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We define and study supercharacters of the classical finite unipotent groups
of types Bn(q), Cn(q) and Dn(q). We show that the results we proved in
2006 remain valid over any finite field of odd characteristic. In particular,
we show how supercharacters for groups of those types can be obtained by
restricting the supercharacter theory of the finite unitriangular group, and
prove that supercharacters are orthogonal and provide a partition of the set
of all irreducible characters. In addition, we prove that the unitary vector
space spanned by all the supercharacters is closed under multiplication, and
establish a formula for the supercharacter values. As a consequence, we
obtain the decomposition of the regular character as an orthogonal linear
combination of supercharacters. Finally, we give a combinatorial descrip-
tion of all the irreducible characters of maximum degree in terms of the root
system, by showing how they can be obtained as constituents of particular
supercharacters.

Introduction

The concept of supercharacter theory for an arbitrary finite group was developed
by P. Diaconis and I. M. Isaacs [2008]. Roughly, supercharacter theory replaces
irreducible characters by supercharacters and conjugacy classes by superclasses
in such a way that a supercharacter table can be constructed as an almost uni-
tary matrix with properties similar to those of the usual character table (namely,
orthogonality of rows and columns). More precisely, given any finite group G, a
supercharacter theory for G consists of a partition K of G and a set X of (complex)
characters of G satisfying these three axioms:

(i) |K| = |X|;

(ii) every irreducible character of G is a constituent of a unique ξ ∈ X;
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(iii) the characters in X are constant on the members of K.

We call the elements of K superclasses, and the elements of X supercharacters
of G. (We observe that, by [Diaconis and Isaacs 2008, Lemma 2.1], axiom (ii) is
equivalent to requiring that {1} ∈ K.)

Every finite group G has two trivial supercharacter theories: the full character
theory (where X consists of all irreducible characters of G, and K of all the con-
jugacy classes of G), and the one where X= {1G, ρG − 1G} and K consists of the
sets {1} and G−{1}; as usual, we denote by 1G the trivial character and by ρG the
regular character of G. Although for some groups these are the only possibilities,
there are many groups for which nontrivial supercharacter theories exist, and in
many cases it may be possible to obtain useful information using some particu-
lar supercharacter theory. An illustrating example can be found in [2004] where
E. Arias-Castro, P. Diaconis and R. Stanley showed that a special supercharacter
theory can be applied to study a random walk on upper triangular matrices over
finite fields using techniques that traditionally required the knowledge of the full
character theory.

Supercharacters theories were initially developed for the upper unitrangular
group Un(q) consisting of all unipotent upper-triangular n × n matrices over the
finite field Fq with q elements (where q is a power of some prime number p). It
is known that an explicit description of the irreducible characters and conjugacy
classes of Un(q) is an intractable problem; in fact, [Gudivok et al. 1990] shows that
a “nice” description of the conjugacy classes of Un(q) leads to a nice description of
wild quivers. However, in his PhD thesis [André 1992], the first author begun the
study of the basic characters of Un(q) (under the assumption that p ≥ n), and was
able to show that by clumping together some of the conjugacy classes and some of
the irreducible characters, one attains a workable approximation to the represen-
tation theory of Un(q). The results, published in a series of papers in the Journal
of Algebra, showed in particular that the basic characters determine uniquely the
superclasses of a supercharacter theory for Un(q). (The theory of basic characters
was renamed by Roger W. Carter to “superclass and supercharacter theory”). We
mention that the original theory relies on a construction due to D. Kazhdan [1977]
and is based on Kirillov’s method of coadjoint orbits (see [Kirillov 1995] for a
description of this method for the unitriangular group; J. Sangroniz [2004] gives
a general version of Kazhdan’s construction for algebra groups defined over finite
fields of sufficiently large characteristic). N. Yan [2001] then showed how basic
characters can be obtained using more elementary methods that avoid Kazhdan’s
construction and the algebraic geometry involved in it. Yan’s approach is valid for
an arbitrary prime, and was generalized later by P. Diaconis and M. Isaacs [2008]
so as to extend the theory to an arbitrary finite algebra group defined over Fq (see
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also [André and Nicolás 2008], where a generalization was obtained for algebra
groups defined over finite radical rings and over certain rings of p-adic integers).

The main goal of this paper is to extend to an arbitrary odd prime the results
obtained in our paper [AN 2006], where we started to develop a supercharacter
theory for a Sylow p-subgroup U of one of the (nontwisted) Chevalley groups
Cn(q), Bn(q), and Dn(q). (We mention that the present paper is a companion of
the forthcoming [André and Neto 2008], which establishes a supercharacter theory
for U by defining the superclasses of U .) As in [AN 2006], the notion of a super-
character of U is very similar to the notion of a basic character of the unitriangular
group Un(q), and follows the original idea of parametrizing supercharacters by
certain minimal subsets of (positive) roots. In fact, it is known that the superchar-
acters of Un(q) can be obtained as certain reduced products of elementary char-
acters, which are irreducible characters corresponding to the matrix entries (i, j)
for 1 ≤ i < j ≤ n, labeled by nonzero elements of Fq ; in Yan’s thesis, elementary
characters were called primary characters, and the supercharacters were called
transition characters. (We mention that the factorization of a supercharacter as a
product of elementary characters holds, not only for the unitriangular group, but
also for any finite algebra group, as explained in [André and Pinho 2008], where a
relation is obtained between factorizations of supercharacters and decomposability
of certain cyclic modules.)

Following Yan’s method, one can show that the supercharacters of Un(q) are
parametrized by certain combinatorial data consisting of a basic set D of matrix
entries such that no two elements of D agree in either the first or the second
coordinate, and of a map φ from D to the nonzero elements of Fq . (There is
an alternative way of parametrizing the supercharacters of Un(q) by labeled set
partitions of {1, 2, . . . , n}, and we mention that a rich combinatorial structure is
arising and appears to have a remarkable analogy with the well-known connection
between partitions of n and the representation theory of the symmetric group Sn;
see [Marberg and Thiem 2008; Thiem and Venkateswaran 2007].)

In the present paper, as in [AN 2006], we define the supercharacters to be certain
reduced products of elementary characters (which in general are not necessarily
irreducible characters) of the given Sylow p-subgroup U . These reduced products
are parametrized by pairs consisting of a conveniently chosen basic subset of roots
and of a map to the nonzero elements of Fq . (We note that the roots in the uni-
triangular case are in one-to-one correspondence with the matrix entries.) In fact,
the group U can be naturally identified with a subgroup of a unitriangular group,
and we will show that the elementary characters (and supercharacters) of U can be
obtained as constituents of the restriction of a supercharacter of that unitriangular
group.
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The paper is organized as follows. In Section 1, we introduce the necessary no-
tation and define the elementary characters and the supercharacters of the group U .
Then in Section 2, we obtain the elementary characters of U by restricting elemen-
tary characters of the unitriangular group that contains U , and we use this infor-
mation to show that the complex vector space spanned by the supercharacters is,
in fact, the associative algebra finitely generated by the elementary characters. As
a consequence, we deduce that every irreducible character of U is a constituent of
a supercharacter. Then in Section 4, we prove the orthogonality of supercharacters
(as class functions of U ) by using a partition of the dual space of the Lie algebra
of U in terms of its basic subvarieties as obtained in [AN 2006, Theorem 4.5]. In
Section 5, we deduce a formula for the supercharacters analogous to the one proved
in [Diaconis and Isaacs 2008, Theorem 5.6], and obtain a decomposition of the reg-
ular character of U as a linear combination (with nonnegative integer coefficients)
of supercharacters. Finally, in Section 6, we apply our results on supercharacters
to identify the irreducible characters of maximum degree of U . Several times,
we refer to results proved for the unitriangular group under the assumption that
the prime p is sufficiently large. However, those results are known to be true
for arbitrary primes; this follows from Yan’s work, but see also [André 2002] or
[Diaconis and Isaacs 2008].

1. Supercharacters

Let p ≥ 3 be a prime number, let q = pe for e ≥ 1 be a power of p, and let Fq

be the finite field with q elements. For a fixed positive integer n, let G denote one
of the following classical finite groups: the symplectic group Sp2n(q), the even
orthogonal group O2n(q), or the odd orthogonal group O2n+1(q) (in alternative
notation, these are the (nontwisted) Chevalley groups Cn(q), Bn(q), and Dn(q),
respectively). Throughout the paper, we set U = G ∩Um(q) where

m =
{

2n if G = Sp2n(q) or G = O2n(q),
2n+ 1 if G = O2n+1(q)

and Um(q) denotes the upper unitriangular group consisting of all unipotent upper-
triangular m ×m matrices over Fq . Then U is a Sylow p-subgroup of G, and it
is described as follows. Let J = Jn be the n × n matrix with ones along the
antidiagonal and zeros elsewhere. Then U consists of all (block) matrices of the
form

(1a)

 x xu xz
0 Ir −uT J
0 0 J x−T J

 ,
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where x ∈Un(q), u is an n× r matrix over Fq , and

r = 0 and J zT
− z J = 0 if U ≤ Sp2n(q),

r = 0 and J zT
+ z J = 0 if U ≤ O2n(q),

r = 1 and J zT
+ z J =−uuT if U ≤ O2n+1(q).

As mentioned in the introduction, the supercharacters of U will be parametrized
by certain subsets of (positive) roots. Thus, we introduce some notation and recall
some elementary facts concerning roots; for details, see the books [1972; 1985]
by R. Carter, and see also [Curtis and Reiner 1987, Chapter 8]. Let T be the
maximal torus of G consisting of all diagonal matrices, and let6 be the root system
defined by T . The elements of 6 are described as follows. For each 1 ≤ i ≤ n,
let εi : T → F×q be the map defined by εi (t)= ti for all t ∈ T ; here, we denote by
ti ∈ F×q the i-th diagonal entry of the matrix t ∈ T . Then 6 =8∪ (−8), where

8= {εi ± ε j : 1≤ i < j ≤ n} ∪8′

and

8′ =


{2εi : 1≤ i ≤ n} if G = Sp2n(q),
∅ if G = O2n(q),
{εi : 1≤ i ≤ n} if G = O2n+1(q).

The roots in 8 are said to be positive, and the roots in −8 are said to be negative.
Throughout the paper, “root” will always stand for “positive root”.

To 8 we associate the subset of “matrix entries” E⊆ {(i, j) : −n ≤ i, j ≤ n} as
follows. For any α ∈8, we set

E(α)=


{(i, j), (− j,−i)} if α = εi − ε j for 1≤ i < j ≤ n,
{(i,− j), ( j,−i)} if α = εi + ε j for 1≤ i < j ≤ n,
{(i,−i)} if G = Sp2n(q) and α = 2εi for 1≤ i ≤ n,
{(i, 0), (0,−i)} if G = O2n+1(q) and α = εi for 1≤ i ≤ n,

and we define E=
⋃
α∈8 E(α). More generally, for each subset 9 ⊆ 8, we set

E(9)=
⋃
α∈9 E(α); hence, E= E(8).

We consider the mirror order ≺ on the set {0,±1, . . . ,±(n+ 1)}; this ordering
is defined as

1≺ 2≺ · · · ≺ n+ 1≺ 0≺−(n+ 1)≺ · · · ≺ −2≺−1,

and we shall index the rows (from left to right) and columns (from top to bottom)
of any m ×m matrix according to this ordering. Hence, the entries of any matrix
x ∈ Um(q) are indexed by all the pairs (i, j) ∈ E: For each (i, j) ∈ E, we shall
write xi, j to denote the entry of x that occurs in the i-th row and the j-th column.
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For our purposes, it is convenient to consider the set

E+ = {(i, j) ∈ E : 1≤ i ≤ n, i ≺ j �−i},

and extend this notation to any subset 9 ⊆8 by setting E+(9)= E(9)∩E+. We
observe that there exists a one-to-one correspondence between 8 and E+.

For any α ∈8, we define the subgroup Uα of U as follows:

Uα = {x ∈U : xi,k = 0, i < k < j}

if α = εi − ε j for 1≤ i < j ≤ n;

Uα = {x ∈U : xi,k = x j,l = 0, i < k ≤ n, j ≺ l � 0}

if α = εi − ε j for 1≤ i < j ≤ n;

Uα = {x ∈U : xi,k = 0, i < k ≤ n}

if either α = 2εi for 1≤ i ≤ n (in the case where U ≤ Sp2n(q))

or α = εi for 1≤ i ≤ n (in the case where U ≤ O2n+1(q)).

Let ϑ : Fq→C× be a nontrivial linear character of the additive group F+q of Fq

(this character will be kept fixed throughout the paper; moreover, all characters
will be taken over the complex field). For any r ∈ F×q , the mapping x 7→ ϑ(r xi, j )

defines a linear character λα,r : Uα → C× of Uα, and we define the elementary
character ξα,r to be the induced character ξα,r = (λα,r )U (see [André 1995a] for the
corresponding definition in the case of the unitriangular group; see also [Diaconis
and Isaacs 2008, Corollary 5.11] and the discussion thereon).

We next define the notion of a “basic subset of roots”. To start with, we recall
that a subset D ⊆ E is said to be basic if it contains at most one entry from each
row and at most one root from each column; in other words, D⊆ E is basic if

|{ j : i ≺ j �−1, (i, j) ∈ D}| ≤ 1 and |{i : 1� i ≺ j, (i, j) ∈ D}| ≤ 1

for all −n ≤ i, j ≤ n. Then we say that D ⊆8 is a basic subset if D= E(D) is a
basic subset of E. (We will always use script letters to denote basic subsets of E,
in contrast to basic subsets of 8, which will be mostly denoted by italic letters.)

Given any nonempty basic subset D ⊆8 and any map φ : D→ F×q , we define
the supercharacter ξD,φ to be the product

ξD,φ =
∏
α∈D

ξα,φ(α).

For convenience, if D is the empty subset of 8, we consider the empty map
φ : D→ F×q , and define ξD,φ to be the unit character 1U of U . Let

UD =
⋂
α∈D

Uα and λD,φ =
∏
α∈D

(λα,φ(α))UD .
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Then λD,φ is clearly a linear character of UD and, by [AN 2006, Proposition 2.2],
the supercharacter ξD,φ can be obtained as the induced character

(1b) ξD,φ = (λD,φ)
U .

We now state the main result of this paper, which extends [AN 2006, Theo-
rem 1.1] for arbitrary odd primes. (Given any finite group G, we denote by Irr(G)
the set of all irreducible characters of G, and by 〈 · , · 〉 (or by 〈 · , · 〉G if necessary)
the Frobenius scalar product on the complex vector space of all class functions
defined on G.)

Theorem 1.1. Let χ be an arbitrary irreducible character of U. Then χ is a
constituent of a unique supercharacter of U ; in other words, there exists a unique
basic subset D ⊆8 and a unique map φ : D→ F×q such that 〈χ, ξD,φ〉 6= 0.

Our proof depends strongly on the supercharacter theory of the unitriangular
group, and on certain basic subvarieties defined by polynomial equations on the
dual space of the Lie algebra u of U . We recall the definition of the Lie algebra
u. Let g denote one of the following classical Lie algebras defined over Fq : the
symplectic Lie algebra sp2n(q), the even orthogonal Lie algebra o2n(q), or the odd
orthogonal Lie algebra o2n+1(q). Then u = g ∩ um(q), where um(q) denotes the
upper niltriangular Lie algebra consisting of all nilpotent upper-triangular m ×m
matrices over Fq . Thus, u consists of all (block) matrices of the form

(1c)

 a u w

0 0r −uT J
0 0 −JaT J


where a ∈ un(q), u is an n× r matrix over Fq , and

r = 0 and JwT
−wJ = 0 if u≤ sp2n(q);

r = 0 and JwT
+wJ = 0 if u≤ o2n(q);

r = 1 and JwT
+wJ =−uuT if u≤ o2n+1(q).

For any α ∈8, we will denote by eα the matrix in u defined as follows (as usual,
1≤ i < j ≤ n):

eα =



ei, j − e− j,−i if α = εi − ε j ,
ei,− j + e j,−i if α = εi + ε j and u≤ sp2n(q),
ei,− j − e j,−i if α = εi + ε j and u≤ o2n(q) or u= o2n+1(q),
ei,−i if u≤ sp2n(q) and α = 2εi ,
ei,0− e0,−i if u≤ o2n+1(q) and α = εi .
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It is clear that {eα : α ∈ 8} is an Fq -basis of u. We denote by u∗ the dual vector
space of u, and let {e∗α : α ∈8} be the Fq -basis of u∗ dual to the basis {eα : α ∈8}
of u; hence e∗α(eβ)= δα,β for all α, β ∈8.

For any α ∈8, we define the Lie subalgebra uα of u by as follows:

uα = {a ∈ u : ai,k = 0, i < k < j}

if α = εi − ε j for 1≤ i < j ≤ n;

uα = {a ∈ u : ai,k = a j,l = 0, i < k ≤ n, j ≺ l � 0}

if α = εi + ε j for 1≤ i < j ≤ n;

uα = {a ∈ u : ai,k = 0, i < k ≤ n}

if either α = 2εi for 1≤ i ≤ n (in the case where u≤ sp2n(q))

or α = εi for 1≤ i ≤ n (in the case where u≤ o2n+1(q)).

We note that
uα =

∑
β∈8(α)

Fqeβ,

where 8(α)= {β ∈8 : eβ ∈ uα}; hence {eβ : β ∈8(α)} is a basis of uα.

Remark 1.2. In the case where p ≥ 2n, we have a p
= 0 for all a ∈ u, and so we

may define the usual exponential map

exp : u→U, a 7→ 1+ a+ 1
2!a

2
+ · · ·+

1
n!a

n for all a ∈ u.

It is well known that exp is bijective and that the Campbell–Hausdorff formula
holds: For all a, b ∈ u, we have exp(a) exp(b) = exp(a + b + ϑ(a, b)), where
ϑ(a, b) ∈ [u, u]; see [Jacobson 1979, page 175]. It follows that if h is any Lie
subalgebra of u, then the exponential image H = exp(h) is a subgroup of U . In
particular, Uα = exp(uα) for any α ∈8.

2. Elementary characters

We start this section by relating the elementary characters of U to the elementary
characters of the corresponding unitriangular group Um(q). First, we fix some
notation. To avoid confusion, we shall denote by ζi, j,r the elementary character of
Um(q) associated with the entry (i, j) ∈ E and the element r ∈ F×q . By definition,
ζi, j,r is the induced character

ζi, j,r = (µi, j,r )
Um(q),

where µi, j,r : Ui, j → C× is the linear character of the subgroup

Ui, j = {x ∈Um(q) : xi,k = 0, i ≺ k ≺ j}
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defined by µi, j,r (x)= ϑ(r xi, j ) for all x ∈ Ui, j . We observe that, if 1 � i ≺ j � 0
and α = εi − ε j , then

Ui, j ∩U =Uα and Ui, jUα =Um(q);

for simplicity of writing, we set ε0 = 0. For the remaining cases, the following
lemma will be useful.

Lemma 2.1. Let (i,− j) ∈ E for 1≤ i < j ≤ n, and let r ∈ F×q . Let

U ′i,− j = {x ∈Um(q) : xi,b = x−a,− j = 0, i ≺ b � 0, j ≺ a � 0},

and let νi,− j,r : U ′i,− j → C× be the linear character of U ′i,− j defined by

νi,− j,r (x)= ϑ(r xi,− j ) for all x ∈Ui, j .

Then ζi,− j,r = (νi,− j,r )
Um(q).

Proof. For simplicity, we write H =Ui,− j , K =U ′i,− j , µ=µi,− j,r , ν=νi,− j,r and
ζ = ζi,− j,r . It is clear that ν is a linear character of K . By Frobenius reciprocity, we
have 〈ζ, νUm(q)〉 = 〈ζK , ν〉, whereas, by Mackey’s subgroup theorem (see [Huppert
1998, Theorem 17.4(a)]), we have

ζK = (µ
Um(q))K =

∑
x∈X

(µx
x H x−1∩K )

K ,

where X ⊆Um(q) is a complete set of representatives of the (H, K )-double classes
of Um(q); without loss of generality, we choose X so that 1 ∈ X . Thus, we obtain

〈ζ, νUm(q)〉 =
∑
x∈X

〈(µx
x H x−1∩K )

K , ν〉 =
∑
x∈X

〈µx , ν〉x H x−1∩K .

In particular, for x = 1, we get 〈µ, ν〉H∩K = 1 (because, both µ and ν are linear),
and thus 〈ζ, νUm(q)〉 6= 0. Since ζ is irreducible (by [Diaconis and Isaacs 2008,
Corollary 5.11]; see also [André 1995a, Lemma 3]), we conclude that ζ is an
irreducible constituent of νUm(q). Since |Um(q) : K | = |Um(q) : H |, we obtain
ζ = νUm(q) as required. �

We observe that if α = εi + ε j for 1≤ i < j ≤ n, then

U ′i,− j ∩U =Uα and U ′i,− jUα =Um(q).

As a consequence of this and the observations above, we may prove the following
result.

Proposition 2.2. Let α ∈ 8, let (i, j) ∈ E+(α), and suppose that j 6= −i (in the
case where U ≤ Sp2n(q)). Then (ζi, j,r )U = (ζ− j,−i,r )U = ξα,r for all r ∈ F×q .
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Proof. For simplicity, we set ζ = ζi, j,r . Let K = Ui, j if j � 0, and K = U ′i, j if
0≺ j ≺−i . As we observed above, K ∩U =Uα and KU =Um(q). On the other
hand, let µ = µi, j,r if j � 0 and µ = νi, j if 0 ≺ j ≺ −i . By Mackey’s subgroup
theorem, we get (µUm(q))U = (µK∩U )

U . Since K ∩U =Uα and µK∩U = λα,r , we
conclude that ζU = ξα,r , as required. The proof of the equality (ζ− j,−i,r )U = ξα,r
is analogous. �

The previous lemma is not true in the case where U ≤ Sp2n(q) and α = 2εi

for 1 ≤ i ≤ n. In fact, we have Uα ≤ U ′i,−i (hence U ′i,−iUα = U ′i,−i 6= Um(q)
whenever i ≥2). In order to deal with these cases, we start by proving the following
auxiliary result. (The subsets KD,ϕ ⊆Um(q) are exactly the superclasses of Um(q)
as explained in [Diaconis and Isaacs 2008, Appendix A]; see also [André 2001;
Arias-Castro et al. 2004] or [Yan 2001].)

Lemma 2.3. Let D be a basic subset of E, let ϕ : D→ F×q be a map, and let

eD,ϕ =

∑
(i, j)∈D

ϕ(i, j)ei, j ∈ um(q).

Let OD,ϕ =Um(q)eD,ϕUm(q)⊆ um(q) and KD,ϕ = 1+ OD,ϕ ⊆Um(q). Let

z =

x xv xw
0 Ir −v

T J
0 0 J x−T J

 ∈U and az =

u v w

0 0r −v
T J

0 0 −JuT J

 ∈ u,

where x = 1+ u. Then z ∈ KD,ϕ if and only if az ∈ OD,ϕ . Moreover, the mapping
z 7→ az defines a bijection from U to u.

Proof. We only consider the case U ≤Sp2n(q) (the others are similar); hence r = 0.
Since

z =
(

x 0
0 1

)(
x w

0 J x−T J

)(
x−1 0
0 1

)
and KD,ϕ is invariant under Um(q)-conjugation, we conclude that

z ∈ KD,ϕ if and only if
(

x w

0 J x−T J

)
∈ KD,ϕ.

Since x−1
− 1=−ux−1, we have J x−T J − 1= (J x−T J )(−JuT J ), and so(

u w

0 J x−T J − 1

)
=

(
1 0
0 J x−T J

)(
u w

0 −JuT J

)
.

It follows that

az ∈ OD,ϕ if and only if
(

x w

0 J x−T J

)
∈ KD,ϕ,

and this completes the proof. �
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We are now able to prove the following result. Given any Fq -vector space V
and any linear map f ∈ V ∗, we denote by ϑ f the composite map ϑ ◦ f : V →C×;
it is straightforward to check that ϑ f is a linear character of the additive group V+

and that Irr(V+)= {ϑ f : f ∈ V ∗}.

Lemma 2.4. Let U ≤ Sp2n(q), let α = 2εi for 1 ≤ i ≤ n, and let r ∈ F×q . Then
ξα,r is an irreducible constituent of (ζi,−i,r )U with multiplicity 1; in particular,
ξα,r 6= (ζi,−i,r )U .

Proof. For simplicity, we write ξ = ξα,r and ζ = ζi,−i,r . We evaluate the Frobenius
product 〈ζU , ξ〉. Since ξ = λU , where λ = λα,r , we have 〈ζU , ξ〉 = 〈ζUα , λ〉. Let
u2n(q)∗ be the dual space of u2n(q), define e∗i,−i ∈ u2n(q)∗ by e∗i,−i (a) = ai,−i for
all a ∈ u2n(q), and let O ⊆ u2n(q)∗ be the coadjoint U2n(q)-orbit containing re∗i,−i .
Then by [Diaconis and Isaacs 2008, Corollary 5.11], we have

ζ(1+ a)= 1
√
|O|

∑
f ∈O

ϑ f (a) for all a ∈ u2n(q);

in fact, O =U2n(q)(re∗i,−i )U2n(q).
Let z ∈ Uα be arbitrary, and let az ∈ u be the element defined in the previous

lemma; it is clear that az ∈ uα. By [André 1995b, Theorem 1], there exists a
(unique) basic subset D ⊆ E and a (unique) map ϕ : D→ F×q such that z ∈ KD,ϕ .
By the previous lemma, we have 1+ az ∈ KD,ϕ , and so

ζ(z)= ζ(1+ az)=
1
√
|O|

∑
f ∈O

ϑ f (az).

Since the mapping z 7→ az defines a bijection from Uα to uα, we conclude that

〈ζUα , λ〉 =
1
√
|O|

∑
f ∈O

( 1
|uα|

∑
a∈uα

ϑ f (a)ϑ(rai,−i )
)
=

1
√
|O|

∑
f ∈O

〈ϑ f , ϑre∗i,−i
〉uα ,

and thus
〈ζUα , λ〉 =

1
√
|O|

∣∣{ f ∈ O : f − re∗i,−i ∈ (uα)
⊥
}
∣∣,

where (uα)⊥ = {h ∈ u2n(q)∗ : h(uα)= 0}.
Now, we consider the basis {eβ : β ∈8} of u. Let9=8−{εi−εk : i< k≤n}, so

that {eβ : β ∈9} is a basis for uα. By [André 1995b, Lemma 1], in order to describe
O∩(uα)⊥, it is enough to consider vectors eβ for β ∈9 satisfying ( j, k)∈E(β) for
some i � j ≺ k �−i . First, suppose that β = ε j−εk for i ≤ j < k ≤ n. In this case,
we have eβ=e j,k−e−k,− j , and so h(e j,k)=h(e−k,− j ) for all h∈ (uα)⊥. Similarly, if
β= ε j+εk for i ≤ j < k≤n, then eβ = e j,−k+ek,− j , and thus h(e j,−k)=−h(ek,− j )

for all h ∈ (uα)⊥. Finally, if β = 2ε j for i ≤ j ≤ n, then eβ = e j,− j , and so
h(e j,− j )= 0 for all h ∈ (uα)⊥. Now suppose that h= f −re∗i,−i ∈ (uα)

⊥ for f ∈ O .
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Then since f (e j,− j )= r−1 f (i,− j) f (e j,−i )=−r−1 f (ei,− j )
2 (see [André 1995b,

Lemma 1]), we deduce that f (ei,− j )=− f (e j,−i )= f (e j,− j )= 0 for all i < j ≤ n,
and this clearly implies that∣∣{ f ∈ O : f − re∗i,−i ∈ (uα)

⊥
}
∣∣= q2(n−i).

Since
√
|O| = ζ(1)= q2(n−i), we conclude that 〈ζU , ξ〉 = 1, as required. �

A similar argument can be used to prove the following result.

Lemma 2.5. Suppose U ≤ Sp2n(q), let α = 2εi for 1 ≤ i ≤ n, and let r ∈ F×q .
Let ζ = ζi,−i,r be the supercharacter of U2n(q) associated with (i,−i) and r. Also
let β = 2ε j for i ≤ j ≤ n, and let s ∈ F×q be such that −rs ∈ (F×q )

2. Then the
(irreducible) supercharacter ξ = ξα,rξβ,s is a constituent of ζU with multiplicity 2.

Proof. By definition, we have ξ = λU , where λ = λα,rλβ,s is the linear character
of V = Uα ∩ Uβ defined by λ(x) = ϑ(r xi,−i + sx j,− j ) for all x ∈ V . Thus,
〈ζU , ξ〉U = 〈ξV , λ〉V . For each z ∈ U , let az ∈ u be as in Lemma 2.3. Then for
h = re∗i,−i + se∗j,− j ∈ u2n(q)∗, we have λ(x) = ϑh(ax) for all x ∈ V . Therefore,
since x 7→ ax defines a bijection from V to v= uα ∩ uβ , we deduce that

〈ξV , λ〉V =
1
√
|O|

∑
f ∈O

( 1
|v|

∑
a∈v

ϑ f (a)ϑh(a)
)
=

1
√
|O|

∑
f ∈O

〈ϑ f , ϑh〉v,

where O =U2n(q)(re∗i,−i )U2n(q). Thus, we get

〈ξV , λ〉 =
1
√
|O|

∣∣{ f ∈ O : f − h ∈ v⊥}
∣∣.

Now, let 9 =8−{εi − εk, ε j − εl : i < k ≤ n, j < l ≤ n}, so that {eβ : β ∈9}
is a basis for v. As in the previous proof, for an arbitrary element g ∈ v⊥, we find

g(ek,l)= g(e−l,−k) for all β = εk − εl ∈9 with i < k < l ≤ n,

g(ek,−l)=−g(el,−k) for all β = εk + εl ∈9 with i ≤ k < l ≤ n,

g(ek,−k)= 0 for all β = 2εk ∈9 with i ≤ k ≤ n.

Suppose that f − h ∈ v⊥ for some f ∈ O . Then since

f (ek,−k)= r−1 f (i,−k) f (ek,−i )=−r−1 f (ei,−k)
2,

we deduce that f (ei,−k)=− f (ek,−i )= f (ek,−k)=0 whenever i ≺ k�n and k 6= j .
On the other hand, s = h(e j,− j ) = f (e j,− j ) = −r−1 f (ei,− j )

2
∈ −r−1(F×q )

2, and
thus −rs ∈ (F×q )

2. Moreover f (ei,− j ) must be nonzero. Thus we conclude that∣∣{ f ∈ O : f − h ∈ v⊥}
∣∣= 2q2(n−i),

and this completes the proof. �
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In the notation of the two previous lemmas, we deduce that

ξU = ξα,r + 2
∑

i< j≤n

∑
s⊆−r−1(F×q )2

ξα,rξ2ε j ,s + η,

where η is either the zero function or a character of U . Taking degrees, we obtain

q2(n−i)
= qn−i

(
1+ 2

∑
i< j≤n

1
2(q − 1)qn− j

)
+ η(1)= q2(n−i)

+ η(1).

It follows that η(1)= 0, and this proves the following result.

Proposition 2.6. Let U ≤ Sp2n(q), let α = 2εi for 1 ≤ i ≤ n, and let r ∈ F×q . Let
ζ = ζi,−i,r be the supercharacter of U2n(q) associated with (i,−i) and r. Then

ζU = ξα,r + 2
∑

i< j≤n

∑
s∈−r−1(F×q )2

ξα,rξ2ε j ,s .

3. The algebra of superclass functions

The main goal of this section is to prove the existence part of Theorem 1.1. We
start by proving a result on the decomposition of the product of two elementary
characters of U . The argument of the proof uses the corresponding decomposi-
tions in the case of the unitriangular group Um(q), which can be found in [André
1995a, Lemmas 6, 7, 8 and 11]. (The proofs in that paper use the assumption
p ≥ m, but can be easily adapted for an arbitrary prime; see [Yan 2001]. In fact,
every irreducible constituent of any of the given decompositions is a superchar-
acter of Um(q), and thus is a Kirillov function; see [Diaconis and Isaacs 2008,
Theorem 5.10] or [André 2004, Theorem 3].)

Proposition 3.1. Let α, β ∈8 and r, s ∈F×q . Then the product ξα,rξβ,s decomposes
as a sum of supercharacters.

Proof. The result is obvious in the case where {α, β} is a basic subset of 8. Thus
we assume that {α, β} is not basic. Let (i, j) ∈ E+(α) and (k, l) ∈ E+(β); without
loss of generality, we may assume that i ≤ k. We observe that, by the definition of
basic subset of roots, E({α, β})= {(i, j), (− j,−i), (k, l), (−l,−k)} is not a basic
subset of E.

First, we assume that j 6= −i and l 6= −k (in the case where U = Sp2n(q)).
Suppose that {(i, j), (k, l)} is a basic subset of E. Hence we must have k = − j .
By the previous lemma, we have ξα,rξβ,s = (ζi, j,r )U (ζ− j,l,s)U = (ζi, j,r )U (ζ−l, j,s)U ,
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and thus, by [André 1995a, Lemma 7], we obtain

ξα,rξβ,s = (ζi, j,r )U +
∑
−l≺b≺ j

∑
t∈F×q

(ζi, j,r )U (ζ−l,b,t)U

= ξα,r +
∑
−l≺b≺ j

∑
t∈F×q

ξα,r (ζ−l,b,t)U .

The result follows by Propositions 2.2 and 2.6.
On the other hand, suppose that {(i, j), (k, l)} is not a basic subset of E. First,

we consider the case where i = k and j > l. By [André 1995a, Lemma 6], we
obtain

ξα,rξβ,s = ξα,r +
∑

i≺a≺l

∑
t∈F×q

ξα,r (ζa,l,t)U ,

and the result follows because the subsets {(i, j), (a, l)} for i ≺ a ≺ l are all basic.
The case where i < k and j = l is similar, because

ξα,rξβ,s = ξα,r +
∑

k≺b≺ j

∑
t∈F×q

ξα,r (ζk,b,t)U

(by [André 1995a, Lemma 6]) and because the subsets {(i, j), (k, b)} for k ≺ b≺ j
are all basic.

Finally, suppose that i = k and j = l; hence α = β. On the one hand, if s 6= −r ,
then ξα,rξα,s is equal to

(1+ (q − 1)( j − i − 1))(ζi, j,r+s)U +
∑

i≺a,b≺ j−1

∑
t∈F×q

(q − 1)(ζi, j,r+s)U (ζa,b,t)U

(by [André 1995a, Lemma 11]), and the result follows as in the previous cases.
On the other hand, suppose that s = −r . In this case, [André 1995a, Lemma 8]
implies that ξα,rξα,−r is equal to

1U +
∑

i≺a≺ j

∑
t∈F×q

(ζa, j,t)U +
∑

i≺b≺ j

∑
t ′∈F×q

(ζi,b,t ′)U +
∑

i≺a,b≺ j

∑
t,t ′∈F×q

(ζa, j,t)U (ζi,b,t ′)U ,

and thus the result follows by the same reason.
Next we assume that U = Sp2n(q) and l =−k. Since {α, β} is not basic, neither

is the subset {(i, j), (k,−k)}. Recall that E({α, β}) = {(i, j), (− j,−i), (k,−k)}.
We start by considering the case where i 6= k and j = −k. By [André 1995a,
Lemma 6], we obtain

ξα,r (ζk,−k,s)U = ξα,r +
∑

k≺b≺−k

∑
t∈F×q

ξα,r (ζk,b,t)U .
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Since ξα,rξβ,s is a constituent of ξα,r (ζk,−k,s)U (by Lemma 2.4), it is a sum of some
of the irreducible constituents of the characters ξα,r and ξα,r (ζk,b,t)U for k≺b≺−k
and t ∈ F×q ; we observe that ξα,r (ζk,b,t)U = (ζi,−k,r )U (ζk,b,t)U = (ζk,−i,r )U (ζk,b,t)U
is reducible (in general). Let k ≺ b≺−k and t ∈ F×q be arbitrary. Then by [André
1995a, Lemma 6], we obtain

ξα,r (ζk,b,t)U = (ζk,−i,r )U (ζk,b,t)U = ξα,r +
∑

k≺a≺b

∑
t ′∈F×q

ξα,r (ζa,b,t ′)U .

Using Propositions 2.2 and 2.6, it is now easy to conclude that the irreducible
constituents of ξα,r (ζk,b,t)U are supercharacters of U , and so the result also follows
in this situation.

Now, suppose that (i, j) = (k,−k) = (i,−i); hence, α = β. On the one hand,
suppose that s = −r . Then by [André 1995a, Lemma 8], (ζi,−i,r )U (ζi,−i,−r )U
decomposes as a sum of terms of the form (ζa,−i,t)U (ζi,b,t ′)U = (ζi,a,t)U (ζi,b,t ′)U
for i≺a, b≺−i and t, t ′∈Fq ; for simplicity, we set ζu,v,0=1Um(q) for all (u, v)∈E.
By the above, each character (ζi,a,t)U (ζi,b,t ′)U decomposes as a sum of irreducible
supercharacters, and thus ξα,rξα,−r also decomposes as a sum of irreducible super-
characters (because ξα,rξα,−r is a constituent of (ζi,−i,r )U (ζi,−i,−r )U ).

On the other hand, suppose that s 6= −r . Then by [André 1995a, Lemma 11],
(ζi,−i,r )U (ζi,−i,s)U decomposes as a sum of terms of the form (ζi,−i,r+s)U (ζa,b,t)U
for i ≺ a ≺ b ≺ −i and t ∈ Fq . Let i ≺ a ≺ b ≺ −i and t ∈ F×q ; we observe that,
by Proposition 2.2, we may assume that 1 ≤ a ≤ n and a ≺ b � −a. By Propo-
sition 2.6, the irreducible constituents of (ζi,−i,r+s)U (ζa,b,t)U are also irreducible
constituents of characters with the form ξα,r (ζc,−c,u)U (ζa,b,t)U for some i ≺ c � n
and some u ∈ Fq . Using a simple induction argument, we may assume that each
character (ζc,−c,u)U (ζa,b,t)U decomposes as a sum of irreducible supercharacters,
and this clearly implies that ξα,r (ζc,−c,u)U (ζa,b,t)U also decomposes as a sum of
irreducible supercharacters. The result follows because ξα,rξα,s is a constituent of
(ζi,−i,r )U (ζi,−i,s)U .

Finally, we assume that i = k and j ≺−k =−i (we recall that i ≺ j �−i). In
this case, [André 1995a, Lemma 6] implies that

ξα,r (ζi,−i,s)U = (ζi,−i,s)U +
∑

i≺a≺ j

∑
t∈F×q

(ζi,−i,s)U (ζa, j,t)U .

As in the previous case, since ξα,rξβ,s is a constituent of ξα,r (ζi,−i,s)U , it is a
sum of irreducible constituents of the characters (ζi,−i,s)U and (ζi,−i,s)U (ζa, j,t)U
for i ≺ a ≺ j and t ∈ F×q . Using Propositions 2.2 and 2.6, we easily conclude
that the irreducible constituents of (ζi,−i,s)U and (ζi,−i,s)U (ζa, j,t)U for i ≺ a ≺ j ,
a 6= − j , and t ∈F×q are supercharacters of U . It remains to consider the irreducible
constituents of (ζi,−i,s)U (ζ− j, j,t)U for t ∈ F×q . However, by Proposition 2.6 and
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by one of the cases considered previously, all these irreducible constituents are
supercharacters.

The proof is complete. �

Next we prove that the product of supercharacters is a linear combination (with
nonnegative integer coefficients) of supercharacters. For the (inductive) proof, we
need to endow the set of roots with the total order � defined as follows. Given
α, β ∈ 8, we choose (i, j) ∈ E+(α) and (k, l) ∈ E+(β), and we set α ≺ β if and
only if either l ≺ j or j = l and i ≺ j . The following observation will also be very
useful (and is an immediate consequence of the previous proof).

Lemma 3.2. Let α, β ∈8 be roots with α � β, and let r, s ∈ F×q . Let D ⊆8 be a
basic subset, and suppose that the supercharacter ξD,φ is a constituent of ξα,rξβ,s
for some map φ : D→ F×q . Let γ ∈ D be the smallest root in D. Then α � γ, and
α 6= γ if and only if α = β and s =−r .

We may now proceed with the proof of the following result. We denote by cf(U )
the unitary vector space consisting of all class functions of U , and by scf(U ) the
vector subspace of cf(U ) spanned by all supercharacters of U . (The symbol scf is
an abbreviation of “superclass function”; superclasses of U will be defined in the
forthcoming paper [André and Neto 2008].)

Theorem 3.3. The product of two supercharacters of U decomposes as a sum of
supercharacters. In other words, scf(U ) is a subalgebra of cf(U ). Also, scf(U ) is
finitely generated (as an algebra) by the elementary characters of U.

Proof. Let D, D′ ⊆8 be nonempty basic subsets, and let ξD,φ and ξD′,φ′ be super-
characters of U associated with maps φ : D→ F×q and φ′ : D′→ F×q . Let α ∈ D′

and D′0 = D′ − {α}. By definition, we have ξD′,φ′ = ξα,rξD′0,φ
′

0
, where r = φ′(α)

and φ′0 is the restriction of φ′ to D′0, and thus we may use induction on |D′| to
conclude that ξD′0,φ

′

0
ξD,φ decomposes as a sum of supercharacters. Therefore, we

are reduced to the case where ξD′,φ′ = ξα,r ; in other words, we must prove that
the product ξα,rξD,φ decomposes as a sum of supercharacters. To see this, we will
proceed by reverse induction on the set of all basic subsets of 8 endowed with the
lexicographic order � that is naturally determined by the total order � on 8 (as
defined above). We observe that the maximal basic subset of 8 (with respect to
this order) is {ε1− ε2}.

Let D and φ be as above. Let α ∈8 and r ∈ F×q be arbitrary, and consider the
product ξα,rξD,φ . Let β ∈ D be the smallest root in D, and let s = φ(β) ∈ F×q .
If D = {β}, then ξα,rξD,φ = ξα,rξβ,s decomposes as a product of supercharacters
(by Proposition 3.1). Thus we assume that |D| ≥ 2. Let D0 = D − {β}, and let
φ0 : D0→ F×q be the restriction of φ to D0.

First, suppose that α≺β. Since D≺ D0, the product ξα,rξD0,φ0 decomposes as a
sum of supercharacters (by reverse induction). Let D′′ ⊆8 be a basic subset such
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that ξD′′,φ′′ is a constituent of ξα,rξD0,φ0 for some map φ′′ : D′′→ F×q . Since α 6∈ D
(by the minimal choice of β), α is strictly smaller than all the roots in D0. There-
fore, Lemma 3.2 implies that α ∈ D′′, and so D ≺ D′′. By reverse induction, we
conclude that the product ξβ,sξD′′,φ′′ decomposes as a sum of supercharacters, and
thus ξα,rξD,φ = ξβ,φ(β)(ξα,rξD0,φ0) also decomposes as a sum of supercharacters.

On the other hand, suppose that β≺α. As in the prior case, the product ξα,rξD0,φ0

decomposes as a sum of supercharacters, and so we may choose a basic subset
D′′⊆8 such that ξD′′,φ′′ is a constituent of ξα,rξD0,φ0 for some map φ′′ : D′′→ F×q .
By Lemma 3.2, we see that the smallest root in D0 ∪ {α} is smaller than or equal
to the smallest root in D′′, and so β is strictly smaller than the smallest root in D′′,
which means that D≺D′′. Thus, as before, we conclude that the product ξβ,sξD′′,φ′′

decomposes as a sum of supercharacters, and thus ξα,rξD,φ = ξβ,φ(β)(ξα,rξD0,φ0)

also decomposes as a sum of supercharacters.
Finally, suppose that β = α. In this case, we have ξα,rξD,φ = (ξα,rξα,s)ξD0,φ0 .

By Proposition 3.1 and Lemma 3.2, ξα,rξα,s decomposes as a product of super-
characters of the form ξα,tξD′′,φ′′ , where D′′ ⊆ 8 is a basic subset such that α is
strictly smaller than all of its roots, φ′′ : D′′ → F×q is a map, and t ∈ Fq . For
simplicity, we write ξα,0 = 1U . By successively repeating the arguments above,
we deduce that ξD′′,φ′′ξD0,φ0 decomposes as a sum of supercharacters, each one
corresponding to a basic subset with smallest root larger than α. Therefore D is
smaller than all of these basic subsets, and so we may use reverse induction to
conclude that ξα,tξD′′,φ′′ξD0,φ0 also decomposes as a sum of supercharacters. It
follows that ξα,rξD,φ decomposes as a sum of supercharacters, and this completes
the proof. �

As a corollary, we obtain the following result.

Corollary 3.4. The restriction ζU of any supercharacter ζ of Um(q) decomposes
as a sum of supercharacters of U.

Proof. Since ζ is a product of elementary characters of Um(q), Propositions 2.2
and 2.6 imply that ζU is a product of elementary characters of U , and the result
follows by the previous theorem. �

We are now able to prove the existence part of Theorem 1.1.

Theorem 3.5. Every irreducible character χ of U is a constituent of a super-
character of U. In other words, there exists a basic subset D of 8 and a map
φ : D→ F×q such that 〈χ, ξD,φ〉 6= 0.

Proof. Let ψ be an irreducible character of Um(q) with 〈χ,ψU 〉 6= 0. Let D⊆E be
the (unique) basic subset, and let ϕ : D→ F×q be the (unique) map such that ψ is
a constituent of the supercharacter ζ = ζD,ϕ of Um(q). Then ψU is a constituent of
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ζU , hence χ is an irreducible constituent of ζU . The result follows by the previous
corollary. �

4. Orthogonality of supercharacters

In this section, we prove the orthogonality of supercharacters and thus complete
the proof of Theorem 1.1. The proof depends on the decomposition of u∗ as a
disjoint union of its basic subvarieties, as defined in [AN 2006]. We start with the
definition.

We fix an arbitrary nonempty basic subset D ⊆ 8, and define the D-singular
and D-regular entries as follows. For any (i, j) ∈ E, we set

S(i, j)= {(i, k) ∈ E : k ≺ j} ∪ {(k, j) ∈ E : i ≺ k},

and define, for any α ∈8, the subsets

ES(α)=
⋃

(i, j)∈E(α)

S(i, j) and ER(α)= E−ES(α)

of E. We say that an entry (k, l) ∈ E is α-singular if (k, l) ∈ ES(α); otherwise, we
say that (k, l) is α-regular. More generally, given an arbitrary basic subset D⊆ E,
we define

S(D)=
⋃

(i, j)∈D

S(i, j) and R(D)= E− S(D).

The entries in S(D) are said to be D-singular, and the entries in R(D) are said to
be D-regular. We observe that, for any α ∈ 8, an entry (k, l) ∈ E is α-singular if
and only if it is E(α)-singular; likewise an entry (k, l) ∈ E is α-regular if and only
if it is E(α)-regular. Now, since D ⊆ 8 is a basic subset, E(D) =

⋃
α∈D E(α) is

a basic subset of E (by definition). We say an entry (i, j) ∈ E is D-singular if it
is E(D)-singular, and call it D-regular if it E(D)-regular. We denote by ES(D)
the subset of E consisting of all D-singular entries, and by ER(D) the subset of E

consisting of all D-regular entries. It is clear that

ES(D)=
⋃
α∈D

ES(α) and ER(D)= E−ES(D).

(This definition can be extended to the empty (basic) subset of 8, in which case
all entries in E are regular.)

For an arbitrary basic subset D⊆ E and an arbitrary entry (i, j) ∈ E, we denote
by D(i, j) the subset

D(i, j)= {(k, l) ∈ D : 1� k ≺ i, j ≺ l �−1};

it is clear that D(i, j) is a basic subset of E. Let D(i, j) = {(i1, j1), . . . , (it , jt)}
and suppose that j1 ≺ · · · ≺ jt . Let σ ∈ St be the (unique) permutation such that
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iσ(1)≺ · · · ≺ iσ(t); as usual, we denote by St the symmetric group of degree t . Then
for any f ∈ um(q)∗, we define 1D

i, j ( f ) ∈ Fq to be the determinant

(4d) 1D
i, j ( f )=

∣∣∣∣∣∣∣∣∣
f (eiσ(1), j ) f (eiσ(1), j1) · · · f (eiσ(1), jt )

...
...

...

f (eiσ(t), j ) f (eiσ(t), j1) · · · f (eiσ(t), jt )

f (ei, j ) f (ei, j1) · · · f (ei, jt )

∣∣∣∣∣∣∣∣∣ .
We note that, if D(i, j) is empty, then 1D

i, j ( f ) = f (ei, j ); in particular, if D is
empty, then 1D

i, j ( f )= f (ei, j ) for all (i, j) ∈ E.
Now, for any f ∈ u∗, we define the element u( f ) ∈ u by

u( f )=
∑
α∈8

u( f )αeα,

where, for each α ∈8, we set

u( f )α =


1
2 f (eα) if α = εi ± ε j for 1≤ i < j ≤ n,

f (eα) if u≤ sp2n(q) and α = 2εi for 1≤ i ≤ n,
1
2 f (eα) if u≤ o2n+1(q) and α = εi for 1≤ i ≤ n.

It is easy to see that f (v)= Tr(u( f )T v) for all v ∈ u, and that the map f 7→ u( f )
defines a vector space isomorphism from u∗ to u. Finally we define f̂ ∈ um(q)∗ by

f̂ (v)= Tr(u( f )T v) for all v ∈ um(q).

Then for any basic subset D ⊆8 and any entry (i, j) ∈ E, we set

1D
i, j ( f )=1E(D)

i, j ( f̂ ) for all f ∈ u,

and, for any map φ : D→ F×q , we define the basic subvariety

O∗D,φ = { f ∈ u∗ : 1D
i, j ( f )=1D

i, j ( fD,φ) for all (i, j) ∈ ER(D)},

where

(4e) fD,φ =
∑
α∈D

φ(α)e∗α ∈ u∗.

The following result is [AN 2006, Theorem 4.5] (the proof given there is valid
for an arbitrary odd prime).

Theorem 4.1. For any basic subset D ⊆ 8 and any map φ : D→ F×q , the basic
subvariety O∗D,φ ⊆ u∗ is U-invariant (for the usual coadjoint action). Moreover,
the vector space u∗ decomposes as the disjoint union u∗ =

⋃
D,φO∗D,φ of all its

basic subvarieties.
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As a particular case, let α ∈8 and r ∈ F×q . Then for D = {α} and φ : D→ F×q
defined by φ(α) = r , we obtain the elementary subvariety O∗α,r = O∗D,φ . By [AN
2006, Theorem 5.5], we have

(4f) O∗D,φ =
∑
α∈D

O∗α,φ(α)

for any basic subset D⊆8 and any map φ : D→F×q . The elementary subvarieties
of u∗ determine the elementary supercharacters of U (and vice versa) as shown by
the formula of Corollary 3.4 below. The following observation will be useful for
the proof.

Let D be a basic subset of 8, and let φ : D→ F×q be a map. Let fD,φ ∈ u∗ be
defined as in (4e), and write f̂D,φ = f̂D,φ ∈ um(q)∗. By definition, for any f ∈ u∗,

f ∈ O∗D,φ if and only if 1E(D)
i, j ( f̂ )=1E(D)

i, j ( f̂D,φ) for all (i, j) ∈ ER(D).

Henceforth, we denote by ϕD the map

ϕD : E(D)→ F×q , (i, j) 7→ f̂D,φ(ei, j ) for all (i, j) ∈ E(D).

Let O∗E(D),ϕD
= Um(q) f̂D,φUm(q) ⊆ um(q)∗. By [André 1995b, Propositions 1

and 2] (see also the discussion in [Diaconis and Isaacs 2008, Appendix 2]), we
know that

(4g) O∗E(D),ϕD
= { f ∈ um(q)∗ : 1D

i, j ( f )=1D
i, j ( f̂D,φ) for all (i, j) ∈ ER(D)},

and thus
O∗D,φ = { f ∈ u∗ : f̂ ∈ O∗E(D),ϕD

}.

In particular, let α∈8, (i, j)∈E+(α) and r ∈F×q be arbitrary. Then for D={α}
and φ : D→ F×q defined by φ(α)= r , we have

fD,φ = re∗α and f̂D,φ = (r/2)(e∗i, j ± e∗
− j,−i )

(where the sign is well determined by u). By [André 1995b, Proposition 1 and 2],
we know that O∗E(α),ϕα = O∗i, j,r/2+ O∗

− j,−i,±r/2 where ϕα = ϕD = ϕ{α}, and thus

(4h) O∗α,r = { f ∈ u∗ : f̂ ∈ O∗i, j,r/2+ O∗
− j,−i,±r/2}.

We are now able to proceed with the proof of the following result.

Proposition 4.2. Let α ∈ 8 and let r ∈ F×q . For any z ∈ U , we denote by az the
element of u given by Lemma 2.3. Then

ξα,r (z)=
ξα,r (1)
|O∗α,r |

∑
f ∈O∗α,r

ϑ f (az) for all z ∈U.
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Proof. Let (i, j) ∈ E+(α). First we consider the case j 6= −i . By Proposition 2.6,
we have ξα,r = (ζi, j,r )U . Let O∗i, j,r = Um(q)(re∗i, j )Um(q) ⊆ um(q)∗. Then by
Lemma 2.3 and by [Diaconis and Isaacs 2008, Corollary 5.11], we deduce that

ξα,r (z)= ζi, j,r (z)= ζi, j,r (1+ az)=
1√
|O∗i, j,r |

∑
f ∈O∗i, j,r

ϑ f (uz) for all z ∈U .

Let f ∈ O∗i, j,r be arbitrary, and consider the restriction fu of f to u. As above,
define u( fu) ∈ u and f̂ = f̂u ∈ um(q)∗; hence

f̂ (v)= Tr(u( fu)T v) for all v ∈ um(q).

Let ϕ : E(α)→ F×q be the map defined by ϕ(i, j) = u( f )i, j = u( f )α = r/2 and
ϕ(− j,−i) = u( f )− j,−i = ±r/2. Using (4g), it is straightforward to check that
f̂ ∈ O∗i, j,r/2+ O∗

− j,−i,±r/2, and hence fu ∈ O∗α,r , by (4h). Since the map f 7→ fu
is clearly an injection map from O∗i, j,r to u and since |O∗α,r | = |O

∗

i, j,r | (by direct
computation), we conclude that O∗α,r ={ fu : f ∈O∗i, j,r }. The result follows because
ξα,r (1)=

√
|O∗α,r |.

On the other hand, suppose that U ≤ Sp2n(q) and α = 2εi for some 1 ≤ i ≤ n.
In this case, by [AN 2006, Proposition 3.1 and Theorem 5.5], O∗α,r ⊆ u∗ is the
coadjoint U -orbit that contains re∗α. Let z ∈ U be fixed. By the definition of
induced character, we have

ξα,r (z)= (λα,r )U (z)=
1
|Uα|

∑
x∈U

xzx−1
∈Uα

λα,r (xzx−1).

Since λα,r (xzx−1)= λα,r (xazx−1) for all x ∈U with xzx−1
∈Uα, we deduce that

ξα,r (z)=
1
|Uα|

∑
x∈U

xzx−1∈Uα

ϑre∗α (xazx−1)

=
1
|Uα|

∑
x∈U

ϑre∗α (xazx−1)
( 1
|u : uα|

∑
g∈(uα)⊥

ϑg(xazx−1)
)

=
1
|U |

∑
g∈(uα)⊥

∑
x∈U

ϑre∗α+g(xazx−1)=
1
|U |

∑
h∈re∗α+(uα)⊥

∑
x∈U

ϑx ·h(az).

Now, it is straightforward to check that re∗α + (uα)
⊥
⊆ O∗α,r , and so∑

x∈U

ϑx ·h(az)= |CU (re∗α)|
∑

f ∈O∗α,r

ϑ f (az) for all h ∈ re∗α + (uα)
⊥;
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as usual, CU (re∗α) denotes the centralizer of re∗α under the coadjoint action of U .
It follows that

ξα,r (z)=
|CU (re∗α)| |U :Uα|

|U |

∑
f ∈O∗α,r

ϑ f (az)=
|U :Uα|

|O∗α,r |

∑
f ∈O∗α,r

ϑ f (az).

The result follows because ξα,r (1)= |U :Uα| (by definition). �

Remark 4.3. We observe that, by [AN 2006, Proposition 2.1], a basic subvariety
O∗α,r for α ∈ 8 and r ∈ F×q is a coadjoint U -orbit in all cases, except when U is
orthogonal and α = εi + ε j for some 1 ≤ i, j ≤ n. In this case, by [AN 2006,
Theorem 5.5], we have

O∗α,r =
⋃
s∈Fq

Os,

where Os = O(re∗α + se∗β) with β = εi − ε j denotes the coadjoint U -orbit that
contains re∗α + se∗β ∈ u∗. At the same time, an argument similar to the one above
shows that, for any s ∈ Fq , the expression

χs(z)=
χs(1)
|Os |

∑
f ∈Os

ϑ f (az) for all z ∈U ,

defines an irreducible character of U . In fact, we may consider the subgroup

V = {z ∈U : az ∈ uα + Fqeβ}

of U , and define the linear character µs : V → C× by µs(z) = ϑ(r zi,− j + szi, j )

for all z ∈ V . Then we may show that χs = (µs)
U for all s ∈ Fq , and that the

decomposition of ξα,r into q distinct irreducible constituents is ξα,r =
∑

s∈Fq
χs ;

see [AN 2006, Proposition 2.1].

Next, we prove the orthogonality of supercharacters, thus concluding the proof
of Theorem 1.1.

Theorem 4.4. Let D and D′ be basic subsets of 8, and let φ : D → F×q and
φ′ : D′→ F×q be maps. Then 〈ξD,φ, ξD′,φ′〉 6= 0 if and only if (D, φ)= (D′, φ′).

Proof. Let z ∈ U be arbitrary, and let az ∈ u be the element given by Lemma 2.3.
By definition, we have ξD,φ =

∏
α∈D ξα,φ(α), and so (by the previous proposition)

ξD,φ(z)=
ξD,φ(1)
|�∗D,φ|

∑
( f1,..., fd )∈�

∗

D,φ

ϑ f1(az) · · ·ϑ fd (az)=
ξD,φ(1)
|�∗D,φ|

∑
f ∈O∗D,φ

m f ϑ f (az),

where d = |D|, �∗D,φ =
∏
α∈D O∗α,φ(α), and

m f =
∣∣{( f1, . . . , fd) ∈�

∗

D,φ : f1+ · · ·+ fd = f }
∣∣ for all f ∈ O∗D,φ .
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We recall from (4f) that O∗D,φ =
∑

α∈D O∗α,φ(α). Similarly,

ξD′,φ′(z)=
ξD′,φ′(1)
|�∗D′,φ′ |

∑
g∈O∗D′,φ′

m′gϑg(az)

where �∗D′,φ′ =
∏
β∈D′ O∗β,φ(β), and

m′g =
∣∣{(g1, . . . , gd ′) ∈�

∗

D′,φ′ : g1+ · · ·+ gd ′ = g}
∣∣ for all g ∈ O∗D′,φ′ .

Here, d ′ = |D′|. Since the mapping z 7→ az is a bijection U → u, we deduce that

〈ξD,φ, ξD′,φ′〉 =
ξD,φ(1)ξD′,φ′(1)
|�∗D,φ| |�

∗

D′,φ′ |

∑
f ∈O∗D,φ

∑
g∈O∗D′,φ′

( 1
|U |

∑
z∈U

ϑ f (az)ϑg(az)
)

=
ξD,φ(1)ξD′,φ′(1)
|�∗D,φ| |�

∗

D′,φ′ |

∑
f ∈O∗D,φ

∑
g∈O∗D′,φ′

〈ϑ f , ϑg〉u

=
ξD,φ(1)ξD′,φ′(1)
|�∗D,φ| |�

∗

D′,φ′ |

∣∣O∗D,φ ∩ O∗D′,φ′
∣∣,

and the result follows by [AN 2006, Theorem 4.5]. �

5. A supercharacter formula

In this section, we establish a formula for the values of a supercharacter ξD,φ as a
sum over the basic subvariety O∗D,φ ⊆ u∗ (which extends Proposition 4.2). In fact,
we have the following result.

Theorem 5.1. Let D be a basic subset of 8, and let φ : D→ F×q be a map. For
any z ∈U , we denote by az the element of u given by Lemma 2.3. Then

ξD,φ(z)=
ξD,φ(1)
|O∗D,φ|

∑
f ∈O∗D,φ

ϑ f (az) for all z ∈U.

Proof. Let z ∈U be arbitrary. As in the previous proof, we have

ξD,φ(z)=
ξD,φ(1)
|�∗D,φ|

∑
f ∈O∗D,φ

m f ϑ f (az),

where

�∗D,φ =
∏
α∈D

O∗α,φ(α),

m f =
∣∣{( fα)α∈D ∈�

∗

D,φ :
∑

α∈D fα = f }
∣∣ for all f ∈ O∗D,φ .

Now, let D= E+(D), let ϕ : D→ F×q be the map defined by ϕ(i, j)= φ(α) for
all (i, j) ∈ D with (i, j) ∈ E(α), and consider the supercharacter ζD,ϕ of Um(q).
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By Lemma 2.3 and [Diaconis and Isaacs 2008, Theorem 5.6], we have

ζD,ϕ(z)= ζD,ϕ(1+ az)=
ζD,ϕ(1)
|O∗D,φ|

∑
f ∈O∗D,ϕ

ϑ f (az).

Let π : um(q)∗→ u∗ be the natural projection (given by restriction of functions).
Since π clearly defines an injective map π : O∗D,ϕ→ u∗, we obtain

ζD,ϕ(z)=
ζD,ϕ(1)
|O∗D,ϕ|

∑
f ∈π(O∗D,ϕ)

ϑ f (az).

It is straightforward to check that O∗D,φ⊆πu(O∗D,ϕ); in fact, π(O∗i, j,r )⊆O∗α,r for all
α ∈8, all (i, j)∈E(α) and all r ∈ F×q (the equality holds whenever j 6=−i ; see the
proof of Proposition 4.2). The claim follows because O∗D,φ =

∑
α∈D O∗α,φ(α), by

[AN 2006, Theorem 5.5]. Since π(O∗D,ϕ) and O∗D,φ are U -invariant, we conclude
that πu(O∗D,ϕ) decomposes as the disjoint union

πu(O∗D,ϕ)= O∗D,φ ∪V

for some U -invariant subset of V⊆ u∗. Therefore, we get

ζD,ϕ(z)=
ζD,ϕ(1)
|O∗D,ϕ|

( ∑
f ∈O∗D,φ

ϑ f (az)+
∑
f ∈V

ϑ f (az)
)
.

On the other hand, by Proposition 3.1 and Theorem 1.1, we know that

(ζD,ϕ)U = m D,φξD,φ + η,

where η is a linear combination (with nonnegative integer coefficients) of super-
characters satisfying 〈ξD,φ, η〉 = 0. Arguing as in the proof of Theorem 4.1, we
obtain η(z)=

∑
f ∈V′ n f ϑ f (az) for some subset V′⊆ u∗ and some positive integers

n f for f ∈ V′. Therefore, we get

ζD,ϕ(z)= m D,φξD,φ(z)+ η(z)=
m D,φξD,φ(1)
|�∗D,φ|

∑
f ∈O∗D,φ

m f ϑ f (az)+
∑
f ∈V′

n f ϑ f (az).

Since z ∈U is arbitrary and the map z 7→ az defines a bijection, we conclude that

ζD,ϕ(1)
|O∗D,ϕ|

( ∑
f ∈O∗D,φ

ϑ f (a)+
∑
f ∈V

ϑ f (a)
)
=

m D,φξD,φ(1)
|�∗D,φ|

∑
f ∈O∗D,φ

m f ϑ f (a)+
∑
f ∈V′

n f ϑ f (a)

for all a ∈ u, and hence

ζD,ϕ(1)
|O∗D,ϕ|

( ∑
f ∈O∗D,φ

ϑ f +
∑
f ∈V

ϑ f

)
=

m D,φξD,φ(1)
|�∗D,φ|

∑
f ∈O∗D,φ

m f ϑ f +
∑
f ∈V′

n f ϑ f
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(as linear characters of the abelian group u+). Since O∗D,φ ∩V= O∗D,φ ∩V′ =∅,
we deduce that

ζD,ϕ(1)
|O∗D,ϕ|

=
m D,φξD,φ(1)m f

|�∗D,φ|
for all f ∈ O∗D,φ .

Therefore, the coefficients m f do not depend on f ∈ O∗D,φ , and thus, for a well-
determined positive integer m, we have

ξD,φ(z)=
ξD,φ(1)m
|�∗D,φ|

∑
f ∈O∗D,φ

ϑ f (az).

Taking degrees, we obtain m = |�∗D,φ|/|O
∗

D,φ|, and so

ξD,φ(z)=
ξD,φ(1)
|O∗D,φ|

∑
f ∈O∗D,φ

ϑ f (az). �

As an immediate consequence, we obtain the following result.

Corollary 5.2. Let D ⊆8 be a basic subset, and let φ : D→ F×q be a map. Then
〈ξD,φ, ξD,φ〉 = ξD,φ(1)2/|O∗D,φ|; hence, |O∗D,φ| = ξD,φ(1)2/〈ξD,φ, ξD,φ〉.

Proof. Using the formula of the previous theorem, we evaluate

〈ξD,φ, ξD,φ〉 =
1
|U |

∑
z∈U

ξD,φ(z)ξD,φ(z)=
ξD,φ(1)2

|O∗D,φ|2
∑

f,g∈O∗D,φ

〈ϑ f , ϑg〉u =
ξD,φ(1)2

|O∗D,φ|
,

as required. �

Finally, we obtain the following decomposition of the regular character of U .

Theorem 5.3. Let ρ be the regular character of U. Then

ρ =
∑
D,φ

ξD,φ(1)
〈ξD,φ, ξD,φ〉

ξD,φ,

where the sum is over all basic subsets D ⊆8 and all maps φ : D→ F×q .

Proof. Let z ∈U be arbitrary. Then∑
D,φ

ξD,φ(1)
〈ξD,φ, ξD,φ〉

ξD,φ(z)=
∑
D,φ

ξD,φ(1)
〈ξD,φ, ξD,φ〉

(
ξD,φ(1)
|O∗D,φ|

∑
f ∈O∗D,φ

ϑ f (az)
)

=
ξD,φ(1)2

〈ξD,φ, ξD,φ〉|O∗D,φ|

∑
D,φ

∑
f ∈O∗D,φ

ϑ f (az)

=

∑
D,φ

∑
f ∈O∗D,φ

ϑ f (az).
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Since u∗ is the disjoint union u∗ =
⋃

D,φ O∗D,φ , we obtain∑
D,φ

∑
f ∈O∗D,φ

ϑ f (az)=
∑
f ∈u∗

ϑ f (az)= δaz,0|u| = δz,1|U |,

and the result follows. �

6. Irreducible characters of maximum degree

As a final remark, we observe that the description of the irreducible characters of
maximum degree of U as given in [AN 2006, Section 6] remains valid for arbitrary
odd primes. The proofs given there can be adapted (and simplified) using the results
of the present paper and also some properties of the Kirillov functions associated
with coadjoint U -orbits. Given an arbitrary U -orbit O ⊆ u∗, we define the Kirillov
function φO : U → C by the rule

φO(z)=
1
√
|O|

∑
f ∈O

ϑ f (az) for all z ∈U

(see [Diaconis and Isaacs 2008, Section 5] for the similar definition in the case
of finite algebra groups). In fact, it can be shown that every irreducible character
of maximum degree is precisely the Kirillov function associated with a (unique)
coadjoint U -orbit of maximum cardinality. We should mention that similar results
have been obtained recently by J. Sangroniz [2008], where the author uses Kir-
illov’s method of coadjoint orbits and shows that, for sufficiently large orbits, the
associated Kirillov functions are in fact irreducible characters. In this section, we
shall use Sangroniz’s results to resume the description given in [AN 2006].

We start by considering the symplectic case U ≤ Sp2n(q). Let

0 = {2εi : 1≤ i ≤ n} ∪ {εi + εi+1 : 1≤ i < n} ⊆8.

Then for any basic subset D ⊆ 0 and any map φ : D → F×q , the supercharacter
ξD,φ is irreducible (by Corollary 5.2). In particular, if either D or D ∪ {2εn} is
a maximal basic subset of 0, then ξD,φ is irreducible and has maximum degree
qn(n−1)/2 (see the proof of [AN 2006, Proposition 6.3]). On the other hand, it is
easy to see that the number dn of all these pairs (D, φ) can be computed by the
“Fibonacci” recurrence relation

d1 = q,
d2 = q2

− 1,
dn = (q − 1)(dn−1+ dn−2) for n ≥ 3.

Therefore, by [Sangroniz 2008, Theorem 12], we obtain the following result.
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Theorem 6.1. Let χ be an irreducible character of U ≤ Sp2n(q). Then χ has
maximum degree if and only if χ = ξD,φ , where either D or D∪{2εn} is a maximal
basic subset of 0 and φ : D→ F×q is any map.

Next, we consider the even orthogonal case U ≤ O2n(q). Let

0 = {εi + εi+1 : 1≤ i < n},

D ⊆ 0 be a basic subset, and φ : D→ F×q be a map. Then by Corollary 5.2, we
easily conclude that 〈ξD,φ, ξD,φ〉 = q |D|, and a repetition of the proof of [AN 2006,
Proposition 6.5] shows that ξD,φ is multiplicity free; hence, it has q |D| irreducible
constituents, each with degree equal to q−|D|ξD,φ(1). In particular, for

D = {ε1+ ε2, ε3+ ε4, . . . , ε2r−1+ ε2r },

where r = bnc, the supercharacter ξD,φ has qr (distinct) irreducible constituents,
each with degree equal to q f (n), where

f (n)=
{

n(n− 2)/2 if n is even,
(n− 1)2/2 if n is odd.

On the other hand, if n = 2r is even and

D = {ε1+ ε2, ε3+ ε4, . . . , ε2r−3+ ε2r−2} ⊆ 0,

the supercharacter ξD,φ has qr−1 (distinct) irreducible constituents, each with de-
gree equal to qn(n−2)/2. Therefore, for the basic subset

D = {ε1+ ε2, ε3+ ε4, . . . , ε2r−3+ ε2r−2} ∪ {ε2r−1− ε2r } ⊆8

and any map φ : D → F×q , the supercharacter ξD,φ also has qr−1 (distinct) irre-
ducible constituents, each with degree equal to qn(n−2)/2. Now, by Theorem 1.1,
we may repeat the proof of [AN 2006, Proposition 6.6] to conclude that q f (n) is
the maximum degree of an irreducible character of U , and thus we have obtained
dn irreducible characters of maximum degree, where

dn =

{
q(n+2)/2(q − 1)(n−2)/2 if n is even,
q(n−1)/2(q − 1)(n−1)/2 if n is odd.

Using [Sangroniz 2008, Theorem 13], we conclude the proof of the following
result.

Theorem 6.2. Suppose that U ≤ O2n(q), and let χ be an irreducible character
of U. Let D ⊆ 8 be the (unique) basic subset and φ : D→ F×q the (unique) map
such that 〈χ, ξD,φ〉 6= 0.

• If n is even, then χ has maximum degree if and only if

D = {ε1+ ε2, ε3+ ε4, . . . , εn−3+ εn−2} ∪ D1,
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where D1 ( {εn−1− εn, εn−1+ εn}.

• If n is odd, then χ has maximum degree if and only if

D = {ε1+ ε2, ε3+ ε4, . . . , εn−1+ εn}.

Finally, we consider the odd orthogonal case U ≤ O2n+1(q). Let

0 = {εi + εi+1 : 1≤ i < n},

let D ⊆ 0 be a basic subset, and let φ : D→ F×q be a map. Then as in the even
case, we conclude that, for

D = {ε1+ ε2, ε3+ ε4, . . . , ε2r−1+ ε2r } ⊆ 0,

where r = bnc, the supercharacter ξD,φ has qr (distinct) irreducible constituents,
each with degree equal to qn(n−1)/2. On the other hand, using Corollary 5.2 (see
also [AN 2006, page 423]), we conclude that, for the basic subset

D =
{
{ε1+ ε2, ε3+ ε4, . . . , εn−3+ εn−2} ∪ {εn−1} if n = 2r is even,
{ε1+ ε2, ε3+ ε4, . . . , εn−2+ εn−1} ∪ {εn} if n = 2r + 1 is odd,

and any map φ : D→ F×q , the supercharacter ξD,φ has either qr−1 or qr (distinct)
irreducible constituents, each with degree equal to qn(n−1)/2. Finally, as in the
even case, we conclude that qn(n−1)/2 is the maximum degree of an irreducible
character of U , and thus we have obtained dn irreducible characters of maximum
degree, where

dn =

{
q(n−2)/2(q + 1)(q − 1)n/2 if n is even,
q(n+1)/2(q − 1)(n−1)/2 if n is odd.

Using [Sangroniz 2008, Theorem 13], we conclude the proof of the following
result.

Theorem 6.3. Suppose that U ≤ O2n+1(q), and let χ be an irreducible character
of U. Let D ⊆ 8 be the (unique) basic subset and φ : D→ F×q the (unique) map
such that 〈χ, ξD,φ〉 6= 0.

• If n is even, then χ has maximum degree if and only if

D = {ε1+ ε2, ε3+ ε4, . . . , εn−3+ εn−2} ∪ D1

where either D1 = {εn−1+ εn} or D1 = {εn}.

• If n is odd, then χ has maximum degree if and only if

D = {ε1+ ε2, ε3+ ε4, . . . , εn−2+ εn−1} ∪ D1

where D1 ⊆ {εn}.
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