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We define the width complexes for knots and 3-manifolds. We consider ba-
sic cases and reformulate the stabilization problem for Heegaard splittings
from this point of view.

Simplicial complexes, cell complexes and more general complexes have featured
prominently in geometric group theory for many years. Many such complexes have
proved useful in the study of 3-manifolds. One example is the curve complex, in-
troduced by W. Harvey [1979] and extensively studied by H. Masur and Y. Minsky
[1999; 2000] as well as J. Hempel [2001]. We here define and study a rather dif-
ferent complex: the “width complex” for a knot or a 3-manifold. The construction
grows out of a desire to better understand the workings of thin position, both in the
context of knots and in the context of 3-manifolds. The notion of thin position for
a knot was introduced in [Gabai 1987]. He used this notion to prove Property R for
knots. It was also used by M. Culler, C. Gordon, J. Luecke and P. Shalen in their
seminal work concerning Dehn surgery on knots [Culler et al. 1987]. The related
notion of thin position for 3-manifolds was later introduced by M. Scharlemann
and A. Thompson [1994]. It too has become a fundamental tool in the study of
3-manifolds.

Roughly speaking, in the case of knots, vertices of the width complex of a knot
consist of appropriate equivalence classes of embeddings of the circle with respect
to a height function, that is to say, a Morse function with exactly two critical points.
In the case of 3-manifolds, they correspond to appropriate equivalence classes of
Morse functions. In the case of knots, edges correspond to specified isotopies of
embeddings. In the case of 3-manifolds, they correspond to the effect of pass-
ing through the singularities of Cerf theory. Higher dimensional simplices can be
defined when edges correspond to independent alterations.

Research to date provides glimpses of the width complex. Many results can
be interpreted or reformulated from this point of view. In effect, this highlights
some of the formal similarities and differences between Heegaard splittings and
certain aspects of knot theory. Most interestingly, it provides a reformulation of
the stabilization problem for Heegaard splittings of 3-manifolds.
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1. Definitions

For standard definitions and results concerning knots, see [Burde and Zieschang
2003], [Lickorish 1997] or [Rolfsen 1990]. For standard definitions and results
pertaining to 3-manifolds, see [Hempel 2004] or [Jaco 1980].

Definition 1. A height function on S3 is a Morse function with exactly two critical
points.

This last assumption guarantees that h induces a foliation of S3 by spheres,
along with one maximum that we denote by ∞ and one minimum that we denote
by −∞.

Definition 2. Let K be a knot in S3. If all minima of h|K occur below all maxima
of h|K , then we say that K is in bridge position with respect to h. The index is
the number of maxima (minima). The bridge number of K, b(K ), is the minimal
number of maxima required for h|K .

If K is in bridge position, then a regular level surface below all maxima and
above all minima is called a bridge sphere. Two bridge spheres are considered
equivalent if their intersections with the complement of the knot are isotopic.

Definition 3. A compression body is a 3-manifold W obtained from a closed
orient-able surface S by attaching 2-handles to S × {0} ⊂ S × I and capping off
any resulting 2-sphere boundary components with 3-handles. We denote S × {1}

by ∂+W and ∂W\∂+W by ∂−W . Dually, a compression body is an orientable 3-
manifold obtained from a closed orientable surface ∂−W × I or a 3 − ball or a
union of the two by attaching 1-handles.

In the case where ∂−W = ∅, we also call W a handlebody.

Definition 4. A Heegaard splitting of a 3-manifold M is a pair (V, W ) in which V ,
W are compression bodies and such that M = V ∪W and V ∩W =∂+V =∂+W = S.
We call S the splitting surface or Heegaard surface. Two Heegaard splittings are
considered equivalent if their splitting surfaces are isotopic.

The genus of M , denoted by g(M), is the smallest possible genus of the splitting
surface of a Heegaard splitting for M .

Definition 5. Let (V, W ) be a Heegaard splitting. A Heegaard splitting is sta-
bilized if there is a pair of disks (D, E) with D ⊂ V and E ⊂ W such that
#∂ D ∩ ∂ E = 1. We call the pair of disks (D, E) a stabilizing pair of disks. A
Heegaard splitting is unstabilized if it is not stabilized.

Definition 6. Destabilizing a Heegaard splitting (V, W ) is the act of creating a
Heegaard splitting from (V, W ) by performing ambient 2-surgery on S along the
cocore of a 1-handle in either V or W .
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In the above definition, the result of performing ambient 2-surgery on S along the
cocore of a 1-handle in either V or W is required to be a Heegaard splitting. This
is not always possible! In order for the ambient 2-surgery to be a destabilization,
the result is required to be a Heegaard splitting. This can be guaranteed if (D, E)

is a stabilizing pair of disks. In this case D is the cocore of a 1-handle of V and the
existence of E guarantees that the result of cutting along D is a Heegaard splitting.

Definition 7. A tunnel system for a knot K in S3 is a collection of arcs t1, . . . , tn
such that the complement of K ∪ t1 ∪ · · · ∪ tn is a handlebody. The tunnel number
of a knot K is the least number of arcs required for a tunnel system of K .

2. The width complex for knots and 3-manifolds

We wish to consider the possible positionings of a knot with respect to a height
function. To do so, we define a complex. Roughly speaking, vertices of the width
complex of a knot should consist of appropriate equivalence classes of embeddings
of the given knot relative to a fixed height function. Width will be well-defined on
vertices. Edges should correspond to isotopies that affect the width of the embed-
ding. Our goal is to phrase the definition of the width complex for knots in concrete
terms.

Analogously, we wish to consider the possible positionings of a 3-manifold,
that is, the possible handle decompositions of the 3-manifold. This amounts to
considering Morse functions on the 3-manifold. Again we define a complex. But
here, rather than opting for the more concrete terminology used in the case of a
knot, we will opt for the language of Morse functions and Cerf theory. This allows
for a more abstract, but more concise, description of the width complex of a 3-
manifold.

2.1. The width complex for knots. We begin by fixing the height function h :

S3
→ R. Let K be a knot in S3. Then K = [k] is a smooth isotopy class of

smooth embeddings of S1 into S3. We will denote a representative of K by k
or by k ′, k ′′, . . . , when we wish to distinguish between distinct representatives,
i.e., embeddings. In the following discussion of the width complex for knots, the
height function h will be fixed once and for all. Note that the theory developed
below could be developed by fixing k and varying h. This would provide a clearer
correspondence between our discussion of knots and our discussion of 3-manifolds.
On the other hand, fixing h allows for a more concrete discussion in the case at
hand.

We first define the vertices of the width complex for a knot K . To this end, let
k be a representative of K and let c0, . . . , cn be the critical values of h|k . Choose
regular values r1, . . . , rn such that ci−1 < ri < ci . We call Ri = h−1(ri ) a thick
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level if ci−1 corresponds to a local minimum and ci corresponds to a local maxi-
mum. We call Ri = h−1(ri ) a thin level if ci−1 corresponds to a local maximum
and ci corresponds to a local minimum. Denote the thick levels by C0, . . . , Cl

and the thin levels by N1, . . . , Nl . A representative k of K thus determines a set
of level surfaces C0, N1, C1, . . . , Nl, Cl . Abusing notation slightly, we will also
denote those portions of these level surfaces that lie in the complement of k by
C0, N1, C1, . . . , Nl, Cl , respectively. We consider two representatives of K to be
equivalent if their collections of thick and thin levels are isotopic. To each of the
resulting equivalence classes, we associate a vertex.

Remark 8. The width of k coincides with

1
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0

(#|∂Ci |)
2
−

1
2

l∑
1

(#|∂ Ni |)
2

See for instance [Howards et al. 2007]. In particular, width is well-defined on
equivalence classes of representatives and hence on vertices.

We now define the edges of the width complex of a knot. To this end, consider
a representative k of K . An upper (lower) disk for k at level L i is the following: A
disk whose interior is disjoint from the thick and thin levels and whose boundary is
partitioned into two subarcs, one coinciding with a subarc of K containing exactly
one maximum (minimum) and no other critical points and the other a subarc of
L i . A strict upper (lower) disk is an upper (lower) disk whose interior contains no
critical points.

Suppose that there is a pair of disks, (D, E), such that D is a strict upper disk
and E is a strict lower disk for k at the thick level Ci . Suppose further that this
pair of disks is either disjoint, or meets in one point of k. Then the pair (D, E)

describes an isotopy that changes the embedding k to an embedding k ′. Both k and
k ′ are representatives of K . We say that k ′ is obtained from k by the pair (D, E).
We associate an edge to a pair of vertices if and only if a pair of representatives of
the two equivalence classes corresponding to the vertices differ in this way.

Lemma 1. Let D′, D′′ be strict upper disks for k at the thick level Ci and let E ′, E ′′

be strict lower disks for k at the thick level Ci . Suppose that D′ and E ′ are disjoint
and D′′ and E ′′ are disjoint. The representatives k ′ of K , obtained from k by the
pair (D′, E ′), and k ′′ of K , obtained from k by the pair (D′′, E ′′) are equivalent if
and only if D′ is isotopic to D′′ via a level preserving isotopy and E ′ is isotopic to
E ′′ via a level preserving isotopy.

Proof. If D′ is isotopic to D′′ via a level preserving isotopy and E ′ is isotopic
to E ′′ via a level preserving isotopy, then this isotopy describes an isotopy of the
thick and thin levels of the resulting presentations. Hence the representatives are
equivalent.
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Figure 1. N ′

i , N ′′

i , Ci and k.

Now suppose that k ′ and k ′′ are equivalent. By construction, r = h(Ci ) corre-
sponds to a thin level N ′

i = h−1(r) for k ′ and a thin level N ′′

i = h−1(r) for k ′′. Then
we can consider N ′

i , N ′′

i and Ci along with k. See Figure 1.
After a small isotopy, N ′

i and Ci meet in a single circle, as do N ′′

i and Ci . Such
a circle cuts each surface into two subdisks. We consider the 3-ball between a
subdisk of N ′

i and a subdisk of Ci . See Figure 2.
This 3-ball contains one subarc of k, call it α, with both endpoints on the subdisk

of Ci . All other subarcs of k have one endpoint on the subdisk of Ci and one subarc
on the subdisk of N ′

i . The 3-ball admits only one disk (up to isotopy) cobounded
by α and a subarc of Ci . Since D′ is one such disk, this disk is isotopic to D′. The
same argument applies to N ′′

i showing that D′′ is isotopic to D′. �

Remark 9. The analogous result does not necessarily follow in the case that D′

and E ′ and D′′ and E ′′ meet in one point. Indeed, if there is exactly one maximum
(the one on the boundary of D′) above Ci and below the next higher thin level and
exactly one minimum (the one on the boundary of E ′) below Ci and the next lower

Figure 2. A 3-ball cobounded by a subdisk of N ′

i and a subdisk of Ci .
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Figure 3. Left: Some thick and thin levels of k. Right: resulting
thick and thin levels for k ′.

thin level, or if there are at least two maxima above Ci and below the next higher
thin level and at least two minima below Ci and the next lower thin level, then the
argument above establishes the analogous result. However, if these conditions are
not met, then the conclusion need not follow. The obstruction in this latter case
arises due to the fact that the new thick and thin levels are a subset of the former
thick and thin levels and hence isotopic. See Figures 3 and 4.

Now consider the two pairs of disks (D′, E ′) and (D′′, E ′′) in Figure 5. The
disks E ′ and E ′′ are not isotopic via a level preserving isotopy. If there were even
more minima just below the thick level pictured in the two parts of Figure 5, then
there would be even more strict lower disks not isotopic to E ′ via a level preserving
isotopy.

thick

thin

thick

Figure 4. Some thick and thin levels for k ′′.
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Figure 5. Left: A pair of disks yielding k ′. Right: A pair of disks
yielding k ′′.

It follows from the above lemma that two vertices of the width complex can’t
be connected by more than one edge unless one of the vertices corresponds to a
thick level exhibiting the obstruction described above.

We will refer to an isotopy described by a strict upper and strict lower disk
that meet in a point of K as a Type I move. We will refer to an isotopy described
by a strict upper and strict lower disk that are disjoint as a Type II move. (This
terminology is loosely inspired by the typology of Reidemeister moves.)

We now define higher dimensional cells of our complex: Suppose k is a repre-
sentative of K and suppose that there are n pairs of strict upper and strict lower
disks at the thick levels where in each pair the two disks are either disjoint or meet
in one point and such that distinct pairs are disjoint. Then these n pairs of disks
describe n isotopies that can be performed in any order. This gives rise to l other
representatives (where l ≤ 2n

− 1). We associate an l-simplex to any l-tuple of
vertices corresponding to an l-tuple of equivalence classes of representatives that
differ in this way. (We think of these cells as n-dimensional cubes.)

By Remark 8 there is a function on the vertices of the width complex. This
function can be extended continuously to give a combinatorial Morse function
on the width complex. There are natural questions that can be asked about any
complex. These pertain to connectivity properties and, more generally, the shape
of the complex. The following theorem begins to address these issues.

Theorem 1. The width complex of a knot is connected.

Proof. Let K be a knot in S3 and let k, k ′ be representatives of vertices v, v′ of the
width complex of K . Projecting k, k ′ onto a vertical plane does not change their
respective equivalence classes.
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Recall that any two planar projections of a knot can be deformed into each other
via a sequence of Reidemeister moves and planar isotopies. Planar isotopies either
do not change the isotopy class of a representative or change it by Type I and
Type II moves (corresponding to edges in the width complex of K ). Likewise,
a Reidemeister move either does not change the isotopy class of a representative
or changes it by Type I and Type II moves (depending on the orientation of the
Reidemeister move with respect to the projection of the height function on S3 to
the vertical plane under consideration). �

2.2. On the width complex of the unknot. We wish to illustrate the concept of the
width complex of a knot. To this end we discuss the case of the unknot. As it turns
out, the width complex of the unknot is already rather complicated. Nevertheless,
some features are readily apparent. Theorem 2 below, due to J. P. Otal, establishes
the uniqueness of bridge spheres for the unknot. It follows from this lemma that the
width complex of the unknot contains an infinite ray with vertices v1, v2, v3, . . . ,
where vn corresponds to the bridge presentations of the unknot of index n. The
edge between vn and vn+1 corresponds to a Type I move.

Theorem 2. All bridge spheres of the unknot of a given index are equivalent.

This was first proved by J. P. Otal [1982]. We outline here an independent proof:
First consider two embeddings of the unknot in bridge position of the same

index lying in a vertical plane. It is not hard to see that two such embeddings are
isotopic through isotopies preserving the index. See Figure 6. This isotopy induces
an appropriate isotopy of bridge spheres.

Now we must ascertain that any embedding of the unknot in bridge position can
be isotoped to lie in a vertical plane while preserving the index. To this end, let
k be an embedding of the unknot in bridge position and let D be a disk such that
∂ D = k. We may assume that D|h has as few critical points as possible in the
interior of D. Then D decomposes into polygons with an even number of edges

Figure 6. Two “planar” unknots of bridge index 4.
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such that these edges lie alternately in K and in the bridge sphere. Each such
polygon can be “flattened” to lie in a vertical plane. See Figures 7, 8 and 9.

We construct a graph 0 as follows: To each polygon as above, we associate a
vertex. We associate an edge to a pair of vertices if the corresponding polygons
meet along an arc in the bridge sphere. Since each arc in the disk D is separating,
there can be no cycles in 0. Thus 0 is a tree (and can be called the “dual tree” to
the decomposition of D).

The depth of a vertex is the least number of edges one must traverse to reach
an endvertex. Beginning at a vertex v of 0 of maximal depth, we can isotope the
polygon corresponding to v to lie in a vertical plane P . Continuing with an adjacent
vertex v1, one edge of the polygon corresponding to v1 already lies in P , but
since we can isotope maxima and minima respectively, past maxima and minima
respectively, we can isotope the rest of this polygon to lie in P . We continue
in this fashion until we reach an endvertex vn . At this stage, either D has been

Figure 7. A flat bigon.
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Figure 8. Flattening a quadrilateral.
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Figure 9. Flattening a hexagon.
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Figure 10. A cycle.

isotoped to lie entirely in P , or we continue with a vertex of maximal depth among
0\{v, v1, . . . , vn

}. At each stage, the polygon corresponding to the vertex vk under
consideration has only one edge in P , so we can isotope it to lie in P .

Theorem 3. The width complex of the unknot contains an infinite ray.

Proof. This follows from Theorem 2. �

More explicitly, the width complex of the unknot contains an infinite ray with
vertices v1, v2, v3, . . . , where vn corresponds to the bridge presentation of the un-
knot of index n. Moreover, there is an edge between vn and vn+1 corresponding
to a Type I move. This describes the only edge emanating from v1, the absolute
minimum of the complex.

There are three edges emanating from v2. One downwards, towards v1, and one
upwards, towards v3. These two edges correspond to Type I moves. But there
is another edge, towards a vertex that we denote by v′

3. Here v′

3 corresponds to
a representative of the unknot with critical points, in ascending order, minimum,
minimum, maximum, minimum, maximum, maximum. The edge between v2 and
v′

3 also corresponds to a Type I move. The vertex v′

3 is also connected to v3 by an
ascending edge corresponding to a Type II move. This describes a triangle in the
width complex. This triangle does not bound a 2-simplex. See Figure 10.

Theorem 4. The width complex of a knot is not simply connected.

Proof. This follows immediately from the discussion above. �

Note that v′

3 is the only vertex that corresponds to a presentation of the unknot
with critical points, in ascending order, minimum, minimum, maximum, minimum,
maximum, maximum. This can be established via an argument similar to that in
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Figure 11. Two presentations of the unknot.

Theorem 2. (Here the thick level and the two thin levels decompose the disk D
bounded by k into polygons. So we can again work with the dual tree. The only
adjustment to the argument for Theorem 2 is that the flattening must commence
by isotoping the single arc of intersection of D with the thin level into P . Each of
the polygons adjacent to this arc have maximal depth and we can proceed as in the
argument for Theorem 2.)

Generically there are likely to be infinitely many vertices that correspond to
presentations of the unknot with a given possible sequence of maxima and minima.
The following Lemma hints at some of the possibilities:

Theorem 5. There exists a positive integer N , such that there are infinitely many
distinct presentations of the unknot of width N.

Proof. If two presentations of the unknot are the same, then in particular, the
corresponding portions of the knot complement cut out by adjacent thin levels
must be homeomorphic. Now consider Figure 11, where the second and third thin
levels are marked.

If the presentations coincide, then the portions of the knot complements cut out
by the second and third thin levels are homeomorphic. They remain homeomorphic
when we augment them by homeomorphic 3-manifolds. This implies that the two
central components of the links pictured in Figure 12 have the same linking number.

But this is a contradiction. The same argument applies for any given number of
twists between the two central components. Thus we exhibit an infinite family of
presentations of the unknot with the same width. �

Conjecture 1. Generically, there are infinitely many presentations of a given width
for a given knot.

The example considered in the proof above provides us with an additional in-
sight:
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Figure 12. An augmentation and its analogue.

Theorem 6. The width complex of a knot is not locally finite.

Proof. Consider the infinitely many vertices w0, w±1, w±2, . . . of the width com-
plex of the unknot whose representatives are discussed in Theorem 5. In each such
representative, raising all maxima to lie above all minima constitutes a sequence of
Type II moves. In each case, this yields the bridge presentation of bridge index 7.
Thus in each case, the Type II moves correspond to a sequence of edges connecting
the vertex wi to the vertex v7 (in the infinite ray of Theorem 3). By the pigeon hole
principle, there must be a path defined by such a sequence of edges, containing a
vertex meeting infinitely many edges. �

Problem 10. Is there a bound on the distance between vertices in terms of the
width of the vertices?

2.3. The width complex for 3-manifolds. Let M be a 3-manifold and consider
the set of all real diffeomorphisms of M . The basic structure of this set was
described by J. Cerf [1970]. The subset of Morse functions is open and dense
in this set. Furthermore, the set contains codimension 1 strata consisting of those
diffeomorphisms with either two nondegenerate critical points at the same level
or one degenerate critical point of multiplicity 2. It contains codimension 2 strata
consisting of those diffeomorphisms with either three nondegenerate critical points
at the same level or one nondegenerate critical point and one degenerate critical
point of multiplicity 2 at the same level or one degenerate critical point of multi-
plicity 3. Etc. Note that Morse functions are precisely those diffeomorphisms that
do not lie in a codimension n stratum for n > 0.

We are interested in the dual complex of this stratified space, but after some
modifications: We first absorb those codimension n strata consisting of diffeomor-
phisms with nondegenerate critical points of the same index at the same level into
strata of lower codimension. We then absorb those codimension 1 strata corre-
sponding to birth-death singularities involving either nondegenerate critical points
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of indices 0 and 1 or of indices 2 and 3 into the codimension 0 stratum and absorb
strata of higher codimension involving such birth-death singularities into strata of
lower codimension. The complex we wish to study is the dual complex of the
remaining stratified space. Note that vertices of this space correspond to Morse
functions and diffeomorphisms that fail to be Morse functions only because they
have several nondegenerate critical points of the same index at the same level or
because they exhibit birth-death singularities of the specified type.

Recall the notion of width for a Morse function introduced by M. Scharlemann
and A. Thompson [1994]: For M a 3-manifold and h : M → R a Morse function
we consider the critical values c0, . . . , cn of h and choose regular values r1, . . . , rn

such that ci−1 < ri < ci . For the purposes here we ignore critical values of index
0 or 3 and ignore inessential spheres occurring in the level surfaces considered
below. We call Ri = h−1(ri ) a thick level if ci−1 is a critical value of index 1 and
ci is a critical value of index 2. We call Ri = h−1(ri ) a thin level if ci−1 is a critical
value of index 2 and ci is a critical value of index 1. We denote the thick levels by
C0, . . . , Ck and the thin levels by N1, . . . , Nk . The width of h is the k-tuple

#|C1| −χ(C1), . . . , #|Ck | −χ(Ck)

but arranged in nonincreasing order.
Here for Morse functions corresponding to the same vertex the collections of

thick and thin levels are isotopic. Thus the width of a vertex can be taken to be
the width of a Morse function representing that vertex. This defines a function on
the vertices of our complex. Since the function values on the vertices are k-tuples
of numbers, with k varying from vertex to vertex, this function does not extend to
the complex. If we wish to define a function on the complex, we may do so by
evaluating an appropriate algebraic expression on the k-tuples to obtain numbers
associated with the vertices and extending these values to a function defined over
the entire complex. (Here we will not be interested in the precise nature of such
a function, though we will occasionally compare the widths of the vertices of the
complex. This comparison is via the dictionary order.)

Consider the Morse function h on M . A strict upper (lower) disk for a level R
is a disk whose boundary is an essential curve in R and whose interior lies above
(below) R and is disjoint from all thick and thin levels. Consider a pair of disks for
a thick level Ci satisfying the following conditions: 1) One disk is a strict upper
disk for Ci and one disk is a strict lower disks for Ci ; 2) The boundaries of these
two disks are either disjoint or meet in one point. Such a pair of disks can be used
to define a modification of h resulting in a new Morse function h′

: M → R. The
strict upper disk corresponds to a 2-handle, the strict lower disk to a 1-handle. In
the first case, the 2-handle can be attached before the 1-handle. This yields a new
Morse function. In the second case, cutting along (either) one of the disks defines a
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new Morse function with two fewer critical points. In the language of Cerf theory,
the first case corresponds to a critical point of index 1 and a critical point of index
2 passing each other and the second case corresponds to a birth-death singularity.
Both events correspond to passing through a codimension 1 stratum in the stratified
space considered above and vice versa. Hence these operations correspond to the
edges in the width complex and vice versa.

Theorem 7. The width complex of a 3-manifold is connected.

Proof. This follows from standard results in Cerf theory. �

2.4. The width complex of the 3-sphere. We wish to consider an example of the
width complex of a 3-manifold. As it turns out, even the simplest of such examples,
the width complex of S3, proves difficult. The structure of Heegaard splittings of
S3 provides a starting point for a description of this complex. Recall the following
theorem:

Theorem 8. (Waldhausen) There is a unique minimal genus Heegaard splitting
of S3 of genus 0. Any other Heegaard splitting is obtained from this Heegaard
splitting by stabilization. In particular, there is a unique Heegaard splitting of S3

of any given genus.

It follows from Theorem 8 that the width complex of the 3-sphere has one min-
imal width vertex corresponding to the Heegaard splitting of genus 0 and that it
contains an infinite ray emanating from the minimal width vertex. Denote the
vertices along this ray by v0, v1, v2, . . . . Here vn corresponds to the unique Hee-
gaard splitting of S3 of genus n. The edge between vn and vn+1 corresponds to a
stabilization.

There is only one edge meeting v0, the edge contained in the ray mentioned
above. When we consider stabilizations of Heegaard splittings, we think of the
stabilization occurring at the unique thick level. In general, stabilizations can occur
elsewhere as well. This is why there are three edges meeting v1, the two edges
contained in the above mentioned ray and an edge connecting v1 to the vertex
representing (all) Morse functions with critical points, taken in ascending order,
of index 0, index 1, index 2, index 1, index 2 and index 3. Denote this latter
vertex by v′

2. We can think of such a Morse function as obtained from a Morse
function corresponding to the genus 1 Heegaard splitting of S3 by stabilization
either above or below all critical points. By Cerf’s Triangle Lemma, the two cases
yield Morse functions corresponding to the same vertex. For vn with n > 1, there
will be analogous edges and vertices.

There will be 5 edges meeting v2. Two of these edges are contained in the
above-mentioned ray and one edge, corresponding to a birth-death singularity,
connects v2 to v′

2. In addition, there is one edge connecting v2 to a vertex, call
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T

0−handle 1−handles

unknot

Figure 13. Sketch of the genus 2 handlebody for Tunknot.

it vt
3, corresponding to a stabilization. Here the stabilization occurs above all in-

dex 1 and 2 critical points of the Morse function corresponding to v2. If instead
we stabilize between the highest and next highest critical point (here both these
critical points are index 2), then by Cerf’s Triangle Lemma, this yields a Morse
function corresponding to vt

3. Finally, there is one edge connecting v2 to a vertex,
call it vb

3 , corresponding to a stabilization below all critical points. If instead we
stabilize between the lowest and next lowest critical point (here both critical points
are index 1), then again, by Cerf’s Triangle Lemma, this yields a Morse function
corresponding to vb

3 . (Stabilizing above the two index 1 critical points and below
the two critical points yields the vertex v3 already mentioned.)

There will be infinitely many edges meeting v3. This is because there are in-
finitely many distinct ways to move an index 1 critical point below an index 2
critical point. To see this, consider the following: Let K ⊂ S3 be a knot of tunnel
number 1. A closed regular neighborhood of this knot is a knotted solid torus VK .
Set TK = ∂VK . We can construct a manifold decomposition corresponding to a
Morse function with critical points, in ascending order, of index 0, index 1, index
1, index 2, index 1, index 2, index 2 and index 3 that has TK as a thin level. Indeed,
consider the genus 2 handlebody with handles whose cores run along the meridian
and longitude of the knotted torus. This is V1. See Figure 13 for a sketch of the
genus 2 handlebody in the case that K is the unknot.

Now construct a compression body W1 with ∂+W1 = ∂+V1 and ∂−W1 a torus
parallel to TK . Specifically, construct W1 from ∂+W1 × I by adding one 2-handle
with cocore a shrunken copy of the disk bounded by the meridional 1-handle in
V1. In particular, V1 ∪ W1 = VK .

Now construct a compression body V2 with ∂−V2 = ∂−W1 and ∂+V2 a genus 2
surface. Specifically, construct V2 from ∂−V2 × I by adding a 1-handle with core
a tunnel system realizing the tunnel number (it is 1 by assumption) for K . Finally,
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note that the remainder of S3 is a genus 2 handlebody that we denote by W2. Here
S3

= V1 ∪ W1 ∪ V2 ∪ W2 is a generalized Heegaard splitting with thin level TK .
Since there are infinitely many distinct tunnel number 1 knots, there are infin-

itely many knotted tori that can be used in this construction. The thin levels of
the corresponding manifold decompositions aren’t isotopic. Recall that for Morse
functions corresponding to the same vertex, the collections of thick and thin levels
must be isotopic. Thus the generalized Heegaard splittings described correspond to
infinitely many Morse functions that in turn correspond to infinitely many distinct
vertices v1

3, v
2
3, v

3
3, . . . . Since these Morse functions are obtained from the one

corresponding to the genus 3 Heegaard splitting of S3 by letting a critical point of
index 1 pass a critical point of index 2, there must be infinitely many edges, one
between v3 and v1

3 , one between v3 and v2
3 , etc.

Theorem 9. There can be infinitely many vertices that have the same width in the
width complex of a 3-manifold.

Proof. This follows immediately from the discussion above. �

Theorem 10. The width complex of a 3-manifold is not locally finite.

Proof. The discussion above establishes the fact that the width complex of S3

is not locally finite. For any other 3-manifold M , appropriate connect sums of
M , endowed with a Morse function, and S3, with each of the Morse functions
constructed in the discussion above, yield the same phenomenon. �

3. Minima

Traditional questions concerning minimal width embeddings of knots or of thin
3-manifold decompositions can be rephrased in terms of width complexes. For
instance, a knot in thin position is represented by a vertex that is an absolute min-
imum for the width function on the width complex of the knot. Analogously, a
thin manifold decomposition corresponds to a minimum width vertex in the width
complex of a 3-manifold.

Any knot diagram can be changed to one of greater width via a Type I move.
Thus the width complex of a knot contains no maxima. Analogously, any Morse
function of a 3-manifold can be changed to one of greater width via stabilization of
the corresponding handle decomposition. Thus the width complex of a 3-manifold
contains no maxima.

As noted above, the width complex of the unknot contains a unique absolute
minimum, represented by the round circle. The width complex of the 3-sphere
contains a unique absolute minimum represented by the genus 0 Heegaard splitting.
In general, one should not expect this sort of uniqueness.
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Question 11. Are there knots with width complexes containing distinct global
minima?

Such knots are likely to exist. For instance, if a knot has distinct bridge spheres
of the same index, and bridge position happens to be thin position for this knot,
then the answer to this question is “yes”. Also, any knot that has distinct thin
positions provides an affirmative answer to this question. At this time, we believe
that such knots exist, but do not know of any examples.

Theorem 11. There are 3-manifolds with width complexes that contain distinct
global minima.

Proof. In [Boileau et al. 1989], the authors exhibit the distinct Heegaard splittings
for small Seifert fibered spaces. Generically, these Heegaard splittings are strongly
irreducible. Thus they represent distinct minima in the width complex of these
manifolds. �

In fact, we can say more:

Theorem 12. There are 3-manifolds with width complexes that contain infinitely
many distinct global minima.

Proof. The 3-torus has a Heegaard splitting that is obtained by letting V be a closed
regular neighborhood of the 1-skeleton of a cubulation and letting W be the closure
of its complement. See [Boileau and Otal 1990]. This Heegaard splitting achieves
the minimal genus of the 3-torus. The corresponding handle decomposition can
be rearranged in infinitely many ways. The resulting handle decompositions will
all be built of a 0-handle followed by two 1-handles, followed by one 2-handle,
followed by one 1-handle, followed by two 2-handles, followed by one 3-handle.
Each of these infinitely many handle decompositions has a unique thin level. This
thin level will consist of two parallel incompressible tori. But the rearrangement
of the handles can be conducted so as to realize any of the infinitely many isotopy
classes of incompressible tori as the thin level. See Figures 14 and 15. �

The handle decomposition depicted in Figure 14 is obtained by attaching one 0-
handle, two horizontal 1-handles, a, b, and a horizontal 2-handle before attaching a
vertical 1-handle, c, two vertical 2-handles and a 3-handle. The thin level consists
of two parallel horizontal tori.

The handle decomposition depicted in Figure 15 is obtained by attaching a hori-
zontal 1-handle a′, another 1-handle, b′ (that runs from the vertex through the front
right face of the cube, returns through the back left face of the cube, runs through
the top face and returns to the vertex through the bottom face), then a slanted 2-
handle before attaching a vertical 1-handle, c, then two 2-handles and a 3-handle.
The thin level consists of two parallel tori that intersect the front face of the cube
at an angle of π/4.
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a

b

c

Figure 14. A handle decomposition of the 3-torus: the vertex rep-
resents a 0-handle, the edges a, b, c represent three 1-handles, c is
attached to the two components of the thin level.

b’
c’

a’

b’

Figure 15. Another such handle decomposition: the vertex repre-
sents a 0-handle, the edges a′, b′, c′ represent three 1-handles, c′

is attached to the two components of the thin level.
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Question 12. Can the width complex of a knot have local minima that are not
global minima?

Theorem 13. The width complex of a 3-manifold can have local minima that aren’t
global minima.

Proof. A. Casson and C. Gordon [1986] have exhibited 3-manifolds that pos-
sess strongly irreducible Heegaard splittings of arbitrarily high genus. (See also
[Kobayashi 1990; 1992].) Such Heegaard splittings correspond to local minima in
the width complexes of these 3-manifolds. Thus there will be infinitely many local
minima that are not global minima. �

4. Distances

Earlier, in our discussion of the width complex of a knot, we asked whether or
not there is a bound on the distance between vertices in terms of the width of
the vertices. The analogous question can be asked in the context of the width
complex of a 3-manifold. Answers to these questions provide information not
only on distances, but on minima: For suppose that a local minimum is not a global
minimum. Then the width of the global minimum is strictly less than, and hence
bounded above by, the width of the local minimum. Thus a bound on the distance
between the vertices in terms of the width of the vertices provides information on
the distance of a local minimum from a global minimum.

4.1. Distance in the width complex of a knot. Questions pertaining to distance in
the width complex of a knot are reminiscent of, but quite distinct from, questions
about the computational complexity of Reidemeister moves. For instance, in 1934
Goeritz exhibited diagrams of the unknot with the property that any sequence of
Reidemeister moves converting the diagram to the round circle would have to in-
volve diagrams of the unknot with a larger number of crossings. In this vein one
may ask the following:

Question 13. Is every vertex of the width complex of a knot connected to one of
the global minima of this complex by a monotonically decreasing path?

A global minimum of the width complex is represented by a knot in thin position.
This embedding can be transformed into an embedding in bridge position by isotop-
ing all maxima to lie above all minima. In terms of the width complex, this means
that there is a monotonically increasing path, consisting of type II edges, from the
global minimum to a vertex represented by an embedding in bridge position. In
fact, such a path exists for any vertex.

We will see below that the analogous idea proves fruitful with regards to the
width complex of 3-manifolds. Here, this idea merely conjures up more questions:
What can we say about the paths between the vertices represented by embeddings
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in bridge position? If there is a vertex from which there is no monotonically de-
creasing path to a global minimum, must any path from this vertex to a global
minimum pass through a vertex represented by an embedding in bridge position?
If the answer is “no”, does there at least exist such a path of minimum length?

4.2. Distance in the width complex of a 3-manifold. One of the longstanding
questions in the study of 3-manifolds concerns stabilization of Heegaard splittings.

Theorem 14 (Reidemeister–Singer). Any two Heegaard splittings of a 3-manifold
are stably equivalent.

In the language here, the Reidemeister–Singer Theorem tells us that two vertices
in the width complex of a 3-manifold corresponding to Heegaard splittings are
connected by a path that consists of an ascending sequence of edges followed by a
descending sequence of edges. This realization prompted the next natural question:
Given two Heegaard splittings, what is the smallest possible genus of a common
stabilization?

Definition 14. The smallest possible genus of a common stabilization of two Hee-
gaard splittings is called the stable genus of the pair.

Theorem 15 (Rubinstein–Scharlemann). There is a linear function in two vari-
ables that provides an upper bound on the stable genus of pairs of Heegaard split-
tings of non-Haken manifolds. There is a quadratic function in two variables that
provides an upper bound on the stable genus of pairs of Heegaard splittings of
Haken manifolds.

This theorem tells us that in the width complex of a 3-manifold, a pair of vertices
represented by Heegaard splittings is connected by a path with a single maximum.
Moreover, the length of the path is bounded in terms of a function on the widths
of the vertices (i.e., genera of the Heegaard splittings). In the context here, we are
more interested in the distance between the vertices. These results do give us such
a bound. Specifically, given any two vertices in the width complex of a 3-manifold,
they are connected by ascending edges (the number of which is bounded by the
width of these vertices) to vertices represented by Heegaard splittings. The latter,
in turn, are connected by a path with length bounded by the function provided in
the Rubinstein–Scharlemann Theorem.

One remaining question is whether or not the shortest path between two vertices
can or must have exactly one maximum. Indeed, for vertices corresponding to Hee-
gaard splittings such a path can always be chosen to have exactly one maximum.
For consider a path e1, . . . , en between such vertices. If a descending edge ei

corresponding to a critical point of index 1 passing a critical point of index 2 is
followed by an edge ei+1 corresponding to a birth-death vertex, then there is an
alternate path in which the order of these two edges is reversed. In other words,
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Figure 16. A subgraph of the width complex of a 3-manifold?

edges corresponding to birth-death vertices can always be assumed to lie above
edges corresponding to a critical point of index 1 passing a critical point of index
2. Furthermore, though there can be infinitely many rearrangements of a handle
decomposition corresponding to a Heegaard splitting, there is only one Heegaard
splitting corresponding to a handle decomposition and all its rearrangements. The
fact that the shortest path between two vertices corresponding to Heegaard split-
tings can always be chosen to have exactly one maximum hence follows from the
fact that stabilization is well-defined, i.e., unique.

The analogous statement may or may not be true in general. Indeed, suppose two
vertices correspond to distinct rearrangements of a specific handle decomposition.
It appears possible that the width complex of a 3-manifold could have a subgraph
as in Figure 16. All edges in this subgraph are meant to correspond to a critical
point of index 1 passing a critical point of index 2. The shortest path from the
lower left vertex to the lower right vertex then has length 4 and two maxima.
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