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In 1998, Han and Yim proved that the Hopf vector fields, namely, the unit
Killing vector fields, are the unique unit vector fields on the unit sphere S3

that define harmonic maps from S3 to (T 1 S3, G̃s), where G̃s is the Sasaki
metric. In this paper, by using a different method, we get an analogue of
Han and Yim’s theorem for a Riemannian three-manifold with constant
sectional curvature k 6= 0. An immediate consequence is that there does
not exist a unit vector field on the hyperbolic three-space that defines a har-
monic map. We also extend this result for Riemannian (2n + 1)-manifolds
(M, g) of constant sectional curvature k > 0 with π1(M) 6= 0.

1. Introduction

The existence and explicit construction of harmonic mappings between two given
Riemannian manifolds (M, g) and (M ′, g′) are two of the most fundamental prob-
lems of the theory of harmonic mappings. If M is compact and M ′ has nonpositive
sectional curvature, then any smooth map from M to M ′ can be deformed into a
harmonic map using the heat flow method [Eells and Sampson 1964]. However,
there is no general existence theory of harmonic mappings if the target manifold
does not satisfy the nonpositivity curvature condition. This fact makes it interest-
ing to find harmonic maps defined by vector fields and unit vector fields [Abbassi
et al. 2007; 2008; Benyounes et al. 2007b; 2007a; Ishihara 1979; Nouhaud 1977;
Perrone 2003; 2005; Rukimbira 2002; Tsukada and Vanhecke 2001].

Let X1(M) be the set of all smooth unit vector fields on (M, g), which we
suppose to be nonempty, or, equivalently, we suppose the Euler–Poincaré charac-
teristic of M vanishes. Let (T1 M, G̃s) be the unit tangent sphere bundle equipped
with the Sasaki metric G̃s . A unit vector field V ∈ X1(M) determines a map
between (M, g) and (T1 M, G̃s), and the energy of V is defined as the energy of
the corresponding map V : (M, g) → (T1 M, G̃s). Of course the first candidates in
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the study of the harmonicity of unit vector fields are the Killing vector fields: on
the unit sphere S2m+1 equipped with the canonical metric, the unit Killing vector
fields are exactly the Hopf vector fields; see [Wiegmink 1995]. Then, Han and Yim
[1998] proved that a unit Killing vector field ξ determines a harmonic map from
S2m+1 to (T1S2m+1, G̃s). The same result holds if one considers a Riemannian
manifold (M, g) of constant sectional curvature κ > 0. In dimension three they
showed the following interesting result.

Theorem A [Han and Yim 1998]. The unit vector fields that define harmonic maps
on the unit sphere S3, with respect to the Sasaki metric G̃s , are precisely the Hopf
vector fields or, equivalently, the unit Killing vector fields.

Recently, a very large family of metrics G on TM, called Riemannian g-natural
metrics, has been considered and studied [Abbassi and Sarih 2005; Abbassi and
Calvaruso 2007]. This family of metrics, which includes the Sasaki metric Gs ,
the Cheeger–Gromol metric and other well-known Riemannian metrics on TM,
depends on six arbitrary smooth real functions defined on [0, +∞) [Abbassi and
Sarih 2005]. The restrictions G̃ of such metrics to the tangent sphere bundle T1 M
possess a simpler form and globally depend on four real parameters a, b, c and d
satisfying some inequalities (the parameters a = 1 and b = c = d = 0 define the
Sasaki metric G̃s). In [Abbassi et al. 2008] the harmonicity of the map M → T1 M
defined by a unit vector field was studied in the case when the unit tangent sphere
bundle T1 M is equipped with an arbitrary Riemannian g-natural metric G̃.

Han and Yim [1998] showed their Theorem A by using the property that the
Hopf fibration S3

→ CP1 is the unique fibration of the round three-sphere by great
circles such that the fibres are parallel (in the sense of having constance distance
from another) [Escobales 1975]. In this paper, by using a different method, we
extend Theorem A by replacing the unit sphere S3 by a Riemannian three-manifold
of constant sectional curvature k 6= 0 and the Sasaki metric G̃s by an arbitrary
Riemannian g-natural metric G̃a,d,c that is a deformation depending on three real
parameters of the Sasaki metric G̃s ; such a deformation preserves the property
(of the Sasaki metric) that horizontal and vertical lifts are orthogonal. We do not
assume that M is compact. So, in particular, M may be an open (connected) subset
of the sphere S3. More precisely we get this:

Theorem 1.1. Let (M, g) be a Riemannian three-manifold of constant sectional
curvature κ 6= 0 and T1 M its unit tangent sphere bundle equipped with a Riemann-
ian g-natural metric G̃a,d,c with d 6= −κa (and b = 0). Let ξ be in X1(M). Then
ξ : (M, g) → (T1 M, G̃a,d,c) is a harmonic map if and only if ξ is Killing and κ > 0.

Theorem 1.1 has an immediate consequence:

Corollary 1.2. Han and Yim’s theorem is invariant under a three-parameter de-
formation of the Sasaki metric on T1 M.
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In the case of the hyperbolic space H n(−k) for k > 0, it is an open question
whether some unit vector field exists (of course, non-Killing) that defines a har-
monic map from H n(−k) to (T1 H n(−k), G̃s). From Theorem 1.1 we have the
following nonexistence result in dimension three.

Corollary 1.3. Let H 3(−k) be the hyperbolic three-space. Then there does not
exist a unit vector field that defines a harmonic map between the Riemannian
manifolds H 3(−k) and (T1 H 3(−k), G̃s). Such a result is invariant under a three-
parameter deformation of the Sasaki metric on T1 H 3(−k).

On a flat three-space and on the sphere S3 equipped with a metric of nonconstant
sectional curvature we give examples of unit vector fields that are not Killing but
define harmonic maps; see Example 3.1.

In their paper Han and Yim [Han and Yim 1998, page 84] posed the question of
whether Theorem A is true for higher dimensions spheres. Here, we consider the
following question (which generalizes the Han and Yim’s question): Let (M, g) be
a real space form of constant sectional curvature κ > 0. Are the unit Killing vector
fields on M the only unit vector fields that define harmonic maps from (M, g) to
(T1 M, G̃)? If M is not homeomorphic to the sphere, we get a positive answer:

Theorem 1.4. Let (M, g) be a real space form of constant positive sectional cur-
vature κ , with dim M = 2m + 1. Suppose that M is not homeomorphic to the
sphere S2m+1. Let (T 1 M, G̃) be its unit tangent sphere bundle equipped with a
Riemannian g-natural metric G̃ = G̃a,b,c,d with b 6=0 and d 6=−ka. Let ξ ∈X1(M).
Then

(i) ξ : (M, g) → (T 1 M, G̃) is a harmonic map if and only if ξ is Killing;

(ii) if ξ is a solenoidal (that is, a divergence free) unit vector field, then

ξ : (M, g) → (T 1 M, G̃)

is a harmonic map if and only if ξ has minimum energy EG̃ : X1(M) → R.

Remark 1.5. Brito and Salvai [2004, Proposition 1] proved that if M is a compact
Riemannian manifold and ξ is a unit Killing vector field eigenvector of the Ricci
operator and is of minimum Ricci curvature, then ξ has minimum energy among
all solenoidal unit vector fields.

In the final Section 5, we remark that the main results of [Brito 2000; Per-
rone 2008], related to the energy restricted to X1(M), are invariant under a four-
parameter deformation of the Sasaki metric on T1 M .

2. Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold and ∇ its Levi-Civita con-
nection. We denote by R the Riemannian curvature tensor of (M, g) with the sign
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convention

R(X, Y )Z = −∇X∇Y Z + ∇Y ∇X Z + ∇[X,Y ]Z for all X, Y, Z ∈ X(M).

We denote by Ric the Ricci tensor of type (0, 2), by Q the corresponding endo-
morphism field, and by r the scalar curvature.

At any point (x, u) of the tangent bundle TM, the tangent space of TM splits
into horizontal and vertical subspaces with respect to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u).

The Riemannian g-natural metrics form a large family of Riemannian metrics
on TM. These metrics depend on several smooth functions from R+

= [0, +∞)

to R, and, as their name suggests, they arise from a natural construction starting
from a Riemannian metric g over M ; see [Abbassi and Sarih 2005; Kolář et al.
1993]. Given an arbitrary g-natural metric G on the tangent bundle TM of a
Riemannian manifold (M, g), there are six smooth functions αi , βi : R+

→ R

for i = 1, 2, 3 such that for every u, X, Y ∈ Mx , we have

(2-1)



G(x,u)(Xh, Y h) = (α1 + α3)(r2)gx(X, Y )

+ (β1 + β3)(r2)gx(X, u)gx(Y, u),

G(x,u)(Xh, Y v) = G(x,u)(Xv, Y h)

= α2(r2)gx(X, Y ) + β2(r2)gx(X, u)gx(Y, u),

G(x,u)(Xv, Y v) = α1(r2)gx(X, Y ) + β1(r2)gx(X, u)gx(Y, u),

where r2
= gx(u, u). Put

φi (t) = αi (t) + tβi (t), α(t) = α1(t)(α1 + α3)(t) − α2
2(t),

φ(t) = φ1(t)(φ1 + φ3)(t) − φ2
2(t)

for all t ∈ R+. Then, a g-natural metric G on TM is Riemannian if and only if the
inequalities

(2-2)
α1(t) > 0, φ1(t) > 0,

α(t) > 0, φ(t) > 0

hold for all t ∈ R+. Notice that the Sasaki metric Gs , the Cheeger–Gromoll metric
and other Riemannian metrics on TM belong to the class of Riemannian g-natural
metrics on TM for which horizontal and vertical distributions are mutually orthog-
onal (that is, α2 = β2 = 0).

Next, the unit tangent sphere bundle over a Riemannian manifold (M, g) is the
hypersurface T1 M = {(x, u) ∈ TM | gx(u, u) = 1}. The tangent space of T1 M at a
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point (x, u) ∈ T1 M is given by

(2-3) (T1 M)(x,u) = {Xh
+ Y v

: X ∈ Mx , Y ∈ {u}
⊥

⊂ Mx}.

We call g-natural metrics on T1 M the restrictions of g-natural metrics of TM
to its hypersurface T1 M . These metrics possess a simpler form. Precisely, taking
in account of (2-3), a Riemannian g-natural metric G̃ on T1 M is induced by a
Riemannian g-natural G on TM of the form

(2-4)


G(x,u)(Xh

1 , Xh
2 ) = (α1 + α3)(r2)gx(X1, X2)

+ (β1 + β3)(r2)gx(X1, u)gx(X2, u),

G(x,u)(Xh
1 , Y v

1 ) = α2(r2)gx(X1, Y1),

G(x,u)(Y v
1 , Y v

2 ) = α1(r2)gx(Y1, Y2),

for all X1, X2 ∈ Mx and Y1, Y2 ∈ {u}
⊥; see [Abbassi and Sarih 2005; Abbassi and

Calvaruso 2007] and references therein. In other words, G̃ on T1 M is necessarily
induced by a Riemannian g-natural G on TM of the form (2-1) with

(2-5) α1 = a, α2 = b, α3 = c, β1 = β2 = 0, β3 = β,

where a, b, c are three real constants and β : [0, ∞) → R is a smooth function.
Such a metric G̃ on T1 M only depends on the value d := β(1) of β at 1. From
(2-2) and (2-5), it follows that G̃ is Riemannian if and only if the constants a, b, c
and d satisfy the inequalities

(2-6) a > 0, α := a(a + c) − b2 > 0, φ := a(a + c + d) − b2 > 0.

We denote by G̃a,b,c,d such a Riemannian g-natural metric on T1 M and define
G̃a,c,d = G̃a,0,c,d . We can consider G̃a,b,c,d to be a deformation on four parameters
of the Sasaki metric G̃s = G̃1,0,0,0. It should be noted that, by (2-4), horizontal and
vertical lifts are orthogonal with respect to G̃ if and only if b = 0.

Now let (M, g) be a compact Riemannian manifold of dimension n. A unit
vector field V defines a mapping from (M, g) to T1 M equipped with a Riemann-
ian g-natural metric G̃. The energy functional EG̃ : X1(M) → R is defined by
EG̃(V ) =

∫
M e(V )dvg, where e(V ) is the energy density of V and is given by

[Abbassi et al. 2008]

2e(V ) = n(a + c) + d + a‖∇V ‖
2
+ 2b div V .

So, integrating over M we get

(2-7) EG̃(V ) =
1
2(n(a + c) + d) vol(M, g) +

a
2

∫
M

‖∇V ‖
2dvg.
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In [Abbassi et al. 2008], it was proved that V : (M, g) → (T1 M, G̃) is a harmonic
map if and only if

(2-8)
1V is collinear to V , and

b QV + a tr(R(∇.V, V ) · ) = (b‖∇V ‖
2
− d div V )V + d∇V V,

where 1V = − tr ∇
2V is the rough Laplacian at V . Such conditions have a ten-

sorial character; hence they may also be considered to define a harmonic map on
noncompact manifolds. In the special case of the Sasaki metric G̃s , that is, a = 1
and b = c = d = 0, (2-8) gives a result of [Han and Yim 1998]. If V ∈ X1(M) is a
unit Killing vector field, then [Poor 1981, page 169]

∇V V = 0, div V = 0, 1V = QV,

and, V being a unit vector field, g(QV, V ) = g(1V, V ) = ‖∇V ‖
2. Then, since

a > 0, (2-8) gives this:

Proposition 2-9. If V ∈ X1(M) is a unit Killing vector field, then the harmonicity
of the map V : (M, g) → (T1 M, G̃s) implies that of V : (M, g) → (T1 M, G̃) for
any G̃.

3. Proof of Theorem 1.1

Let (M, g) be a Riemannian three-manifold of constant sectional curvature κ 6= 0
and T1 M its unit tangent sphere bundle equipped with a Riemannian g-natural
metric G̃.

Assume that ξ is a unit Killing vector field. Since M has constant sectional cur-
vature, ξ : (M, g) → (T1 M, G̃s) is a harmonic map, and hence, by Proposition 2-9,
we obtain that ξ : (M, g) → (T1 M, G̃) is a harmonic map for any G̃.

Conversely, we suppose that ξ : (M, g) → (T 1 M, G̃a,d,c) is a harmonic map,
where G̃a,d,c is a Riemannian g-natural metric with d 6= −κa (and b = 0). By
(2-8), we obtain

1ξ = ‖ξ‖
2ξ,(3-1a)

tr(R(∇.ξ, ξ) · ) = −
d
a

((div ξ)ξ − ∇ξξ).(3-1b)

Now tr(R(∇.ξ, ξ) · ) = k((div ξ)ξ − ∇ξξ) since M has constant sectional curva-
ture k. Then k 6= −d/a and condition (3-1a) imply

(3-2) div ξ = 0 and ∇ξξ = 0.

Put τ := Lξ g, where Lξ denotes the Lie derivative, that is,

τ(X, Y ) = g(∇Xξ, Y ) + g(X, ∇Y ξ).
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Since τ is a symmetric tensor of type (0, 2), we can define the corresponding
symmetric (1, 1) tensor h through τ(X, Y ) = g(h X, Y ). Then, from (3-2),

g(hξ, Y ) = τ(ξ, Y ) = g(∇ξξ, Y ) + g(ξ, ∇Y ξ) =
1
2 Y (‖ξ‖

2) = 0,

and hence hξ = 0. So, we can consider a local orthonormal basis {e1, e2, e3 = ξ}

of eigenvectors of h, with hξ = 0, he1 = λ1e1 and he2 = λ2e2. Since

div ξ = g(∇ξξ, ξ)+ g(∇e1ξ, e1) + g(∇e2ξ, e2)

=
1
2 g(he1, e1) +

1
2 g(he2, e2) =

1
2(λ1 + λ2),

from (3-2) we get λ2 = −λ1. Therefore ξ is Killing if and only if λ1 = 0. Put

f1 =
1
2λ1, f2 = g(∇e1ξ, e2), f3 = g(∇e1e2, e1),

f4 = g(∇e2e2, e1), f5 = g(∇ξ e1, e2).

Then, we have the following list of covariant derivatives:

∇e1ξ = f1 e1 + f2 e2,

∇ξξ = 0,

∇e2ξ = g(∇e2ξ, e1)e1 + g(∇e2ξ, e2)e2

= (g(he1, e2) − g(∇e1ξ, e2))e1 +
1
2 g(he2, e2)e2 = − f2 e1 − f1 e2,

∇e1e1 = g(∇e1e1, ξ)ξ + g(∇e1e1, e2)e2

= −g(∇e1ξ, e1)ξ − g(∇e1e2, e1)e2 = − f1 ξ − f3 e2,

∇e2e2 = g(∇e2e2, ξ)ξ + g(∇e2e2, e1)e1

= −g(∇e2ξ, e2)ξ + f4 e1 = −
1
2 g(he2e2)ξ + f4 e1 = f1 ξ + f4 e1,

∇e1e2 = g(∇e1e2, ξ)ξ + g(∇e1e2, e1)e1

= −g(∇e1ξ, e2)ξ + f3 e1 = − f2 ξ + f3 e1,

∇e2e1 = g(∇e2e1, ξ)ξ + g(∇e2e1, e2)e2 = −g(∇e2ξ, e1)ξ − g(∇e2e2, e1)e2

= −(g(he1, e2) − g(∇e1ξ, e2))ξ − f4e2 = f2 ξ − f4 e2,

∇ξ e1 = g(∇ξ e1, ξ)ξ + g(∇ξ e1, e2)e2 = −g(∇ξξ, e1)ξ + f5 e2 = f5 e2,

∇ξ e2 = g(∇ξ e2, ξ)ξ + g(∇ξ e2, e1)e1 = −g(∇ξξ, e2)ξ − f5 e1 = − f5 e1.

Moreover,

[e1, ξ ] = f1e1 + ( f2 − f5)e2,

[e2, ξ ] = ( f5 − f2)e1 − f1e2, [e1, e2] = −2 f2ξ + f3e1 + f4e2.
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By using the list of covariant derivatives, we get

(3-3)



R(e1, ξ)ξ = −∇e1∇ξξ + ∇ξ∇e1ξ + ∇[e1,ξ ]ξ

= ( f 2
1 − f 2

2 + ξ( f1)g)e1 + (2 f1 f5 + ξ( f2))e2,

R(e2, ξ)ξ = −∇e2∇ξξ + ∇ξ∇e2ξ + ∇[e2,ξ ]ξ

= (2 f1 f5 − ξ( f2))e1 + ( f 2
1 − f 2

2 − ξ( f1))e2,

R(e1, e2)ξ = −∇e1∇e2ξ + ∇e2∇e1ξ + ∇[e1,e2]ξ

= (e1( f2) + e2( f1) + 2 f1 f3)e1

+ (e1( f1) + e2( f2) − 2 f1 f4)e2,

R(e1, e2)e1 = −∇e1∇e2e1 + ∇e2∇e1e1 + ∇[e1,e2]e1

= −(e1( f2) + e2( f1) + 2 f1 f3)ξ

+ ( f 2
1 − f 2

2 + e1( f4) − e2( f3) − 2 f2 f5 − f 2
3 − f 2

4 )e2.

Besides, R(X, Y )Z = κ(g(X, Z)Y − g(Y, Z)X) gives

(3-4)
R(e1, ξ, e1, ξ) = R(e2, ξ, e2, ξ) = R(e1, e2, e1, e2) = κ,

R(e1, ξ)e2 = R(e1, e2)ξ = R(e2, ξ)e1 = 0.

From (3-3) and (3-4), we obtain

f 2
2 − f 2

1 − ξ( f1) = κ, 2 f1 f5 + ξ( f2) = 0,(3-5)

f 2
2 − f 2

1 + ξ( f1) = κ, 2 f1 f5 − ξ( f2) = 0,(3-6)

e1( f2) + e2( f1) + 2 f1 f3 = 0, e1( f1) + e2( f2) − 2 f1 f4 = 0,(3-7)

f 2
1 − f 2

2 + e1( f4) − e2( f3) − 2 f2 f5 − f 2
3 − f 2

4 = κ.(3-8)

From (3-5) and (3-6), we get

(3-9) f 2
2 − f 2

1 = κ, f1 f5 = 0, ξ( f1) = ξ( f2) = 0.

Using (3-9), (3-8) becomes

(3-10) e1( f4) − e2( f3) − 2 f2 f5 − f 2
3 − f 2

4 = 2k.

Now we compute 1ξ . Since

∇e1∇e1ξ = ∇e1( f1e1 + f2e2) = e1( f1)e1 + f1∇e1e1 + e1( f2)e2 + f2∇e1e2

= −( f 2
1 + f 2

2 )ξ + (e1( f1) + f2 f3)e1 + (e1( f2) − f1 f3)e2,

∇e2∇e2ξ = ∇e2(− f2e1 − f1e2) = −e2( f2)e1 − f2∇e2e1 − e2( f1)e2 − f1∇e2e2

= −( f 2
1 + f 2

2 )ξ − (e2( f2) + f1 f4)e1 − (e2( f1) − f2 f4)e2,
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and
−∇∇e1 e1ξ = f3∇e2ξ = − f3( f2 e1 + f1 e2),

−∇∇e2 e2ξ = − f4∇e1ξ = − f4( f1 e1 + f2 e2),

we have

(3-11)

−1ξ = tr ∇
2ξ

= ∇e1∇e1ξ + ∇e2∇e2ξ + ∇ξ∇ξξ − ∇∇e1 e1ξ − ∇∇e2 e2ξ − ∇∇ξ ξξ

= −‖∇ξ‖
2 ξ + (e1( f1) − e2( f2) − 2 f1 f4)e1

+ (e1( f2) − e2( f1) − 2 f1 f3)e2,

where ‖∇ξ‖
2
= 2

(
f 2
1 + f 2

2

)
. Because of (3-1a), from (3-11) we get

(3-12) e1( f1) − e2( f2) = 2 f1 f4 and e1( f2) − e2( f1) = 2 f1 f3.

Combining (3-7) and (3-12), we have

e1( f2) = e2( f2) = 0.

Moreover, (3-9) implies ξ( f2) = 0 and f 2
1 = f 2

2 −κ . So f1 and f2 are constant. If
f1 = const 6= 0, from (3-5) and (3-7) we have f3 = f4 = f5 = 0 which, by (3-8),
imply κ = 0. Since κ 6= 0, we conclude that f1 = 0 and hence ξ is Killing and,
by (3-6), we have κ = f 2

2 > 0. �.

Example 3.1 (Non-Killing unit vector fields that define harmonic maps). Let g be
a three-dimensional Lie algebra. Introduce a basis (e1, e2, e3) for g, and for real
numbers λ1, λ2 and λ3, define the Lie bracket by

(3-13) [e2, e3] = λ1e1, [e3, e1] = λ2e2, [e1, e2] = λ3e3.

On the associated Lie group G, define a metric g by left translation of the basis
(e1, e2, e3), taken as orthogonal at the identity. Suppose G to be simply connected;
otherwise we consider its universal covering. Let (ϑ1, ϑ2, ϑ3) be the metric dual
one-forms of (e1, e2, e3). If λi 6= 0, then ϑ i is a contact form, that is, ϑ i

∧dϑ i
6= 0,

and ei is the corresponding Reeb vector field. Assuming λ1 = 2 and defining ϕ

by ϕ(e1) = 0, ϕ(e2) = e3 and ϕ(e3) = −e2, we have dϑ1
= g( · , ϕ · ). Then

(η = ϑ1, g, ϕ, ξ = e1) is a contact metric structure on G; see [Blair 2002]. Such a
structure is a (κ, µ)-structure, and it is Sasakian, that is, ξ is Killing if and only if
λ2 = λ3; see [Perrone 1998], which also gives that

(a) if λ2 > 0, λ3 > 0 and λ2 6= λ3, then the group G is the three-sphere group
SU (2), ξ is not Killing, and the metric has nonconstant sectional curvature;

(b) if λ2 = 0 and λ3 > 0, then G is Ẽ2 the universal covering of the group of rigid
motions of Euclidean 2-space, ξ is not Killing, and the Ricci tensor is given by
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Rici j = 0 for i 6= j , Ric11 = − Ric33 = (4−λ2
3)/2 and Ric22 = −(λ3 −2)2/2;

hence the scalar curvature r ≤ 0, and the metric is flat if and only if λ3 = 2.

In both cases from [Perrone 2003, Theorem 1.1], we have that ξ defines a har-
monic map between the Riemannian manifolds (G, g) and (T1G, G̃s), that is, Qξ is
collinear to ξ and tr(R(∇.ξ, ξ) · ) = 0. On the other hand, in [Abbassi et al. 2008,
Theorem 7] we proved this:

Theorem 3.2. Let (M2m+1, η, g) be a contact metric manifold and G̃ an arbitrary
Riemannian g-natural metric on T1 M. Then ξ : (M, g) → (T1 M, G̃) is a harmonic
map if and only if

a tr(R(∇.ξ, ξ) · ) = −2b(‖∇ξ‖
2
− 2m)ξ and Qξ is collinear to ξ .

Since ‖∇ξ‖
2
−2m = 0 if and only if ξ is Killing [Blair 2002, Lemma 6.2, page 67],

from Theorem 3.2 we deduce that ξ : (G, g) → (T1G, G̃) defines a harmonic map
if and only if b = 0. Thus ξ : (G, g) → (T1G, G̃a,d,c) is a harmonic map.

4. Proof of Theorem 1.4

Let (M, g) be a real space form of positive constant sectional curvature κ > 0, with
π1(M) 6= 0. Then (M, g) is isometric to the spherical space form (S2m+1/0, g),
where 0 6= {Id} is a finite subgroup of O(2m + 2) in which only the identity
element has +1 as an eigenvalue, and g is the Riemannian metric on the quotient
space S2m+1/0 induced by the canonical metric.

We first prove Theorem 1.4(i). If ξ is a unit Killing vector field on M , then
as in the 3-dimensional case, ξ : (M, g) → (T1 M, G̃s) is a harmonic map and, by
Proposition 2-9, ξ : (M, g) → (T1 M, G̃) is a harmonic map for any G̃.

Vice versa, let V be in X1(M). Suppose that V : (M, g) → (T 1 M, G̃) is a
harmonic map, where G̃ is a Riemannian g-natural metric on T 1 M with b 6= 0 and
d + ak 6= 0. Then, by (2-8), 1V = ‖∇V ‖

2V and

(4-1) bQV = −a(tr R(∇.V, V ) · ) + b‖∇V ‖
2V + d(∇V V − (div V )V ).

Since M has constant sectional curvature κ , (4-1) becomes

(4-2) b(2mκ − ‖∇V ‖
2)V = (d + aκ)(∇V V − (div V )V ).

This formula implies b(‖∇V ‖
2
− 2mκ) = (d + aκ) div V , and hence

(4-3) b
∫

M
(‖∇V ‖

2
− 2mκ)dvg = 0.
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Recall that, if f : (M, g) → (N , h) is a harmonic map, the Hessian form of the
energy E at f is defined by the second variation formula [Smith 1975]:

(4-4) (Hess E) f (X, X) =
d2

dt2 E( ft)

∣∣∣
t=0

=

∫
M

h(X, J f X)dvg,

where X is a vector field along f . The operator J f , called the Jacobi operator of
f , is a second order self adjoint elliptic differential operator acting on the space
0( f −1T N ) of the vector fields along f , and is defined by

(4-5) J f X = 1 f X − Ric f X.

The operator 1 f , called the rough Laplacian along f , is defined by

1 f X = −

n∑
i=1

(
∇ei ∇ei X − ∇∇ei ei X

)
for X ∈ 0( f −1T N ),

where ∇ is the connection (on the vector bundle f −1T N ) induced by the Levi-
Civita connection of (N , h), and {ei }i=1,...,n is a local orthonormal frame on M .
Moreover, denoting by Rh the curvature tensor of (N , h),

(4-6) Ric f X =

n∑
i=1

Rh( f∗ei , X) f∗ei .

A harmonic map f is said to be stable if (Hess E) f is semidefinite positive or,
equivalently, if the eigenvalues of the Jacobi operator are nonnegative. The identity
map Id : (M, g) → (M, g) is a trivial example of a harmonic map. From (4-4)–
(4-6) we readily deduce that the second variation formula of the energy for Id is
given by

(4-7) (Hess E)Id(X, X) =

∫
M

g(JId X, X)dvg =

∫
M

g(1X − Q X, X)dvg

for X ∈ X(M). Since JIdV = 1V − QV , we get

g(JIdV, V ) = g(1V, V ) − g(QV, V ) = ‖∇V ‖
2
− 2mk.

Then, from (4-3) we have

(4-8) b
∫

M
g(JIdV, V )dvg = b

∫
M

(
‖∇V ‖

2
− 2mk

)
dvg = 0.

Smith [1975] proved that if (M, g) is a compact Einstein manifold of dimension n,
then Id is stable if and only if λ1 ≥ 2r/n, where λ1 is the first eigenvalue of the
Laplace–Beltrami operator acting on functions and r is the scalar curvature. On
the other hand, Urakawa [1987, page 572] proved that the first eigenvalue λ1 of
the Laplace–Beltrami operator on (S2m+1/0, g), when 0 6= {Id}, is bigger than
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or equal to 4mκ , that is, in such case the identity map Id is stable. Therefore,
g(JId X, X) ≥ 0 for any X ∈ X(M). Now take X = V and b 6= 0. Then (4-8) gives

(4-9) ‖∇V ‖
2
= 2mk = g(QV, V ).

Moreover, (4-2) becomes (d + aκ)(∇V V − (div V )V ) = 0, from which, since
∇V V ⊥V and (d + aκ) 6= 0, we have

(4-10) ∇V V = 0 and div V = 0.

From (4-9) and (4-10), applying [Abbassi et al. 2008, Section 6, Proposition 1],
we deduce that V is Killing.

We now prove Theorem 1.4(ii). Since Id is stable, from (4-7) we get

(4-11) (Hess E)I d(X, X) =

∫
M

(
‖∇ X‖

2
− g(Q X, X)

)
dvg ≥ 0

for all X ∈ X(M). Then, applying (2-7) and (4-11), the energy EG̃ : X1(M) → R

satisfies

(4-12)
EG̃(V ) =

1
2((2m + 1)(a + c) + d) vol(M, g) +

a
2

∫
M

‖∇V ‖
2dvg

≥
1
2((2m + 1)(a + c) + d + 2maκ) vol(M, g)

for all V ∈ X1(M). Let ξ be a solenoidal unit vector field (that is, div ξ = 0). If
ξ : (M, g) → (T1 M, G̃) is a harmonic map, then ξ is Killing by Theorem 1.4(i),
and hence ‖∇ξ‖

2
= g(Qξ, ξ) = 2mκ; see for example [Poor 1981, page 169].

Then, by (4-12), we have EG̃(V ) ≥ EG̃(ξ) for all V ∈ X1(M). Vice versa, let ξ be
a unit vector field that minimizes the energy, that is,

EG̃(ξ) =
1
2((2m + 1)(a + c) + d + 2maκ) vol(M, g).

Then, by (4-12),
∫

M‖∇ξ‖
2dvg = 2mκ vol(M, g), and thus, by (4-11), we get

(Hess E)Id(ξ, ξ) = 0. Since Id is stable, we can expand ξ into the infinite sum
ξ =

∑
∞

i=1 Ei with JId Ei = ai Ei and
∫

M g(Ei , E j )dvg = 0 for all i 6= j , where
ai ≥ 0. Then we have JIdξ =

∑
∞

i=p+1 ai Ei , where p = dim ker JId and ai > 0 for
all i ≥ p + 1. Thus

0 = (Hess E)Id(ξ, ξ) =

∫
M

g(JIdξ, ξ)dvg =

∞∑
i=p+1

ai

∫
M

g(Ei , Ei )dvg

implies that Ei = 0 for any i ≥ p + 1. So, JIdξ = 0, that is, 1ξ = Qξ . Moreover,
ξ is a solenoidal unit vector field, that is, div ξ = 0; then it is easy to get that ξ

is a Killing vector field (see for example [Poor 1981, page 171]), and hence, by
Theorem 1.4(i), ξ : (M, g) → (T 1 M; G̃) is a harmonic map. �
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5. A remark about the energy of unit vector fields

In Section 4 we characterized the harmonicity of a unit vector field using the energy
restricted to X1(M). About this energy, Brito [2000] proved the following.

Theorem 5.1. The unit vector fields of minimum energy (with respect to the Sasaki
metric) on the unit sphere S3 are precisely the unit Killing vector fields.

Brito proved the uniqueness part of his theorem by applying the uniqueness part
of Gluck and Ziller’s theorem [1986]. On the other hand, the unit sphere S3 is a
Sasakian three-manifold with constant Webster scalar curvature w = 1. By a direct
method, Perrone [2008] proved the following generalization of Brito’s theorem:

Theorem 5.2. Let (M, g, ξ, η) be a compact Sasakian three-manifold with Web-
ster scalar curvature w ≥ 1. Then, the Reeb vector field ξ minimizes the energy,
EG̃s

(ξ) =
5
2 vol(M), and the unit vector fields of minimum energy are precisely

the unit Killing vector fields V that are eigenvectors of the Ricci operator with
eigenvalue 2.

The Ricci operator of a compact Sasakian three-manifold is given by (see for ex-
ample [Blair 2002, page 105 and 171])

Q = 2(2w − 1) I + 4(1 − w) η ⊗ ξ.

Thus, V is a unit vector field eigenvector of the Ricci operator with eigenvalue 2 if
and only if (1−w)V = (1−w)η(V )ξ . Then Theorem 5.2 has a direct consequence:

Corollary 5.3. Let (M, g, ξ, η) be a compact Sasakian three-manifold. If the Web-
ster scalar curvature w is greater than 1, the Reeb vector field ξ is, up to sign, the
only minimizer of the energy.

Regarding the Webster scalar curvature, the main result of Chern and Hamilton
[1985] says that a compact contact three-manifold (M, η) admits a contact metric g
whose Webster scalar curvature w is either greater than 0 or is a nonpositive con-
stant. Now, let (M, g, ξ, η) be a compact Sasakian three-manifold with Webster
scalar curvature w > 0. Consider the D-homothetic deformation

gt = tg + (t2
− t)η ⊗ η, ηt = tη, ξt = (1/t)ξ,

where 0 < t ≤ c0 = inf{w(p) : p ∈ M} > 0. Then (gt , ηt , ξt ) is also a Sasakian
structure with Webster scalar curvature wt given by (see [Blair 2002, page 173])

wt = (1/t)w ≥ (1/t)c0 ≥ 1.

Then (M, gt , ηt , ξt) is a compact Sasakian three-manifold satisfying the condi-
tion of Theorem 5.2. In the special case of a compact Sasakian three-manifold
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(M, g, ξ, η) with constant Webster scalar curvature w > 0, the universal cover-
ing M̃ is homothetic to a Berger’s sphere. In fact, M̃ is the Sasakian manifold
(S3, g = gt , ξ = ξt , η = ηt), where the structure (gt , ξt , ηt) is obtained from the
standard Sasakian structure (g0, ξ0, η0) on S3 by a D-homothetic deformation with
t = 1/w > 0 [Blair 2002]. Since η0 = g0(ξ0, · ), the metric

ḡt = (1/t)gt = g0 + (t − 1)η0 ⊗ η0

satisfies

ḡt |ξ⊥

0
= g0|ξ⊥

0
, ḡt(ξ0, ξ0) = t g0(ξ0, ξ0), ḡt(ξ0, X) = 0 for X ∈ ξ⊥

0 ,

where ξ⊥

0 denotes the orthogonal with respect to the metric g0. The Riemann-
ian manifold (S3, ḡt) is known as a Berger’s sphere [Besse 1987, page 252], and
ξ t =

√
tξ = (1/

√
t)ξ0 is also called a Hopf vector field [Gil-Medrano and Hurtado

2005]. But under the homothetic transformation ḡt = (1/t)gt = (1/t)g, the energy
behaves as follows: if V =

√
tV and V ∈ X1(M, g), then

EG̃s
(V , ḡt) = (1/

√
t)

( 3
2(t−1

− 1)vol(M, g)
)
+ (1/

√
t)EG̃s

(V, g)

≥ (1/
√

t)
( 3

2(t−1
− 1) vol(M, g)

)
+ (1/

√
t)EG̃s

(ξ, g) = EG̃s
(ξ t , ḡt).

Hence Theorem 5.2 includes the special case of Hopf vector fields ξgt = (1/
√

t)ξ0

of the Berger’s spheres (S3, ḡt); this special case was first studied in [Gil-Medrano
and Hurtado 2005].

We now consider the general compact Sasakian three-manifold (M, g, ξ, η) with
Webster scalar curvature w ≥ 1. Then, by Theorem 5.2 and (2-7), we have for any
V ∈ X1(M) that

EG̃(V ) =
1
2 [3c + d] vol(M, g) + aEG̃s

(V )

≥
1
2 [3c + d] vol(M, g) + aEG̃s

(ξ) = EG̃(ξ),

that is, EG̃(V ) ≥ EG̃(ξ), where the equality holds if and only if V is Killing and
QV = 2V . Therefore we get the following:

Theorems 5.1 and 5.2 and Corollary 5.3 are invariant under a four-parameter
deformation of the Sasaki metric G̃s on T1 M .
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