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ON INVARIANTS FOR LEGENDRIAN KNOTS

ANDRÁS I. STIPSICZ AND VERA VÉRTESI

Let (Y, ξ) be a contact 3-manifold and L a null-homologous Legendrian
knot in it. We determine the connection between the sutured invariant
EH(L) = EH(Y − ν(L), ξ |Y−ν(L)) of L and the Legendrian invariant L̂(L)

defined in a paper by Lisca, Ozsváth, Stipsicz and Szabó. We derive a van-
ishing theorem for L̂(L) in the presence of Giroux torsion in the comple-
ment of the knot, and reprove several known properties of the Legendrian
invariant from this perspective.

1. Introduction

A knot L in a closed, contact 3-manifold (Y, ξ) is Legendrian if the tangent vectors
of the knot are contained by the contact 2-plane field ξ . The knot T is transverse,
if the (nonzero) tangent vectors are not contained by ξ . Legendrian and transverse
knot theory has been shaped by advances in convex surface theory [Etnyre and
Honda 2001] (showing that different looking objects are actually equivalent) and
by the introduction of various invariants of these knots — proving that different
looking objects are, in fact, different. Examples of such invariants are provided by
Chekanov’s differential graded algebras [Chekanov 2002] and contact homology
[Eliashberg 1998]. More recently, Heegaard Floer homology provided various sets
of invariants: for knots in the standard contact 3-sphere the combinatorial con-
struction of knot Floer homology through grid diagrams [Ng et al. 2007; Ozsváth
et al. 2008], for null-homologous knots in general contact 3-manifolds the Legen-
drian invariant of [Lisca et al. 2008] and for general Legendrian knots the sutured
invariant of the knot complement [Honda et al. 2007].

The aim of this paper is to set up a relation between these last two invariants.
To set the stage, recall that the Legendrian invariant L̂(L) of the null-homologous
Legendrian knot L ⊂ (Y, ξ) defined in [Lisca et al. 2008] takes its value in the
knot Floer homology group ĤFK(−Y, L). (The theory admits a version where the
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invariants are in the more refined group HFK−(−Y, L), but since the corresponding
sutured theory is not developed yet, we will deal only with the ĤFK-version in this
paper.) In turn, the sutured invariant EH(L) is defined as follows: consider the
Legendrian knot L ⊂ (Y, ξ), and delete a standard neighbourhood ν(L) of L with
convex boundary. The resulting contact 3-manifold Y −ν(L) with convex boundary
naturally admits a balanced sutured 3-manifold structure (Y −ν(L), 0), and hence
by [Juhász 2006] it admits a sutured Floer homology SFH(Y −ν(L), 0). According
to [Honda et al. 2007] the contact structure on Y − ν(L) specifies an element

EH(L) ∈ SFH
(
−(Y − ν(L)), −0

)
,

which we will call the sutured invariant of L . A relation between sutured Floer
homology and knot Floer homology obviously follows from their definitions: sup-
pose that (Y − ν(L), 0) is the sutured 3-manifold with toric boundary we get by
deleting a neighbourhood of the (not necessarily Legendrian) knot L , and 0 has
two (parallel) components. Then there is an obvious isomorphism

9 : SFH(Y − ν(L), 0) → ĤFK(Y0, L ′)

where Y0 is the Dehn filling of Y − ν(L) (and L ′ is the core of the Dehn filling)
with slope given by the sutures 0. In general, Y0 differs from Y (and therefore
L ′ differs from L). By attaching a specific contact T 2

× [0, 1] (a basic slice) to
Y − ν(L), the composition of the map

8 : SFH
(
−(Y − ν(L)), −0

)
→ SFH

(
−(Y − ν(L)), 0′

)
of [Honda et al. 2008] induced by this attachment and the above map 9 (applied
to the suture 0′ with components isotopic to the meridian of the knot) gives a map

F : SFH
(
−(Y − ν(L)), −0

)
→ ĤFK(−Y, L)

for which we show:

Theorem 1.1. Fix an orientation on the Legendrian knot L and consider one of
the basic slices with boundary slopes given by the dividing set of ∂(Y − ν(L)) on
T 2

× {0} and by the meridian of L on T 2
× {1}. Then the map F defined above

maps EH(L) to L̂(L).

A more precise formulation of the theorem will be given in Section 4 after basic
slices and orientations have been discussed. A straightforward consequence of the
above relation is:

Corollary 1.2. If the complement of a null-homologous Legendrian knot has pos-
itive Giroux torsion then L̂(L) vanishes.
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Remark 1.3. The same corollary has been found recently by D. S. Vela-Vick
[2008] using slightly different arguments.

To put this result in perspective, we recall that a knot type in the standard contact
3-sphere is called Legendrian simple if two Legendrian knots of the given knot type
with identical Thurston–Bennequin and rotation numbers (for definitions of these
invariants see [Etnyre 2005]) are Legendrian isotopic. The same notion generalizes
to an arbitrary ambient contact 3-manifold (Y, ξ), with a caveat in the case when
ξ is overtwisted: in that case Legendrian knots fall into two categories, depending
on whether the knot complement is overtwisted (in which case the knot is called
loose) or — although ξ is overtwisted — the knot complement is tight (in which
case the knot is nonloose or exceptional; see [Eliashberg and Fraser 2008; 1998]).
Obviously a loose and a nonloose knot cannot be isotopic. Hence in overtwisted
contact 3-manifolds besides the equality of the Thurston–Bennequin and rotation
numbers we also require the equality of the looseness of the two knots in defining
simplicity. Nonsimple nonloose knots in a variety of overtwisted contact struc-
tures have been found in [Lisca et al. 2008]. There is, however, a simple way
of constructing nonsimple nonloose knots [Etnyre 2008]: suppose that the knot
complement contains an incompressible torus (for example, the knot type is a
satellite in S3) and introduce Giroux torsion along the torus. Since this proce-
dure does not change the homotopy type of the 2-plane field, and ξ is overtwisted
by assumption (and overtwisted structures are classified by their homotopy type),
after a suitable choice of the knot and the torus we get a Legendrian knot in the
same contact 3-manifold with different tight complement. (The verification that
the complement remains tight, and that the implementations of different Giroux
torsions result in different structures requires delicate arguments [Etnyre 2008].)
This method, in fact, can produce infinitely many different Legendrian nonloose
knots with the same numerical invariants in these knot types [Etnyre 2008]. We say
that L ⊂ (Y, ξ) is strongly nonloose if ξ is overtwisted and the knot complement is
tight with vanishing Giroux torsion. The knot type is strongly nonsimple if there
are two strongly nonloose, smoothly isotopic knots with equal numerical invariants
which are not Legendrian isotopic. The same simplicity/nonsimplicity definition
(with the strong adjective) carries through verbatim for transverse knots (where
the role of the numerical invariants is played by the self-linking number of the
transverse knot). In this sense, the result of [Lisca et al. 2008] translates to

Corollary 1.4. The knot types of [Lisca et al. 2008, Theorem 1.7 and Corol-
lary 1.8] are strongly nonsimple.

Proof. The distinction of the Legendrian knots L i in [Lisca et al. 2008] went
by determining the Legendrian invariants L̂(L i ), and since both were nonzero,



160 ANDRÁS I. STIPSICZ AND VERA VÉRTESI

Corollary 1.2 implies that the knots L i are strongly nonloose, concluding the proof.
�

Notice that in [Ozsváth et al. 2008] the combinatorial theory provided two in-
variants of L (denoted by λ̂±(L)), while in [Lisca et al. 2008] the invariant L̂(L)

depended on an orientation of L — therefore an unoriented Legendrian knot ad-
mitted two invariants L̂(L) and L̂(−L) after an arbitrary orientation of L was
fixed. On the other hand, the sutured theory provides a unique element for L . The
discrepancy is resolved by the observation that the map on sutured Floer homology
induced by the basic slice attachment is well-defined only up to a choice: with the
given boundary slopes there are two basic slices, and using one the class EH(L) is
transformed into L̂(L) while with the other choice the result will be L̂(−L) (after
an orientation on L is fixed). In order to clarify signs, we reprove a special case of
[Lisca et al. 2008, Theorem 7.2] (only in the ĤFK-theory) regarding the effect of
stabilization of L on L̂ and show:

Theorem 1.5. Let L be an oriented null-homologous Legendrian knot. If L− (and
L+) denotes its negative (respectively positive) stabilization, then

L̂(L−) = L̂(L), and L̂(L+) = 0.

Notice that the invariance of L̂ under negative stabilization means that, in fact, it
is an invariant of the transverse isotopy class of the positive transverse push-off of
the Legendrian knot L . By this definition the extensions of Corollaries 1.2 and 1.4
to the transverse case are easy exercises. For further results regarding transverse
knots using these invariants see [Ng et al. 2007; Ozsváth and Stipsicz 2008]. In fact,
in [Ozsváth and Stipsicz 2008] the distinction of various Legendrian and transverse
Eliashberg–Chekanov (also know as twist) knots and 2-bridge knots was carried
out by computing their L̂-invariants. As a corollary, Theorem 1.1 readily implies:

Corollary 1.6. The complement of the Eliashberg–Chekanov knot En (which is
the 2-bridge knot of type 2n+1

2 ) for odd n admits at least d
n
4e different tight con-

tact structures (distinguished by the sutured invariant) with convex boundary and
dividing set 0 of two components with slope 1. �

Performing contact (−1)-surgery along a Legendrian knot L gives a well-defined
contact structure ξ−1 on the surgered 3-manifold Y−1. The core L ′ of the glued-back
solid torus is a Legendrian knot in (Y−1, ξ−1). Suppose that L ′ is null-homologous
in Y−1. Using the sutured invariant we deduce:

Theorem 1.7. Under the circumstance described above,

L̂(L) 6= 0 H⇒ L̂(L ′) 6= 0.
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The paper is organized as follows. In Section 2 we review the basic definitions
we need about contact structures. Section 3 gives a short description of sutured
Heegaard Floer homology and the definition of the Legendrian invariants. In Sec-
tion 4 we state a precise version of Theorem 1.1 and prove it together with the
consequences given in Section 1.

2. Contact preliminaries

2A. Contact 3-manifolds. A surface 6 in the contact 3-manifold (Y, ξ) is convex
if there is a contact vector field X defined near 6 which is transverse to 6. The set
of points p ∈6 where X p ∈ ξp is usually denoted by 0 and called the dividing set of
the convex surface 6. It turns out that 0 is an embedded 1-manifold, partitioning
6 into 6+ and 6−, and the contact structure ξ is determined by 0 near 6. For a
more complete treatment of the subject, see [Etnyre 2005; Etnyre and Honda 2001;
Ozbagci and Stipsicz 2004].

Suppose that L is an oriented null-homologous Legendrian knot in the contact
3-manifold (Y, ξ). Let S be a Seifert surface of L in convex position. Orient S
such that its boundary orientation gives the orientation for L . The rotation number
then can be computed as

rot(L) = χ(S+) − χ(S−).

Define the negative and positive stabilizations L− and L+ by modifying L near a
point as it is depicted by Figure 1. The effect of a positive (respectively negative)
stabilization on the numerical invariants of L can be easily computed as

tb(L±) = tb(L) − 1 and rot(L±) = rot(L) ± 1.

Notice that the sign of the stabilization makes sense only after fixing an orientation
for the Legendrian knot.

2B. Sutured 3-manifolds. A sutured 3-manifold is a pair (Y, γ ) where Y is a com-
pact, oriented 3-manifold with boundary and γ ⊂ ∂Y is a disjoint set of embedded
tori and annuli. Every component of R(γ ) = ∂Y − γ is oriented, and R+ (re-
spectively R−) is the union of those components where the normal vector points
out (respectively in) Y . The sutured manifold is called balanced if all sutures are

+

−

Figure 1. Positive and negative stabilization.
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annular, Y has no closed components, every boundary component admits a suture
and χ(R+) = χ(R−) on every component of Y . As is customary, annular sutures
are symbolized by the homologically nontrivial simple closed curves they contain,
the collection of which is denoted by 0. Without confusion, the term “suture” will
also refer to these curves, and sometimes to their union 0. The suture 0 is oriented
as the boundary of R+ ⊂ ∂Y . We will consider only balanced sutured manifolds
in this paper.

2C. Partial open books. Partial open books are generalizations of open books for
3-manifolds with boundary. This notion was introduced by Honda, Kazez and
Matić [2007]; see also [Etgü and Ozbagci 2007; 2008].

Definition 2.1. An abstract partial open book is a triple (S, P, h) where S is a
connected surface with boundary, P is a proper subsurface of S which is a union
of 1-handles attached to S − P , and h : P → S is an embedding that restricts to the
identity near the boundary ∂ P ∩ ∂S.

A partial open book defines a 3-manifold Y with boundary as follows. First
construct the handle-body S×[−1, 0]/∼ and the compression-body P ×[0, 1]/∼,
where (x, t) ∼ (x, t ′) for x ∈ ∂S and t, t ′

∈ [−1, 1]. (Note that on P × [0, 1] we
just contract the points with first coordinate in ∂ P ∩ ∂S.) Then glue them together
with the maps P ×{0} ↪→ S×{0} and h : P ×{1} → S×{−1}. A schematic picture
of Y is given by Figure 2. The resulting 3-manifold naturally carries the structure
of a balanced sutured manifold: take

0 = ∂S − ∂ P × {−
1
2} ∪−(∂ P − ∂S) × {

1
2} ⊂ ∂Y.

Now R+ = S − P × {0}, R− = S − h(P) × {−1}; consequently χ(R+) = χ(R−)

follows at once.
0

1 = −1

1

2−

1

2

=

h

R
−

R+

Uα

Uβ

Γ

PS

Figure 2. Schematic picture of a partial open book decomposition.
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Both the handle-body S ×[−1, 0]/ ∼ and the compression-body P ×[0, 1]/ ∼

admit unique tight contact structures with convex boundary and dividing set ∂S
(and ∂ P , respectively); see [Etgü and Ozbagci 2008; Torisu 2000]. As the dividing
sets match up, we can glue these contact structures to obtain a contact structure
ξ on Y with dividing set 0 on the convex boundary ∂Y . In this sense a partial
open book decomposition determines a contact structure with convex boundary
(inducing the dividing set given by the sutures associated to the partial open book).

The partial open book decomposition naturally induces a Heegaard decomposi-
tion of Y with the compression-bodies

Uα = P × [
1
2 , 1] ∪ S × [−1, − 1

2 ] and Uβ = S × [−
1
2 , 0] ∪ P × [0, 1

2 ],

divided by the Heegaard surface

6 = ∂Uα = S × {−
1
2} ∪−P × {

1
2}.

Consistently with the sutured 3-manifold structure, the boundary of Uα (and Uβ ,
respectively) consists of the union of 6 (respectively −6), R− (respectively R+)
and a collar neighbourhood for 0; furthermore

0 = ∂6(= ∂ R+ = −∂ R−).

Every contact 3-manifold with convex boundary (Y, ξ) admits a partial open
book decomposition that is compatible with ξ in the above sense [Honda et al.
2007]. To see this, consider a contact cell-decomposition for Y whose 1-skeleton C
is a direct product near the boundary ∂Y and intersects the boundary on the dividing
set. As Legendrian arcs have standard neighbourhood, there is a neighbourhood
ν(C) of C with convex boundary and with dividing curves of two components. The
dividing curve separates −∂ν(C) into a positive and a negative part (−∂ν(C))+

and (−∂ν(C))−. Setting P = (−∂ν(C))+ the neighbourhood ν(C) can be written
as P × [0, 1]/ ∼. As C was the 1-skeleton of a contact cell-decomposition, Y −

ν(C) is product disk-decomposable: it is divided by the 2-cells of the contact
cell-decomposition (that are disks with tb = −1) to a union of tight contact 3-
balls. Thus for S = ∂(Y − ν(C))+ the handle-body Y − ν(C) can be written as
Y − ν(C) = S × [−1, 0]/ ∼, and

P = (−∂ν(C))+ ⊆
(
∂(Y − ν(C))

)
+

= S.

Note that by construction ξ |Y−ν(C) is tight, its boundary ∂(Y − ν(C)) is convex,
and the dividing set 0∂(Y−ν(C)) is isotopic to ∂S × {0}.

2D. Bypass attachment. Next we review the change of the partial open book de-
composition after a bypass is attached along a Legendrian curve c on the boundary.
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For a complete discussion of bypass attachments see [Honda 2000]. The consid-
erations below already appeared in [Honda et al. 2007, Example 5].

Let (Y, ∂Y, ξ) be a contact 3-manifold with convex boundary. Suppose that
we are given a Legendrian arc c ⊂ ∂Y that starts and ends on the dividing set
0∂Y and intersects 0∂Y in one additional point. Attaching a bypass along c is —
roughly speaking — the attachment of the neighbourhood of a “half overtwisted
disk”. This is a disk D with boundary ∂ D = c ∪ d , where ∂ D ∩ ∂Y = c, and the
dividing curve on D consists of a single arc with both of its endpoints on c. The
resulting manifold is diffeomorphic to Y with contact structure ξ c, and the dividing
curve 0 is changed in the neighbourhood of c to 0c as it is shown on Figure 3.

bypass

attachment

c

Γ Γ
c

Figure 3. Bypass attachment.

Take a partial open book decomposition for (Y, ∂Y, ξ) coming from a contact
cell-decomposition whose 1-skeleton C misses the attaching arc c. Let c± =c∩R±.
Under the identification of Y −ν(C) with S×[−1, 0]/∼, both c+ and c− are arcs on
S. The bypass attachment can be thought of consisting of a 1-handle attachment
with core d followed by a canceling 2-handle attachment along the curve a =

a+ ∪ a− of Figure 4. The contact cell-decomposition can be extended to the new
manifold (Y ′, ξ ′) (where Y ′ is, in fact, diffeomorphic to Y ) by including the cocore

R+ R
−

R+

a+ a
−

c

R
−

Figure 4. The grey areas indicate the attaching regions of the 1-
handle. The attaching curve for the 2-handle is a = a+∪a− and a−

is assumed to go parallel to the core of the 1-handle in the negative
region.
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of the 2-handle in the 1-skeleton. Thus

C ′
= C ∪ (cocore of the 2-handle)

and the page S′ of the partial open book decomposition resulting from this contact
cell-decomposition is S ∪ (−∂ν(d))+ = S ∪ (1-handle). Denote the intersection of
the attaching circle of the canceling 2-handle with the positive and negative parts
of ∂(Y ∪ {1-handle}) by a± = a ∩ R′

±
. As depicted in Figure 4, the arc a+ can be

pushed off to lie entirely on the boundary of the old manifold Y , thus a+ ⊂ R+.
Note that c+ and a+ are isotopic. They have one endpoint that agrees with the
endpoint of both c− and a−, and the other one is moved in the direction given on
0∂Y as the boundary of R+. These curves can again be thought of as being on S.
Now

R′

+
= (R+ − ν(a+)) ∪

(
∂(−ν(d))

)
+
,

thus P ′
= P ∪ ν(a+). The monodromy h′ remains the same on P , so we only

need to understand it on a+. To push a+ through ν(C) we just have to push it
through the newly attached 1-handle, so h′(a+) = a−. The arc a− can be split to
two subarcs a− ∩ S and the core of the 1-handle in S′.

2E. Basic slices. We give a short description of basic slices defined by Honda
[2000]. Suppose that ξ is a contact structure on T 2

×[0, 1] with convex boundary
and with two-component dividing curves on each of its boundary components.
The dividing curves are homotopically nontrivial and parallel. Fix a trivialization
for T 2 as R2/Z2 and let si denote the slope of the dividing curves on T 2

× {i}
(i ∈ {0, 1}). The contact 3-manifold (T 2

×[0, 1], ξ) is called minimally twisting if
every convex torus parallel to the boundary has slope s in [s1, s0]. (By [s1, s0] we
mean [s1, ∞] ∪ [−∞, s0] if s1 ≥ s0.) A basic slice is a minimally twisting tight
contact structure (T 2

× [0, 1], ξ), with convex boundary and with two dividing
curves on each T 2

× {i} and boundary slopes s0 and s1 forming an integral basis
for Z2. For fixed boundary conditions (up to isotopy) there are two basic slices
distinguished by their relative Euler class, which differ by their sign; there is no
canonical positive or negative choice.

One way to obtain a basic slice is by gluing a bypass to an I -invariant neighbour-
hood of a convex T 2 with two dividing curves. For a given slope of the attaching
curve there are two ways of attaching a bypass corresponding to the two different
basic slices; see Figure 6. Any basic slice can be obtained by this construction.

Suppose that (T 2
×[0, 1], ξ0) and (T 2

×[1, 2], ξ1) are basic slices with boundary
slopes si on T 2

×{i} (i ∈ {0, 1, 2}). As the dividing curves match up on T 2
×{1},

we can glue them together to obtain (T 2
× [0, 2], ξ = ξ0 ∪ ξ1). If in addition we

require that the shortest representatives of s0 and s2 give an integral basis for Z2 and
[s0, s1]∪[s1, s2] 6= [−∞, ∞], then (T 2

×[0, 2], ξ) is minimally twisting. It is either
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overtwisted or a single basic slice depending on whether the basic slices (T 2
×

[0, 1], ξ0) and (T 2
×[1, 2], ξ1) have the same or opposite signs. Note that “having

the same sign” makes sense in this setting, once we require the trivialization of ξ0

and ξ1 to agree over T 2
× {1}.

3. Heegaard Floer invariants

In [Ozsváth and Szabó 2004c; 2004b] invariants of closed, oriented 3-manifolds
have been introduced. In the simplest version, these invariants are given as fol-
lows. Suppose that the 3-manifold Y is given by a Heegaard diagram (6g, α, β),
where 6g is a genus-g surface, the g α-curves α = {α1, . . . , αg} correspond to belt
circles of 1-handles, while the g β-curves β = {β1, . . . , βg} to attaching circles
of 2-handles in a handle decomposition of Y with a unique 0- and 3-handle. In
particular, the α- (and similarly the β-) circles are disjoint, and linearly independent
in homology. By fixing a base point w ∈ 6g in the complement of all the α- and β-
curves, the chain complex (ĈF(Y ), ∂) is defined as follows: consider the Z2-vector
space ĈF(Y ) freely generated by the intersections

Tα ∩ Tβ ⊂ Symg(6g),

where the tori Tα and Tβ are the products of the α- and β-curves, respectively. The
boundary operator ∂ is defined by counting holomorphic disks in Symg(6g) (for
an appropriate choice of almost complex structure) connecting intersection points
of Tα and Tβ , which avoid the divisor Vw = {w} × Symg−1(6g). If (6g, α, β)

satisfy the technical condition of admissibility (which can always be arranged by
suitable isotopies; see [Ozsváth and Szabó 2004b]) then the homology ĤF(Y ) of
the resulting chain complex is a diffeomorphism invariant of Y .

Variants of this construction provide invariants for knots and for sutured 3-
manifolds, as will be outlined below. First, the choice of another point z ∈ 6g

in the complement of the α- and the β-curves determines a knot K ⊂ Y , and by
taking ĈFK(Y, K ) = ĈF(Y ) and modifying ∂ to ∂K by only allowing holomorphic
disks avoiding both Vw and Vz we get a chain complex (ĈFK(Y, K ), ∂K ), with
homology the knot Floer homology group ĤFK(Y, K ). As it is shown in [Ozsváth
and Szabó 2004a; Rasmussen 2003], for K null-homologous in Y this homology
group will be an invariant of the pair (Y, K ).

Suppose now that 6 is a compact surface with nonempty boundary. Then by
fixing k linearly independent (in homology) and disjoint α- (and similar β-) cir-
cles, the attachment of the appropriate handles gives a balanced sutured 3-manifold
with sutures being equal to ∂6. In fact, every balanced sutured 3-manifold arises
in this way. The previous scheme applies verbatim (without even the choice of
base points) and provides a chain complex (SFC(Y, 0), ∂0), ultimately defining
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the sutured Floer homology group SFH(Y, 0), which has been shown to be an
invariant of the sutured 3-manifold [Juhász 2006].

If 6 has exactly two boundary components and 6 denotes the capped-off closed
surface, and if the number of attaching curves k equals to the genus of 6 and
the curves are homologically independent in 6, then the corresponding sutured
3-manifold has toric boundary with a 2-component suture, and by placing two
marked points on the caps we get an identification

9 : SFH(Y, 0) → ĤFK(Y0, L ′),

where Y0 is the result of Dehn filling of Y with slope given by a component of 0

and L ′ is the core of the glued-up solid torus.

The contact invariant. Suppose that (Y, ξ) is a contact 3-manifold with convex
boundary, and consider a partial open book compatible with ξ . Let {b1, . . . , bk} be
a basis for H1(P, ∂S∩∂ P). The disks swept out by the bi ’s in the Uβ handle-body
have boundaries βi =bi ×{

1
2}∪bi ×{−

1
2}. Isotope each bi to an arc ai that intersects

it transversely in a single point, and whose endpoints are moved in the direction
given by the boundary orientation of −P . In the Uα handle-body ai sweeps out a
disk with boundary αi = ai × {

1
2} ∪ h(ai ) × {−

1
2}, providing a Heegaard diagram

(6, α, β) for (Y, 0). The single intersection point y = (ai ∩bi ) on P ×{
1
2} can be

shown to represent a cycle in SFC(−6, α, β), thus it defines an element EH(Y, ξ)

in SFH(−Y, −0). (Notice the orientation reversal of the Heegaard surface 6.) As
has been proven by Honda, Kazez and Matić [2007], this element is independent
of the choices made throughout its definition and gives the invariant EH(Y, ξ) of
the contact structure (Y, ξ). In the special case when the contact 3-manifold with
convex boundary is given as the complement of a standard neighbourhood of a
Legendrian knot in a closed contact 3-manifold (Y, ξ), the resulting element will
be denoted by EH(L). Note that by the Legendrian Neighbourhood Theorem, in
this case 0 consists of two parallel simple closed curves in ∂(Y − ν(L)).

The Legendrian invariant. Now consider an oriented, null-homologous Legen-
drian knot in the closed contact 3-manifold (Y, ξ). There is an open book decom-
position of Y compatible with ξ containing L on one of its pages S = S × {

1
2}.

Consider a properly embedded arc b1 in S intersecting L exactly once. The disk
b1 × [0, 1] is a meridional disk for L . Orient b1 so that the boundary orientation
of ∂(b1 × [0, 1]) = −b1 × {0} ∪ b1 × {1} agrees with the natural orientation of
the meridian for L . (Such an oriented arc b1 will be called a half-meridian of
L .) With these conventions the orientation of S coincides with the orientation
induced by (b1, L). Our setup here will be slightly different from the one used in
[Lisca et al. 2008], but the resulting Heegaard diagram and the element specified
in it will be actually the same already on the chain-level.
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a1b1

wz

−S

L

Figure 5. The placement of the basepoints.

Pick a basis {b1, . . . , bg} of H1(S, ∂S) such that b1 is a half-meridian of L .
Isotope all the bi ’s to ai ’s as before and place the basepoint z in the “big” region
that is not swept out by the isotopies of the bi , and put w between b1 and a1. This
can be done in two essentially different ways, and exactly one of them corresponds
to the chosen orientation of L . If b1 is oriented as described above, w should be
placed close to the tail of b1; see Figure 5. The single intersection point (ai ∩bi ) on
S×{

1
2}⊂−6 is an element in ĈFK(−6, α, β, z, w) and the choice of z assures that

it is a cycle, hence it defines an element L̂(L) in ĤFK(−Y, L). As it was shown
in [Lisca et al. 2008], the homology class L̂(L) is an invariant of the oriented
Legendrian knot L ⊂ (Y, ξ).

4. Connection between the invariants

Let L be a Legendrian knot in a closed contact 3-manifold (Y, ξ). The two invari-
ants

EH(L) = EH(Y − ν(L), ξ |Y−ν(L)) ∈ SFH
(
−(Y − ν(L)), −0∂(Y−ν(L))

)
,

and L̂(L) ∈ ĤFK(−Y, L) introduced above lie in two different groups, but if we
change the suture on ∂(Y − ν(L)) to two meridians −m ∪ m of L , the sutured
Floer homology SFH

(
−(Y −ν(L)), −m ∪m

)
can be identified with ĤFK(−Y, L).

This modification of the suture can be achieved by attaching a basic slice to the
sutured 3-manifold Y − ν(L), and according to [Honda et al. 2008] there is a map
corresponding to this attachment. More generally:

Theorem 4.1 [Honda et al. 2008; see also Ghiggini and Honda 2008]. Suppose
(Y ′, 0′) is a balanced sutured submanifold of the balanced sutured 3-manifold
(Y, 0) and all components of Y − int(Y ′) intersect ∂Y . Let ξ be a contact structure
on Y − int(Y ′) so that ∂Y ∪ ∂Y ′ is convex with respect to ξ and with dividing set
0 ∪ 0′. Then there is a natural linear map

8ξ : SFH(−Y ′, −0′) → SFH(−Y, −0),
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induced by ξ . Moreover, if Y ′ is endowed with the contact structure ξ ′ such that
0(Y ′,ξ ′) = 0′ then

8ξ (EH(Y ′, ξ ′)) = EH(Y, ξ ′
∪ ξ).

We will apply this theorem in the special case when ∂Y ′ and ∂Y are both 2-tori,
Y − intY ′

= T 2
×[0, 1] and the contact structure on the difference is a basic slice.

The dividing set is given on ∂(T 2
×[0, 1]) by the dividing set of ∂Y (on T 2

×{0})
and by the meridians of L (on T 2

× {1}); there are two basic slices with the given
boundary slopes. Notice that the attachment of the basic slice is actually equivalent
to the attachment of a single bypass.

Trivialize ∂(Y − ν(L)) with the meridian m and the contact framing l, hence
the dividing curves have slope ∞. The new dividing curve after attaching a bypass
along any arc with slope between −1 and 0 has slope 0. Up to isotopy there
are only two different attachments (of opposite sign) depicted on Figure 6; these
are the two different bypass attachments corresponding to the two different basic
slices. These attaching curves together with the arcs of the dividing curves form an
oriented curve on ∂(Y − ν(L)); one of them represents m the other one represents
−m. Denote the former one by c.

Theorem 4.2. The map

8c
: SFH

(
−(Y − ν(L)), −0∂(Y−ν(L))

)
→ SFH

(
−(Y − ν(L)), −m ∪ m

)
induced by the basic slice attachment along c maps EH(L) to the class which is
identified with L̂(L) under the identification

9 : SFH
(
−(Y − ν(L)), −m ∪ m

)
→ ĤFK(−Y, L).

Proof. Let (S, g) be an open book for (Y, ξ) that contains L homologically essen-
tially on one of its pages. Set P = S − νS(L) (where νS(L) denotes the tubular
neighbourhood of L in S) and h = g|P . We claim that the partial open book
(S, P, h) describes (Y − ν(L), ξ |Y−ν(L)). Indeed, topologically the 3-manifold
corresponding to this abstract partial open book is

(S × [−1, 0]/ ∼) ∪ (P × [0, 1]/ ∼),

R+ R
−

c

R
−

R
−

R+ R+

m

Figure 6. Bypass attachments to obtain meridians.
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which is equal to

(S × [−1, 1]/ ∼) − (νS(L) × [0, 1]) = Y − ν(L).

The contact structure on S×[−1, 0]/ ∼ is the same, while on P ×[0, 1]/ ∼ (which
is a subset of S × [0, 1]/ ∼) it is obviously tight. If we round the corners we get
that the dividing curve is 0∂(Y−ν(L)), so the dividing curve on P × [0, 1]/ ∼ must
be ∂ P .

Take a basis {b1, . . . , bk} of S subordinated to L , such that b1 is the half-
meridian of L . Then the left hand side of Figure 7 depicts the corresponding
Heegaard diagram (−6, {α1, . . . , αk}, {β1, . . . , βk}, w, z) for (−Y, L). Here 6 =

S×{
1
2}∪−S×{−

1
2} and the intersection point x= (ai ∩bi )

k
i=1 represents the Legen-

drian invariant L̂(L) in ĤFK(−Y, L). The basis for H1(P, ∂S∩∂ P) is {b2, . . . , bk}

while the Heegaard surface is −6̃ = P×{
1
2}∪−S×{−

1
2}. The corresponding Hee-

gaard diagram for
(
−(Y −ν(L)), −0∂(Y−ν(L))

)
is (−6̃, {α2, . . . , αk}, {β2, . . . , βk})

which is depicted on the right hand side of Figure 7. By definition y = (ai ∩bi )
k
i=2

represents the contact invariant EH(L) ∈ SFH
(
−(Y − ν(L)), −0∂(Y−ν(L))

)
.

Attaching a bypass along c changes the partial open book to (S′, P ′, h′), where
(with the notations described in Section 2D) S′

= S∪(1-handle) and P ′
= P∪ν(a+).

Note that a+ represents half of the meridian on
(
∂(ν(L))

)
+

⊂ S, thus we can orient
it. The 1-handle is attached to S along ∂S in the neighbourhood of the head of a+

so that both of its feet are in the positive direction away from the head of a+

with respect to the orientation of ∂S; see Figure 8. The monodromy remains the
same restricted to P (that is h′

|P = h) and as it was observed in Section 2D,
h′(a+) = a− and a− splits as the core of the 1-handle and as a− ∩ S which is
isotopic to c−. Note that c− is a half-meridian of the knot L , thus the image of
it on S × {−

1
2} is isotopic to g(a1). Now we are ready to describe the Heegaard

diagram (−(6′, {α, α′

2 . . . , α′

k}, {β, β ′

2, . . . , β
′

k})) obtained from the partial open

L
a1

S × {1

2
}−S × {−1

2
} P × {1

2
}−S × {−1

2
}

Heegaard diagram for Y Heegaard diagram for Y − N (L)

Figure 7. Heegaard diagrams corresponding to the (partial) open books.
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a1

b1

−S
′ × {−1

2
} P

′ × {1

2
}

Figure 8. Heegaard diagram corresponding to (S′, P ′, h′).

book (S′, P ′, h′) in the usual manner. The Heegaard surface −6′ is equal to P ′
×

{
1
2} ∪−S′

× {−
1
2}, and the curves

β ′
= b+ × {

1
2} ∪ b+ × {−

1
2} and α′

= a+ × {
1
2} ∪ a− × {−

1
2},

where b+ is the usual perturbation of a+ on P ′. 6′ is obtained by gluing two
surfaces together, each of which is diffeomorphic to S −ν(point). Indeed, the hole
on the S′-side comes from the 1-handle attachment. P ′ is just a union of the 1-
handles of S, thus the missing 2-handle gives us the other hole. This surface 6′ is
thus diffeomorphic to 6−ν(z)−ν(w), where we think of ν(z) being deleted from
the S′- and ν(w) from the P ′-side. Under this identification b+ (and thus a+) is
isotopic to b1 on P ′, hence β ′

= b+ × {
1
2} ∪ b+ × {−

1
2} and β1 are isotopic on 6′.

Recall that h′(a+) on S′
×{−

1
2} was isotopic to the union of g(a1) and the core of

the 1-handle. So α′ is isotopic to α1 on 6−ν(z). The core part of h′(a+) makes α′

and β ′ to go around the hole ν(w) from different sides, thus α′ is isotopic to α1 on
6′. In conclusion, the Heegaard diagram (−6′, {α′, α2, . . . , αk}, {β

′, β2, . . . , βk})

is isotopic to
(
−(6 − ν(z ∪ w)), {α1, . . . , αk}, {β1, . . . , βk}

)
. The contact invari-

ant EH(L) is mapped to the contact invariant EH(Y − ν(L), −m ∪ m) under the
map induced by the basic slice, and thus it represents the Legendrian invariant in
ĈFK(−6, α, β, z, w), which proves the statement. �

Proof of Theorem 1.1. With the identifications above, the proof of Theorem 1.1 is
now complete. �

Next we turn to the proof of the remaining statements described in Section 1.
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Proof of Theorem 1.5. Take a standard contact neighbourhood ν(L) of L and
stabilize L inside it. Then L± has a standard contact neighbourhood ν(L±)⊂ν(L).
The contact manifold (ν(L) − ν(L±), ξ |ν(L)−ν(L±)), as it is explained in [Etnyre
and Honda 2001], is a basic slice, that is, Y −ν(L±) is obtained from Y −ν(L) by
a bypass attachment. We can view Y − ν(L) as the result of a bypass attachment
to the boundary of Y − ν(L±) from the back. As usual, the two basic slices with
the above boundary conditions have opposite relative Euler classes. To figure out
which one corresponds to the positive and which one to the negative stabilization
we first examine a model case. (For a related discussion see [Etnyre and Honda
2001].) Suppose that tb(L)< 0 and take a Seifert surface S for L , giving rise to the
Seifert surface S p (respectively Sm) for L+ (respectively L−). These surfaces are
oriented such that their boundary orientations give the orientations for the knot. By
tb(L)< 0 we can assume that S is in convex position. We have tb(L±)= tb(L)−1,
thus the dividing curve hits the boundary of the Seifert surface S in 2|tb(L) − 1|

points. In the collar neighbourhood of the boundary (diffeomorphic to S1
× I ), the

dividing curves of S are the line segments k 2π
2|tb(L)|

× I where 0 ≤ k < 2|tb(L)|.
Once again, by the negativity of tb(L) the bypass attachment corresponds to the
gluing of an annulus to the boundary of S with dividing curves k 2π

2|tb(L)|
× I (0 ≤

k < 2|tb(L)|) and a boundary parallel curve that is disjoint from the others. This
boundary parallel curve bounds a domain; see Figure 9. The rotation numbers are
rot(L±) = rot(L)±1, thus by the formula rot(S) = χ(S+)−χ(S−) we get that the
extra domain on S p (on Sm , respectively) is in the positive (respectively negative)
region. Using edge rounding we get that the attaching curve corresponding to the
positive (respectively negative) stabilization must end in the positive (respectively
negative) region with respect to the orientation of the knot. The left hand side of
Figure 10 depicts the arc p (and n, respectively) along which the bypass has to be
attached (from the back) to obtain Y − ν(L).

L L
±

S

S
±

Figure 9. Neighbourhood of a Legendrian knot and its stabilization.
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c

p

n

+

−

+

−

+

−

c
p

n

+− −

c

−

−

+

+l ls

∂(Y − ν(L±)) ∂(Y − ν(L±)) ∂(Y − ν(L))

n−1

p−1

−m −m−m

Figure 10. Attaching curves for the bypasses corresponding to
the stabilizations. The dashed line indicates that the bypass is
attached from the back. On the left-hand picture s denotes the
Seifert framing of the knot, while on the two right-hand pictures l
is given by the contact framing of the Legendrian knot.

Both the stabilization and the bypass attachment are local operations, thus the
above described phenomenon remains true for any Legendrian knot (without the
assumption tb(L) < 0). The arcs p and n have the same slope, but they end
in regions of different sign. Consider the middle diagram of Figure 10 for the
general picture for T 2, trivialized by the meridian m and the Thurston–Bennequin
framing l.

By Theorem 4.1 the map corresponding to the bypass attachment maps EH(L) to
EH(L±). To get L̂(L±) we need to attach another bypass, so that the new dividing
curves are meridians, hence this second bypass is attached along the arc c.

In the case of positive stabilization, the manifold(
Y − ν(L+), (ξ |Y−ν(L+))

c)
=

(
Y − ν(L), (ξ |Y−ν(L))

p−1c)
is overtwisted. Indeed, performing the positive stabilization first one can indicate
both bypasses in one picture, one attached from the back: p−1 drawn by dashed line
in the middle picture of Figure 10 and c from the front. These curves are parallel,
thus the corresponding bypasses (“half overtwisted disks”) form an overtwisted
disk in (Y − ν(L), (ξ |Y−ν(L))

p−1c). It is known that the sutured invariant of an
overtwisted structure vanishes [Honda et al. 2007, Corollary 4.3.], therefore so
does L̂(L+).

In the case of negative stabilization, the contact structure (T 2
× I, ξ n−1c) is uni-

versally tight. This can be seen by first passing to ∂(Y − ν(L)) (see the right
hand side of Figure 10) and then noting that the two bypasses attached there
are of the same sign, so they do not induce an overtwisted disk. The union of
the two basic slices is minimally twisting, and in this case the range of slopes
is [0, ∞] = [0, 1] ∪ [1, ∞]. Therefore the result is still a basic slice, thus the
composition of the two bypass attachments along n and c is equivalent to a single



174 ANDRÁS I. STIPSICZ AND VERA VÉRTESI

bypass attachment along c. This immediately implies L̂(L) = L̂(L−), concluding
the proof. �

Next we turn to the proof of the statement concerning the vanishing of the Leg-
endrian invariant in the presence of Giroux torsion. We start by recalling Giroux
torsion.

Definition 4.3. The contact structure ξn on T 2
× [0, 1] = R/Z × R/Z × [0, 1] =

{(x, y, z))} is defined by

ξn = ker
(
cos(2πnz) dx − sin(2πnz) dy

)
.

A (not necessarily closed) contact 3-manifold (Y, ξ) has Giroux torsion τ(Y, ξ) ≥

n if it contains an embedded submanifold T 2
× I with the property that (T 2

×

I, ξ |T 2×I ) is contactomorphic to (T 2
× [0, 1], ξn).

Proof of Corollary 1.2. The proof is a simple adaptation of the proof for the
closed case given by Ghiggini, Honda, and Van Horn-Morris [2007]. As (Y −

ν(L), ξY−ν(L)) has positive Giroux torsion, there is a submanifold T 2
× I , such

that ξ |T 2×I = ξn for some n > 0. It was shown in [Ghiggini et al. 2007] that
EH(T 2

× I, ξn) = 0.
The application of Theorem 4.1 for the contact 3-manifold pair (Y −ν(L), T 2

×

[0, 1]) provides a map

SFH(−(T 2
× I ), −0∂(T 2×I )) → SFH

(
−(Y − ν(L)), −0Y−ν(L)

)
mapping the contact element EH(T 2

× I, ξn) = 0 to the contact element EH(L) =

EH(Y − ν(L), ξ |Y−ν(L)). This implies that EH(L) = 0, hence in the light of The-
orem 1.1 we get that L̂(L) = 0, concluding the proof. �

Proof of Theorem 1.7. As in the proof of Theorem 1.1, we attach a bypass along the
arc e of Figure 11 and change the dividing curve on the torus boundary to 0e

∂(Y−ν(L))

c

+− −

l

e

−m

Figure 11. Attaching curves for the bypasses on ∂(Y − ν(L)) to
obtain dividing curves of slope 1.



ON INVARIANTS FOR LEGENDRIAN KNOTS 175

of slope −1. There are two choices for such arcs, but again the orientation of L
assigns the one depicted on Figure 11.

This bypass attachment gives rise to a map

8e
: SFH

(
−(Y − ν(L)), −0∂(Y−ν(L))

)
→ SFH

(
−(Y − ν(L)), −0e

∂(Y−ν(L))

)
.

By filling the boundary with a solid torus, the latter homology is identified with
ĤFK(−Y−1, L ′). Denote the composition of the above maps by

G : SFH
(
−(Y − ν(L)), −0∂(Y−ν(L))

)
→ ĤFK(−Y−1, L ′).

We claim that the homomorphism G maps EH(L) to L̂(L ′). Indeed, consider
an open book (S, h) adapted to (Y, ξ, L). The same open book is adapted to
(Y−1, ξ−1, L ′), with the only difference in the monodromy: the monodromy h′ for
the latter triple is multiplied by a right-handed Dehn twist along L; see [Ozbagci
and Stipsicz 2004, page 133]. Using the notations introduced in Section 2, the
map G corresponds to changing the partial open book (S, P = S − νS(L), h|P)

to (S′, P ′, h′′) corresponding to the bypass attachment. The image of the half-
meridian a+ under h′′ is h(a+) multiplied by a right-handed Dehn twist along L .
Therefore G(EH(L)) = L̂(L ′).

After attaching the bypass along e, we can apply another bypass attachment
along c of Figure 11 to obtain the meridian as dividing curve. We have already
seen in the proof of Theorem 1.5 that the composition of these two bypasses is a
basic slice; thus we have the commutative diagram

SFH
(
−(Y−ν(L)), −0∂(Y−ν(L))

)
**VVVVVVVVVVVVVVVVVV

SFH
(
−(Y − ν(L)), −0e

∂(Y−ν(L))

)
= ĤFK(−Y−1, L ′)

//

����
��
��

SFH
(
−(Y−ν(L)), −m ∪ m

)
= ĤFK(−Y, L)

The maps in this triangle map the contact invariants as

EH(L) //

%%KKKKKKKKKK L̂(L ′)

yysssssssss

L̂(L) 6= 0.

Therefore L̂(L ′) does not vanish, concluding the proof. �
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