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UNIRATIONAL SURFACES ON THE NOETHER LINE

CHRISTIAN LIEDTKE AND MATTHIAS SCHÜTT

We show that among simply connected surfaces of general type unirational-
ity is a common feature, even when fixing the positive characteristic or nu-
merical invariants. To do so, we construct unirational Horikawa surfaces in
abundance.

1. Introduction

The Lüroth problem asks whether a variety that is dominated by a rational variety
is rational itself, that is, whether unirationality implies rationality. This is known
to be true for curves (Lüroth) and for complex surfaces (Castelnuovo). However,
it is also known to be wrong in dimension ≥ 3 thanks to the counterexamples by
Iskovskikh and Manin [1971] (going back to Fano) and by Clemens and Griffiths
[1972]. Zariski [1958] constructed unirational but nonrational surfaces over fields
of positive characteristic. Artin and Mumford [1972] gave unirational examples of
dimension ≥ 3 in characteristic 6= 2 that cannot be rational if the characteristic is
zero or the dimension is 3.

On the other hand, one can ask what kind of varieties can be unirational: over the
complex numbers a unirational variety is always of Kodaira dimension κ = −∞.
Moreover, Serre [1959] has shown that the fundamental group is finite in general,
and even trivial in characteristic zero.

This leads to the question among what kind of surfaces in positive characteris-
tic, say with trivial fundamental group, we can find unirational ones. Clearly, the
most “nonrational” classes of surfaces are those of general type, that is, of Kodaira
dimension κ = 2.

Among them we pick a very prominent series, the so-called Horikawa surfaces.
We recall that minimal surfaces of general type fulfill Noether’s inequality

K 2
≥ 2pg − 4.
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By definition, Horikawa surfaces are those for which the equality holds, which is
why they are also known as surfaces on the Noether line. These surfaces have a
particularly simple structure: their canonical maps exhibit their canonical models
as double covers of minimal rational surfaces; see Theorem 2.2 and [Barth et al.
2004, Section VII.9].

These double covers are known to be simply connected. In characteristic 2 it can
happen that the canonical map becomes inseparable. Then the surfaces are nec-
essarily unirational; see [Liedtke 2008a, Section 5]. However, since the canonical
map of a Horikawa surface is always of degree 2, this inseparability phenomenon
can happen in characteristic 2 only.

Over fields of positive characteristic p ≥ 3, we therefore face the following
problems:

(1) Do there exist unirational Horikawa surfaces in characteristic p ≥ 3?

(2) If so, is the characteristic bounded?

(3) If not, is the number of possible characteristics for unirational Horikawa sur-
faces with fixed pg finite?

(4) Is the number of possible geometric genera pg for unirational Horikawa sur-
faces with fixed characteristic finite?

Shioda showed that unirational surfaces are supersingular, that is, that their Pi-
card numbers are equal to their second Betti numbers — even if h0,2 or h2,0 is
nonzero. Moreover, he also conjectured the converse for simply connected sur-
faces; see [Shioda 1977] and Conjecture 2.3 below. So far, the Picard numbers of
Horikawa surfaces have only been studied in the complex case by Persson [1982];
see also Section 2. Hence these questions can also be viewed as a characteristic p
extension of Persson’s work.

As to questions (1) and (2), we prove the existence of unirational Horikawa
surfaces in 99.999985% of positive characteristics. More precisely:

Theorem 5.4. For all primes p outside a set P of density 5 · 2−25, there do exist
unirational Horikawa surfaces in characteristic p.

Hence question (2) has a negative answer, but even the refined question (3) has
a negative answer:

Theorem 5.2. Let g be an even integer. Then there exists an arithmetic progression
Pg of primes such that for every p∈ Pg there exists a unirational Horikawa surface
with pg = g in characteristic p.

Using Delsarte surfaces, we obtain much more detailed results for Horikawa
surfaces with pg = 3 and pg = 6; see Theorem 4.3 and Remark 4.5.

Question (4) asked what happens when fixing the characteristic:
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Theorem 5.3. Let p ≥ 3 be a prime with p 6≡ 1 mod 15. Then there exists
an infinite set G p of positive integers such that there exist unirational Horikawa
surfaces in characteristic p with pg = g for all g ∈ G p.

These results show that unirational Horikawa surfaces exist in abundance —
even when fixing the characteristic p or the geometric genus pg. In Section 6 we
show moreover that the unirationality cannot be explained by singular fibrations
arising from pluricanonical systems.

As an interesting byproduct we construct a five-dimensional family of super-
singular Horikawa surfaces with pg = 3 in characteristic p = 7 where all surfaces
have Artin invariants 3≤σ ≤ 4. Unlike supersingular K3 surfaces, this implies that
the moduli space of supersingular Horikawa surfaces with pg = 3 in characteristic
7 does not admit a stratification with moduli dimension equalling Artin invariant
minus one.

The paper is organised as follows: Section 2 recalls Enriques’ and Horikawa’s
classification and the basic invariants and notions. Section 3 introduces some fam-
ilies of unirational Horikawa surfaces that arise naturally. In Sections 4 and 5, we
construct the surfaces to answer questions (1)–(4). Section 6 discusses whether uni-
rationality can be explained through singular fibrations arising from pluricanonical
systems.

2. Enriques’ and Horikawa’s classification

In this section, we recall the main results about Horikawa surfaces and in particular
Enriques’ and Horikawa’s classification.

Definition 2.1. A minimal surface of general type is called Horikawa surface if it
lies on the Noether line, that is,

K 2
= 2pg − 4.

The most classical example for an Horikawa surface may be a double octic:
the double cover of P2 branched along an octic curve C . Here we can allow the
curve C to have isolated ade-singularities. Then we have to consider the minimal
resolution of the resulting ADE-singularities on the double cover.

The same ideas apply to the construction of the other Horikawa surfaces. Over
the complex numbers, they were classified by Enriques and Horikawa [1976]. The
techniques were carried over to positive characteristic by the first author in [Liedtke
2008a]. We denote by Fd the d-th Hirzebruch surface.

Theorem 2.2 (Enriques–Horikawa). Let X be a Horikawa surface. Via the canon-
ical map φ1, X is the double cover of a rational surface S := φ1(X) in Ppg−1

(possibly singular). The following cases occur:



346 CHRISTIAN LIEDTKE AND MATTHIAS SCHÜTT

(1) If S is a smooth surface, then we have three possibilities:

(i) S ∼= P2 and pg = 3 (double octic),
(ii) S ∼= P2 and pg = 6 (the branch locus is a curve of degree 10), and

(iii) S ∼= Fd , pg ≥max{d + 4, 2d − 2} and pg − d is even.

(2) If S is not smooth, then it is the cone over the rational normal curve of degree
d := pg−2. The minimal desingularisation of S is the Hirzebruch surface Fd

and 4≤ pg ≤ 6.

It follows from this description that complex Horikawa surfaces are topolog-
ically simply connected [Horikawa 1976, Theorem 3.4] and that they are alge-
braically simply connected with reduced Picard schemes in positive characteristic
[Liedtke 2008a, Proposition 3.7].

Given the geometric genus pg of a complex Horikawa surface, we compute the
remaining Hodge number

h1,1
= 8pg + 14.

Persson [1982] investigated complex Horikawa surfaces with maximal Picard num-
ber ρ = h1,1. He proved existence whenever pg 6≡ 5 mod 6 or pg = 5.

In positive characteristic, however, Igusa showed that the Picard number can be
as big as b2. Such surfaces are often called supersingular.

Conjecture 2.3 [Shioda 1977]. Let k be an algebraically closed field of positive
characteristic. Let X be an algebraically simply connected surface over k. Then
X is unirational if and only if it is supersingular.

The “only if”-implication of the conjecture holds almost trivially true; see [Sh-
ioda 1977]. However, in practice it is often easier to verify that a given surface
is supersingular than unirational. For instance, one can start by computing the
characteristic polynomial of Frobp on the second étale cohomology and apply the
Tate conjecture [1965]. We pursued this approach without success for the reduc-
tions of several families of complex Horikawa surfaces of maximal Picard number
borrowed from Persson’s construction. In the following sections, we thus present
surfaces where we can prove unirationality in a direct and systematic way.

As a side remark, we note a very different behaviour for K3 surfaces. We regard
them close to Horikawa surfaces as they often can be realised as double sextics.
Complex K3 surfaces of maximal Picard number 20 are called singular. They are
necessarily defined over a number field. The supersingularity of the reductions
does depend only on the splitting behaviour in an imaginary quadratic field. The
interested reader is referred to [Shioda and Inose 1977] for details.
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3. Families of unirational Horikawa surfaces

In this section, we give an ad hoc example of a family of unirational Horikawa
surfaces with pg = 3 in characteristic 7. It mimics a construction of Pho and
Shimada [Pho and Shimada 2006] for unirational K3 surfaces in characteristic 5.

The Horikawa surfaces are realised as double octics over an algebraically closed
field k of characteristic 7. The branch curve C is affinely given in A2 by

(3-1) y7
= f (x).

Here f ∈ k[x] is a polynomial of degree 8 such that its formal derivative has no
multiple roots in k. Consequently, C is smooth outside seven a6 singularities where
the formal derivative of f vanishes.

Let Y be the double cover of P2 branched along C . Denote the minimal reso-
lution of the seven A6 singularities of Y by X . By construction, X is a unirational
Horikawa surface with pg = 3 for any such polynomial f . As we can rescale and
apply Möbius transformations, we obtain a five-dimensional family of unirational
Horikawa surfaces.

Recall that every Horikawa surface with pg = 3 arises as a double cover of P2

branched along an octic curve with at worst ade-singularities. Hence the moduli
space of all such surfaces is of dimension 36.

Proposition 3.1. Let X be a Horikawa surface as above. Then for some 3≤ σ ≤ 4,

disc N S(X)=−72σ .

Proof. The existence of such an invariant σ ≥ 1 was worked out in [Liedtke
2008b] and [Schütt and Schweizer 2006]. It is not difficult to see that the min-
imal desingularisation X of Y for every Y in our family lifts over the Witt ring.
In particular, the Frölicher spectral sequence degenerates at E1 and the Hodge
numbers in characteristic p = 7 and zero coincide. Hence h0(�1

X ) = 0 and since
Pic(X) is reduced, it follows from [Illusie 1979, Proposition II.5.16] that the second
crystalline cohomology of X is torsion free. From [Illusie 1979, Remark II.5.21]
or [Liedtke 2008b, Proposition 6.1] we obtain σ ≥ pg = 3. We will prove σ ≤ 4
by exhibiting a suitable sublattice of finite index in N S(X).

The exceptional curves of the minimal resolution X→ Y generate a sublattice

N = 7A6(−1)⊂ N S(X).

As b2(X) = 10pg(X)+ 14 = 44, we shall exhibit another sublattice L of N S(X)
of rank two which is orthogonal to N . For this, consider the line ` at infinity with
respect to the chart of C in (3-1). Then ` meets C in a single point of multiplicity
8. Hence the pullback of ` under the composition X → Y → P2 splits into two
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curves:
π∗`= `1+ `2,

which meet in a single point with multiplicity 4. Since (π∗`)2 = 2, it follows
that `2

i = −3. Hence the curves `i span an indefinite sublattice L of N S(X) with
intersection form (

−3 4
4 −3

)
.

As C is smooth along `, L is orthogonal to N . Hence N + L is a sublattice of
N S(X) of finite index and discriminant −78. Thus σ ≤ 4. �

Remark 3.2. As we have exhibited a five-dimensional family of (unirational) Hori-
kawa surfaces with these discriminants, we deduce that the moduli space of su-
persingular Horikawa surfaces with pg = 3 in characteristic 7 does not admit a
stratification with moduli dimension equalling invariant σ minus one.

This result is contrary to the situation for supersingular K3 surfaces in arbitrary
characteristic as investigated by Artin [1974]. For supersingular K3 surfaces, σ is
called Artin invariant and ranges from 1 to 10, giving the moduli dimension σ −1.

The analogous construction can be applied to double covers of P2 branched
along a curve of degree 10. This gives rise to a seven-dimensional family of uni-
rational Horikawa surfaces of geometric genus pg = 6 in characteristic 3.

4. Unirational Horikawa surfaces with pg = 3

In this section we shall only construct single Horikawa surfaces over Q. However,
we will show that their reductions are unirational for all primes in some arithmetic
progression. This gives a negative answer to question (2) stated in Section 1. The
surfaces will have geometric genus pg = 3, but the same approach works also for
pg = 6.

The main idea is as follows: We will exhibit all those Horikawa surfaces which
are at the same time double octics and Delsarte surfaces. After [Shioda 1986], we
shall then use that Delsarte surfaces are dominated by Fermat surfaces. Thanks
to the work by Shioda and Katsura [1979], we gain complete knowledge about
unirationality.

Definition 4.1. A surface X ⊂ P3 is called Delsarte surface if it is defined by a
homogeneous polynomial of four monomials

3∑
i=0

xai0
0 xai1

1 xai2
2 xai3

3 = 0

satisfying the following conditions:

(i) For each j , there is some i with ai j = 0.
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(ii) det(ai j )i, j 6= 0.

Shioda considered Delsarte surfaces because they are always dominated by some
Fermat surface

S = {ym
0 + ym

1 + ym
2 + ym

3 = 0} ⊂ P3.

Here the appropriate degree m of the Fermat surface can be computed purely in
terms of the matrix A = (ai j )i, j . Let A∗ = (a∗i, j )i, j denote the cofactor matrix of
A, that is, A · A∗ = (det A) · 1. Set δ = gcd(a∗i, j ) and d = (det A)/δ. Then the
Delsarte surface X given by A is dominated by the Fermat surface of degree d .
Write bi, j = a∗i, j/δ. The covering map is given as

φ : S→ X, (yi ) 7→

(
xi =

3∏
j=0

ybi, j
j

)
.

Sometimes a smaller degree suffices for the covering Fermat surface. This issue
will be important for Theorem 5.4. We will investigate the question of the precise
degree for one example in the sequel of Theorem 4.3. A general statement can be
found in [Shioda 1987, Definition 1 and Lemma 2].

Fermat surfaces are very well understood. The study of their arithmetic goes
back to Weil who computed the ζ -function over finite fields in terms of Jacobi
sums. Shioda and Katsura [1979] proved Conjecture 2.3 for Fermat surfaces:

Theorem 4.2 (Shioda–Katsura). The Fermat surface of degree m is unirational in
characteristic p if and only if it is supersingular. Equivalently, there is some ν ∈N

with

(4-1) pν ≡−1 mod m.

One prominent feature of Fermat surfaces is the motivic decomposition of their
cohomology in terms of some character group. This decomposition allows the
explicit calculation of Picard number ρ(S) and Lefschetz number

λ(S)= b2(S)− ρ(S)

over any algebraically closed field of characteristic coprime to the degree m.
A Delsarte surface arises from the dominating Fermat surface as the quotient

by some group action. Hence, the transcendental part of the cohomology of the
quotient surface can be identified with the transcendental part of the original surface
that is invariant under the group. Thus we can calculate the Lefschetz number of
any Delsarte surface and consequently also the Picard number. Clearly, the Delsarte
surface is unirational if the Fermat surface is.

With this knowledge, we find unirational Horikawa surfaces as double octics
which at the same time are Delsarte surfaces:
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Theorem 4.3. Let X be the minimal resolution of the double cover of P2 branched
along one of the following octic curves C.

C m

x8
+ y8
+ z8
= 0 8

x7 y+ y7z+ z7x = 0 86
x(x7
+ y7
+ z7)= 0 14

x(x6 y+ y6z+ z6x)= 0 62
xy(x6

+ y6
+ z6)= 0 12

xy(x5 y+ y5z+ z5x)= 0 42
xyz(x5

+ y5
+ z5)= 0 10

xyz(x4 y+ y4z+ z4x)= 0 26
x8
+ zy7

+ xyz6
= 0 82

x(x7
+ zy6

+ xyz5)= 0 58
z(x6z+ y5x2

+ z5 y2)= 0 44
x7z+ y7x + z6 y2

= 0 74
xz(x5z+ y5x + z4 y2)= 0 34

Then X is dominated by the Fermat surface of degree m as in the table. In
particular, X is unirational in characteristic p if and only if (4-1) holds for the
respective degree m.

Over C, all curves in Theorem 4.3 have only isolated ade-singularities. Hence
we obtain Horikawa surfaces. In positive characteristic, there are only finitely
many exceptions where the singularities of a given curve degenerate. In the cases
at hand, C is dominated by the Fermat curve of degree m (see the example below).
Since this Fermat curve has good reduction outside the primes dividing m, the same
holds for C . These primes are excluded by the condition (4-1).

For one Horikawa surface in Theorem 4.3, we will now sketch how to obtain
the given degree of the covering Fermat surface. Consider the second octic curve

C = {x7 y+ y7z+ z7x = 0} ⊂ P2.

We start by determining the covering Fermat curve along the lines of Definition 4.1.
Let A be the matrix of exponents. Then A has determinant 344. Its cofactor matrix
is

A∗ =

49 −7 1
1 49 −7
−7 1 49

 ,
so C is covered by the Fermat curve of degree 344. Since we work in projective
space, the rational map φ stays the same when we add constants to the columns of
A∗. After adding 7 to all columns, the coefficients become divisible by 8. Division
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yields the matrix

B =

7 0 1
1 7 0
0 1 7

 .
The corresponding rational map φ takes the Fermat curve of degree 43 = 344/8
to C . One can easily complement φ to a rational map from a Fermat surface to
the Horikawa surface associated to C . Since the Horikawa surface is exhibited as
a double cover, the dominating Fermat surface has degree 86. Expressed through
the matrix of exponents, the covering map corresponds to

43 7 7 7
0 14 0 2
0 2 14 0
0 0 2 14

 .
Remark 4.4. There are further octic curves with only ade-singularities which are
defined by a three-term polynomial. They give rise to more unirational Horikawa
surfaces as double cover. However, the degrees of the dominating Fermat surface
are not essentially new in the sense that the degree is always a multiple of some
degree in the previous table or of m = 6 which will turn up as Fermat degree in the
next section (see Theorem 5.2). The precise degrees occurring will be relevant for
Theorem 5.4.

Remark 4.5. The same construction applies to Horikawa surfaces as double covers
of P2 branched along a curve of degree 10. Allowing ade-singularities, we find
many more unirational Horikawa surfaces. There is one essentially new degree for
the dominating Fermat surfaces: m = 146. It is achieved by the curve

{x9 y+ y9 z+ z9 x = 0} ⊂ P2

of degree 10.

5. Unbounded invariants

In the previous section we have seen unirational Horikawa surfaces with pg= 3 for
a large density of characteristics. We now construct unirational Horikawa surfaces
in arithmetic progressions of characteristics for every even value of pg.

Lemma 5.1. Let a, b be positive integers and set m := lcm(a, b). Then the double
cover Xa,b of A2

z2
= (xa

− 1) · (yb
− 1)

defines a unirational surface in every characteristic p ≥ 3 for which there exists a
ν ∈ N with pν ≡−1 mod m.
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Proof. For every integer n ≥ 3 we consider the hyperelliptic curve Cn:

v2
= 1− un,

together with its involution ı : (u, v) 7→ (u,−v). For m = lcm(a, b) the prod-
uct Cm × Cm dominates Ca × Cb. By abuse of notation we also denote by ı the
involution on these products given by (u1, v1, u2, v2) 7→ (u1,−v1, u2,−v2). Then,

Ym := (Cm ×Cm)/ ı

dominates (Ca×Cb)/ ı and Ym is unirational in characteristic p if and only if there
exists a ν such that pν ≡−1 mod m by [Shioda 1977, Lemma 1.2]. In particular,
(Ca×Cb)/ ı is unirational in these characteristics. An elementary calculation shows
that this surface is birational to Xa,b. �

Theorem 5.2. Let g be an even integer. Then there exists an arithmetic progression
Pg of primes such that for every p∈ Pg there exists a unirational Horikawa surface
with pg = g in characteristic p.

Proof. We define

Mg := {lcm(5, g+ 1), lcm(5, g+ 2), lcm(6, g+ 1), lcm(6, g+ 2)},

Pg := {p ∈ N | p ≥ 3 a prime such that there exist

ν ∈ N,m ∈ Mg : pν ≡−1 mod m},

and note that Pg is the union of primes in arithmetic progressions.
We use the surfaces Xa,b from Lemma 5.1. Let a′ (respectively, b′) be the

smallest even integer bigger than or equal to a (respectively, b). We think of A1
×A1

as contained in P1
×P1. If we consider

(xa
− 1)(yb

− 1)

as a global section of OP1×P1(a′, b′) then its zero set is the union of a′ + b′ lines
intersecting transversally. Hence a double cover branched over this divisor is a
surface with only Du Val singularities of Type A1.

In case a′ = 6 (that is, a = 5 or a = 6) and b′ = g + 2 (that is, b = g + 1 or
b= g+2) this surface is the canonical model of a Horikawa surface with pg = g;
see [Barth et al. 2004, Section VII.9] or [Liedtke 2008a, Theorem 3.3]. By Lemma
5.1 this surface is unirational in every characteristic p for which there exists a ν
with

pν ≡−1 mod lcm(a, b).

Hence for every p ∈ Pg we have constructed a unirational Horikawa surface with
pg = g in characteristic p. �
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Theorem 5.3. Let p≥ 3 be a prime with p 6≡ 1 mod 15. Then there exists an infi-
nite set G p of positive integers such that there exist unirational Horikawa surfaces
in characteristic p with pg = g for all g ∈ G p.

Proof. If p is a prime as in the statement then there exists an infinite number of
ν such that pν ≡ −1 mod 5 or pν ≡ −1 mod 6. For every such ν, we obtain a
unirational Horikawa surface with

pg = (pν + 1)− 2

in characteristic p using the examples constructed in the proof of Theorem 5.2. �

Theorem 5.4. For all primes p outside a set P of density 5 · 2−25, there do exist
unirational Horikawa surfaces in characteristic p.

Proof. Consider all the surfaces constructed in this and the preceding section.
Their unirationality modulo p does depend only on the respective Fermat degree
m. Condition (4-1) does not distinguish between odd modulus m and 2m, so we list
odd moduli whenever applicable. We constructed unirational Horikawa surfaces
for the moduli

M= {3, 5, 7, 8, 13, 17, 29, 31, 37, 41, 43, 44, 73}.

Hence the set P can be defined as

P= {p | for all m ∈M, ν ∈ N : pν 6≡ −1 mod m}.

Working out the congruence conditions for each modulus m ∈M, one easily com-
putes the claimed density. �

Remark 5.5. We have thus constructed unirational Horikawa surfaces for a density
of 99.999985% of characteristics. The smallest characteristic for which we have
no example is p = 67665781.

Remark 5.6. For all surfaces in this and the previous section, we can compute the
zeta function by motivic decomposition. For the dominating Fermat varieties, this
decomposition is due to Weil [1949]. Then one computes the submotive invariant
under the automorphism group corresponding to the covering map to obtain the
essential factor of the zeta function.

6. A remark on singular fibrations

An interesting question is what causes unirationality. Clearly, unirational surfaces
are covered by possibly singular rational curves. On the other hand, if a surface
admits a fibration onto a curve whose generic fibre is a possibly singular geomet-
rically rational curve then the surface in question is uniruled. In case the base of
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this fibration is P1 (in our case this would be automatic since our surfaces have
b1 = 0), the surface is even unirational.

For surfaces of general type, it is natural to investigate their pluricanonical sys-
tems. Maybe the unirationality of Horikawa surfaces, say with fixed pg, can be
explained by such singular fibrations arising from pluricanonical systems.

Proposition 6.1. Let X be a Horikawa surface in characteristic p and n ∈ N.
Assume that some subsystem of |nK X | defines a (possibly rational) map with 1-
dimensional image whose generic fibre is a singular and geometrically rational
curve. Then

p ≤ 2+ (n2
+ n)(pg(X)− 2).

Proof. Let f : X 99K C be a rational map with 1-dimensional image defined by
some subsystem of |nK X |. In particular, if F denotes the generic fibre of this
fibration then

A := nK X − F

is effective. Since K X is nef and A is effective, we have K X F ≤ nK 2
X . Moreover,

we compute

F2
= (nK X − A)2 = n2K 2

X − A(2nK X − A)= n2K 2
X − A(nK X + F)≤ n2K 2

X

using numerical connectedness of pluricanonical divisors. Using the adjunction
formula and the definition of a Horikawa surface we get

pa(F)= 1+ 1
2(F

2
+ K X F)≤ 1+ 1

2(n
2
+ n)K 2

X = 1+ 1
2(n

2
+ n)(2pg(X)− 4).

We assumed the generic fibre of f to be a singular curve, that is, that this curve is
regular but not smooth over the function field of C . By Tate’s theorem on genus
change in inseparable field extensions p− 1 divides pa(L), since we assumed L
to be geometrically rational. In particular, pa(L) must be larger than or equal to
p− 1. �

However, we have seen that even for fixed pg there may be an infinite number of
characteristics in which there exist unirational Horikawa surfaces with this given
pg. Proposition 6.1 tells us that (possibly rational) fibrations with geometrically
rational fibres arising from |nK X | with n bounded can only exist in a finite number
of characteristics. Hence the unirationality of Horikawa surfaces in arbitrary large
characteristics is not related to the existence of such singular fibrations arising from
a finite number of pluricanonical systems.
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