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Conformally compact asymptotically hyperbolic metrics have been inten-
sively studied. The goal of this note is to understand what intrinsic condi-
tions on a complete Riemannian manifold (M, g) will ensure that g is AH
in this sense. We use the geodesic compactification by asymptotic geodesic
rays to compactify M and appropriate curvature decay conditions to study
the regularity of the conformal compactification.

1. Introduction

Conformally compact metrics provide a good model of asymptotically hyperbolic
(AH) geometry. These metrics have been intensively studied for over 20 years
and are important in Riemannian and conformal geometry, and in physics. See
[Anderson 2006] or [Lee 2006] and the extensive bibliographies therein for more
details. The definition of these metrics however is given extrinsically. In this note
we study to what extent intrinsic conditions can determine an AH metric. We begin
by reviewing the usual setting.

Suppose (M, g) is a noncompact Riemannian (rz4-1)-manifold that is the interior
of a compact manifold with boundary M. For k € Ny, o € [0, 1], the metric gis
cke confarmally compact if there exists a defining function p for the boundary
such that g = p?g extends to be a C*** metric on M. Such a metric induces a
conformal class on the boundary 0 M, called the conformal infinity of g.

Straightforward calculations yield that if g is at least C*> conformally compact
then the sectional curvatures in M satisfy

(1-1) sec = —|dp|; + O (p).

If |dp |§ =1 on 0 M, then the sectional curvatures of M approach —1 near M. This
justifies the following definition. The metric g is asymptotically hyperbolic if g is
conformally compact and |dp |2 =1 on oM. The classical setting typically requires
at least a C? conformal compactlﬁcatlon As any two defining functions for 6 M
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differ by a multiplication by a positive function, this definition is easily seen to be
independent of p. When g is additionally an Einstein metric, that is, Rc g = —ng,
the sectional curvatures of g satisfy an improved decay estimate, that is,

(1-2) sec = —1+ 0(p?).

The natural question that lingers in one’s mind is to what extent conformally com-
pact AH metrics can be characterized intrinsically. We present intrinsic conditions
on a complete Riemannian manifold (M, g) that will ensure that g is at least Lip-
schitz conformally compact AH (see Theorem 1 below). We use the geodesic
compactification (we relegate definitions to the next section) by asymptotic geo-
desic rays to compactify M, and appropriate curvature decay conditions to study
the regularity of the conformal compactification. In a different direction there are
several rigidity results for AH metrics assuming faster curvature decay than we
allow; see [Shi and Tian 2005] and the references therein for more details.
Our main result is:

Theorem 1. Suppose (M, g) is a complete noncompact Riemannian manifold and
K is an essential subset (see pg. 234). Let r (x) = dist, (x, K). Assume further that

(NSC) sec(M\K) <0,
(AH1) sec(M\K)=—-1+0(e"),
(AH2+) [IVeRm |, = O(e™"), for some w > 1.

Then M = M U M(00) is a topological manifold with boundary endowed with a
CU! structure independent of K. Further g := e~>" g extends to a C%' metric on
M, that is, g is C%! conformally compact.

We use a result on regularity of the geometric compactification given sectional
curvature bounds from [Bahuaud and Marsh 2008] to compactify M and obtain
the first estimate of manifold regularity. All of the assumptions above certainly
hold sufficiently close to the boundary of a smoothly conformally compact Ein-
stein metric. Of course (AH1) is just the decay of sectional curvature like (1-1)
expressed in terms of the intrinsic distance r. This assumption leads to an esti-
mate for the Riccati equation for the shape operator of hypersurfaces of constant
r value, and the r-derivative of the metric satisfies a linear equation involving the
shape operator in certain coordinates. In order to have Lipschitz control of the
compactified metric g we will require control of the second coordinate derivatives
of g; this means we require some control on the derivatives of the Riccati equation.
Unfortunately the assuming the rate of decay of |V, Rm| expected from a generic
smoothly conformally compact AH metric is not enough to guarantee a Lipschitz
conformal compactification. Assumption (AH2+) provides the required control.
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We remark that assumption (AH2+) implies that sectional curvature enjoys the
same rate of decay, that is, in fact sec(M\K) = —1 4+ O (e~®"). This is easily seen
by integrating the components of R + ¥ (here X is the constant curvature tensor)
with respect to a parallel frame along normal geodesics emanating from K. This
argument works initially assuming only sec(M\K) = —14o0(1), and consequently
Theorem 1 holds with this kind of sectional curvature decay.

The author and Romain Gicquaud plan a more detailed study of how curvature
decay hypotheses can be used to prove regularity for conformal compactifications.
In particular we are able to considerably strengthen the results presented here when
g is an Finstein metric.

This note is organized as follows. In Section 2, we recall the geodesic com-
pactification and fix notation. In Section 3, we prove that M is a C%! manifold,
and explain how metric estimates lead to a subsequent improvement in manifold
regularity. In Section 4, we prove Theorem 1. Finally in Section 5, we provide an
example of a metric satisfying the decay of sectional curvature and the first covari-
ant derivative of curvature like that of a generic AH metric but with no Lipschitz
conformal compactification using our techniques.

2. The geodesic compactification

The geodesic compactification of simply connected manifolds of negative curva-
ture originates in the work of Eberlein and O’Neill [1973]. Two geodesic rays o
and 7 parameterized by arc-length are called asymprotic if dy (o (), T(¢)) remains
bounded as r — +00. Denote the set of equivalence classes by M (c0). Eberlein
and O’Neill proved that given p € M, M(co) is in bijection with the unit sphere
S, C T,M by a rescaled exponential map, and that there is a natural topology
and smooth structure that makes the geodesic compactification M := M U M (c0),
diffeomorphic to a closed ball. In general one expects only the topological structure
to be independent of p.

Anderson and Schoen [1985] proved if (M, g) is a simply connected manifold
with pinched negative sectional curvature like

—00 < —b* < sec(M) < —a’® <0,

then M (oc0) has a C%* structure, where a = a/b. However, they did not prove
regularity for the geodesic compactification M = M U M (c0), and they used the
strong hypothesis of simple connectivity.

Tracey Marsh and I extended and generalized this result in [Bahuaud and Marsh
2008]. For the remainder of this note let (M, g) be a smooth noncompact complete
Riemannian manifold, and let K C M be a compact embedded smooth (n+1)-
dimensional submanifold with boundary such that Y := 0K is convex with respect
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to the outward pointing unit normal vector field. We say that K is an essential
subset for M if additionally the outward normal exponential map, E, from Y is a
diffeomorphism E : Y x [0, o0) — M\K.

In that paper we provided one sufficient condition for an essential subset; if K
is totally convex (see the paper for a definition) and sec(M\K) < 0, then K is an
essential subset. The exponential map again extends to M. By declaring this map
to be a diffeomorphism we obtain a topology and smooth structure on M depending
on K. We may now study to what extent these structures depend on K. Assume
further curvature pinching analogous to that used by Anderson and Schoen:

(2-1) —00 < —b? < sec(M\K) < —a? < 0.

The main theorem from [Bahuaud and Marsh 2008] is that, given (2-1), the topol-
ogy induced on M is independent of K and M is endowed with a C% structure
independent of K, where o = a/b.

The proofs of these results use the techniques of comparison geometry. In the
present paper we will obtain metric estimates from our curvature assumptions tai-
lored to the AH case and appeal to Theorem 5-6 of [Bahuaud and Marsh 2008] in
order to obtain a C%! manifold structure for M independent of K. After obtaining
appropriate metric estimates, we are able to prove Theorem 1.

We now fix notation. For consistency we follow the conventions established in
[Bahuaud and Marsh 2008]. If X, Z are orthonormal vectors, the sectional curva-
ture of the plane they span is given by sec(X, Z) =Rm(X, Z, Z, X), where Rm is
the Riemannian curvature 4-tensor. We will denote this tensor by R in the sequel.
We let J{ denote the tensor of constant curvature +1, thatis, 3, = gi18 jk — 8ik&ji1-

Given that X, Z are vector fields on Y extended arbitrarily in M, we define
the second fundamental form of Y by h(X, Z) = g(VxZ, —0,), where V is the
connection of g in M. We say Y is strictly convex if 4 is positive definite. We define
the shape operator as the (1,1)-tensor S characterized by g(X, S(Z)) = h(X, Z)
for all X, Z as above.

In what follows an inequality involving the shape operator of the form S > ¢
means that every eigenvalue of S is greater than or equal to c. Inequalities involving
a metric are to be interpreted as inequalities between quadratic forms.

In light of the diffeomorphism Y x [0, 00) ~ M\K and the fact that r is the
distance to K, we may decompose g as

g=drt+gy(y,r),

where gy is a one parameter family of metrics on Y. We choose coordinates {y”}
on sufficiently small open sets W C Y and extend {y”} to be constant along integral
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curves of grad, r to obtain Fermi coordinates (y#,r) on M\K, and a decomposi-
tion of the metric as
g =dr’+gp (v r)dy’dy".

We use Latin indices to index directions in M and consequently these indices range
from O to n. With the exception of the letter p, we use Greek indices to index
directions along Y and these range from 1 to 7, and O to index the direction normal
to Y. The letter p which next appears in Section 4 is already well established as a
defining function for the boundary.

3. Lipschitz compactification of M

In this section we obtain our first set of metric and shape operator estimates and
use them to obtain a first (manifold) compactification of M.

Given an essential subset K with boundary ¥ = 0K, a reference covering for ¥
is a (finite) covering {W;} by small open balls in Y with sufficiently small radius
chosen so that gg, (transferred to W by means of normal coordinates), the round
metric ¢ on S” in normal coordinates and a flat metric on W are all comparable. In
particular, on cylinders of the form W; x [rg, 00), we have a comparison hyperbolic
metric dr? + sinh(r)$;.

To prove our first compactification result, we invoke this:

Theorem 2 [Bahuaud and Marsh 2008, Theorem 5-6]. Let M be a complete Rie-
mannian manifold containing an essential subset. Suppose for every essential sub-
set K C M with reference covering {W;} for Y = 0K that there exists an R > 0
such that for everyr > R

inh? —R inh?(b R
IO (e < gty = TLETED

for all i. Then M has a C%*/* structure independent of K .

Consequently the focus of this section is to prove a metric comparison estimate
on cylinders W x [rg, 00), where W C Y is a sufficiently small ball.

We begin with a lemma. Note that in what follows we use calculus for Lipschitz
functions; differential equations and inequalities are to be interpreted in the almost
everywhere sense.

((éi)/)’v’

Lemma 3. Suppose that f is a bounded function of r > 0 such that there exists a
constant J > O with
lfr)—1l<Je™".
Suppose further that A is a positive Lipschitz solution of the Riccati equation
A 2E= (),
A(0) > 0.
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Then there exists a positive constant C = C(J, A(0)) such that
[A—1]<Ce™",
for all r sufficiently large.

Proof. 1t is easy to argue from the Riccati equation that 4 is bounded above by
some constant:
A<cy.

The next refinement follows the idea of [Shi and Tian 2005, Lemma 2.3].
Seto =4—1.Then —1 <v < A and
(0% 4+20% < Y + (@ +20)0> = 200"+ 4+ 20)0* =20V + 2> = 1) < e,

where c; is a constant depending on ¢; and J. Note that the last inequality uses the
lower bound for f in case that both » and the expression involving A are negative.
Consequently
(DZle)/ < Czer,
and upon integrating we find that
02e? < cre’ + 3,

and so
(3-D o] < ce "2,

We now consider a further refinement for 1. Choose a constant K > max{J, 1(0)}
and consider the test function u = 14 Ke™". Then

WHut=1+Ke +K? 7.
Define F(r,z) =1+ Ke™" + K%e™? —z2, and observe that F is continuous. Now
N <l4+Je " —22<F(r ).

We now compare A and u. Note that in our eventual application we will only need
to consider the case where 4 —u > 0. Observe that in this case

(3-2) F(r,2) — F(r,u)=u?>—2>=u+)w—21)=—(u+)(A—u) < —(A—u),

because 0 <1 <cjand 1 <u <14 K implies —(u + 1) < —1.

By the construction of K, 1(0) < u(0). We now claim A(r) <u(r)=1+Ke™".
The rest of the argument follows as in the proof of Theorem 1.11.7 of [Birkhoff
and Rota 1989]; we repeat it here. If by way of contradiction there is some 7 > 0
where A(T) > u(T), then set

r=sup{0 <r < T :A(r) <u(r)}.



CHARACTERIZATION OF LIPSCHITZ ASYMPTOTICALLY HYPERBOLIC METRICS 237

By continuity, A(r*) = u(r*), and A —u > 0 on (r*, T']. Estimate (3-2) applies and
on this interval
A—u) <F@r,A)—F(r,u) < —(—u).
This inequality easily implies A —u < 0 on (r*, T], a contradiction. We conclude
that
A<u<l+Ke .

We now consider the refinement for the lower bound for 4. By estimate (3-1)
above, choose rg so large that 1 > 1/2 for r > ry.

Consider the test function u =1— Ke™", for some K to be determined. Observe
that

W+ut=1—-Ke " +K?’ " =1—Ke "u.
Set F(r,z) =1 —Ke "z —z%. We have
V2= 1—Je ",

and we would like to determine K so that A’ > F(r, ). We compute

M>1—Je " —12>1-2J0e" =22,

at least for r > ro. We find that 2’ > F(r, 1) is implied by the condition that K >2J.
Finally we have

u(ro)=1—Ke™,
so we choose K so large that K > 2J and u(rg) < 1/2 < A(rp). We also have a
Lipschitz estimate

F(r, ))—F(r,u) =u?—2*+Ke " (u—2) = (u+A+2Ke "u—21) = c(K)(u—2),

when u > A.

We claim A > u on [rg, 00). Following the same type of argument as before, if
by way of contradiction there is a T where u(7T) > A(T) we again restrict to an
interval (r*, T] where u > 1. But then

N—u'>F(r,2)—F(@r,u) > —c(K)(A—u),

which again implies A > u on [r*, T], a contradiction. We conclude 1 > 1 — Ke™”
for r sufficiently large. 0

We now apply this lemma to our geometric situation to obtain improved esti-
mates for the shape operator and metric.

Theorem 4 (Comparison theorem). Given curvature assumption (AH1) and con-
vexity assumption (NSC), let (y#,r) be Fermi coordinates for Y on W x [0, 00)
for an open set W C Y. Let A, A denote the maximum and minimum eigenvalues
of the shape operator over W, and let Q, w denote the maximum and minimum
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eigenvalue of the metric over W (taken with respect to the background Euclidean
metric). There exist positive constants C, L1 and L, depending on these eigenval-
ues such that for r sufficiently large we have the following estimates.

o Shape operator estimate:
(3-3) (1—=Ce) ol < SP(y,r) < (1+Ce)
o Metric estimate:

Lie” 65, < gpv(y,r) < Lo e” dp,

Proof. We sketch the broad idea here, for a complete proof see [Bahuaud 2007].
Throughout the proof, primes (') denote derivatives with respect to r. We suppress
the dependence on the tangential variable.

In Fermi coordinates the shape operator, S(r), of r-level sets satisfies a Riccati
equation:

(S'(r) + $*(r) = =R (1)},

where Ry is the normal curvature operator given by g(RyV, V) = sec(V, 6,),
when V is a g-unit vector. Let A,/(r) be the maximum eigenvalue of S(r). Then
A 1s Lipschitz continuous. In virtue of (AH1), we have the estimate

My +2, =1+0(@),

with a similar estimate holding for the minimum eigenvalue of shape, 1,,(r) as
well.

We are only assuming that ¥ = 0K is convex. However analysis of the Riccati
equation for the shape operator and (NSC) easily imply that by possibly modifying
the essential subset, the eigenvalues of the shape operator are uniformly bounded
from below by a positive constant. Consequently we ensure Ay > 4, > 0. By
Lemma 3 we conclude that 1, satisfies the estimate

I <1+Ce™",
for some positive constant C. This implies
SP(y.r) = (1+Ce™") ol

Similar analysis for the minimum eigenvalue gives the lower bound for the shape
operator for r sufficiently large.
Metric estimates follow from similar type of analysis for the equation

or8pv (¥, 1) =28, (v, 1) g0 (y, 7). O



CHARACTERIZATION OF LIPSCHITZ ASYMPTOTICALLY HYPERBOLIC METRICS 239

Corollary 5 (Hyperbolic metric comparison). Consider Fermi coordinates (y”, r)
forY on W x [0, 00). There exists an R depending on W such that for every r > R:

(3-4) sinhz((r —R)) gp <gp(y,r) < sinhz(r +R) &p0.

Proof. Observe that it is possible to choose R so large that Lre?” < sinh?(r + R)
and sinhz(r—R) < Lye¥,forr > R. O

‘We now come to the main result of this section.

Theorem 6. Let (M"*!, g) be a complete noncompact Riemannian manifold. Sup-
pose that there exists an essential subset K for M and that curvature assumptions
(NSC) and (AH1) are satisfied. Then M:=MUM (00) is endowed with the struc-
ture of a C%' manifold with boundary independent of the choice of K .

Proof. Given a reference covering for Y, Corollary 5 indicates that g is comparable
to an upper and lower hyperbolic comparison metric. Consequently we may apply
Theorem 2 in the case a = b = 1. |

3.1. Metric estimates and regularity for M. If s is a C"# atlas for a manifold,
the transformation formula for the metric under a change of coordinates shows
that in general the metric is well-defined up to C'~'# regularity. We now prove a
lemma that allows us to use metric regularity to improve the regularity of transition
functions. This lemma is in the spirit of [Calabi and Hartman 1970]; see that paper
for further results along these lines.

Lemma 7. Suppose M is a manifold with two smooth atlases A1 = {(U,, ¢,)} and
Ay = {(Vg, wp)} that are C 01 compatible. Suppose that g is a metric that is C%!
with respect to both atlases. Then iy and s, are C! compatible.

Proof. This is a local question so we reduce to the case where f : (U C R"*!, x) —
(U c R, yi)is a C%! diffeomorphism between open sets of R"*!, Write

0 0 s 0 0
= —_—, — an = —, — .
gl] 8 oxi’ oxJ 8kl 8 6yk ay[

As g satisfies Lipschitz estimates in both systems of coordinates, Christoffel sym-
bols are defined a.e. and bounded. The transformation law for Christoffel symbols
under a change of coordinates states

62ym :@8_))1 m_( {.of)aym
oxiox/ — oxioxi M Y ox!’

The right hand side of this equation is bounded if f € C%! and if g € C%! with
respect to both sets of coordinates. Consequently f satisfies a C!! estimate. [
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4. Lipschitz conformal compactification

In this section we show that g = ¢e~?"g extends to a Lipschitz metric on M and
prove Theorem 1. Fix an essential subset K. In Fermi coordinates on W x [0, 00),
where W is a sufficiently small open ball (see page 235), we may write

g =dr’+gup(y, r)dy“dy”.
We set p := e™", and remind the reader of the convention given on page 235 that
p does not count as a tangential or Greek variable. In these “compactified Fermi
coordinates”, (y#, p) over W x (0, 1], we now have

dp? o« B
§=7 + 8ap(y, —log p)dy®dy”,

and consequently

g =dp* + p’gup(y, —log p)dy*dy”.

In order to prove a Lipschitz estimate for g it suffices to prove that the first deriva-
tives of g are bounded in compactified Fermi coordinates. These derivatives are

_ 1 _ _
0p8up =2P8ap + P 0r8up - (— ;) =2p"1(8 — S1)&yp,
0uBap = P Ou8ap-

As we explain below, the tangential derivatives of g satisfy a system of differen-
tial equations. ODE comparison theory will then be used to obtain L™ estimates
for the derivatives.

A few words about how we measure the size of tensors is in order. The metric
estimate from Theorem 4 is an inequality between quadratic forms. However the
polarization identity implies that each component of g with respect to a Fermi co-
ordinate basis is also of order e?. Further, if we are provided with decay estimates
for the eigenvalues of any (1,1)-tensor 7 that is self-adjoint with respect to g then
we may also obtain decay estimates for each component of 7. We exploit these
facts for both the shape operator S and normal curvature R, f o below.

By the shape operator estimate (3-3), the p derivative of g is bounded. In order
to estimate tangential derivatives of g we take tangential derivatives of the Riccati
and metric equations

(@uSEY = —(0,SP)S] — SL(@,5]) — u Ry,

@-1)
(aygaﬂ)/ = z(a,u S,ﬁ )gyﬂ + 253 (a#g)/ﬂ)a
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where primes denote a coordinate derivative with respect to r. In the following
analysis we will regard this as a first order system of 2n> linear differential equa-
tions by introducing new dependent variables. In order to use the intrinsic decay
estimate (AH2+), we must express the coordinate derivative of curvature that ap-
pears in the system (4-1) in terms of a covariant derivative. In particular:

Lemma 8. Given curvature decay assumptions (AH1) and (AH2+),
—0u Ryl = —T7, () + RyJo)+ 7,07 + Ry o) + F.,
where F is a remainder term whose components satisfy F = O (e*¥"), with

Q=1—-w.

Proof. Take the u-covariant derivative of the curvature tensor ROaﬂ o to obtain

B B B B B
(4-2) ViR, 0=0uRy,0— TR IaRos 0t F/[ja Roo—ThoR

a0 Oa o *

We begin by considering the second and fifth terms above. In Fermi coordinates we
have FZO = 7. Further, by the remark on page 233, we have |R+J|; = O(e™")
(recall J{ is the constant curvature 2-tensor). Since R, f o contains one 0 index it is
straightforward to verify that

4-3) IT%0R, Lo+ TR, | = 0172,

oo 0 Oa o

o aﬁ »+ Wenow consider the third and fourth terms. Observe

s
Set F=T7,R,[(+T7)R

(4-4) —an Rofo + Fﬁo’ Ry = —an (Roaﬁo + 5£ )+ Fﬁa (Rog'o +95)-

Solving (4-2) for the coordinate derivative of curvature and applying estimates
(AH2+), (4-3) and Equation (4-4) we obtain

—0y ROaﬁO =-T}, (Rooﬂo +0)) + r/[ja (Rogo+95) + F,

where we absorb the covariant derivative term into F. Note the components of F'
are O (e~ by (AH2+), as we consider the u-covariant derivative

V![Rofodxa X a[j’ = (VR)(aOa ) 807 a,u)
as a (1,1)-tensor and [0p|g =1, [0, | = O(e"), by Theorem 4. U

We also make a change of variables. Set W = ¢*"S and recall g = ¢~ >"g. Note
that for Greek indices, I:Z 5= Fg - Using this change of variables and Lemma 8,
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system (4-1) becomes
@, WPy =—(0,W))S] — S0, W]) +26, W/
— T (R L+ 38) + T (RS0 +05) + ¥ F Y,
(0uiap) = D¢~ 2 (0. W))8yp+2S5)(0,8y8) —2(0u8ap)-

Regard the components 0, Wf and 0, g,p as vectors in R"" which we denote 0W
and 0g. The above system may be compactly written as

(0W) = AOW + Bog +G,

(4-5) _y _
(0g) =CoW + Dog.

where A, B, C, D, G are (n° x n3)—matrices. We will not need the explicit form of
these matrices in what follows; we only need estimates on the size of the matrix
entries. Let |-|» denote the usual Euclidean norm in R’ (we use the same symbol
for the associated operator norm on matrices). We have:

Lemma 9. There exists a positive constant ¢ such that the coefficients of the system
(4-5) satisfy the estimates

|Alz<ce™, |Bla<ce, [Clha<ce™, [Dh<ce”, |Gl<ce®™r,
Proof. The lemma follows from the curvature assumptions and the metric and shape
operator estimates of Theorem 4. For example to analyze the nonzero components
of A, consider the obvious interpolation

—(0aWPYS] — SE(0, W) +20, W) = —(8, WI)(S]), =) — (S = ) (8, W)).

By the shape operator estimate, the eigenvalues of S—/ are order ¢ ™", and therefore
|Al» < ce™". Similarly with the other matrices. O

We now finish the proof of the main theorem.

Proof of Theorem 1. In order to prove that the tangential derivatives of g are
bounded, we first compare system (4-5) to a model system.

Set x(r) = |0W/] and y(r) = |0g|. These functions are continuous everywhere
and are smooth where 0W and O0g are nonzero. Note that the system uncouples
if either x = 0 or y = 0 on an interval, and from there it is easy to see that y is
bounded, which implies g is Lipschitz on that interval. From the Cauchy—Schwarz
inequality it follows that where they are smooth, x'(r) <[(6W)'| and y'(r) < |(6g)’|.
Consequently the system of equations (4-5) combined with Lemma 9 implies the
estimate

x <ce"x+cey+cePY

y <ce ¥ x+cey.
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We thus compare solutions to this system of differential inequalities to solutions
of the corresponding system of equations

/

u' =ce"u+cev+ceF Y,

(4-6)
o' =ce P u+ce .

We now digress to discuss the solutions of this model system. The system (4-6)

may be solved for # and u” in terms of » and v’, obtaining

1
u=-ev —ev,
c

u' =ev +cle —1)o+ce>Vr,
This leads to a second order linear inhomogeneous differential equation for v,
4-7) 0" 4+ 2 —2ce ") +ce " (ce™ —c— 1) =ce.

This equation has asymptotically constant coefficients. By Theorem 1.9.1 of [East-
ham 1989], two linearly independent solutions v and v, of the associated homo-
geneous equation to (4-7) satisfy asymptotic estimates

v =(+o(1)e ™, o) =(=24o0(1)e?,

vy =1+0(1), vy =o(1).
We must also obtain estimates for the solution of the inhomogeneous part of (4-7).

Set p(r) =2 —2ce™" and q(r) = ce " (ce™” — ¢ — 1). Equation (4-7) may be
transformed to a first order system by letting w = v’:

()= (5 ) )+ ()

The fundamental matrix for this system is

p (01 02)
- / / b
b Dy

and it is easy to verify that by “variation of parameters”, a solution to the inhomo-
geneous system is given by

o(r) B "o 0
(w(r))m — () / $71(s) (Cem) ds.

Note that det ¢ = (—2+0(1))e~?". It is now straightforward to check that a solution
to the inhomogeneous equation, vy, satisfies vy = O(eQ’ ).
We repeat this process for # and find that u satisfies

(4-8) u"+(=1=2ce ™)'+ (c—c)e " +c?e ™ )u=(Q—1)ce >V — 21+,



244 ERIC BAHUAUD

Linearly independent solutions are given by

u; =1+o0(1), uy =o0(1),
ur = (14+o0(1))e", uy = (1+o(1))e".

A solution to the inhomogeneous equation satisfies u;y = O (e+r).

Because Q < 0, the analysis above implies that every solution of (4-7) is at
worst O (1), and every solution of (4-8) satisfies u = O(e(2+9)’). This implies like
estimates for the components of every solution of (4-6).

At a point rg where x(rg) > 0 and y(rg) > 0, fix initial conditions u(r¢) > x(r9)
and v (rg) > y(ro), and consider the solution to (4-6). It is straightforward to argue
that # and » must remain positive on [rg, 00): if by way of contradiction u = 0 or
v = 0 for some r > 0 we may compute the first such time

ry =1inf{r > 0: u(r) =0}, r, =1inf{r > 0:0(r) =0}.

We have that r, > 0 and u > 0 on [rg, r,) as well as r, > 0 and 0 > 0 on [rg, r,).
If r, <r, then the fundamental theorem of calculus implies

r r

u'(s)ds = u(ro) +/ ce Su+ce'v + ce®rVids

ro

u(r)=u(ro)+/

o
for all r € [ro, ry). As every term in the integrand is strictly positive on [rg, r;,)
we find u(r,) > 0, a contradiction. A similar argument holds for r, < r, using the
equation for v’.

Now Theorem 10 below implies that [0, Wfl =x <uwuand |0,8.p] =y <von
[ro, 00).

As 0,845 = O(1), the first derivatives of g satisfy Lipschitz estimates in the in-
terior of a compactified Fermi coordinate chart. Therefore g extends to a Lipschitz
continuous 2-tensor up to 0 M. Further, the metric estimate from Theorem 4 im-
plies that this extension is positive definite. This proves that g is C%! conformally
compact.

That M is a C"! manifold follows from Lemma 7. U

Differential equation comparison. In the preceding proof we used a comparison
theorem for a two-dimensional system of first-order linear differential equations
with positive coefficient functions, which we now state and prove.

Theorem 10. Suppose that a, b, c,d are positive smooth functions on [ty, t1] (or
on [ty, 00)). Suppose that x and y are nonnegative continuous functions that are
smooth where they are nonzero and satisfy the differential inequalities

x'<ax+by+te,
y <cx+dy+ f.
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Suppose in addition that u and v are positive smooth solutions of the corresponding
system of differential equations:

u' =au-+bv+e,

o' =cu+dv+ f.
If x(tg) < u(tog) and y(ty) <v(ty) then x <u andy < v on [ty, t;] (or on [ty, 00)).

Proof. The main observation we need is that when x and y are nonzero,

w—x)>alw—x)+b—y),
=y zclu—x)+d@—y).

We know initially u(zy) > x (fo) and v (ty) > y(fp). If there is a point where x crosses
u or where y crosses v then there must be a first time where this occurs after .
This is to say that we can find an s > #y) where u > x and v > y on [fg, s) but
either u(s) = x(s) or v(s) = y(s) or both. Note that we may assume that x and y
are positive on [fo, s], otherwise we shrink to a neighbourhood of the form [z, s)
where this is the case.

In any of these cases, by the observation above and since a, b, ¢, d are all positive
we have

(u—x)'>0 and (v—y) >0,

on the interval [#g, s]. This now easily implies that

u(t) —x(t) = u(to) — x(to) > 0,

(1) = y() = v(to) — y(to) > 0.
for all ¢ € [tg, 5], which contradicts the choice of s as the time where either u(s) =
x(s) oro(s) = y(s). O

Note there is an obvious generalization of Theorem 10 to higher dimensional
systems. Also the sign of the diagonal elements is unrestricted if one writes the
systems using an integrating factor.

5. An example

Recall that a generic smoothly conformally compact AH metric satisfies decay
condition (AH1) and

(AH2) IV, Rm |, = O(p).

In this section we provide an example of a metric satisfying (AH1), (AH2) on an
end diffeomorphic to T" x (0, 1) that does not have a Lipschitz conformal com-
pactification when one uses a geodesic defining function (that is, one for which
|dp % = 1) to compactify the metric.
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We begin by defining a useful function. Let # : R — [—1, 1] be a function
such that 7’]|[1’OO) =1, 77|[—oo,—1) = —1, 77|[_1/2,1/2] = x such that # is smooth,
nondecreasing and #' < Cy, |#| < Ca, |#"”"| < C3. On the open set O = {(y, p), 0 <
p <1,y € R} we consider the function

1 .
fO,p)= 2/ n(?)d&
P

Since # is bounded, f = O(1). Computing first derivatives we find

3, (v, p) = —m(?) = 0(1),

sin y

1
oy f (v, p) =2 / Mn(—)d = 0(logp).
p

We now compute second derivatives. Note that when |sin y| > p, #'(siny/p) =0,
and when |sin y| < p, #'(siny/p) < Cy. This reasoning lets us estimate expres-
sions of the form #/(siny/p)(siny/p) in what follows and similarly for higher
derivatives.

siny\siny

0p0p f(y, p) = 2’7/(7)7 =0(p").

COSyrl/ (%) ds — 0(p71)

1 2 . . .
COs” y sin y siny , (siny _
5y5yf(y,p)=2/ 2 '7”( )— > ’7/( - )ds:O(p h.
p

N N

0y0, f (v, p) = 3,0y f (y, p) = =2

A similar computation shows all of the third derivatives of f satisfy 8 f = O (p~2).
We now construct a metric on U= {(y%, p), 0 < p < 1, y* € R}. Fix a tangential
coordinate y*° and label it as y. Consider the metric

g =dp* +e/OP§,pdy  dy”

We regard this as a metric on the product of a torus with an interval T" x [0, 1).
This metric does not satisfy a uniform Lipschitz estimate down to p = 0 as

(5-1) Oy8ap =€ UP) .0, f - 545 = O(log p).
Note however that
(5-2) 0p8ap =!8, f 05 = O(1),

and where these derivatives appear in the expressions for curvature plays an im-
portant role in what follows. We now study the asymptotic curvature properties of
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the blow-up metric
— 25
§:=p 8
This is most easily done using the transformation formula for curvature under a
conformal change of metric. From the expressions for the metrics and bounds
on f, we obtain estimates for the derivatives of both metrics. We can translate

this into “worst case estimates” for the Christoffel symbols (we suppress indices
to indicate any choice of indices is valid):

r=0(p",
(5-3) = = —1y A2T -2
I'=0(ogp),ol' =0(p™"), 0T =0(p™).

The transformation formula for the full Riemannian curvature tensor under a con-
formal change of metric using the fact that |dp |§ = 1 may be written as

R+I)iju=p > (Vp O &)iju + p *Riju,

where @ is the Kulkarni-Nomizu product, V is the g-covariant derivative and ¥ is
the constant curvature tensor. This formula is valid for p > 0. We now estimate.
Estimates (5-3) already imply that R; ikl = O(p~"'). We must argue that no log
terms occur in A := V2p ® g. Observe that

(V2p ® &)iju = pugjx — Pik&ji + P jk&it — P j18ik-

If all of the indices are distinct then A = 0 since the metric is diagonal. So if
A # 0 for a choice of indices then a pair of indices is repeated. We now have two
subcases whether or not the remaining indices are identical or different. In case
they are identical then by the symmetries of curvature tensors, up to sign we have

(V2o ©&)ijji = pii&jj — Pij&ji + Pjj&ii — Pji&ij
=pii&jjtPjj&ii-

The formula for second covariant derivatives of functions applied to the coordinate
function p implies

pii = 0i6ip —T0,p = =I5, = 18,8 = 0(1),
using (5-2). In the second case, by the symmetries of curvature we have up to sign
(Vp ©R)ijji = pugij — Pij&j1+ Pij&il — Pji&ij = Pilgjj-
Once again we compute

pit =8;0p —T5osp=—T9 =0,



248 ERIC BAHUAUD

since the metric is diagonal and g is constant. Therefore there are no contribu-
tions from tensors of type A to the curvature tensor in the second case. In light of
these estimates

(5-4) (R+H)iju = 0(p™),

which implies (AH1).
We now estimate the first covariant derivative of curvature. The formula for
components of covariant derivatives may be represented

VR=V(R+%)=0(R+%)—T*(R+%)

where * indicates contractions whose precise formula are unimportant here.

Estimates (5-3) and (5-4) show that T % (R + %) = O(p~*). For the derivative
terms, since the metric depends only on p and y, we need only compute those
derivatives. For the p derivatives we have

0y (R+H)ijiu=—3p"*(Vp®)iju+p>8,(Vp ®R)ijui
—2p 7 Riju+p 20, Riju-

By the estimates already established, each term is O (p~™*).
For the y-derivatives we find

R+ I)iju=p0y(V2p ® &)ijut + p 0y Riju.

Already estimates (5-3) are enough to handle both the last term and when the y-
derivative acts on the V?p terms. When the y-derivative acts on g, by (5-1) we
obtain terms of order O (p~3 log p), which clearly are order O (p~*). Consequently

VaRiji = 0(p™),

which implies (AH2).

Finally as g is a continuous metric on U it follows that g is complete. Set
r = —log p, and note from estimate (5-2) that the second g-covariant derivatives
of r satisfy

Top = p_zga/)’ + O(P_l)-

From this estimate it follows that there exists pg sufficiently small where r is strictly
convex on the collar neighbourhood r > —log pg. Further the hypersurface r =
—log po is compact and strictly convex with respect to the outward unit normal.
From these facts we may deduce that r < —log pg is totally convex and that the
outward normal exponential map off r = —log pg is a diffeomorphism onto its
image.
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