminus Y$, ρ , V_{ρ}) *is surjective.*

Proof. This is a consequence of the known surjectivity of the restriction map from $D(X)$ to $D(Y)$, which implies the surjectivity of the restriction from $D(X, V_0)$ to $D(Y, V_{\rho})$, and of the commutativity of the diagram

$$
D(X) \longrightarrow D(Y)
$$

\n
$$
\phi \qquad \qquad \downarrow \Phi
$$

\n
$$
D(H \setminus X, \rho) \longrightarrow D(H \setminus Y, \rho).
$$

3. Distinguished principal series

If π [is a](#page-11-7) smooth representation of $G_n(K)$ on the space V_π and χ is a character of F^* , we say that π is χ -distinguished if there exists on V_{π} a nonzero linear form *L* such that $L(\pi(g)v) = \chi(\det(g))L(v)$ whenever *g* is in $G_n(F)$ and *v* belongs to V_π . If χ is trivial, we simply say that π is distinguished.

We first recall the following:

Theorem 3.1 [Flicker 1991, Proposition 12]. Let π be a smooth irreducible dis*tinguished representation of* $G_n(K)$ *. Then* $\pi^{\sigma} \simeq \check{\pi}$ *.*

Let χ_1, \ldots, χ_n be *n* characters of K^* , with none of their quotients equal to $|\cdot|_K$. We denote by χ the character of $b \in B_n(K)$ defined by $\chi(b) = \chi_1(b_1) \cdots \chi_n(b_n)$, [wher](#page-11-4)e the b_i are the diagonal entries of b .

We denote by $\pi(\chi)$ the representation of $G_n(K)$ by right translation on the space of functions $D(B_n(K)\backslash G_n(K), \Delta_{B_n}^{-1/2}\chi)$. This representation is smooth and irreducible; we call it the principal series attached to χ . For a smooth representation π of $G_n(K)$, we denote by $\check{\pi}$ its smooth contragredient.

Lemma 3.2 [Flicker 1992, Proposition 26]. *Let* $\overline{m} = (m_1, \ldots, m_l)$ *be a partition of a positive integer m*, *let P^m be the corresponding standard parabolic subgroup*, *and for each* $1 \leq i \leq l$, *let* π_i *be a smooth distinguished representation of* $G_{m_i}(K)$ *. Then*

$$
\pi_1 \times \cdots \times \pi_l = \mathrm{ind}_{P_{\overline{m}}(K)}^{G_m(K)}(\Delta_{P_{\overline{m}}(K)}^{-1/2}(\pi_1 \otimes \cdots \otimes \pi_l))
$$

is distinguished.

We now come to the principal result:

Proposition 3.3. Let $\chi = (\chi_1, \ldots, \chi_n)$ be [a ch](#page-4-0)ara[cter o](#page-5-0)f $B_n(K)$ with none of the *characters* χ*ⁱ* /χ*^j equal to* | · |*^K . Suppose that the principal series representation* $\pi(\chi)$ *is distinguished. Then there exists a reordering of the* χ_i *and an* $r \leq n/2$ *satisfying* $\chi_{i+1}^{\sigma} = \chi_i^{-1}$ *for* $i = 1, 3, ..., 2r - 1$ *and* $\chi_i|_{F^*} = 1$ *for* $i > 2r$ *.*

Proof. We write $B = B_n(K)$ and $G = G_n(K)$. From Corollaries 2.7 and 2.10, we have the following exact sequence of smooth $G_n(F)$ -modules:

$$
D(B\setminus G-A_1,\Delta_B^{-1/2}\chi)\hookrightarrow D(B\setminus G,\Delta_B^{-1/2}\chi)\to D(B\setminus A_1,\Delta_B^{-1/2}\chi).
$$

Hence there is a nonzero distinguished linear form either on $D(B \setminus A_1, \Delta_B^{-1/2} \chi)$, or on $D(B \setminus G - A_1, \Delta_B^{-1/2} \chi)$.

In the second case, we have the exact sequence

$$
D(B\setminus G-A_1\sqcup A_2,\Delta_B^{-1/2}\chi)\hookrightarrow D(B\setminus G-A_1,\Delta_B^{-1/2}\chi)\to D(B\setminus A_2,\Delta_B^{-1/2}\chi).
$$

Repeating the process, we deduce the existence of a nonzero distinguished linear form on one of the spaces $D(B \setminus A_i, \Delta_B^{-1/2} \chi)$.

By Corollary 2.5, we may choose w in S_n and $r \leq n/2$ with $A_i = BU_r^w G_n(F)$. The application $f \mapsto (x \mapsto f(U_r^w x))$ gives an isomorphism of $G_n(F)$ -modules between

$$
D(B\setminus A_i, \Delta_B^{-1/2}\chi)
$$
 and $D(U_r^{-w}BU_r^w \cap G_n(F)\setminus G_n(F), \Delta'\chi'),$

where $\Delta'(x) = \Delta_B^{-1/2} (U_r^w x U_r^{-w})$ and $\chi'(x) = \chi (U_r^w x U_r^{-w})$.

Now there exists a nonzero $G_n(F)$ -invariant linear form on

$$
D(U_r^{-w}BU_r^w\cap G_n(F)\backslash G_n(F),\Delta'\chi')
$$

if and only if $\Delta' \chi'$ is equal to the inverse of the module of $U_r^{-w}BU_r^w \cap G_n(F)$; see [Bushnell and Henniart 2006, Chapter 1, Proposition 3.4]. From this we deduce that χ' is positive on $U_r^{-w}BU_r^w \cap G_n(F)$ or equivalently χ is positive on $B \cap U_r^w G_n(F) U_r^{-w}.$

Let \overline{T}_r be the *F*-torus of matrices of the form

$$
diag(z_1, z_1^{\sigma}, \ldots, z_r, z_r^{\sigma}, x_1, \ldots, x_t),
$$

where $2r + t = n$, $z_i \in K^*$, and $x_i \in F^*$. Then $\overline{T}_r^w \subset B \cap U_r^w G_n(F) U_r^{-w}$, so that χ must be positive on \overline{T}_r^w .

If χ is unitary, then χ is trivial on \overline{T}_{r}^{w} , and $\pi(\chi)$ is of the desired form.

For the general case, we deduce from Theorem 3.1, that there exist three integers $p \ge 0$, $q \ge 0$, and $s \ge 0$ such that up to reordering the χ_i are as follows: For $1 \le i \le p$, we have $\chi_{2i} = \chi_{2i}^{-\sigma}$ $\sum_{2i-1}^{-\sigma}$. For $1 \le k \le q$, we have $\chi_{2p+k}|_{F^*} = 1$, and these χ_{2p+k} are distinct (meaning $\chi_{2p+k} \neq \chi_{2p-k}^{-\sigma}$ $\frac{-\sigma}{2p+k'}$ for $k \neq k'$). For $1 \leq j \leq s$, we have $\chi_{2p+q+j}|_{F^*} = \eta_{K/F}$, and these χ_{2p+q+j} are distinct.

We write $\mu_k = \chi_{2p+k}$ for $q \ge k \ge 1$ and $\nu'_k = \chi_{2p+q+k'}$ for $s \ge k' \ge 1$.

We will show that if such a character χ is positive on a conjugate of \overline{T}_r by an element of S_n , then $s = 0$.

Suppose v_1 appears. Then either v_1 is positive on F^* , which is not possible, or it is paired with another χ_i , and (ν_1, χ_i) is positive on elements (z, z^{σ}) for *z* in K^* .

Suppose $\chi_i = v_i$ for some $j \neq 1$. Then (v_1, χ_i) is unitary, so it must be trivial on pairs (z, z^{σ}) , which implies $v_1 = v_j^{-\sigma} = v_j$, which is absurd.

The character χ_i cannot be of the form μ_j , because this would imply $v_1|_{F^*} = 1$. Suppose finally that $i \leq 2p$. In this case $v_1^{-\sigma} = v_1$ must be the unitary part of χ_i because of the positivity of (v_1, χ_i) on the pairs (z, z^{σ}) .

But χ_i ^{- σ} also appears and is not trivial on F^* . Hence it must be paired with another character χ_j with $j \leq 2p$ and $j \neq i$ such that $(\chi_i^{-\sigma}, \chi_j)$ is positive on the elements (z, z^{σ}) for *z* in K^* . This implies that χ_j has unitary part $v_1^{-\sigma} = v_1$. The character χ_i cannot be a μ_k because of its unitary part.

If it is a χ_k with $k \leq 2p$, we consider $\chi_k^{-\sigma}$ again.

By repeating the process long enough, we can suppose that χ_j is of the form ν_k with $k \neq 1$. Taking unitary parts, we see that $v_k = v_1^{-\sigma} = v_1$, which is in contradiction with the fact that the v_i are all different. We conclude that $s = 0$.

Theorem 3.4. Let $\chi = (\chi_1, \ldots, \chi_n)$ be a character of $T_n(K)$. Then the principal *series representation* $\pi(\chi)$ *is distinguished if and only if there exists an* $r \leq n/2$ *such that* $\chi_{i+1}^{\sigma} = \chi_i^{-1}$ *for i* = 1, 3, ..., 2*r* − 1 *and* $\chi_i|_{F^*} = 1$ *for i* > 2*r*.

Proof. There is one implication left.

Suppose χ is of the desired form. Then $\pi(\chi)$ [is parabolica](#page-11-0)lly (unitarily) induced from representations of the type $\pi(\chi_i, \chi_i^{-\sigma})$ of $G_2(K)$ and from distinguished characters of *K* ∗ .

Hence by Lemma 3.2 we need only show that the representations $\pi(\chi_i, \chi_i^{-\sigma})$ are distinguished. But this is just Corollary 4.2 of the next section.

This gives a counterexample to a conjecture of Jacquet [Anandavardhanan 2005, Conjecture 1], which asserts that if an irreducible admissible representation π of $G_n(K)$ is such that $\tilde{\pi}$ is isomorphic to π^{σ} , then it is distinguished if *n* is odd, and is distinguished or $\eta_{K/F}$ -distinguished if *n* is even.

Corollary 3.5. *For n* \geq 3, *there exists a smooth irreducible representation* π *of* $G_n(K)$, with central character trivial on F^* , that is neither distinguished nor $\eta_{K/F}$ -distinguished but whose smooth contragredient $\check{\pi}$ is isomorphic to π^{σ} .

Proof. [Take](#page-7-0) χ_1, \ldots, χ_n , all different, such that $\chi_1|_{F^*} = \chi_2|_{F^*} = \eta_{K/F}$, and $\chi_j|_{F^*} = 1$ for $3 \leq j \leq n$. Because each χ_i has trivial restriction to $N_{K/F}(K^*)$, it is equal to $\chi_i^{-\sigma}$; hence $\check{\pi}$ is isomorphic to π^{σ} . Another consequence is that if *k* and *l* are two distinct integers between 1 and *n*, then $\chi_k \neq \chi_l^{-\sigma}$, because we assumed the χ_l are all different.

Then it follows from Theorem 3.4 that $\pi = \pi(\chi_1, \ldots, \chi_n)$ is neither distinguished nor $\eta_{K/F}$ [-distin](#page-11-2)guished, but clearly the central character of π is trivial on F^* , and $\check{\pi}$ is isomorphic to π^{σ} .

4. Distinguishability and gamma factors for GL(2)

In this secti[on we generalize to smooth i](#page-11-8)nfinite dimensional irreducible representations of $G_2(K)$ a criterion of Hakim [1991, Theorem 4.1], which characterizes smooth unitary irreducible distinguished representations of $G_2(K)$. In the proof of that theorem, Hakim deals with unitary representations so that the integrals of Kirillov functions on F^* with respect to a Haar measure of F^* converge. We bypass the convergence problems using [Jacquet and Langlands 1970, Proposition 2.9 of Chapter 1].

We denote $M(K)$ [by the mirabolic subgr](#page-11-8)oup of $G_2(K)$ of matrices of the form $\binom{a}{0}$ if X^* and x in K , and by $M(F)$ its intersection with $G_2(F)$. We let $w = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Let π [be a smooth infin](#page-11-8)ite dimensional irreducible representation of $G_2(K)$. It is known that π is generic (see for example [Zelevinsky 1980]). Let $K(\pi, \psi)$ be its Kirillov model corresponding to ψ [Jacquet and Langlands 1970, Theorem 2.13]. This model contains the subspace $D(K^*)$ of functions with compact support on the group K^* . If ϕ belongs to $K(\pi, \psi)$ and *x* belongs to *K*, then $\phi - \pi \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \phi$ belongs to $D(K^*)$ [Jacquet and Langlands 1970, Chapter 1, Proposition 2.9]. From this follows that $K(\pi, \psi) = D(K^*) + \pi(w)D(K^*)$.

We now recall a consequence of the functional equation at 1/2 for Kirillov representations [Bump 1997, Section 4.7].

For all ϕ in $K(\pi, \psi)$ and χ a character of K^* , we have

(1)
$$
\int_{K^*} \pi(w) \phi(x) (c_\pi \chi)^{-1}(x) d^* x = \gamma(\pi \otimes \chi, \psi) \int_{K^*} \phi(x) \chi(x) d^* x
$$

whenever both sides converge absolutely, where d^*x is a Haar measure on K^* and c_{π} is the central character of π .

Theorem 4.1. Let π be a smooth irreducible r[epres](#page-9-2)entation of $G_2(K)$ of infinite *dimension with central character trivial on F*[∗] , *and let* ψ *be a nontrivial character of* K trivial on F. If $\gamma(\pi \otimes \chi, \psi) = 1$ for every character χ of K^{*} trivial on F^{*}, *then* π *is distinguished.*

Proof. In fact, using a Fourier inversion in the functional equation (1) and the change of variable $x \mapsto x^{-1}$, we deduce that

$$
c_{\pi}(x) \int_{F^*} \pi(w) \phi(tx^{-1}) d^* t = \int_{F^*} \phi(tx) d^* t \quad \text{for all } \phi \in D(K^*) \cap \pi(w) D(K^*),
$$

where d^*t is a Haar measure on F^* . For $x = 1$, this gives

$$
\int_{F^*} \pi(w)\phi(t)d^*t = \int_{F^*} \phi(t)d^*t.
$$

Now we define on $K(\pi, \psi)$ a linear form λ by

$$
\lambda(\phi_1 + \pi(w)\phi_2) = \int_{F^*} \phi_1(t) d^* t + \int_{F^*} \phi_2(t) d^* t \quad \text{for } \phi_1, \phi_2 \in D(K^*).
$$

This is well defined by because of the previous equality and the fact that $K(\pi, \psi)$ $D(K^*) + \pi(w)D(K^*)$.

It is clear that λ is w-invariant. Since the central character of π is trivial on F^* , λ is also F^* -invariant. Because $GL_2(F)$ is generated by $M(F)$, its center, and w, it remains to show that λ is $M(F)$ -invariant.

Since ψ is trivial on *F*, we have $\lambda(\pi(m)\phi) = \lambda(\phi)$ if $\phi \in D(K^*)$ and $m \in M(F)$. Now if $\phi = \pi(w)\phi_2 \in \pi(w)D(K^*)$ and if *a* belongs to F^* , then

$$
\pi\left(\begin{smallmatrix} a & 0 \\ 0 & 1 \end{smallmatrix}\right)\pi(w)\phi_2 = \pi(w)\pi\left(\begin{smallmatrix} 1 & 0 \\ 0 & a \end{smallmatrix}\right)\phi_2 = \pi(w)\pi\left(\begin{smallmatrix} a^{-1} & 0 \\ 0 & 1 \end{smallmatrix}\right)\phi_2
$$

because the central character of π is trivial on F^* , and $\lambda(\pi\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}\phi) = \lambda(\phi)$.

If $x \in F$, then $\pi \left(\begin{smallmatrix} 1 & x \\ 0 & 1 \end{smallmatrix} \right) \phi - \phi$ is a function in $D(K^*)$, which vanishes on F^* . Hence $\lambda \pi \left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \phi - \phi \right) = 0.$

Eventually λ is $M(F)$ -invariant and hence $G_2(F)$ -invariant; it is clear that its restriction to $D(K^*)$ is nonzero.

Corollary 4.2. Let μ be a character of K^* . Then $\pi(\mu, \mu^{-\sigma})$ is distinguished.

Proof. First note that the central character $\mu \mu^{-\sigma}$ of $\pi(\mu, \mu^{-\sigma})$ is trivial on F^* . Now let χ be a character of K^*/F^* . Then

$$
\gamma(\pi(\mu, \mu^{-\sigma}) \otimes \chi, \psi) = \gamma(\mu \chi, \psi) \gamma(\mu^{-\sigma} \chi, \psi) = \gamma(\mu \chi, \psi) \gamma(\mu^{-1} \chi^{\sigma}, \psi^{\sigma}),
$$

and since $\psi|_{F} = 1$ and $\chi|_{F^*} = 1$, we have $\psi^{\sigma} = \psi^{-1}$ and $\chi^{\sigma} = \chi^{-1}$. Thus $\gamma(\pi(\chi, \chi^{-\sigma}), \psi) = \gamma(\mu \chi, \psi) \gamma(\mu^{-1} \chi^{-1}, \psi^{-1}) = 1$. The conclusion then follows from Theorem 4.1.

Using [Aizenbud and Gourevitch 2007, Theorem 1.2], Theorem 4.1's converse is also true:

Theorem 4.3. *Let* π *be a smooth irreducible representation of infinite dimension of* $G_2(K)$ with central character trivial on F^* , and let ψ be a nontrivial character of *K*/*F*. *Then* π *is distinguished if and only if* $\gamma(\pi \otimes \chi, \psi) = 1$ *for every character* χ *of* K^* that is trivial on F^* .

Proof. It suffices to show that if π is a smooth irreducible distinguished representation of infinite dimension of $G_2(K)$ and ψ is a nontrivial character of K/F , then $\gamma(\pi, \psi) = 1$. Suppose λ is a nonzero $G_2(F)$ -invariant linear form on $K(\pi, \psi)$. The proof of the corollary to [Hakim 1991, Proposition 3.3] shows that $\lambda(\phi)$ is equal to $\int_{F^*} \phi(t) d^* t$ for ϕ in $D(K^*)$. Hence for any function ϕ in $D(K^*) \cap \pi(w)D(K^*)$, we must have $\int_{F^*} \phi(t) d^* t = \int_{F^*} \pi(w) \phi(t) d^* t$.

From this we deduce that for any function ϕ in $D(K^*) \cap \pi(w)D(K^*)$, we have

$$
\int_{K^*} \pi(w)\phi(x)c_{\pi}^{-1}(x)d^*x = \int_{K^*/F^*} c_{\pi}^{-1}(a) \int_{F^*} \pi(w)\phi(ta)d^*t da
$$
\n
$$
= \int_{K^*/F^*} c_{\pi}^{-1}(a) \int_{F^*} \pi\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \pi(w)\phi(t)d^*t da
$$
\n
$$
= \int_{K^*/F^*} c_{\pi}^{-1}(a) \int_{F^*} \pi(w)c_{\pi}(a)\pi\begin{pmatrix} a^{-1} & 0 \\ 0 & 1 \end{pmatrix} \phi(t)d^*t da
$$
\n
$$
= \int_{K^*/F^*} \int_{F^*} \pi\begin{pmatrix} a^{-1} & 0 \\ 0 & 1 \end{pmatrix} \phi(t)d^*t da
$$
\n
$$
= \int_{K^*/F^*} \int_{F^*} \phi(ta^{-1})d^*t da
$$
\n
$$
= \int_{K^*/F^*} \int_{F^*} \phi(ta)d^*t da = \int_{K^*} \phi(x)d^*x.
$$

This implies that either $\gamma(\pi, \psi)$ is equal to one or $\int_{K^*} \phi(x) d^*x$ is equal to zero on $D(K^*) \cap \pi(w)D(K^*)$. The latter cannot be the case, because we could then define two independent *K*^{*}-invariant linear forms on $K(\pi, \psi) = D(K^*) + \pi(w)D(K^*)$ given by $\phi_1 + \pi(w)\phi_2 \mapsto \int_{K^*} \phi_1(x) d^*x$ and $\phi_1 + \pi(w)\phi_2 \mapsto \int_{K^*} \phi_2(x) d^*x$, which contradicts [Aizenbud and Gourevitch 2007, Theorem 1.2].

Acknowledgments

I would like to thank [Corinne Blondel](http://arxiv.org/abs/0707.2363v2) and Paul Gerardin for many helpful com- ´ ments and suggestions.

[Re](http://www.emis.de/cgi-bin/MATH-item?1079.22013)ferences

- [Aizenbud and Gourevitch 2007] [A. Aizen](http://www.ams.org/mathscinet-getitem?mr=97k:11080)[bud and D. Goure](http://www.emis.de/cgi-bin/MATH-item?0868.11022)vitch, "A proof of the multiplicity one conjecture for $GL(n)$ in $GL(n + 1)$ ", preprint, 2007. arXiv 0707.2363v2
- [Anandavardhanan 2005] U. [K. Anandavardhan](http://www.ams.org/mathscinet-getitem?mr=2007m:22013)[an, "Distinguishe](http://www.emis.de/cgi-bin/MATH-item?1100.11041)d non-Archimedean representations", pp. 183–192 in *Algebra and number theory* (Hyderabad, 2003), edited by R. Tandon, Hin[dustan Book Age](http://www.emis.de/cgi-bin/MATH-item?0725.11026)ncy, Delhi, 2005. MR 2006k:22013 Zbl 1079.22013
- [Bump 1997] D. Bump, *[Automorphic forms and representations](http://www.numdam.org/item?id=BSMF_1992__120_4_413_0)*, Cambridge Studies in Advanced Mathematics 55, [Cambridge Uni](http://www.ams.org/mathscinet-getitem?mr=93j:22033)[versity Press, 199](http://www.emis.de/cgi-bin/MATH-item?0778.11030)7. MR 97k:11080 Zbl 0868.11022
- [Bushnell and Henniart 2006] [C. J. Bushnell and G. Henniart,](http://dx.doi.org/10.2307/2374997) *The local Langlands conjecture for* GL(2), Grundlehren [series](http://www.ams.org/mathscinet-getitem?mr=95i:22028) 335, Spri[nger, Berlin, 200](http://www.emis.de/cgi-bin/MATH-item?0837.11030)6. MR 2007m:22013 Zbl 1100.11041
- [Flicker 1991] [Y. Z. Flicker, "On distin](http://dx.doi.org/10.1215/S0012-7094-91-06201-0)guished representations", *J. Reine Angew. Math.* 418 (1991), [139–1](http://www.emis.de/cgi-bin/MATH-item?0724.22016)72. MR 92i:22019 Zbl 0725.11026
- [Flicker 1992] Y. Z. Flicker, "Distinguished representations and a Fourier summation formula", *Bull. Soc. Math. France* 120:4 (19[92\), 413–465.](http://www.ams.org/mathscinet-getitem?mr=53:5481) [MR 93j:22033](http://www.emis.de/cgi-bin/MATH-item?0236.12010) Zbl 0778.11030
- [\[Flicker and Hakim 1994\]](http://muse.jhu.edu/journals/american_journal_of_mathematics/v126/126.4kable.pdf) Y. Z. Flicker and J. L. Hakim, "Quaternionic distinguished representa[tio](http://www.ams.org/mathscinet-getitem?mr=2005g:11083)ns", *[Amer. J. Mat](http://www.emis.de/cgi-bin/MATH-item?1061.11023)h.* 116:3 (1994), 683–736. MR 95i:22028 Zbl 0837.11030
- [Hakim 1991] J. Hakim, "Distinguished *p*-adic representations", *Duke Math. J.* 62:1 (1991), 1–22. MR 92c:22037 Zbl 0724.22016
- [Jacquet and Langlands 1970] H. Jacquet and R. P. Langlands, *Automorphic forms on* GL(2), Lec[t](http://www.ams.org/mathscinet-getitem?mr=50:7096)[ure Notes in Math](http://www.emis.de/cgi-bin/MATH-item?0137.02601)ematics 114, Springer, Berlin, 1970. MR 53 #5481 Zbl 0236.12010
- [Kable 2004] A. C. Kable, "Asai *L*-functions and Jacquet's conjecture", *Amer. J. Math.* 126:4 (2004), [789–](http://www.ams.org/mathscinet-getitem?mr=99h:20075)820. [MR 2005g:](http://www.emis.de/cgi-bin/MATH-item?0927.20024)11083 Zbl 1061.11023
- [Panichi 2001] M.-N. Panichi, *[Caractérisations du spectre tempéré de](http://www.numdam.org/item?id=ASENS_1980_4_13_2_165_0)* GL*n*(C)/GL*n*(R), thesis, [Université d](http://www.numdam.org/item?id=ASENS_1980_4_13_2_165_0)e Paris 7, 2001.
- [\[Serre 1](http://www.emis.de/cgi-bin/MATH-item?0441.22014)968] J.-P. Serre, *Corps locaux*, 2nd ed., Publications de l'Université de Nancago 8, Hermann, Paris, 1968. MR 50 #7096 Zbl 0137.02601
- [Springer 1998] T. A. Springer, *Linear algebraic groups*, 2nd ed., Progress in Math. 9, Birkhäuser, Boston, 1998. MR 99h:20075 Zbl 0927.20024
- [Zelevinsky 1980] A. V. Zelevinsky, "Induced representations of reductive p-adic groups, II: On irreducible representations of GL(*n*)", *Ann. Scient. École Norm. Sup.* (4) 13:2 (1980), 165–210. MR 83g:22012 Zbl 0441.22014

Received August 2, 2008.

NADIR MATRINGE INSTITUT DE MATHÉMATIQUES DE JUSSIEU 175, RUE DU CHEVALERET 75013 PARIS FRANCE matringe@math.jussieu.fr