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We obtain complete geometric invariants of cobordism classes of oriented
simple fold maps of (n + 1)-dimensional manifolds into an n-dimensional
manifold Nn in terms of immersions with prescribed normal bundles. We
compute that for Nn = Rn the cobordism group of simple fold maps is
isomorphic to the direct sum of the (n − 1)-st stable homotopy group of
spheres and the (n − 1)-st stable homotopy group of the space RP∞. By
using geometric invariants defined in the author’s earlier works, we also
describe the natural map of the simple fold cobordism group to the fold
cobordism group in terms of natural homomorphisms between cobordism
groups of immersions. We also compute the ranks of the oriented bordism
groups of simple fold maps.

Introduction

Fold maps of (n + 1)-dimensional manifolds into n-dimensional manifolds are
smooth singular maps that have the formula

f (x1, . . . , xn+1)= (x1, . . . , xn−1, x2
n ± x2

n+1)

as a local normal form around each singular point. Fold maps can be considered
as the natural generalizations of Morse functions. Let f : Qn+1

→ N n be a fold
map. The set of singular points of the fold map f is a 2-codimensional smooth
submanifold in the source manifold Qn+1, and f restricted to its singular points is a
1-codimensional immersion into the target manifold N n . This immersion together
with more detailed information about the neighborhood of the set of singular points
in Qn+1 can be used as a geometric invariant (see [Kalmár 2008a] and Section 1.3
here) of fold cobordism classes (see Definition 1.1) of fold maps, and by this way
we obtain a geometric relation between fold maps and immersions via cobordisms.
In [Kalmár 2008a; 2007b], we defined these invariants for negative codimensional1
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1 If we have a map f : Mm
→ P p of an m-dimensional manifold into a p-dimensional manifold,

then the codimension of the map f is the integer p−m.
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fold maps in full generality, and we used them to detect direct summands of the
cobordism groups of negative codimensional fold maps. Here, we study these
invariants in the case of−1-codimensional fold maps with some additional restric-
tions on their singular fibers. (For singular fibers, see [Levine 1985; Saeki 2004].
For cobordism groups of fold maps whose singular fiber components contain only
a finite number of points, see [Ando 2001; Sadykov 2005; Saeki 2002].)

Simple fold maps are fold maps with at most one singular point in each connected
component of a singular fiber. From this definition it follows that the only possible
singular fibers whose singular points have the minus sign in the above normal form
are the disjoint unions of a finite number of “figure eight” singular fibers and circle
components, provided that the source manifold is orientable or the simple fold
map is oriented.2 Simple fold maps have been studied, for example, by Levine
[1985], Saeki [1992; 1993a; 1996], Sakuma [1994] and Yonebayashi [1999]. The
existence of a simple fold map on a manifold gives strong conditions about the
structure of the manifold (for example, about the existence of simple fold maps on
orientable 3-manifolds; see [Saeki 1996]). If we have a simple fold map of an ori-
ented manifold or an oriented simple fold map, then the immersion of the singular
set has trivial normal bundle in the target manifold N n , and moreover there is a
canonical trivialization corresponding to the number of regular fiber components
in a neighborhood of a singular fiber.

The main result of this paper is that our geometric invariants (compare with
[Szűcs 2008, Part III]) describe completely the set of cobordism classes of ori-
ented simple fold maps of (n+1)-dimensional manifolds into an n-dimensional
manifold N n . By using a Pontryagin–Thom-type construction, we prove that the
cobordism classes of oriented simple fold maps of (n+1)-dimensional manifolds
into an n-dimensional manifold N n are in natural bijection with the set of stable
homotopy classes of continuous maps of the one point compactification of the
manifold N n into the Thom space of the trivial line bundle over the space RP∞.
As a special case, we obtain that the oriented cobordism group of simple fold maps
of oriented (n+1)-dimensional manifolds into Rn is isomorphic to the n-th stable
homotopy group of the space S1

∨ SRP∞, where SRP∞ denotes the suspension
of RP∞.

We also describe the natural homomorphism that maps a simple fold cobor-
dism class to its fold cobordism class in terms of natural homomorphisms between
cobordism groups of immersions with prescribed normal bundles. In this way, we
obtain results about the “inclusion” of the cobordism group of simple fold maps
into that of fold maps. We also obtain the analogous results about bordisms (see
Definition 5.1) of fold maps.

2We call a fold map f oriented if the kernel of the differential of f |R is oriented, where R denotes
the set of regular points of f .
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The statement giving the main technical tool to prove our results is that if we
restrict a fold map f : Qn+1

→ N n to the submanifold f −1(PF), where PF denotes
a narrow closed tubular neighborhood of the f -image of the singular fibers of
type F, then this restriction can be considered as a locally trivial bundle with some
map-germ as fiber and with a compact group (which depends only on the singular
fiber F) as structure group (Theorems 6.1 and 6.3). In the case of positive codimen-
sional singular maps, such a map-germ would be a (classical) germ around isolated
points, while in our case (that is, the negative codimension case) it is a map-germ
around a positive dimensional complex. Only the case of germs around isolated
points is well understood [Jänich 1978; Wall 1980]. Handling this problem is one
of the results of our present paper.

The paper is organized as follows. In Section 1, we give several basic definitions
and notations. In Section 2, we state our main results. In Section 3, we prove our
main theorems. In Section 4, we give explicit descriptions of the “inclusion” of the
simple fold cobordism groups into the fold cobordism groups in low dimensions.
In Section 5, we give analogous results about bordism groups of simple fold maps.
In Section 6, we prove theorems about the bundle structures of fold maps and
symmetries of singular fibers.

Notations. In this paper, we denote by q the disjoint union, by γk the universal
k-dimensional real vector bundle over BO(k), and by εk

X (or εk) the trivial k-plane
bundle over the space X (respectively over the point). The symbols det ξ k and T ξ k

denote the determinant line bundle and the Thom space of the k-dimensional real
vector bundle ξ k , respectively. For k ≤ n, the symbol Imm(ξ k, N n) denotes the
cobordism group of k-codimensional immersions into an n-dimensional manifold
N n whose normal bundles are induced from the real vector bundle ξ k (this group
is isomorphic to the group {Ṅ n, T ξ k

} [Wells 1966], where Ṅ n denotes the one-
point compactification of the manifold N n and the symbol {X, Y } denotes the
group of stable homotopy classes of continuous maps from the space X to the
space Y ). For k > n, the symbol Imm(ξ k, N n) denotes the trivial group. The
symbol π s

n(X) (or π s
n ) denotes the n-th stable homotopy group of the space X

(respectively spheres). We denote by idA the identity map of the space A, by ε
a small positive real number, and by �n the oriented cobordism group of closed
n-dimensional manifolds.

1. Simple fold maps, fold cobordisms and geometric invariants

Simple fold maps. Let Qn+1 and N n be smooth manifolds of dimensions n+1 and
n, respectively. Let p ∈ Qn+1 be a singular point of a smooth map f : Qn+1

→ N n .
A smooth map f has a fold singularity at the singular point p if we can write f in
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some local coordinates around p and f (p) in the form

f (x1, . . . , xn+1)= (x1, . . . , xn−1, x2
n ± x2

n+1).

A smooth map f : Qn+1
→ N n is called a fold map if f has only fold singularities.

Singularities with sign + or − in the above normal form are called definite or
indefinite fold singularities, respectively.

Let S1( f ) and S0( f ) denote the set of indefinite and definite fold singularities
of f in Qn+1, respectively. Let S f denote the set S0( f )∪ S1( f ). Note that S f is
an (n−1)-dimensional submanifold of the manifold Qn+1.

If f : Qn+1
→ N n is a fold map in general position, then the map f restricted

to the singular set S f is a general position, codimension one immersion into the
target manifold N n .

Since every fold map is in general position after a small perturbation, and since
we study maps under the equivalence relations cobordism and bordism (see Defini-
tions 1.1 and 5.1, respectively), in this paper we can restrict ourselves to studying
fold maps that are in general position. A fold map f is in general position unless
we say otherwise.

A fold map f : Qn+1
→ N n is called a simple fold map if every connected

component of an arbitrary fiber of f contains at most one singular point.
A fold map f : Qn+1

→ N n is called framed if the immersion f |S1( f ) of its
indefinite fold singular set is framed, that is, its normal bundle is trivialized.

A fold map f : Qn+1
→ N n is called oriented if there is a chosen consistent

orientation of all fibers at their regular points (for example, in the case of oriented
source and target manifolds).

From the definition of simple fold maps it follows that an indefinite singular
fiber3 of an oriented simple fold map or of a simple fold map of an oriented mani-
fold must be the disjoint union of a finite number of copies of the figure eight and
circles.

Note that an oriented simple fold map is framed in a canonical way since the
immersion of its indefinite fold singular set has a canonical trivialization corre-
sponding to the number of regular fiber components in a neighborhood of a figure
eight singular fiber.

Stein factorization. We use the notion of the Stein factorization of a smooth map
f : Qq

→ N n , where Qq and N n are smooth manifolds of dimensions q and n,
respectively, and q ≥ n. Two points p1, p2 ∈ Qq are equivalent if p1 and p2 lie on
the same component of an f -fiber. Let W f denote the quotient space of Qq with
respect to this equivalence relation, and let q f : Qq

→ W f be the quotient map.

3That is, a singular fiber that contains only indefinite fold singular points. For singular fibers, see
[Levine 1985; Saeki 2004].
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Figure 1. The Stein factorization of a representative of the figure
eight singular fiber.

Then there exists a unique continuous map f :W f → N n such that f = f ◦q f . The
space W f or the factorization of f into the composition of q f and f is called the
Stein factorization of f . We call f the Stein factorization of f as well. It is known
that if f is a generic smooth map of a closed q-dimensional manifold into N n (for
example, if f is a fold map in general position), then its Stein factorization W f is
a compact n-dimensional CW complex.

For the Stein factorization of a representative of the singular fiber figure eight
in the case of n = 1, see Figure 1.

Cobordisms of simple fold maps.

Definition 1.1 (cobordism). For i = 0, 1, two oriented fold maps (respectively
two oriented simple fold maps) fi : Qn+1

i → N n from closed (n+ 1)-dimensional
manifolds Qn+1

i into an n-dimensional manifold N n are cobordant (respectively
simple cobordant) if

(1) there exists an oriented (respectively oriented simple) fold map F : Xn+2
→

N n
×[0, 1] from a compact (n+ 2)-dimensional manifold Xn+2;

(2) ∂Xn+2
= Qn+1

0 q Qn+1
1 ;

(3) F is equal to f0 × id[0,ε) on Qn+1
0 × [0, ε) and is equal to f1 × id(1−ε,1] on

Qn+1
1 × (1− ε, 1], where Qn+1

0 ×[0, ε) and Qn+1
1 × (1− ε, 1] are small collar

neighborhoods of ∂Xn+2 with the identifications Qn+1
0 = Qn+1

0 × {0} and
Qn+1

1 = Qn+1
1 ×{1};

(4) the orientations of the fold maps f0, f1 and F under the above identifications
are consistent.

We then call F a cobordism between f0 and f1.

This clearly defines an equivalence relation on the set of oriented fold maps (re-
spectively oriented simple fold maps) from closed (n+1)-dimensional manifolds
to an n-dimensional manifold N n . In the case of an oriented target manifold N n

this cobordism relation coincides with the analogous cobordism relation of (simple)
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fold maps of oriented manifolds, where the manifold Xn+2 should be oriented and
should satisfy ∂Xn+2

= Qn+1
0 q (−Qn+1

1 ).
Let us denote by Cobf(N n) the set of all cobordism classes of oriented fold maps

into an n-dimensional manifold N n and by Cobs(N n) the set of all simple cobor-
dism classes of oriented simple fold maps into an n-dimensional manifold N n .
We define a commutative semigroup4 operation in the usual way on the sets of
cobordism classes Cobf(N n) and Cobs(N n) by the disjoint union, which is a group
operation in the case of N n

= Rn .

Definition 1.2. Two oriented framed fold maps fi : Qn+1
i → N n (with i = 0, 1) are

framed cobordant if they are oriented cobordant by an oriented framed fold map
F : Xn+2

→ N n
×[0, 1], in the sense of Definition 1.1, such that the framing of F

is compatible with the framings of f0 and f1.

We denote the framed cobordism classes into an n-dimensional manifold N n

by Cobfr
f (N

n); this clearly forms a commutative semigroup under the operation of
disjoint union.

Bundles of fold germs. We now summarize some properties of the usual germs
(R2, 0)→ (R, 0).

Let us define the indefinite fold germ and the definite fold germ by

gindef : (R
2, 0)→ (R, 0), (x, y) 7→ x2

− y2,

gdef : (R
2, 0)→ (R, 0), (x, y) 7→ x2

+ y2.

We say that a pair (α : (R2, 0)→ (R2, 0), β : (R, 0)→ (R, 0)) of diffeomorphism
germs is an automorphism of a germ g : (R2, 0)→ (R, 0) if g ◦α = β ◦ g.

If we have a fold map f : Qn+1
→ N n with nonempty indefinite fold singular

set S1( f ), then we have the commutative diagram

E(ξ 2
indef( f ))

E(ξindef( f ))
//

ξ 2
indef( f ) %%

E(η1
indef( f ))

η1
indef( f )xx

S1( f )

that is, over S1( f ) for small positive real numbers ε and δ, we have

(1) a family of small open squares (−ε, ε)× (−ε, ε) denoted by

ξ 2
indef( f ) : E(ξ 2

indef( f ))→ S1( f );

4Throughout the paper, we use the word “semigroup” rather than “monoid”, even if we have an
identity element.
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(2) a family of small open intervals (−δ, δ) denoted by

η1
indef( f ) : E(η1

indef( f ))→ S1( f );

(3) a fiberwise map E(ξindef( f )) : E(ξ 2
indef( f ))→ E(η1

indef( f )), which is equiva-
lent on each fiber to a representative of gindef,

and we say that we have an indefinite fold germ bundle5 over the indefinite fold
singular set S1( f ), denoted by ξindef( f ) : E(ξindef( f ))→ S1( f ).

The fiber of ξindef( f ) is a representative of gindef, its base space is S1( f ), and
its total space is the fiberwise map

E(ξindef( f )) : E(ξ 2
indef( f ))→ E(η1

indef( f ))

between the total spaces of the bundles ξ 2
indef( f ) and η1

indef( f ). We call E(η1
indef( f ))

the target of the total space E(ξindef( f )) of ξindef( f ), and we call the bundle
η1

indef( f ) the target of the indefinite fold germ bundle ξindef( f ).
By [Szűcs 1993], ξindef( f ) is a locally trivial bundle with fiber gindef and an

appropriate group of automorphisms (α : (R2, 0)→ (R2, 0), β : (R, 0)→ (R, 0))
as structure group. The same holds for the definite fold singular set S0( f ) and the
definite fold germ gdef(x, y)= x2

+ y2.
Moreover, if we have an oriented fold map f : Qn+1

→ N n , then the elements
of the structure groups of the above indefinite and definite fold germ bundles are
automorphisms (α : (R2, 0)→ (R2, 0), β : (R, 0)→ (R, 0)) in which the diffeomor-
phisms α and β both preserve or both reverse the orientation, or in other words,
they keep fixed a chosen consistent orientation at the regular points of the level
curves.

If we have an indefinite fold germ bundle, then by [Jänich 1978; Wall 1980]
its structure group can be reduced to a maximal compact subgroup, namely to the
dihedral group of order 8 generated by the automorphisms ((x, y) 7→ (x,−y), idR)

and ((x, y) 7→ (−y, x),− idR). Furthermore, the automorphisms that keep fixed
a chosen consistent orientation of the level curves of the indefinite fold germ
form a subgroup Z2 ⊕ Z2, which is generated by ((x, y) 7→ (y, x),− idR) and
((x, y) 7→ (−y,−x),− idR). This group has a subgroup Z2 that is generated by
the automorphism ((x, y) 7→ (−x,−y), idR).

If we have an oriented simple fold map (or an oriented framed fold map), then
the structure group of its indefinite fold germ bundle is reduced to this subgroup Z2,
since other elements of Z2⊕Z2 cannot be extended to the singular fiber figure eight
(respectively do not keep the trivialization of the target of the total space of the
indefinite fold germ bundle). Note that in the case of an oriented fold map without

5Note that the total space E(ξindef( f )) of this bundle is in fact a map, not a set.
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any framing in general this structure group can be more complicated than Z2; see,
for example, the singular fiber denoted by II3 in [Saeki 2004].6

The automorphism group of the definite fold germ bundle of an oriented fold
map can be reduced to one whose elements are of the form ((x, y)→T (x, y), idR),
where T is an element of the group SO(2).

Now it follows that the targets of the universal oriented indefinite and definite
fold germ bundles are the line bundle η1

indef : det(γ1
×γ1)→RP∞×RP∞ and the

trivial line bundle η1
def : ε

1
CP∞ → CP∞, respectively.7 Similarly, the target of the

universal oriented simple (or framed) indefinite fold germ bundle is the trivial line
bundle over RP∞.

The relation between the universal oriented indefinite fold germ bundle and the
universal oriented simple (or framed) indefinite fold germ bundle can be seen in
the following bundle inclusion, which is induced by the inclusion of the above
subgroup Z2 into the automorphism group Z2 ⊕ Z2, that is, by the diagonal map
RP∞→ RP∞×RP∞.

(1-1)

ε1
RP∞

//

��

det(γ1
× γ1)

��
RP∞ // RP∞×RP∞

1.3. Cobordism invariants of oriented fold maps. We define the homomorphisms

Is(N n) : Cobs(N n)→ Imm(ε1
RP∞, N n),

Ds(N n) : Cobs(N n)→ Imm(ε1
CP∞, N n)

by mapping a cobordism class of an oriented simple fold map into the cobordism
class of the immersion of its indefinite fold singular set with normal bundle induced
from the bundle ε1

RP∞ , and into the cobordism class of the immersion of its definite
fold singular set with normal bundle induced from the bundle ε1

CP∞ , respectively.
We define the homomorphisms

If(N n) : Cobf(N n)→ Imm(det(γ1
× γ1), N n),

Df(N n) : Cobf(N n)→ Imm(ε1
CP∞, N n)

6We note that it would not be very difficult to extend some of our results to oriented fold maps
in an analogous way. The main difference would be that since oriented fold maps can have more
complicated singular fibers (for example, the singular fiber denoted by II3 in [Saeki 2004]), the
symmetry group of the indefinite fold germ (x, y) 7→ x2

− y2 in the case of oriented fold maps is
more complicated than in the case of oriented simple fold maps or oriented framed fold maps (where
it is generated by the automorphism (x, y) 7→ (−x,−y)).

7We use the terminology “universal oriented indefinite and definite fold germ bundles” in the
sense that every bundle ξindef( f ) : E(ξindef( f ))→ S1( f ) and ξdef( f ) : E(ξdef( f ))→ S0( f ) can be
induced from them by maps S1( f )→ RP∞×RP∞ and S0( f )→ CP∞, respectively, uniquely up
to homotopy.
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by mapping a cobordism class of an oriented fold map into the cobordism class of
the immersion of its indefinite fold singular set with normal bundle induced from
the bundle η1

indef : det(γ1
× γ1)→ RP∞×RP∞, and into the cobordism class of

the immersion of its definite fold singular set with normal bundle induced from the
bundle η1

def : ε
1
CP∞→ CP∞, respectively; see the previous section.

Analogously, we define the homomorphisms

Ifr
f (N

n) : Cobfr
f (N

n)→ Imm(ε1
RP∞, N n),

Dfr
f (N

n) : Cobfr
f (N

n)→ Imm(ε1
CP∞, N n).

Note that the diagram (1-1) induces a homomorphism

Imm(ε1
RP∞, N n)→ Imm(det(γ1

× γ1), N n)

and hence a commutative diagram

(1-2) Cobs(N n)
Is(N n) //

��

Imm(ε1
RP∞, N n)

��
Cobf(N n)

If(N n)
// Imm(det(γ1

× γ1), N n),

where the left vertical arrow is the natural homomorphism that maps a simple fold
cobordism class to its fold cobordism class.

2. Main results

Now we are ready to state our main theorems. Let n ≥ 1.

Theorem 2.1. The semigroup homomorphism Is(N n) is a semigroup isomorphism
between the cobordism semigroup Cobs(N n) of oriented simple fold maps and the
group Imm(ε1

RP∞, N n). (The homomorphism Is(R
n) is a group isomorphism.)

Corollary 2.2. The semigroup Cobs(N n) is a group.

Corollary 2.3. Let p be a prime number. Then

(1) the cobordism group Cobs(N n) of oriented simple fold maps is isomorphic to
the group {Ṅ , S1

}⊕ {Ṅ , SRP∞};

(2) the cobordism group Cobs(R
n) has no p-torsion if p > (n+ 2)/2, and its

p-torsion is Zp if p is odd and n = 2p− 2;

(3) the order of an oriented simple fold map is always finite in the fold cobordism
group Cobf(R

n) (n > 1).
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Proof. Part (1) follows from the isomorphisms

Cobs(N n)∼= Imm(ε1
RP∞, N n),

Imm(ε1
RP∞, N n)∼= {Ṅ , T ε1

RP∞} (see [Wells 1966]),

{Ṅ , T ε1
RP∞}

∼= {Ṅ , S1
∨ SRP∞} ∼= {Ṅ , S1

}⊕ {Ṅ , SRP∞}.

Parts (2) follows from well-known theorems about the prime-torsions of the groups
π s

n−1 and π s
n−1(RP∞); see [Serre 1951; 1953; Wells 1966, Section III, Theorem 4].

Part (3) follows from the fact that these groups are finite for n > 1; see the same
references. �

Let φN
n : Cobs(N n)→ Cobf(N n) (or φn in case N n

= Rn) denote the natural
homomorphism that maps a simple fold cobordism class into its fold cobordism
class.

Theorem 2.4. (1) The simple fold cobordism group Cobs(N n) is a direct sum-
mand of the framed fold cobordism semigroup Cobfr

f (N
n).

(2) The direct summand {Ṅ , S1
} of Cobs(N n) is mapped by φN

n isomorphically
onto a direct summand of the fold cobordism semigroup Cobf(N n).

(3) For n ≥ 2, if the natural forgetting homomorphism

Imm(ε1
× γ1, N n)→ Imm(γ1

× γ1, N n)

induced by the inclusion RP∞ ↪→RP∞×RP∞, x 7→ ( ∗ , x) is injective, then
so is φN

n . The homomorphism φN
1 is injective.

(4) If there exists a fold map from a not null-cobordant (n+1)-dimensional man-
ifold to N n , then φN

n is not surjective.

We prove these in Section 3.
By Theorem 2.4, we obtain in Section 4 the following.

Proposition 2.5. For n = 1, 2 the homomorphism φn is an isomorphism, φ3 is
injective but not surjective, and for n = 5, 6, the homomorphism φn is injective.

In this paper, we do not study the homomorphism φ4 and the surjectivity of the
homomorphisms φ5 and φ6.

The following proposition will be essential in proving Theorem 2.1.

Proposition 2.6. Every element of the simple fold cobordism group Cobs(N n) has
a representative g : Qn+1

→ N n such that the source manifold Qn+1 is the to-
tal space S2

× S1(g) of a trivial 2-sphere bundle over the indefinite fold singular
set S1(g), and the map g restricted to any fiber S2 is a composition u ◦ v of an
embedding u : R→ N n and a Morse function v : S2

→ R with one indefinite and
three definite critical points.
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Corollary 2.7. If there is an oriented simple fold map of an (n+1)-dimensional
manifold Qn+1 into an (oriented) n-dimensional manifold, then the manifold Qn+1

is (oriented) null-cobordant.

Compare Corollary 2.7 with [Saeki 1992, Proposition 3.12].

Remark 2.8. The surjectivity of the homomorphism φ2 : Cobs(R
2)→ Cobf(R

2)

leads to a nice argument showing that every orientable 3-manifold is oriented null-
cobordant. Namely, let M3 be an orientable 3-manifold. Let f : M3

→ R2 be
a smooth stable map. By [Levine 1965], cusp singularities can be eliminated by
homotopy (but now elimination by cobordism is enough). Hence, we obtain a fold
map f1 : M3

1 → R2 whose source manifold is oriented cobordant to M3. By the
surjectivity of φ2, we have a simple fold map f2 :M3

2→R2 whose source manifold
is oriented cobordant to M3. Now by Proposition 2.6, M3

2 is oriented cobordant to
a trivial 2-sphere bundle, and therefore the manifold M3 is oriented null-cobordant.
(Compare with [Costantino and Thurston 2008].)

As a corollary in Case 4.2, we give another proof of the main result of [Kalmár
2007a] together with some geometric invariants, namely:

Theorem 2.9. The oriented cobordism group Cobf(R
2) of fold maps of 3-manifolds

into the plane is isomorphic to Z2 ⊕ Z2 through the homomorphism Cobf(R
2)→

Imm(γ1,R2)⊕Imm(γ1,R2) that assigns to a class [ f ] the sum [ f |S0( f )]⊕[ f |S1( f )]

of the immersions of the definite and the indefinite fold singular sets.

Recall that a singular fiber with more than one singular point in a connected
component is called nonsimple [Levine 1985].

By the surjectivity of the natural homomorphism φ2 : Cobs(R
2)→ Cobf(R

2),
we have the following.

Corollary 2.10. Nonsimple singular fibers of an oriented fold map f : M3
→ R2

can be eliminated by cobordism.

Analogous results for the oriented bordism groups of simple fold maps Bors(n)
can be found in Section 5. Moreover, we have the following.

Theorem 2.11. The rank of the oriented simple bordism group Bors(n) is equal to
rank�n +

∑n
q=0 rank�q .

3. Proof of main theorems

Proof of Proposition 2.6. For a given simple fold map f : Qn+1
0 → N n , let us

construct a fold map f ′ : Qn+1
→ N n by [Kalmár 2007a, Proposition 3.4], and

let g denote this fold map f ′. The fold map g is also simple since the construction
does not modify the connected components of the singular fibers of f containing
only indefinite singular points. Moreover, f and g are simple cobordant. If f is
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oriented, then so is g, and f and g are oriented simple cobordant. We can suppose
that the indefinite fold singular set S1(g) of g is not empty (otherwise g is null-
cobordant as one can see easily: for a precise argument, see [Saeki 1993b]). By
the proof of [Kalmár 2007a, Proposition 3.4], the Stein factorization Wg of g can
be identified with a regular neighborhood of the set qg(S1(g)). Since g is a simple
fold map, the restriction qg|S1(g) is an embedding. Because of these facts, we have
a surjection g̃ : Wg → S1(g)× [−1, 1], where S1(g)×R is the total space of the
trivial normal bundle of the immersion g|S1(g). Moreover, the set (g̃ ◦ qg)

−1(V ),
where V is a fiber of the normal bundle of g|S1(g), is a 2-dimensional sphere S2,
and the restriction of g to this sphere is a Morse function with three definite and
one indefinite critical points.

Hence the source manifold Qn+1 of g is an S2 family over S1(g), the map g
restricted to any fiber S2 is a Morse function with three definite and one indefinite
critical points, and g is a composition of a (possibly nontrivial) family g̃ ◦ qg :

Qn+1
→ S1(g)× R of such Morse functions parametrized by the indefinite fold

singular set S1(g) and an immersion S1(g)×R→ N n onto a normal neighborhood
of g(S1(g)).

Moreover, it is easy to see that this sphere family is a locally trivial bundle
and its structure group can be reduced to Z2 (essentially because of the figure
eight subbundle of the sphere bundle coming from the Morse function family; see
Corollary 6.4), where the nontrivial element of Z2 acts on the fiber S2 as a 180
degree rotation; hence this S2-bundle is trivial. �

Proof of Theorem 2.1. First, we rephrase our original problem about the cobordism
group of simple fold maps. By Proposition 2.6, we can always choose a represen-
tative g for an arbitrary simple fold cobordism class in Cobs(N n), such that g is
equal to the composition

(3-1) S̃1(g)×Z2 S2 % // S1(g)×R
i // N n,

where

(1) the map % : S̃1(g) ×Z2 S2
→ S1(g) × R is a family of the Morse function

h : S2
→R of the 2-sphere S2 parametrized by S1(g), where the Morse function

h has three definite and one indefinite critical points;

(2) Z2 is the structure group of this family,8 where the nontrivial element of Z2

acts on the fiber h : S2
→R by a rotation of 180 degrees on S2 and identically

on R, while keeping fixed the indefinite critical point and one of the definite
critical points;

(3) S̃1(g) denotes the associated principal Z2-bundle over S1(g), and

8Since this family is a locally trivial bundle, it has a structure group; see Section 6.
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(4) the map i : S1(g)×R→ N n is an immersion onto a normal neighborhood of
g(S1(g)) such that i |S1(g)×{0} corresponds to g|S1(g).

Moreover, by the same process, a simple fold cobordism F : Xn+2
→ N n

×[0, 1]
between two such representatives g0 and g1 can be chosen to have a form

S̃1(F)×Z2 S2 ϒ // S1(F)×R
j // N n

×[0, 1]

with the analogous properties, that is, it is a composition of a familyϒ of the Morse
function h with structure group Z2 parametrized by the indefinite fold singular set
of F and an immersion j , compatible with g0 and g1 near the boundary ∂Xn+2.

Hence, we have a well-defined homomorphism

(3-2) µn(N n) : Cobs(N n)→ Imm(ε1
RP∞, N n)

by sending a cobordism class [g] (= [i ◦%]) to the immersion of S1(g) with normal
bundle induced from the trivial line bundle over RP∞ (= BZ2) according to the
principal Z2-bundle over S1(g) obtained from the Z2-symmetry of the family %.

Proposition 3.1. The homomorphism µn(N n) is an isomorphism.

Proof. First, µn(N n) is surjective because for a given immersion i : Mn−1
→ N n

with normal bundle ν induced from the bundle ε1
RP∞ , we can construct a family

% : M̃n−1
×Z2 S2

→ Mn−1
×R of the Morse function h : S2

→ R, where M̃n−1

corresponds to the principal Z2-bundle over Mn−1 obtained from the inducing map
Mn−1

→ RP∞ of the normal bundle ν.
To show µn(N n) is injective, let gi for i = 1, 2 be two oriented simple fold

maps. By Proposition 2.6, we can suppose that each gi is given in the form (3-1),
that is, gi is essentially a bundle of the Morse function h over S1(gi ), with structure
group Z2. If there is a cobordism j : W n

→ N n
× [0, 1] between the classes

µn(N n)([g0]) and µn(N n)([g1]), then we can construct an h-bundle over W n that
gives a cobordism between g̃0 and g̃1, where each g̃i is an oriented simple fold
map, obtained from gi by changing orientation on some components. Finally, since
there is an orientation-reversing self-diffeomorphism of S2 that leaves the Morse
function h invariant and that commutes with the Z2-action, we have cobordisms
between g0 and g̃0 and between g1 and g̃1. �

The observation that µn(N n) coincides with the homomorphism Is(N n) com-
pletes the proof of Theorem 2.1. �

A description of the natural homomorphism Cobs(Nn)→ Cobf(Nn). Let

φN
n : Cobs(N n)→ Cobf(N n)

(φn in the case of N n
=Rn) denote the natural homomorphism that maps a simple

fold cobordism class into its fold cobordism class.
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We define the homomorphism

θ N
f : Imm(det(γ1

× γ1), N n)→ Imm(γ1, N n)⊕ Imm(γ1
× γ1, N n)

as follows. Let [h : Mn−1
→ N n

] be an element of Imm(det(γ1
× γ1), N n). Then

the natural forgetting homomorphism ι : Imm(det(γ1
× γ1), N n)→ Imm(γ1, N n)

gives a class [h1] = ι([h]) in Imm(γ1, N n). Furthermore, we induce the normal
bundle ν(h) of the immersion h from the bundle det(γ1

× γ1)→ RP∞ ×RP∞,
that is, we have the bundle map

ν(h) //

��

det(γ1
× γ1)

��
Mn−1 ν̃h // RP∞×RP∞.

By composing ν̃h with the projection to the first factor π1 :RP∞×RP∞→RP∞,
we obtain a line bundle λ1 over Mn−1 by the diagram

λ1 //

��

γ1

��
Mn−1 π1◦ν̃h // RP∞.

For n≥ 2, this line bundle λ1 over the (n−1)-dimensional manifold Mn−1 gives an
(n−2)-dimensional manifold Ln−2 and an embedding Pλ1 : Ln−2 ↪→Mn−1, which
represents the Poincaré dual to the first Stiefel–Whitney class w1(λ

1). Hence, we
obtain an immersion h2 = h ◦ Pλ1 : Ln−2

→ N n with normal bundle induced from
the bundle γ1

× γ1 such that the normal bundle of h corresponds to the first γ1

factor and the normal bundle of Pλ1 corresponds to the second γ1 factor, that is, an
element of Imm(γ1

× γ1, N n). Now let us define the homomorphism

θ N
f : Imm(det(γ1

× γ1), N n)→ Imm(γ1, N n)⊕ Imm(γ1
× γ1, N n)

by θ N
f ([h]) = [h1] ⊕ [h2] for n ≥ 2, and by θ N

f ([h]) = [h1] for n = 1 (the group
Imm(γ1

× γ1, N n) denotes the trivial group for n = 1 by our convention).
We define the homomorphism

θ N
s : Imm(ε1

RP∞, N n)→ Imm(ε1, N n)⊕ Imm(ε1
× γ1, N n)

similarly. That is, for n ≥ 1 and an element [g : Mn−1
→ N n

] of the group
Imm(ε1

RP∞, N n), define [g1] to be the image of [g] under the natural forgetting
homomorphism Imm(ε1

RP∞, N n)→ Imm(ε1, N n), and for n ≥ 2 define

[g2] = [g ◦ Pκ1 : K n−2
→ N n

],
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where the embedding Pκ1 : K n−2 ↪→ Mn−1 represents the Poincaré dual to the first
Stiefel–Whitney class of the line bundle κ1

→ Mn−1 obtained from the universal
line bundle γ1

→RP∞ by the map Mn−1
→RP∞ that induces the normal bundle

of the immersion g : Mn−1
→ N n from ε1

RP∞ .
Let γN

n denote the natural forgetting homomorphism

Imm(ε1, N n)⊕ Imm(ε1
× γ1, N n)→ Imm(γ1, N n)⊕ Imm(γ1

× γ1, N n)

induced by the inclusion RP∞ ↪→ RP∞×RP∞, x 7→ ( ∗ , x).
By the above constructions and by (1-2), we have the commutative diagram

(3-3) Cobs(N n)

Is(N n)
��

φN
n // Cobf(N n)

If(N n)
��

Imm(ε1
RP∞, N n)

θ N
s

��

// Imm(det(γ1
× γ1), N n)

θ N
f

��
Imm(ε1, N n)⊕ Imm(ε1

× γ1, N n)
γN

n // Imm(γ1, N n)⊕ Imm(γ1
× γ1, N n).

Lemma 3.2. The homomorphism θ N
s is an isomorphism.

Proof. By the construction of θ N
s , the statement follows easily. In fact, the homo-

morphism θ N
s yields the isomorphism

{Ṅ , T ε1
RP∞}

∼= {Ṅ , S1
∨ SRP∞} ∼= {Ṅ , S1

}⊕ {Ṅ , SRP∞}

under the identifications given by the Pontryagin–Thom construction. �

Proof of Theorem 2.4. We define a homomorphism

ψ(N n) : Imm(ε1
RP∞, N n)→ Cobfr

f (N
n)

so that the composition Ifr
f (N

n) ◦ψ(N n) : Imm(ε1
RP∞, N n)→ Imm(ε1

RP∞, N n) is
the identity map, and so that the composition

Imm(ε1
RP∞, N n)

ψ(N n) // Cobfr
f (N

n)
α // Cobf(N n)

Df(N n)
// Imm(ε1

CP∞, N n),

in which α is the natural forgetting homomorphism, is an isomorphism of the direct
summand Imm(ε1, N n) of Imm(ε1

RP∞, N n) onto the direct summand Imm(ε1, N n)

of Imm(ε1
CP∞, N n). Namely, let ψ(N n) be the inverse of (3-2), which maps an

element in Imm(ε1
RP∞, N n) into the cobordism class of the corresponding rep-

resentative g (see the proof of Theorem 2.1 and Proposition 3.1). Since (3-2)
is an isomorphism by Proposition 3.1, ψ(N n) is well defined. This gives us
Theorem 2.4(1), and also (2) if we observe in the proof of Theorem 2.1 that the
three immersions of the definite fold singular set of the representative g (which
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correspond to the three definite critical points of the Morse function h), where the
structure group of the Morse function family is trivial, are parallel to the immersion
g|S1(g) of the indefinite fold singular set of g and their sum represents the inverse
of [g|S1(g)]. Because of the diagram (3-3) and since the homomorphisms Is(N n)

and θ N
s are isomorphisms, by using (2), we obtain (3). Finally, (4) is obvious from

Corollary 2.7 (which we proved independently from Theorem 2.4). �

Remark 3.3. The composition

θ N
s ◦Is(N n) : Cobs(N n)→ Imm(ε1, N n)⊕ Imm(ε1

× γ1, N n)

gives the isomorphism of Corollary 2.3(1) in a geometric way.

4. Special cases

Now, we study in low dimensions the homomorphism φn :Cobs(R
n)→Cobf(R

n)

that maps a simple fold cobordism class into its fold cobordism class, and we prove
Proposition 2.5.

Case 4.1 (n = 1). By [Ikegami and Saeki 2003], Cobf(R) is isomorphic to Z. By
Theorem 2.1, Cobs(R) is isomorphic to Z (see also [Saeki 2006]), and it is easy to
see that the homomorphism φ1 : Cobs(R)→ Cobf(R) is surjective and hence an
isomorphism.

Case 4.2 (n=2). By [Kalmár 2007a], Cobf(R
2) is isomorphic to Z2⊕Z2. Here, we

give another proof of this isomorphism together with some geometric invariants.
Let ι2 : Cobf(R

2)→ Imm(γ1,R2) and δ2 : Cobf(R
2)→ Imm(γ1,R2) denote

the homomorphisms that map a fold cobordism class into the immersion of its
indefinite and definite fold singular set, respectively.

Now π s
1
∼= Z2 and π s

1(RP∞)∼= Z2; see [Liulevicius 1963]. By Corollary 2.3(1)
and the isomorphisms Imm(ε1,R2)∼=π s

1 and Imm(γ1,R1)∼=π s
1(RP∞), the cobor-

dism group Cobs(R
2) is isomorphic to Z2⊕Z2.

Lemma 4.3. The homomorphism (ι2 ⊕ δ2) ◦ φ2 : Cobs(R
2)→ Z2 ⊕ Z2 is an iso-

morphism.

Proof. It is enough to show that (ι2 ⊕ δ2) ◦ φ2 is surjective. This can be proved
by constructing simple fold maps of oriented 3-manifolds into the plane whose
indefinite and definite fold singular sets are immersed into R2 in a prescribed way
(see Proposition 2.6). �

Lemma 4.4. The homomorphism φ2 : Cobs(R
2)→ Cobf(R

2) is surjective.
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Proof. By the classification of singular fibers of stable fold maps into 3-manifolds
[Levine 1985; Saeki 2004], it is easy to show the surjectivity as follows.

Let σF : sF→ (−ε, ε)3 be a representative of a singular fiber F. Then the fold
map

σF|σ−1
F (∂[−ε/2,ε/2]3) : σ

−1
F (∂[−ε/2, ε/2]3)→ ∂[−ε/2, ε/2]3

represents a null-cobordant element in the cobordism group Cobf(R
2) as follows.

For a given fold map f of a 3-manifold into S2, by [Kalmár 2007a, Proposition 3.4],
we obtain a fold map f ′ cobordant to f such that the Stein factorization W f ′ is
contained in a small regular neighborhood of the set q f ′(S1( f ′)), and the image
of f ′ is identified with a small regular neighborhood of f ′(S1( f ′)), for example,
it is contained in R2

⊂ S2. Moreover it is easy to see that a cobordism of the
immersion f ′|S1( f ′), which leaves unchanged a neighborhood of the double points,
can be extended to a fold cobordism of f ′, which leaves unchanged the indefinite
singular fibers of f ′ corresponding to double points.

In this way, we obtain that the singular fiber III4 shows a cobordism between
a fold map f4 with 5 nonsimple singular fibers of type II2 and a simple fold map
with 1 singular fiber of type II1,1, and the singular fiber III6 shows a cobordism
between a fold map f6 with 3 nonsimple singular fibers of type II2 and 2 nonsimple
singular fibers of type II3 and a fold map with 1 nonsimple singular fiber of type II3

(for the notations of the types of singular fibers, see [Saeki 2004]). Furthermore,
f4 is cobordant to a fold map with 1 nonsimple singular fiber of type II2, and f6

is cobordant to a fold map with 1 nonsimple singular fiber of type II2, as one can
see easily.

Hence a fold map that has nonsimple singular fibers is cobordant to a simple
fold map. �

By the two lemmas above, we can give a proof different from that given in
[Kalmár 2007a] for the computation of the cobordism group Cobf(R

2).

Proof of Theorem 2.9. By Lemma 4.3, φ2 is injective and so by Lemma 4.4 is an
isomorphism. Hence the homomorphism

ι2⊕ δ2 : Cobf(R
2)→ Imm(γ1,R2)⊕ Imm(γ1,R2)

that maps a fold cobordism class [ f ] into the direct sum [ f |S1( f )] ⊕ [ f |S0( f )] is
also an isomorphism. �

Case 4.5 (n = 3). By Theorem 2.4, we have to study the natural homomorphism

γ3,2 : Imm(ε1
× γ1,R3)→ Imm(γ1

× γ1,R3).

If γ3,2 is injective, then so is the homomorphism φ3 : Cobs(R
3)→ Cobf(R

3).
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The group Imm(ε1
× γ1,R3) is isomorphic to Z2, and a representative of the

generator is an embedded circle whose normal bundle is twisted by 360 degrees as
we go once around the circle.

Let r : Imm(γ1
× γ1,R3)→ Imm(γ1,R3) be the homomorphism such that for

an element [s] ∈ Imm(γ1
× γ1,R3), an immersed surface representing r([s]) is

obtained by putting a figure eight in each fiber of the 2-dimensional normal bundle
of the representative s in R3, which is invariant under the structure group of the
bundle γ1

× γ1.
The map r ◦γ3,2 is injective because it maps the generator of Imm(ε1

× γ1,R3)

into the class of an immersed Klein bottle that is not null-cobordant [Pinkall 1985].
By Theorem 2.4, we get that the homomorphism φ3 is injective.

By Theorem 2.4 and the existence of a fold map from a not null-cobordant
oriented 4-manifold [Saeki 2004], the homomorphism φ3 is not surjective.

Case 4.6 (n = 5). In this case, the homomorphism γ5,2 is also injective because of
the following. By [Hughes 1992; Liulevicius 1963] the forgetting homomorphism
Imm(ε1

× γ1,R5)→ Imm(γ2,R5) maps Imm(ε1
× γ1,R5) ∼= Imm(γ1,R4) ∼= Z2

injectively into the group Imm(γ2,R5) ∼= Z2; hence the first forgetting homomor-
phism in the composition Imm(ε1

× γ1,R5)→ Imm(γ1
× γ1,R5)→ Imm(γ2,R5)

is injective. Therefore the homomorphisms

γ5,2 : Imm(ε1
× γ1,R5)→ Imm(γ1

× γ1,R5)

and φ5 are injective.

Case 4.7 (n = 6). The cobordism group Imm(ε1
× γ1,R6) ∼= Imm(γ1,R5) ∼=

π s
5(RP∞) vanishes by [Liulevicius 1963]; hence φ6 is clearly injective.

This completes the proof of Proposition 2.5. �

5. Bordisms of fold maps

Definition 5.1 (bordism). With i = 1, 2, two fold maps (respectively simple fold
maps) fi : Qn+1

i → N n
i of closed oriented (n+1)-dimensional manifolds Qn+1

i
into closed oriented n-dimensional manifolds N n

i are bordant (respectively simple
bordant) if

(1) there exists a fold map (respectively simple fold map) F : Xn+2
→ Y n+1 from

a compact oriented (n+2)-dimensional manifold Xn+2 to a compact oriented
(n+1)-dimensional manifold Y n+1;

(2) ∂Xn+2
= Qn+1

0 q (−Qn+1
1 ) and ∂Y n+2

= N n+1
0 q (−N n+1

1 ); and

(3) F satisfies Definition 1.1(3).

We call the map F a bordism between f0 and f1.
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We can define a commutative group operation on the set of bordism classes by
[ f : Qn+1

1 → N n
1 ]+[g : Q

n+1
2 → N n

2 ] = [ f qg : Qn+1
1 qQn+1

2 → N n
1 qN n

2 ] in the
usual way.

We obtain analogous theorems about the bordism group of simple fold maps
denoted by Bors(n), the natural homomorphism φBor

n :Bors(n)→Borf(n) into the
bordism group of fold maps denoted by Borf(n) (φBor

n maps a simple fold bordism
class into its fold bordism class), and the framed fold bordism group Borfr

f (n)
defined analogously to the case of cobordism.

Let BImm(ξ k, n) denote the usual bordism group of k-codimensional immer-
sions into closed oriented n-dimensional manifolds, whose normal bundles are
induced from the vector bundle ξ k . Note that this group BImm(ξ k, n) is isomorphic
to the n-th oriented bordism group �n(0ξ k ) of the classifying space 0ξ k for such
immersions, where 0ξ k denotes �∞S∞T ξ k ; see [Schweitzer 1970; Szűcs 1984].

Theorem 5.2. The bordism group Bors(n) of simple fold maps is isomorphic to
BImm(ε1, n)⊕BImm(ε1

× γ1, n) for n ≥ 2 and to BImm(ε1, 1) for n = 1.

Proof. Analogously to the homomorphisms Is(N
n) and θ N

s in the case of cobor-
dism, we have the homomorphisms

IBor
s (n) :Bors(n)→BImm(ε1

RP∞, n)

and

θBor
s (n) :BImm(ε1

RP∞, n)→BImm(ε1, n)⊕BImm(ε1
× γ1, n),

respectively. Similarly to Theorem 2.1, IBor
s (n) is an isomorphism. The homo-

morphism θBor
s (n) is surjective because of the following. For classes

[h : Mn−1
→ N n

1 ] ∈BImm(ε1, n) and [i : Ln−2
→ N n

2 ] ∈BImm(ε1
× γ1, n),

by putting the circle (S1, p)= ({(x+1)2+ y2
= 1}, (0, 0)) into each fiber R2 of the

normal bundle of the immersion i (here x corresponds to ε1 and y corresponds to γ1

in the fiber), we obtain a framed immersion j :Mn−1
q(L̃n−2

×Z2 S1)→ N n
1 qN n

2 ,
where L̃n−2 is the double cover of Ln−2 corresponding to the factor γ1 of the
normal bundle of i , the restriction j |Mn−1 is equal to h, L̃n−2

×Z2 {p} is identified
with Ln−2, and the restriction j |L̃n−2×Z2 {p}

is equal to i . Then, a map

ϕ : Mn−1
q (L̃n−2

×Z2 S1)→ K (Z2, 1)

into the Eilenberg–Mac Lane space K (Z2, 1) = RP∞ corresponding to the co-
homology class that is the Poincaré dual to the homology class represented by
the submanifold Ln−2

= L̃n−2
×Z2 {p} immediately gives a bordism class [g] in

BImm(ε1
RP∞, n) such that θBor

s (n)([g])= [h] ⊕ [i]. By similar reasons θBor
s (n) is

also injective. For more details, see [Kalmár 2008b, Section 6.1]. �
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In other words the bordism group Bors(n) is isomorphic to the direct sum
�n(0ε1)⊕�n(0ε1×γ1).

Analogously to Theorem 2.4 in the case of cobordism, we obtain the following.

Theorem 5.3. (1) The simple fold bordism group Bors(n) is a direct summand of
the framed fold bordism group Borfr

f (n).

(2) The direct summand BImm(ε1, n) of Bors(n) is mapped by φBor
n isomorphi-

cally onto a direct summand of the fold bordism group Borf(n).

(3) For n ≥ 2, if the natural forgetting homomorphism

BImm(ε1
× γ1, n)→BImm(γ1

× γ1, n)

induced by the inclusion RP∞ ↪→ RP∞ × RP∞, x 7→ ( ∗ , x) is injective,
then so is φBor

n . The homomorphism φBor
1 is injective.

(4) If there exists a fold map from a not null-cobordant (n+1)-dimensional mani-
fold into a closed oriented n-dimensional manifold, then φBor

n is not surjective.

A theorem [Conner and Floyd 1964] that can be applied here says the rank of the
bordism groups of any space X can be computed by�∗(X)⊗Q∼= H∗(X;Q)⊗�∗,
that is, �n(X)⊗Q∼=

⊕
p+q=n Hp(X;Q)⊗�q .

By [Szűcs 1984] the group �n(0ε1)⊗Q is isomorphic to
⊕n

i=0�i ⊗Q. By
[Wells 1966], the cobordism group Imm(ε1

× γ1,Rn) ∼= πn(0ε1×γ1) is 2-primary;
hence by [Serre 1953] the homology group Hr (0ε1×γ1;Z) is also 2-primary for
r > 0. Therefore �n(0ε1×γ1)⊗Q is isomorphic to �n ⊗Q, and we have this:

Theorem 5.4. The rank of the simple fold bordism group Bors(n) is equal to
rank�n +

∑n
q=0 rank�q .

Theorem 5.5. The homomorphism φBor
n ⊗ Q : Bors(n)⊗ Q → Borf(n)⊗ Q is

injective.

Proof. The forgetting homomorphism�n(0ε1×γ1)⊗Q→�n(0γ1×γ1)⊗Q induced
by the inclusion RP∞ ↪→ RP∞×RP∞, x 7→ ( ∗ , x) is injective because it gives
a natural isomorphism from the group �n(0ε1×γ1)⊗Q ∼= �n ⊗Q into the direct
summand H0(0γ1×γ1;Q)⊗�n ∼= �n ⊗Q of �n(0γ1×γ1)⊗Q. By Theorem 5.3,
we obtain the statement. �

6. Bundle structure of fold maps

In Section 3, we used at several steps that a simple fold map g can be considered as
a composition of a family of a Morse function with three definite and one indefinite
critical points parametrized by the indefinite singular set of g, and an immersion.
Moreover, this family is locally trivial and its structure group is Z2. We used
this description of a simple fold map to assign to g an immersion with normal
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bundle induced from the trivial line bundle ε1
RP∞ , which encodes the essential

global information about the figure eight singular fibers of g. Note that a singular
fiber is a map germ (that is, its representatives are maps: for singular fibers, see
[Levine 1985; Saeki 2004]). In this section, we deal with the more general situation
of fold maps, and the results can be easily applied for simple fold maps as well.

Let f : Qn+1
→ N n be any fold map in general position. Then the map f can

be considered as “locally trivial bundles of singular fibers” glued together. More
precisely, we have two theorems. The first is an analogue of [Szűcs 1993], while
the second is an analogue of the positive codimensional structure group reduction
[Jänich 1978; Rimányi and Szűcs 1998; Wall 1980]. We do not give the proofs
here, but a detailed proof of Theorem 6.3 can be found in [Kalmár 2008b].

Let J denote the interval (−ε, ε), and let σF : sF→ J k be a representative of a
singular fiber F of f . In this paper, we do not distinguish the singular fibers F and
F× idRr (r > 0); therefore we suppose that the union of the coordinate hyperplanes
in J k is equal to the set σF(SσF), and denote the integer k by κ(F). Note that κ(F)
is equal to the number of vertices of the graph σ−1

F (0).

Bundle structures of fold maps. Let g1 be an autodiffeomorphism of sF, and let g2

be an autodiffeomorphism of J κ(F) such that g2 ◦ σF = σF ◦ g1. We call the pair
(g1, g2) an automorphism of the representative σF. The automorphism group of σF

consists of this kind of pairs (g1, g2). Let AUT(σF) denote the automorphism group
of σF. AUT(σF) is a subgroup of the topological group DIFF(sF)×DIFF(J κ(F)).

If σF is oriented (that is, if the manifold sF is oriented), then let AUTO(σF)

denote the group of automorphisms (g1, g2) in AUT(σF) such that g1 and g2 both
preserve or both reverse the orientations of sF and J κ(F).

Let f :Qn+1
→ N n be a fold map. For each singular fiber F of f , let SF⊆ f (S f )

denote the submanifold in N n that is the f -image of singular fibers of type F. Note
that SF is an (n− κ(F))-dimensional submanifold.

Let PF denote the total space of the disk bundle associated with the normal
bundle of SF. The manifold PF is embedded into N n in a natural way onto a
tubular neighborhood of SF. Hence, we have the projection πF : PF → SF, and
we also have the projection f −1(PF)→ SF defined by the map πF ◦ f ′, where
f ′ = f | f −1(PF). Therefore, we have the commutative diagram

f −1(PF)

πF ◦ f ′ ##

f ′
// PF

πF��
SF

which gives us a kind of bundle denoted by ξF( f ): the total space of ξF( f ) is
the fiberwise map f ′ : f −1(PF) → PF between the total spaces of the bundles
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πF ◦ f ′ : f −1(PF) → SF with fiber sF and πF : PF → SF with fiber J κ(F), the
base space of ξF( f ) is SF, and the fiber of ξF( f ) is right-left equivalent to the
representative σF.

Then the following theorem can be proved by an argument similar to that in
[Szűcs 1993].

Theorem 6.1. The bundle ξF( f ) is a locally trivial bundle over SF with the rep-
resentative σF as fiber, and with structure group AUT(σF). If σF is oriented, then
the structure group is reduced to AUTO(σF).

Definition 6.2. Let us suppose that the singular fiber F has no circle components
and does not contain definite singular points. Let πi : J κ(F) → (−ε, ε) be the
projection to the i-th factor for i = 1, . . . , κ(F).

Let us define a Riemannian metric % on the manifold sF, which is invariant
under the action of the maximal compact subgroup of the automorphism group of
the multigerm

σF : (sF, {pi }
κ(F)
i=1 )→ (J κ(F), 0),

where p1, . . . , pκ(F) are the singular points of σF [Jänich 1978; Wall 1980]. Let
Fi be the subset in sF that is the closure of the union of those integral curves of the
gradient vector field of the function πi ◦σF that converge to a singular point of the
function πi ◦ σF. Let

s̃F = sF−
⋃κ(F)

i=1 Fi and σ̃F = σF|s̃F
.

Then the preimage σ̃−1
F (x) is diffeomorphic toq2κ(F)(−1/2, 1/2) for any x ∈ J κ(F).

We can suppose that the %-length of each component of each fiber σ̃−1
F (x) is equal

to 1 for x ∈ J κ(F).
Let ISOO(σF) (or ISO(σF)) denote the subgroup of AUTO(σF) (respectively

AUT(σF)) generated by those elements that act on the target (−ε, ε)κ(F) of σF by
permutations of the factors and reflections with respect to the coordinate hyper-
planes and preserve the set s̃F and the Riemannian metrics on the fibers σ̃−1

F (x) for
x ∈ J κ(F).

ISO(σF) (respectively ISOO(σF)) is called the symmetry group of σF.

We can prove the following; see also [Kalmár 2008c].

Theorem 6.3. Let us suppose that the singular fiber F has no circle components
and does not contain definite singular points. Then, the structure group of the
bundle ξF( f ) can be reduced to the group ISO(σF) (or ISOO(σF) if f is oriented).

By combining the results of Propositions 6.7 and 6.8 of the next section and
Theorem 6.3, we obtain the following.

Corollary 6.4. Let σ : s→ (−ε, ε) be a representative of the figure eight singular
fiber (see Figure 1). Then the group ISOO(σ ) is isomorphic to Z2. The generator
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of Z2 acts on the figure eight σ−1(0) as a 180 degree rotation around the singular
point by interchanging the two arcs and preserving their orientations, acts on the
source s by interchanging the two upper parts of the “upside-down pants” (see
Figure 1), and acts on the target (−ε, ε) identically.

6.5. Symmetry groups of singular fibers. Recall from Definition 6.2 the singular
fiber F.

Definition 6.6. Let v be a vertex of the graph σ−1
F (0). Let γ be a small arc in J κ(F)

intersecting the hyperplane corresponding to v transversely and only at the origin.
Let Uv be a small open disk around v in σ−1

F (γ). We obtain four edges a1, . . . , a4

with common vertex v in Uv

⋂
σ−1

F (0) and a cyclic order (ai(1), ai(2), ai(3), ai(4))

(where i is a permutation of the set {1, 2, 3, 4}) by considering the locations of
the four edges in the disk Uv. We say that the edges ai(1) and ai(3) are opposite,
and ai(1) is the opposite of ai(3), and likewise for ai(2) and ai(4). We say that an
autohomeomorphism h of the graph σ−1

F (0) is regular if the h-image of opposite
edges are always opposite.

For an (oriented) representative σF : sF→ J κ(F) of F, let ISO(σ−1
F (0)) denote the

group of regular autohomeomorphisms of the graph σ−1
F (0), up to isotopy (that is,

two regular autohomeomorphisms are equivalent if they are isotopic); likewise let
ISOO(σ−1

F (0)) denote the regular autohomeomorphisms of σ−1
F (0)whose elements

preserve the orientation of the fibers of σF at their regular points, up to isotopy.
Clearly, we have homomorphisms

χO
: ISOO(σF)→ ISOO(σ−1

F (0)) and χ : ISO(σF)→ ISO(σ−1
F (0))

by restricting an automorphism of σF to the graph σ−1
F (0).

Proposition 6.7. The homomorphisms χO and χ are isomorphisms.

Proof. The union of the coordinate hyperplanes divides J κ(F) into 2κ(F) regions,
and each region corresponds to a set of “smoothing operations” for the vertices
of σ−1

F (0). Therefore, a regular autohomeomorphism α in ISOO(σ−1
F (0)) induces

an autohomeomorphism h of J κ(F) that belongs to the group generated by the per-
mutations of the factors and reflections with respect to the coordinate hyperplanes.
It is easy to show that α also induces an autohomeomorphism h̃ of sF such that
h ◦ σF = σF ◦ h̃ and such that h̃ restricted to σ−1

F (0) equals α. Therefore χO is
surjective.

The homomorphism χO is injective because any g in ISOO(σF) that satisfies
χO(g)= id σ−1

F (0) fixes setwise each coordinate hyperplane, since g fixes pointwise
the vertices of the graph σ−1

F (0).
This g fixes the coordinate hyperplanes pointwise as well: As one can see by

looking at the automorphisms of σF|UV , where UV denotes the union of small balls
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in sF around the vertices of σ−1
F (0), g fixes the edges pointwise, and therefore it

fixes the coordinate axes in the target J κ(F) pointwise. Hence it fixes all of the
target J κ(F) pointwise.

If an automorphism of the indefinite fold germ (R2, 0)3 (x, y) 7→ x2
−y2
∈ (R, 0)

fixes the set {x = ±y} and the target (R, 0) pointwise, then it is isotopic to the
identity. Since g fixes the edges of the graph σ−1

F (0), we obtain that g is the
identity in a neighborhood of the indefinite fold singular set of σF. Hence g is the
identity of σF.

The proof for χ is analogous. �

Proposition 6.8. The groups ISOO(σF) and ISO(σF) are finite, and their orders
divide the numbers κ(F)!4κ(F) and κ(F)!8κ(F), respectively.

Proof. Let H(σ−1
F (0)) be the normal subgroup of ISOO(σ−1

F (0)) consisting of
those elements that keep the vertices fixed pointwise. Then the group

ISOO(σ−1
F (0))/H(σ−1

F (0))

is a subgroup of the permutation group of degree κ(F). Moreover, H(σ−1
F (0))

is a subgroup of the group (Z2
2)
κ(F). Hence the order of ISOO(σ−1

F (0)) divides
κ(F)!4κ(F). The proof for ISO(σF) is analogous, but we have to take the dihedral
group of order eight instead of Z2

2. �
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