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We prove a uniform Sobolev inequality for Ricci flow that is independent
of the number of surgeries. As an application, under fewer assumptions,
we derive a noncollapsing result stronger than Perelman’s κ-noncollapsing
result with surgery. The proof is shorter and seems more accessible. The re-
sult also improves some earlier ones where the Sobolev inequality depended
on the number of surgeries.

1. Introduction

A crucial step in Perelman’s work on the Poincaré and the geometrization conjec-
tures is the κ-noncollapsing result for Ricci flow with or without surgeries. The
proof of this result in the surgery case requires a truly complicated calculation using
new concepts such as reduced distance, admissible curve, barely admissible curve,
gradient estimate of scalar curvature, and so on. This is thoroughly elucidated by
Cao and Zhu [2006], Kleiner and Lott [2007] and Morgan and Tian [2007]. See
also [Tao 2006] for a PDE point of view.

In this paper we prove a uniform Sobolev inequality for Ricci flow that is inde-
pendent of the number of surgeries. It is well known that uniform Sobolev inequal-
ities are essential in that they encode rich analytical and geometrical information
about the manifold. These include noncollapsing and isoperimetric inequalities. As
a consequence, we obtain a strong noncollapsing result, which includes Perelman’s
κ-noncollapsing result with surgery as a special case. Our result also requires
fewer assumptions. For instance, we do not need the whole canonical neighbor-
hood assumption for the manifold (see Remark 1.8 below). In the proof, we use
only Perelman’s W entropy and some analysis of the minimizer equation of the W
entropy on hornlike manifolds. Hence it is shorter and seems more accessible.
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Let M be a compact Riemannian manifold with dimension n ≥ 3 and metric g.
Then a Sobolev inequality of the following form holds: there exist positive con-
stants A and B such that, for all v ∈ W 1,2(M, g),

(1-1)
(∫

v2n/(n−2) dµ(g)
)(n−2)/n

≤ A
∫

|∇v|
2 dµ(g) + B

∫
v2 dµ(g).

This inequality was proved by Aubin [1976] for A = K 2(n)+ ε with ε > 0 and
B depending on bounds on the injectivity radius and sectional curvatures. Here
K (n) is the best constant in the Sobolev imbedding for Rn . Hebey [1996] showed
that B can be chosen to depend only on ε, the injectivity radius, and the lower
bound of the Ricci curvature. Hebey and Vaugon [1996] proved that one can even
take ε = 0. However, the constant B will also depend on the derivatives of the
curvature tensor. Hence the controlling geometric quantities for B as stated above
are not invariant under the Ricci flow in general. Theorem 1.6 states that a uniform
Sobolev inequality of the type above holds under Ricci flow in finite time, even in
the presence of an indefinite number of surgeries.

In order to state the theorem, we first introduce some notations. They are mainly
taken from [Perelman 2002; 2003, Cao and Zhu 2006; Kleiner and Lott 2007;
Morgan and Tian 2007].

We use (M, g(t)) to denote Hamilton’s Ricci flow, satisfying dg/dt =−2 Ric. If
a surgery occurs at time t , then (M, g(t−)) denotes the preoperative manifold (the
one just before the surgery) and (M, g(t+)) denotes the postoperative manifold (the
one just after). Denote by B(x, t, r) the ball whose radius is r with respect to the
metric g(t) and whose center is at x . Denote the scalar curvature by R = R(x, t).
Put R−

0 = sup R−(x, 0). Denote by R the full curvature tensor and by dµ(g(t))
the volume element. The total volume of M under g(t) is vol(M(g(t)).

In this paper we use the following definition of κ-noncollapsing by Perelman
[2003], as elucidated in [Kleiner and Lott 2007, Definition 77.9].

Definition 1.1 (κ-noncollapsing). Let (M, g(t)) be a Ricci flow with surgery de-
fined on [a, b]. Suppose that x0 ∈ M , t0 ∈ [a, b] and r > 0 are such that t0 − r2

≥ a,
B(x0, t0, r) ⊂ M is a proper ball and the parabolic ball P(x0, t0, r, −r2) is un-
scathed. Then we say M is κ-collapsed at (x0, t0) at scale r if |R| ≤ r−2 on
P(x0, t0, r, −r2) and vol(B(x0, t0, r)) < κr3; otherwise it is κ-noncollapsed.

Definition 1.2 (strong κ-noncollapsing). Let M be a Ricci flow with surgery de-
fined on [a, b]. Suppose x0 ∈ M , t0 ∈[a, b] and r >0 are such that B(x0, t0, r) ⊂ M
is a proper ball . Then M is strong κ-noncollapsed at (x0, t0) at scale r if R ≤ r−2

on B(x0, t0, r) and vol(B(x0, t0, r)) ≥ κr3.

Strong κ-noncollapsing improves on κ-noncollapsing in two respects. First is
that only information on the metric balls on one time level is needed. Thus it
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bypasses the complicated issue that a parabolic ball may be cut by a surgery. The
other is that it places an upper bound on the scalar curvature instead of the full
curvature tensor. When the Ricci flow is smooth, it is already known by Perelman
that it is strong noncollapsed. However, this is not the case when surgeries are
present.

Definition 1.3 (normalized manifold). A compact Riemannian manifold is nor-
malized if |R| ≤ 1 everywhere and if the volume of every unit ball is at least half
that of the Euclidean unit ball.

Definition 1.4 (ε-neck, ε-horn, double ε-horn, and ε-tube). An ε-neck (of radius r )
is an open set that has a metric and, after scaling the metric by the factor r−2, is
ε-close in the Cε−1

topology to the standard neck S2
×(−ε−1, ε−1). Here and later

Cε−1
means C [ε−1

]+1.
Let I be an open interval in R1. An ε-horn (of radius r ) is S2

× I with a metric
and the properties that each point is contained in some ε-neck, one end is contained
in an ε-neck of radius r , and the scalar curvature tends to infinity at the other end.

An ε-tube is S2
× I with a metric and the properties that each point is contained

in some ε-neck and the scalar curvature stays bounded on both ends.
A double ε-horn is S2

× I with a metric and the properties that each point is
contained in some ε-neck and the scalar curvature tends to infinity at both ends.

Definition 1.5. A standard capped infinite cylinder is R3 equipped with a rota-
tionally symmetric metric with nonnegative sectional curvature and positive scalar
curvature such that, outside a compact set, it is a semiinfinite standard round cylin-
der S2

× (−∞, 0).

A few more basic facts concerning Ricci flow with surgery, such as (r, δ) surgery
and δ-neck, are given in the appendix. For detailed information and related termi-
nology, see [Cao and Zhu 2006; Kleiner and Lott 2007; Morgan and Tian 2007].

Here is our main result:

Theorem 1.6. Given real numbers T1 < T2, let (M, g(t)) be a 3-dimensional
Ricci flow with normalized initial condition defined on the time interval containing
[T1, T2]. Suppose the following conditions are met.

(a) There are finitely many (r, δ) surgeries in [T1, T2], occurring in ε-horns of
radii r . Here r ≤ r0 and ε ≤ ε0, with r0 and ε0 being fixed sufficiently small
positive numbers less than 1. The surgery radii are h ≤ δ2r , that is, the
surgeries occur in δ-necks of radius h ≤ δ2r . Here 0 < δ ≤ δ0, where δ0 =

δ0(r, ε0) > 0 is sufficiently small. Outside of the ε-horns, the Ricci flow is
smooth.
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(b) For a constant c > 0 and any point x in all the above ε-horns, there is a region
U satisfying B(x, cε−1 R−1/2(x))⊂U ⊂ B(x, 2cε−1 R−1/2(x)) such that, after
scaling by a factor R(x), it is ε-close in the Cε−1

topology to S2
×(−ε−1, ε−1).

Also, for any x in the modified part of the ε-horn immediately after a
surgery, the ball B(x, ε−1 R−1/2(x)), is, after scaling by a factor R(x), ε-close
in the Cε−1

topology to the corresponding ball of the standard capped infinite
cylinder.

(c) For A1 > 0 and n = 3, the Sobolev imbedding(∫
v2n/(n−2) dµ(g(T1))

)(n−2)/n
≤ A1

∫
(4|∇v|

2
+ Rv2

+ v2) dµ(g(T1))

holds for all v ∈ W 1,2(M, g(T1)).

Then for all t ∈ (T1, T2], the Sobolev imbedding(∫
v2n/(n−2) dµ(g(t))

)(n−2)/n
≤ A2

∫
(4|∇v|

2
+ Rv2

+ v2) dµ(g(t))

holds for all v ∈ W 1,2(M, g(t)). Here

A2 = C
(

A1, sup R−(x, 0), T2, T1, sup
t∈[T1,T2]

vol(M(g(t)))
)
,

is independent of the number of surgeries or r .
Moreover, the Ricci flow is strong κ-noncollapsed in the whole interval [T1, T2]

under scale 1, where κ depends only on A2.

Remark 1.7. By [Hebey 1996], at any given time, a Sobolev imbedding always
holds with constants depending on lower bound of Ricci curvature and injectivity
radius. So one can replace assumption (c) by the assumptions that (M, g(T1)) is κ-
noncollapsed and that the canonical neighborhood assumption (with a fixed radius
r0 > 0 and ε0 > 0) holds at time T1. It is easy to see that these together imply the
Sobolev imbedding at T1.

We assume as usual that, at a surgery, we throw away all compact components
with positive sectional curvature, and also capped horns, double horns and all com-
pact components lying in the region where R >(δr)−2. In the extra assumption that
the Ricci flow is smooth outside of the ε-horns, we have excluded these deleted
items. By keeping track of the constants in the proof, one can see that A2 is
bounded from above by C max{1, T2 − T1, supt∈[T1,T2]

vol(M(g(t))}. It is known
that vol(M(g(t)) ≤ C(1+ t3/2). If one can choose the initial scalar curvature to be
nonnegative everywhere, then A2 can be chosen as a constant independent of the
lifespan of the Ricci flow. This is due to the facts that the volume does not increase
with time and that the Sobolev constant is uniformly bounded in this case; see
[Zhang 2007c, Remark 1.2(2)].
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Remark 1.8. With the exception of using the monotonicity of Perelman’s W en-
tropy, the proof of Theorem 1.6 uses only long-established results. Under (r, δ)
surgery, assumption (b) is clearly implied by, but much weaker than, the canonical
neighborhood assumption on the whole manifold M , which was used in all other
papers so far. In particular, there is no need for the gradient estimate on the scalar
curvature, which is difficult to prove by itself.

However, in proving long time existence of Ricci flow with surgery, one must
show that the canonical neighborhood assumption holds, using a delicate contra-
diction argument; see [Perelman 2003; Cao and Zhu 2006; Kleiner and Lott 2007;
Morgan and Tian 2007]. In this argument, one supposes the canonical neighbor-
hood assumption at a fixed scale first breaks down at a certain time. Then it can be
shown that this same assumption holds simultaneously at a larger scale. Using this,
one can prove the noncollapsing property, which in turn will lead to a contradiction
through a blow-up argument. During this process, the gradient estimate for the
scalar curvature is still required. Also, this proof of noncollapsing with surgeries
via Theorem 1.6 seems to work only in the case of the Poincaré conjecture. For
the full geometrization conjecture, so far one must use Perelman’s argument via
reduced distance. We hope to address this problem in the future. The motivation
is that a Sobolev imbedding implies more information than just the noncollapsing
property.

Remark 1.9. Zhang [2007a] showed that under Ricci flow with a finite number
of surgeries in finite time, a uniform Sobolev imbedding holds. Recently, the
preprint [Ye 2007] stated without proof a similar result depending on the number
of surgeries.

Remark 1.10. The strong noncollapsing result clearly implies Hamilton’s little
loop conjecture with surgeries. That is, if the curvature tensor in a small geodesic
ball is bounded, then the injectivity radius is bounded from below. The conjecture
was proved by Perelman only in the case without surgery. In the case with surgery,
using among other things the method of reduced distance, Perelman proved the
lower bound of the injectivity radius under the more restrictive assumption that the
curvature tensor is bounded in a parabolic cube.

Let us finish the introduction by outlining the proof. Recall Perelman’s W en-
tropy and its monotonicity, which are in fact the monotonicity of the best constants
of the log Sobolev inequality with certain parameters. If a Ricci flow is smooth
over a finite time interval, then these best constants do not decrease as the param-
eters change. If a Ricci flow undergoes a (r, δ) surgery with δ sufficiently small,
then the best constant only decreases by at most a constant times the change in
volume. This proves the essential monotonicity of the W entropy under surgeries;
see (2-21) below. This is achieved by a weighted estimate of Agmon type for the
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minimizing equation of the W entropy. The method is motivated by those at the
ends of [Perelman 2003] and [Kleiner and Lott 2007], which studied the change of
eigenvalues of the linear operator 41− R. Since our case is nonlinear and contains
an extra parameter, more analysis and estimates are needed. In the end we prove,
in finite time, the best constant of the log Sobolev inequality (see [Gross 1975])
with certain parameters is uniformly bounded from below by a negative constant,
regardless of the number of surgeries. This uniform log Sobolev inequality is then
converted by known methods to the desired uniform Sobolev inequality, which
in turn yields the strong noncollapsing property. The estimate of the change of
the best constant of the log Sobolev inequality under one surgery seems to be of
interest independent of the study of Ricci flow.

This paper was first posted as [Zhang 2007b] (in December), and the announce-
ment appeared in [Zhang 2008] the following May.

2. Proof of Theorem 1.6.

The theorem will require three lemmas. Much of the analysis is focused on the
ε-horn where a surgery takes place. So we will fix some notations and basic facts
concerning the ε-horn and the surgery cap. Also we will use c with or without
index to denote a generic positive constant.

Recall that a (r, δ) surgery occurs deep inside an ε-horn of radius r . The horn
is cut open at the place where the radius is h ≤ δ2r . Then a cap is attached and a
smooth metric is constructed by interpolating between the metric on the horn and
the metric on the cap. The manifold just after surgery is denoted by M+, and the
ε-horn thus surgically modified is called a capped ε-horn with radius r .

Let D be a capped ε-horn. By assumption, a region N around the boundary
∂ D equipped with the scaled metric cr−2g is ε-close, in the Cε−1

topology, to the
standard round neck S2

× (−ε, ε). Here c is a generic positive constant such that
cr−2 equals the scalar curvature at a point on ∂ D. For this reason we will often
take c = 1.

Let 5 be the diffeomorphism, from the definition of ε-closeness, that maps from
the standard round neck to N . Denote by z a number in (−ε−1, ε−1). For θ ∈ S2,
(θ, z) is a parametrization of N via the diffeomorphism 5. In this way, we can
identify the metric on N with its pullback by 5 on the round neck. We normalize
the parameters so that the capped ε-horn lies in the region where z ≥ 0.

Next we define

(2-1) Y (D) = inf

{ ∫
4|∇v|

2
+ Rv2(∫

v2n/(n−2)
)(n−2)/n

∣∣∣∣ v ∈ C∞

0 (D ∪ N ), v > 0

}
.
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Proposition 2.1. For sufficiently small ε > 0, there exist positive constants C1 and
C2 such that C1 ≤ Y (D) ≤ C2.

Proof. Since R is positive in D ∪ N , Y (D) is bounded from above and below by
constant multiples of the Yamabe constant

Y0(D) = inf
{∫ 4 (n−1)

(n−2)
|∇v|

2
+ Rv2

(
∫

v2n/(n−2))(n−2)/n

∣∣∣∣ v ∈ C∞

0 (D ∪ N ), v > 0
}
.

So it suffices to prove that the Yamabe constant is bounded between two positive
constants.

Let g = g(x) be the metric on D ∪ N . Then Y0(D) is the same under the metric
g1(x) = R(x)g(x).

Consider the manifold (D ∪ N , g1). By assumption and the (r, δ) surgery pro-
cedure, there is a fixed r0 > 0 such that for any x ∈ D ∪ N , the ball B(x, r0) is
ε-close under g2(y) = R(x)g(y) for y ∈ B(x, r0) (in the Cε−1

topology) to a part
of the standard capped infinite cylinder. Therefore, for y in the same geodesic
ball, the scaled scalar curvature R−1(x)R(y) is ε-close, in the Cε−1

−2 norm, to
a positive function. This positive function is the scalar curvature in the standard
capped cylinder, which is both uniformly bounded away from 0 and bounded from
above. Actually, R(y) = R(x)(h(y) + ξ(y, ε)), where h(y) = 1 when y is away
from the surgery cap and h(y) is the scalar curvature of the surgery cap. The
Cε−1

−2 norm of ξ is less than c · ε.
Hence, for y away from the surgery cap and under the metric g1(y)= R(y)g(y),

the same geodesic ball is ε-close (in Cε−1
−2 topology) to a part of the standard

capped infinite cylinder. For y in the surgery cap, the curvatures in the metric
g1(y) = R(y)g(y) are uniformly bounded since h = h(y) has bounded C2 norm.

Since ε is sufficiently small, we know that the injectivity radius of (D∪N , g1) is
bounded from below by a positive constant and that its Ricci curvature is bounded
from below. Actually, it is easy to see that these hold for a much larger domain
containing (D ∪ N , g1). By [Hebey 1996, Proposition 6], we can find a positive
constant C such that(∫

v2n/(n−2) dµ(g1)
)(n−2)/n

≤ C
∫

(|∇1v|
2
+ v2) dµ(g).

Recall the scalar curvature of (D ∪ N , g1) is bounded between two positive con-
stants outside of the surgery cap. Inside the surgery cap, the scalar curvature is
bounded from below by an absolute negative constant. Therefore for a constant
still named C ,(∫

v2n/(n−2) dµ(g1)
)(n−2)/n

≤ C
∫ (

4 n−1
n−2 |∇1v|

2
+ R1v

2
+ v2α2) dµ(g1)
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for all v ∈ C∞

0 (D ∪ N ). Here α is a nonnegative, smooth function supported in a
neighborhood of the surgery cap; it is bounded from above by an absolute constant.
Also, ∇1 and R1 are the gradient and scalar curvature under g1, respectively. Note
that R1 may not be positive inside the surgery cap.

Now we scale back to the metric g = R−1(y)g1(y). By conformal invariance of
all but the last term, it is easy to check that, after renaming R(n−2)/4v by v,(∫

v2n/(n−2) dµ(g)
)(n−2)/n

≤ C
∫ (

4 n−1
n−2 |∇v|

2
+ Rv2

+ v2(x)R(x)α2(x)
)

dµ(g)

for all v ∈ C∞

0 (D ∪ N ). Now the scalar curvature is positive everywhere.
Hence we see that Y0(D) is bounded from below by a positive constant when

ε is sufficiently small. It is also bounded from above by the Yamabe constant of
Sn . Since Y0(D) and Y (D) are comparable, we have that 0 < c1 ≤ Y (D) ≤ c2 for
sufficiently small ε. �

Lemma 2.2. Let (M+, g) be a manifold just after (r, δ) surgery. Let D ⊂ M+ be
a capped ε-horn of radius r , where ε is a sufficiently small positive number.

Suppose u with ‖u‖L2(M+) = 1 is a positive solution to the equation

(2-2) σ 2(41u − Ru) + 2u ln u + 3u + n(ln σ)u = 0.

Here σ > 0 and 3 ≤ 0.
Then there exists a positive constant C depending only on Y (D) and n, but not

on the smallness of ε, such that supD u2
≤ C max(r−n, σ−n).

Proof. Under the scaling

g1 = σ−2g, R1 = σ 2 R, u1 = σ n/2u,

we see that u1 satisfies 411u1 − R1u1 + 2u1 ln u1 + 3u1 = 0. Since the result in
the lemma is independent of this scaling, we need only prove it for σ = 1.

So let u be a positive solution in M+ of 41u − Ru +2u ln u +3u = 0 with unit
L2 norm. Given any p ≥ 1, it is easy to see that

(2-3) −41u p
+ pRu p

≤ 2pu p ln u.

We select a smooth cutoff function φ that is 1 in D and 0 outside of D ∪ N .
Writing w = u p and using wφ2 as a test function in (2-3), we find

4
∫

∇(wφ2)∇w + p
∫

R(wφ)2
≤ 2p

∫
(wφ)2 ln u.

Since the scalar curvature R is positive in the support of φ, and p ≥ 1, this shows

4
∫

∇(wφ2)∇w +

∫
R(wφ)2

≤ p
∫

(wφ)2 ln u2.
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Using integration by parts, we have

(2-4) 4
∫

|∇(wφ)|2 +

∫
R(wφ)2

≤ 4
∫

|∇φ|
2w2

+ p
∫

(wφ)2 ln u2.

We need to dominate the last term in (2-4) by the left side of (2-4). For one
positive number a to be chosen later, it is clear that ln u2

≤ u2a
+ c(a). Hence for

any fixed q > n/2, the Hölder inequality implies

p
∫

(wφ)2 ln u2
≤ p

∫
(wφ)2u2a

+ pc(a)

∫
(wφ)2

≤ p
(∫

u2aq
)1/q (∫

(wφ)2q/(q−1)
)(q−1)/q

+ pc(a)

∫
(wφ)2.

We take a = 1/q , so that 2aq = 2. Since the L2 norm of u is 1 by assumption, the
above implies

p
∫

(wφ)2 ln u2
≤ p

(∫
(wφ)2q/(q−1)

)(q−1)/q
+ pc(a)

∫
(wφ)2.

By the interpolation inequality (see for example [Han and Lin 1997, page 84]), we
have, for any b > 0, that(∫

(wφ)2q/(q−1)
)(q−1)/q

≤ b
(∫

(wφ)2n/(n−2)
)(n−2)/n

+ c(n, q)b−n/(2q−n)

∫
(wφ)2.

Therefore

(2-5) p
∫

(wφ)2 ln u2
≤ pb

(∫
(wφ)2n/(n−2)

)(n−2)/n

+ c(n, q)pb−n/(2q−n)

∫
(wφ)2

+ pc(a)

∫
(wφ)2.

By the definition of Y (D) in (2-1), we see that (2-4) gives

Y (D)
(∫

(wφ)2n/(n−2)
)(n−2)/n

≤ 4
∫

|∇φ|
2w2

+ p
∫

(wφ)2 ln u2.

Substituting (2-5) in the right side of this, we get

Y (D)
(∫

w2n/(n−2)
)(n−2)/n

≤ 4
∫

|∇φ|
2w2

+ pb
(∫

(wφ)2n/(n−2)
)(n−2)/n

+ c(n, q)pb−n/(2q−n)

∫
(wφ)2

+ pc(a)

∫
(wφ)2.

Take b so that pb = Y (D)/2. Clearly there is a positive constant c = c(Y (D), n, q)

and an α = α(n, q) such that

(2-6)
(∫

(wφ)2n/(n−2)
)(n−2)/n

≤ c(p + 1)α
∫

(|∇φ|
2
+ 1)w2.
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From here one can use Moser’s iteration to prove the desired bound. Let z be
the longitudinal parameter for D described before the lemma. For z2 and z1 such
that −1 ≤ z2 < z1 < 0, we construct a smooth function ξ of z such that ξ(z) = 1
when z ≥ z1, ξ(z) = 0 when z < z2, and ξ(z) ∈ (0, 1) for all other z. Set the test
function φ = ξ(z) = ξ(z(x)). Then it is clear that

(2-7) |∇φ| ≤
c

r(z1−z2)
.

Write Di = {x ∈ M+
| z(x) > zi } for i = 1, 2. By (2-6) and (2-7),

(2-8)
(∫

D1

w2n/(n−2)
)(n−2)/n

≤ c max
{ 1
((z1−z2)r)2 , 1

}
(p + 1)α

∫
D2

w2.

Recall that w = u p. We iterate (2-8) with p = (n/(n − 2))i for i = 0, 1, 2, . . . ,
while choosing

z1 = −(1/2 + 1/2i+2) and z2 = −(1/2 + 1/2i+1).

Following Moser, we get supD u2
≤ C max(r−n, 1)

∫
u2. �

Remark. One can avoid using Proposition 2.1 by working directly on each ε-neck
and the surgery cap as above. Then one can show u2(x) ≤ C max{Rn/2(x), σ−n

}.
This weaker bound suffices for proving the main result, as will be made clear in
the proof below.

The next lemma is a nonlinear version of the result in [Perelman 2003] and
[Kleiner and Lott 2007, Lemma 92.10]. The estimate has its origin in the weighted
Agmon-type estimate of eigenfunctions of the Laplacian.

Lemma 2.3. Let (M, g) be any compact manifold without boundary. Suppose u is
a positive solution to the inequality

(2-9) 41u − Ru + 2u ln u + 3u ≥ 0 with 3 ≤ 0.

Given a nonnegative function φ ∈ C∞(M) with φ ≤ 1, suppose there is a smooth
function f that, when R ≥ 0 in the support of φ, satisfies

4|∇ f |
2
≤ R − 2 ln+ u + |3|/2 in the support of φ.

Then

1
2 |3|‖e f φu‖2 ≤ 8 sup

x∈supp ∇φ

(
e f (R − 2 ln+ u + |3|/2)1/2

+ ‖e f
∇φ‖∞

)
‖u‖2.
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Proof. The main point of the lemma is that the right side depends only on infor-
mation in the support of ∇φ.

Using integration by parts,∫
e f φu

(
−41 + R − 2 ln u − 3 − 4|∇ f |

2) (e f φu)

= 4
∫

|∇(e f φu)|2 +

∫
(e f φu)2(R − 2 ln u − 3 − 4|∇ f |

2).

By assumption, |3|/2 ≤ R − 2 ln u − 3 − 4|∇ f |
2. Hence

|3|

2

∫
(e f φu)2

≤

∫
e f φu

(
−41 + R − 2 ln u − 3 − 4|∇ f |

2)(e f φu)

=

∫
(e f φ)2u (−41u + Ru − 2u ln u − 3u)

−

∫
e f φu

[
8∇(e f φ)∇u + 41(e f φ)u

]
− 4

∫
(e f φu)2

|∇ f |
2

≤ −

∫
e f φu

[
8∇(e f φ)∇u + 41(e f φ)u

]
− 4

∫
(e f φu)2

|∇ f |
2.

The equality above is by a straightforward calculation, and the last step follows
from (2-9). Performing integration by parts on the term containing 1, we deduce

|3|

2

∫
(e f φu)2

≤ −8
∫

e f φu∇(e f φ)∇u +

∫
4∇(e f φ)∇(e f φu2) − 4

∫
(e f φu)2

|∇ f |
2

≤ 4
∫

|∇(e f φ)|2u2
− 4

∫
(e f φu)2

|∇ f |
2

≤ 4
∫ (

|(e f φ)|2|∇ f |
2
+ 2e2 f (∇ f ∇φ)φ + e2 f

|∇φ|
2)u2

− 4
∫

(e f φu)2
|∇ f |

2

= 8
∫

e2 f (∇ f ∇φ)φu2
+ 4

∫
e2 f

|∇φ|
2u2.

(In the last step, the first and the last terms canceled.) Note that the integrations
on the right side only take place in the support of ∇φ. Thus this shows, by the
assumption on |∇ f |

2, that

|3|

2

∫
(e f φu)2

≤ 4
∫

supp ∇φ

e2 f
|∇ f |

2φ2u2
+ 8

∫
e2 f

|∇φ|
2u2

≤

∫
supp ∇φ

e2 f (R − 2 ln+ u + |3|/2)φ2u2
+ 8

∫
e2 f

|∇φ|
2u2.

The lemma follows by pulling out the supremum of the non-u2 terms. �
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Lemma 2.4. Let (M, g) be any compact manifold without boundary and X be a
domain in M. Define

λX = inf
{∫

(4|∇v|
2
+ Rv2

− v2 ln v2) | v ∈ C∞

0 (X), ‖v‖2 = 1
}
,

λM = inf
{∫

(4|∇v|
2
+ Rv2

− v2 ln v2) | v ∈ C∞(M), ‖v‖2 = 1
}
.

Let u ∈ C∞

0 (X) be the (positive) minimizer for λM . For any smooth cutoff func-
tion η ∈ C∞

0 (X) with 0 ≤ η ≤ 1, we have

λX ≤ λM + 4

∫
u2

|∇η|
2∫

(uη)2 −

∫
(uη)2 ln η2∫

(uη)2 .

Proof. Since ηu/‖ηu‖2 ∈ C∞

0 (X), with an L2 norm of 1, we have by definition

λX ≤

∫ (
4 |∇(ηu)|2

‖ηu‖
2
2

+ R (ηu)2

‖ηu‖
2
2

−
(ηu)2

‖ηu‖
2
2

ln (ηu)2

‖ηu‖
2
2

)
.

This implies

(2-10) λX‖ηu‖
2
2 ≤

∫ (
4|∇(ηu)|2 + R(ηu)2

− (ηu)2 ln(ηu)2)
+ ‖ηu‖

2
2 ln‖ηu‖

2
2.

On the other hand, u is a smooth positive solution (see [Rothaus 1981]) of the
equation 41u − Ru + 2u ln u + λM u = 0. Using η2u as a test function for the
equation, we deduce

λM

∫
(ηu)2

= −4
∫

(1u)η2u +

∫
R(ηu)2

− 2
∫

(ηu)2 ln u.

By direct calculation, − 4
∫
(1u)η2u = 4

∫
|∇(ηu)|2 − 4

∫
u2

|∇η|
2. Hence

λM

∫
(ηu)2

= 4
∫

|∇(ηu)|2 − 4
∫

u2
|∇η|

2
+

∫
R(ηu)2

− 2
∫

(ηu)2 ln u.

Comparing this with (2-10) and noting that ‖ηu‖2 < 1, we obtain

λX‖ηu‖
2
2 ≤ λM‖ηu‖

2
2 + 4

∫
|∇η|

2u2
−

∫
(ηu)2 ln η2. �

Proof of Theorem 1.6. At a given time t in a Ricci flow (M, g(t)) and for σ > 0,
let us define

(2-11) λσ 2(g(t)) = inf
{∫

(σ 2(4|∇v|
2
+ Rv2) − v2 ln v2) dµ(g(t)) − n ln σ∣∣∣ v ∈ C∞(M), ‖v‖2 = 1

}
.

Sometimes we refer to λσ 2 as the best log Sobolev constant with parameter σ . If t
happens to be a surgery time, then λσ 2(g(t+)) is the best log Sobolev constant with
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parameter σ for the manifold just after surgery, and

λσ 2(g(t−)) ≡ lim
s→t−

λσ 2(g(s)).

We will see in Step 2 below that such a limit exists.
The main aim is to find a uniform lower bound for λσ 2(g(t)) for t ∈ [T1, T2] and

σ ∈ (0, 1]. So without loss of generality, we may assume it is negative.
The rest of the proof is divided into five steps.

Step 1. We estimate the change of λσ 2(t), the best constant of the log Sobolev
inequality after one (r, δ) surgery.

It will be clear that the proof below is independent of the number of cutoffs
occurring at one surgery time T . Therefore we may assume that there is just one
ε-horn and one cutoff at T .

Let (M, g(T +)) be the manifold right after the surgery, and let 3 ≡ λσ 2(g(T +))

be the best constant for this postsurgical manifold, defined in (2-11).
By [Rothaus 1981], there is a smooth positive function u that reaches the infi-

mum in (2-11) and u solves

σ 2(41u − Ru) + 2u ln u + 3u + n(ln σ)u = 0.

After taking the scaling

g1 = σ−2g(T +), R1 = σ 2 R, d1 = σ−1d, u1 = σ n/2u,

we see that u1 satisfies

(2-12) 411u1 − R1u1 + 2u1 ln u1 + 3u1 = 0

and

3 = inf
{∫

((4|∇g1v|
2
+ R1v

2
− v2 ln v2) dµ(g1)

∣∣∣ v ∈ C∞(M+), ‖v‖2 = 1
}
.

Denote by U the σ−1h neighborhood of the surgery cap C under g1, that is,

U =
{

x ∈ (M, g1(T +))
∣∣d1(x, C) < σ−1h

}
=

{
x ∈ M+

∣∣d(x, C) < h
}
.

Note that U −C is the part of the ε-tube that is unaffected by the surgery. Therefore
U − C is ε-close to a portion of the standard round neck under the scaled metric
σ 2h−2g1. Actually, it is even δ(< ε)-close, since it is part of the strong δ-neck.
But we do not need this fact. Following the description at the beginning of the
section, there is a longitudinal parametrization z of U − C that maps U − C to
(−1, 0) ⊂ (−ε−1, ε−1). Let ζ : [−1, 0] → [0, 1] be a smooth decreasing function
such that ζ(−1) = 1 and ζ(0) = 0. Then η ≡ ζ(z(x)) maps U − C to (0, 1). We
then extend η to be a cutoff function on the whole manifold by setting η = 1 in
M+

− U and η = 0 in C .
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Define

3X = inf
{∫

((4|∇g1v|
2
+ R1v

2
−v2 ln v2) dµ(g1)

∣∣∣ v ∈ C∞

0 (M+
− C), ‖v‖2 = 1

}
.

Then it is clear that λσ 2(g(T −)) ≤ 3X . By Lemma 2.4,

3X ≤ 3 + 4

∫
u2

1|∇g1η|
2 dµ(g1)∫

(u1η)2 dµ(g1)
−

∫
(u1η)2 ln η2 dµ(g1)∫

(u1η)2 dµ(g1)
.

Observe that the supports of ∇g1η and η ln η are in U − C . Moreover

|∇g1η| ≤ cσ/h and − η2 ln η2
≤ c.

Therefore the above shows that

(2-13) λσ 2(g(T −)) ≤ 3X ≤ 3 +
4cσ 2

h2

∫
U u2

1 dµ(g1)

1 −
∫

U u2
1 dµ(g1)

+ c

∫
U u2

1 dµ(g1)

1 −
∫

U u2
1 dµ(g1)

.

Recall that 3 = λσ 2(g(T +)). So, to bound it from below, we need to show that∫
U u2

1 dµ(g1) is small. This is where we will use Lemmas 2.2 and 2.3.
Under the metric g1 = σ−2g, the capped ε-horn D of radius r under g(T +) is

just a capped ε-horn of radius r1 = σ−1r . Using the longitudinal parametrization z
of D described at the beginning of this section, we can construct a cutoff function
φ = φ(z(x)) for x ∈ M+, with the following properties:

(i) The set {x ∈ M | z(x) = 0} is the boundary of D.

(ii) If z ≤ 0, then φ(z) = 0, and if z ≥ 1, then φ(z) = 1.

(iii) 0 ≤ φ ≤ 1 and |∇g1φ| ≤ c/r1.

(iv) φ is 0 outside of D and is 1 to the right of the set {x ∈ M+
| z(x) = 1}.

Note that the support of ∇φ is in the set where z is between 0 and 1. Applying
Lemma 2.2 on u1, which satisfies (2-12), we know that

u1(x) ≤ c max{1/rn/2
1 , 1} for ∈ D.

Hence, for a negative number 30 with |30| sufficiently large,

(2-14)

R1(x) − 2 ln+ u1(x) +
1
2 |30| ≤ cr−2

1 +
1
2 |30| for x ∈ supp ∇g1φ,

R1(x) − 2 ln+ u1(x) +
1
2 |30| ≥

1
2 R1(x) + cr−2

1

− c1 ln+ max{1/r1, 1} +
1
2 |30|

≥
1
2 R1(x) +

1
4 |30| for x ∈ D.

We stress that 30 is independent of the size of r1 = σ/r , which could be large or
small due to the scaling factor σ .
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Recall that we desire a uniform lower bound for 3. If 3 = λσ 2(g(T +)) ≥ 30,
then we are in good shape. So we assume throughout that 3 ≤ 30. Then, by
(2-12), we have

(2-15) 411u1 − R1u1 + 2u1 ln u1 + 30u1 ≥ 0.

Motivated by [Kleiner and Lott 2007, Lemma 92.10], we choose a function
f = f (x) as the distance between x and the set z−1(0) under the metric

1
4(R1(x) − 2 ln+ u1(x) +

1
2 |30|)g1(x) for x ∈ D.

By the first inequality in (2-14),

(2-16) 4|∇g1 f |
2
≤

{
cr−2

1 +
1
2 |30| in the support of ∇g1φ,

R1(x) − 2 ln+ u1(x) +
1
2 |30| in D.

Note that the “in D” case of (2-16) is positive by the second inequality in (2-14).
Inequalities (2-16) and (2-15) allow us to use Lemma 2.3 (with 3 replaced by

30) to conclude

1
2 |30|‖e f φu1‖2 ≤8‖u1‖2

(
sup

x∈supp ∇g1φ

e f (R1−2 ln+ u1+
1
2 |30|)

1/2
+‖e f

∇g1φ‖∞

)
.

Here the underlying metric is g1. By the first inequality of (2-14), this shows

(2-17) 1
2 |30|‖e f φu1‖2 ≤ c‖u1‖2 sup

x∈supp ∇g1φ

(
e f ((1/r2

1 + |30|))
1/2).

From (2-17), we will derive a bound for ‖u1‖L2(U ) that holds for all finite σ .
Here and later, ‖u1‖L2(U ) stands for integration under the metric g1.

First, we note from (2-17)

(2-18) 1
2 |30| inf

U
e f

‖u1‖L2(U ) ≤ c‖u1‖2 sup
x∈supp ∇g1φ

(
e f ((σ 2/r2

+ |30|))
1/2).

Let us remember that U lies deep inside the capped ε-horn D. Going from ∂ D
(that is, from z−1(0)) to U , one must traverse a number of disjoint ε-necks. The
ratio of scalar curvatures between the two ends of an ε-neck is bounded by ec2ε

for some fixed c2 > 0. The ratio of the scalar curvatures between ∂U and ∂ D is
c3r2h−2, which is independent of the scaling factor σ . Therefore one must traverse
at least

K ≡
1

c2ε
ln(c3r2h−2)

ε-necks to reach U . Note that K is independent of σ .
Let Gi be one of the ε-necks. Under the metric g, the distance between its two

ends is comparable to 2ε−1 R−1/2(xi ), where xi is a point in Gi . So, under the
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metric 1
4(R1(x)−2 ln+ u1(x)+

1
2 |30|)g1(x), the distance between the two ends is

bounded from below by

c4 inf
x∈Gi

( 1
4(R1(x) − 2 ln+ u1(x) +

1
2 |30|)

)1/2 R−1/2
1 (xi )ε

−1
≥ c5ε

−1.

Here the last inequality comes from the second item in (2-14). This means that the
function f increases by at least c5ε

−1 when traversing one ε-neck.
Next we observe that infG2 f ≥ supsupp ∇g1φ f , since the support of ∇g1φ is

contained in the first ε-neck G1. Therefore

inf
U

f ≥ c5ε
−1(K − 2) + inf

G2
f ≥ c5ε

−1(K − 2) + sup
supp ∇g1φ

f.

Substituting this into (2-18), we find

‖u1‖L2(U ) ≤ 2c|3−1
0 |e−c5ε

−1(K−2)
‖u1‖2(σ

2/r2
+ |30|)

1/2.

Therefore, by the formula for K in the above,

‖u1‖L2(U ) ≤ c6|3
−1
0 |(r−2h2)c7ε

−2
‖u1‖2(σ

2/r2
+ |30|)

1/2.

Since r ≤ 1 by assumption, we know that

‖u1‖L2(U ) ≤ c8C(30)(σ + 1)r−1
‖u‖2 (r−2h2)c7ε

−2
.

Since h ≤ δ2r ≤ 1, it is easy to see that we can choose δ as a suitable power of r
so that

‖u‖L2(U,dµ(g)) = ‖u1‖L2(U ) ≤ c9(σ + 1)h5
‖u‖2

if ε is made sufficiently small.
Substituting this into (2-13), we see that

λσ 2(g(T −)) ≤ 3 + c10(σ + 1)3h3 1
1−c9(σ +1)h5 .

Hence, given any σ0 > 0, we have, for all σ ∈ (0, σ0), either

λσ 2(g(T +)) ≥ 30

or λσ 2(g(T −)) ≤ 3 + c11(σ + 1)3h3
= λσ 2(g(T +)) + c11(σ + 1)3h3,

provided that h ≤ (2(σ0 + 1)c9)
−1/5. This shows, for all σ ∈ (0, σ0], either

λσ 2(g(T +)) ≥ 30 or

(2-19) λσ 2(g(T −)) ≤ λσ 2(g(T +)) + c12|vol(M(T −)) − vol(M(T +))|.

Here vol(M(T −)) and vol(M(T +)) are the volumes of the preoperative and post-
operative manifolds at T , respectively.
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Step 2. We estimate the change of the best constant in the log Sobolev inequality
in a given time interval without surgery.

Suppose the Ricci flow is smooth from time t1 to t2. Let t ∈ (t1, t2) and σ > 0.
Recall that, for (M, g(t)), Perelman’s W entropy with parameter τ is

W (g, f, τ ) =

∫
M

(τ (R + |∇ f |
2) + f − n)ũ dµ(g(t)), where ũ = e− f /(4πτ)n/2.

We are using ũ in this step to distinguish from u in the last step.
We define τ = τ(t) = σ 2

+ t2 − t so that τ1 = ε2
+ t2 − t1 and τ2 = σ 2 (by taking

t = t1 and t = t2 respectively). Let ũ2 be a minimizer of the entropy W (g(t), f, τ2)

over all ũ such that
∫

ũ dµ(g(t2)) = 1.
We solve the conjugate heat equation with the final value chosen as ũ2 at t = t2.

Let ũ1 be the value of the solution of the conjugate heat equation at t = t1. As
usual, we define functions fi for i = 1, 2 by the relation ũi = e− fi /(4πτi )

n/2 for
i = 1, 2. Then, by the monotonicity of the W entropy [Perelman 2002],

inf∫
ũ0 dµ(g(t1))=1

W (g(t1), f0, τ1) ≤ W (g(t1), f1, τ1) ≤ W (g(t2), f2, τ2)

= inf∫
ũ dµ(g(t2))=1

W (g(t2), f, τ2).

Here f0 and f are given by the formulas

ũ0 = e− f0/(4πτ1)
n/2 and ũ = e− f /(4πτ2)

n/2.

Using these notations we can rewrite the above as

inf
‖ũ‖1=1

∫
M

(
σ 2(R + |∇ ln ũ|

2) − ln ũ − ln(4πσ 2)n/2) ũ dµ(g(t2))

≥ inf
‖ũ0‖1=1

∫
M

(
(σ 2

+ t2 − t1)(R + |∇ ln ũ0|
2)

− ln ũ0 − ln(4π(σ 2
+ t2 − t1))n/2)ũ0 dµ(g(t1)).

Write v =
√

ũ and v0 =
√

ũ0, we convert this inequality to

inf
‖v‖2=1

∫
M

(
σ 2(Rv2

+ 4|∇v|
2) − v2 ln v2) dµ(g(t2)) − ln(4πσ 2)n/2

≥ inf
‖v0‖2=1

∫
M

(
4(σ 2

+ t2 − t1)( 1
4 Rv2

0 + |∇v0|
2) − v2

0 ln v2
0
)

dµ(g(t1))

− ln(4π(σ 2
+ t2 − t1))n/2.

That is,

(2-20) λσ 2(g(t2)) ≥ λσ 2+t2−t1(g(t1)).
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Step 3. We estimate the change of the best constant in the log Sobolev inequality
in the time interval [T1, T2], with surgeries.

Suppose T1 ≤ t1 < t2 < · · · < tk ≤ T2, where ti for i = 1, 2, . . . , k are all the
surgery times from T1 to T2. Here, without loss of generality, we may assume that
T1 and T2 are not surgery times. Otherwise we can just directly apply Step 1 two
more times at T1 and T2. We also fix a σ0 = T2 − T1 + 1, where σ0 is the upper
bound for the parameter σ in Step 1’s inequality (2-19).

For any σ ∈ (0, 1], by (2-20), we have

λσ 2(g(T2)) ≥ λσ 2+T2−tk (g(t+

k )).

By (2-19), either

λσ 2+T2−tk (g(t+

k )) ≥ 30

or λσ 2+T2−tk (g(t+

k )) ≥ λσ 2+T2−tk (g(t−

k )) − c12 |vol(M(t−

k ) − vol(M(t+

k ))|.

In the first case, we have λσ 2(g(T2)) ≥ 30, so a uniform lower bound is already
found.

In the second case,

λσ 2(g(T2)) ≥ λσ 2+T2−tk (g(t−

k )) − c12 |vol(M(t−

k ) − vol(M(t+

k ))|.

From here we start with λσ 2+T2−tk (g(t−

k )) and repeat the process above. We have,
from (2-20), with σ 2 in (2-20) replaced by σ 2

+ T2 − tk ,

λσ 2+T2−tk (g(t−

k )) ≥ λσ 2+T2−tk−1(g(t+

k−1)).

Continue like this, until T2, we have either

(2-21)
λσ 2(g(T2)) ≥ λσ 2+T2−T1(g(T1)) − c12

∑k
i=1|vol(M(t−

i ) − vol(M(t+

i ))|

or λσ 2(g(T2)) ≥ 30 − c12
∑k

i=1|vol(M(t−

i ) − vol(M(t+

i ))|.

Note that the process above can be carried out since all the subscripted parameters
of λ are bounded from above by σ0.

It is known that
k∑

i=1

|vol(M(t−

i ) − vol(M(t+

i ))| ≤ sup
t∈[T1,T2]

vol(M(t)).

Hence, either

(2-22)

λσ 2(g(T2)) ≥ λσ 2+T2−T1(g(T1)) − c12 sup
t∈[T1,T2]

vol(M(t))

or λσ 2(g(T2)) ≥ 30 − c12 sup
t∈[T1,T2]

vol(M(t)).

In either case, the lower bound is independent of the number of surgeries.
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If the first of (2-22) holds, then we must find a lower bound for λσ 2+T2−T1(g(T1))

that is independent of σ . Remember that it is assumed that (M, g(T1)) satisfies
a Sobolev inequality with constant A1. It is well known that this implies a log
Sobolev inequality. Indeed, from(∫

v2n/(n−2) dµ(g(T1))
)(n−2)/n

≤ A1

∫
(4|∇v|

2
+ Rv2

+ v2) dµ(g(T1)),

we may use the Hölder inequality and the Jensen inequality for ln to obtain that
those v ∈ W 1,2(M, g(T1)) satisfying ‖v‖2 = 1 also satisfy

(2-23)
∫

v2 ln v2 dµ(g(T1)) ≤
1
2 n ln

(
A1

∫
(4|∇v|

2
+ Rv2) dµ(g(T1)) + A1

)
.

Recall the elementary inequality that ln z ≤ qz−ln q −1 for all z, q > 0. By (2-23),
this shows∫

v2 ln v2 dµ(g(T1))≤
1
2 nq

(
A1

∫
(4|∇v|

2
+ Rv2) dµ(g(T1))+ A1

)
−

1
2 n ln q −

1
2 n.

Take q such that 1
2 nq A1 = σ 2

+ T2 − T1. Since σ ≤ 1, this shows, for some
B = B(A1, T1, T2, n) = c (T2 − T1) + c > 0, that

λσ 2+T2−T1(g(T1))

≡ inf
‖v‖2=1

∫ (
(σ 2

+ T2 − T1)(4|∇v|
2
+ Rv2) − v2 ln v2) dµ(g(T1))

−
1
2 n ln(σ 2

+ T2 − T1) ≥ −B.

Therefore we can conclude from (2-22) that

λσ 2(g(T2)) ≥ min{−B, 30} − c12 sup
t∈[T1,T2]

vol(M(t)) ≡ A2 for all σ ∈ (0, 1].

By definition (2-11), this is nothing but a (restricted) log Sobolev inequality for
(M, g(T2)). That is,

(2-24)
∫

v2 ln v2 dµ(g(T2)) ≤ σ 2
∫

(4|∇v|
2
+ Rv2) dµ(g(T2)) −

1
2 n ln σ 2

− A2,

where σ ∈ (0, 1].

Step 4. The log Sobolev inequality (2-24) implies a certain heat kernel estimate.
Let p(x, y, t) be the heat kernel of 1 −

1
4 R in (M, g(T2)) (with respect to the

fixed metric g(T2)). Then (2-24) implies, for t ∈ (0, 1], that

(2-25) p(x, y, t) ≤
1

(4π t)n/2 exp(4(T2 + 1) +
1
2 n|ln|A2|| + c + R−

0 ) ≡
3

tn/2 ,

where R0 = sup R−(x, 0) again. This follows from a generalization of Davies’s
argument [1989], as in [Zhang 2007c, Step 3, pages 12–15]. We omit the details.
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Step 5. The heat kernel estimate (2-25) implies the Sobolev inequality perturbed
with scalar curvature R and with the strong noncollapsing property.

This is more or less standard. By adapting the standard method in heat kernel
estimates of [Davies 1989], as demonstrated in [Zhang 2007c, Step 4, page 15], it
is known that (2-25) implies the desired Sobolev imbedding for g(T2). That is, for
all v ∈ W 1,2(M, g(T2)), there is a B2 > 0 such that(∫

v2n/(n−2) dµ(g(T2))
)(n−2)/n

≤ B2

∫
(4|∇v|

2
+ Rv2

+ v2) dµ(g(T2)).

This is the desired Sobolev inequality.

The strong noncollapsing result follows from the work of Carron [1996], as
given in [Zhang 2007a]. Please see Lemma A.2. �

Appendix

We collect some basic facts concerning Ricci flow with surgery. For details, see
[Perelman 2002; 2003; Cao and Zhu 2006; Kleiner and Lott 2007; Morgan and
Tian 2007].

Definition A.1 ((r, δ) surgery). A surgery occurs at a δ-neck, called N , of radius h
such that (N , h−2g) is δ-close in the C [δ−1

] topology to the standard round neck
S2

× (−δ−1, δ−1) of scalar curvature 1. Let 5 be the diffeomorphism, from the
definition of δ-closeness, that maps the standard round neck to N . Denote by z
a number in (−δ−1, δ−1). For θ ∈ S2, (θ, z) is a parametrization of N via the
diffeomorphism 5. In this way, we can identify the metric on N with its pullback
by 5 on the round neck.

In the notations of [Cao and Zhu 2006, page 424] (based on [Hamilton 1997]),
the metric g̃ = g̃(T2) just after the surgery is given by

g̃ =


ḡ if z ≤ 0,

e−2 f ḡ if z ∈ [0, 2],

φe−2 f ḡ + (1 − φ)e−2 f h2g0 if z ∈ [2, 3],

e−2 f h2g0 if z ∈ [3, 4].

Here ḡ is the nonsingular part of limt→T −

2
g(t), while g0 is the standard metric on

the round neck, and f = f (z) is a smooth function given by (see [Cao and Zhu
2006, page 424]) f (z) = 0 if z ≤ 0, f (z) = ce−P/z if z ∈ (0, 3], f ′′(z) > 0 if
z ∈ [3, 3.9], and f (z) = −

1
2 ln(16 − z2) if z ∈ [3.9, 4]. Here a small c > 0 and

a large P > 0 are chosen so that the Hamilton–Ivey pinching condition remains
valid. The function φ is a smooth bump with φ = 1 for z ≤ 2 and φ = 0 for z ≥ 3.

The next result relates the Sobolev imbedding to local noncollapsing of volume
of geodesic balls. We follow the idea in [Carron 1996].
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Lemma A.2 [Zhang 2007a, Lemma A.2]. Let (M, g) be a Riemannian manifold.
Suppose x0 ∈ M and r ∈ (0, 1]. Let B(x0, r) be a proper geodesic ball, that is,
M − B(x0, r) is nonempty. Suppose the scalar curvature R satisfies |R(x)| ≤ 1/r2

in B(x0, r) and the following Sobolev imbedding holds: For all v ∈ W 1,2
0 (B(x0, r)),

and a constant A ≥ 1,(∫
v2n/(n−2) dµ(g)

)(n−2)/n
≤ A

∫
(|∇v|

2
+

1
4 Rv2) dµ(g) + A

∫
v2 dµ(g).

Then |B(x0, r)| ≥ 2−(n+5)n/2 A−n/2rn.

Proof. Since R ≤ 1/r2, r ≤ 1 and A ≥ 1 by assumption, the Sobolev imbedding
can be simplified to(∫

v2n/(n−2) dµ(g)
)(n−2)/n

≤ A
∫

|∇v|
2 dµ(g) +

2A
r2

∫
v2 dµ(g).

Under the scaled metric g1 = g/r2, we have, for all v ∈ W 1,2
0 (B(x0, 1, g1)),(∫

v2n/(n−2) dµ(g1)
)(n−2)/n

≤ A
∫

|∇v|
2 dµ(g1) + 2A

∫
v2 dµ(g1).

Now, by [Carron 1996] (see [Hebey 1999, page 33, line 4]),

|B(x0, 1, g1)|g1 ≥ min
{ 1

2
√

2A
,

1
2(n+4)/2

√
2A

}n
.

Therefore |B(x0, r, g)|g ≥ 2−(n+5)n/2 A−n/2rn. �
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