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We consider symmetric complex hyperbolic triangle groups generated by
three complex reflections through angle 2π/ p, with p > 3. We restrict our
attention to those groups where certain words are elliptic. Our goal is to
find necessary conditions for such a group to be discrete. The main applica-
tion we have in mind is that such groups are candidates for nonarithmetic
lattices in SU(2, 1).

1. Introduction

Mostow [1980] was the first to construct examples of nonarithmetic complex hy-
perbolic lattices. These lattices were generated by three complex reflections R1,
R2 and R3 with the property that there exists a complex hyperbolic isometry J of
order 3 so that R j+1 = J R j J−1 (here and throughout the paper the indices will
be taken mod 3). In Mostow’s examples the generators R j have order p = 3, 4
or 5. Subsequently Deligne and Mostow constructed further nonarithmetic lattices
as monodromy groups of certain hypergeometric functions [Deligne and Mostow
1993; Mostow 1986]. (The lattices from [Deligne and Mostow 1993] in dimension
2 were known to Picard, who did not consider their arithmetic nature.) These
lattices are (commensurable with) groups generated by complex reflections R j

with other values of p; see [Mostow 1986; Sauter 1990]. Subsequently no new
nonarithmetic lattices have been constructed.

The case p = 2 was treated in [Parker 2008]. The author considered complex
involutions I1, I2 and I3 with the property that there is a J of order 3 so that
I j+1 = J I j J−1. In particular, he used a theorem of Conway and Jones [1976] to
classify all such groups where I1 I2 and I1 I2 I3 have finite order.

Remarkably, when p>3 finding groups for which R1 R2 and R1 R2 R3 have finite
order involves solving the same equation as in the case p = 2. In this paper we
use the solutions to this equation found using [Conway and Jones 1976] in [Parker
2008] in the general case.
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We describe the configuration space of all groups generated by a complex re-
flection R1 of order p and a regular elliptic motion J of order 3. This configura-
tion space is parametrised by the conjugacy class of the product R1 J , which we
represent geometrically in two different manners. The first, following Goldman
and Parker, is to consider the trace of R1 J ; this determines the conjugacy class
of R1 J when it is loxodromic, but there is a threefold indetermination when it is
elliptic or parabolic. The second manner, following Paupert, is to use the geometric
invariants of the conjugacy class, i.e. an angle pair for elliptic isometries and a pair
(angle, length) for loxodromic isometries. We will use both parameter spaces in
this paper, where we focus on the elliptic case.

Our first result is the direct analogue of the main theorem of [Parker 2008], and
can be roughly stated as follows:

Theorem 1.1. Let R1 be a complex reflection of order p and J a regular elliptic
isometry of order 3 in PU(2, 1). Suppose that R1 J and R1 R2 = R1 J R1 J−1 are
elliptic. If the group 0 = 〈R1, J 〉 is discrete then one of the following is true:

• 0 is one of Mostow’s lattices.

• 0 is a subgroup of one of Mostow’s lattices.

• 0 is one of the sporadic groups described below.

The sporadic groups correspond to the 18 exceptional solutions from [Conway
and Jones 1976], which do not depend on p (the groups do change with p of
course). We determine for each p > 3 which of these points lie inside our con-
figuration space. One must then analyse each of these groups to decide whether
or not it is discrete, if so whether or not it is a lattice and if so whether or not it
is arithmetic. We illustrate ways to attack this problem by showing that certain
solutions are arithmetic and certain other solutions are nondiscrete. We analyse in
detail the situation for p = 3, which can be summarised as follows:

Theorem 1.2. There are 16 sporadic groups for p = 3, with the following proper-
ties:

• Four of them fix a point in H2
C.

• One stabilises a complex line.

• One is contained in an arithmetic lattice in SU(2, 1).

• The ten remaining groups are none of the above.

The crucial question is then to determine whether or not the ten remaining groups
are discrete. We give a negative answer for four of them, by finding elliptic ele-
ments of infinite order in the group. For more details, see Theorem 6.1.
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2. Parameters, traces and angles

In this section we show how to use a single complex number τ to parametrise
symmetric complex hyperbolic triangle groups generated by three complex reflec-
tions through angle ψ . This generalises the construction in [Parker 2008] where
involutions (that is ψ = π ) were considered.

We give an alternative description following [Paupert 2007], where the same
space is parametrised by a pair of angles. It is fairly easy to pass between the two
parametrisations and we shall use the one best adapted to each particular problem.

We then describe how the properties of the group (for example the type of R1 R2

and R1 R2 R3) vary with τ . Much of this section follows closely the relevant parts
of [Parker 2008]. Otherwise we will try to keep this account as self contained as
possible. However, we shall assume a certain amount of background knowledge of
complex hyperbolic geometry. For such background material on complex hyper-
bolic space see [Goldman 1999] and for material on complex hyperbolic triangle
groups see [Schwartz 2002] or [Pratoussevitch 2005]. Many of the ideas we use
may be traced back to [Mostow 1980].

2.1. Complex reflections through angle ψ . Let L1 be a complex line in complex
hyperbolic 2-space H2

C
and write R1 for the complex reflection through angle ψ

fixing L1. In our applications we shall only consider the case where ψ = 2π/p
for an integer p at least 3. Points of L1 are fixed by R1 and n1, the polar vector
of L1, is sent by R1 to eiψn1. Hence the matrix in U(2, 1) associated to R1 has
determinant eiψ . Since we shall be dealing with traces, we want to lift R1 to a
matrix in SU(2, 1). Hence we multiply the U(2, 1) matrix by e−iψ/3, and take R1

to be the map given by

(2-1) R1(z)= e−iψ/3 z+ (e2iψ/3
− e−iψ/3)

〈z,n1〉

〈n1,n1〉
n1.

We remark that we can add arbitrary multiples of 2π to the angle ψ . Equivalently,
since SU(2, 1) is a triple cover of PU(2, 1) we could have multiplied R1 by any
power of e2π i/3. Thus in the case where R1 has order 2, in the analogous formula
(2-1) in [Parker 2008], the angle ψ was chosen to be 3π and so e−iψ/3 and e2iψ/3

become −1 and +1 respectively. Another way to have achieved this would have
been to put ψ = π in (2-1) and then multiplied this expression by e−2π i/3.

2.2. Traces. We define τ = tr(R1 J ) to be the parameter in our space. We now
show how to express τ in terms of the polar vectors and Hermitian form. We go
on to find the trace of R1 R2 in the same way.

Our first lemma and its corollary generalise Lemma 2.4 and Corollary 2.5 of
[Parker 2008] and are proven in a similar manner.
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Lemma 2.1. Let A be any element of SU(2, 1). Then

tr(R1 A)= e−iψ/3tr (A)+ (e2iψ/3
− e−iψ/3)

〈A(n1),n1〉

〈n1,n1〉
.

Corollary 2.2. Let R1 be a complex reflection through angle ψ , fixing a complex
line L1 with polar vector n1. Let J ∈ SU(2, 1) be a regular elliptic isometry of
order 3. Then

(2-2) τ := tr(R1 J )= (e2iψ/3
− e−iψ/3)

〈J (n1),n1〉

〈n1,n1〉

= 2 sin(ψ/2)ieiψ/6 〈J (n1),n1〉

〈n1,n1〉
.

Proposition 2.3 ([Goldman 1999, Theorem 6.2.4]). Let τ be given by (2-2). Then
R1 J is regular elliptic if and only if τ lies in the region

(2-3) 1=
{
z ∈ C : |z|4− 8 Re z3

+ 18|z|2− 27< 0
}
.

The curve bounding the region 1 of Proposition 2.3 is a deltoid. Groups for
which R1 J is regular elliptic correspond to points in 1. Points on the boundary
deltoid correspond to points where R1 J has repeated eigenvalues, and so is either
a complex reflection or is parabolic. Since R1 R2 R3 = (R1 J )3 we can determine
the type of R1 R2 R3 from R1 J . (Note that it may be that R1 J is regular elliptic and
that R1 R2 R3 is a complex reflection.)

We now consider R1 R2, and hence by symmetry R2 R3 and R3 R1 as well. This
generalises Lemma 2.7 of [Parker 2008] and its proof is analogous.

Proposition 2.4. Let L1 be a complex line in H2
C

with polar vector n1. Let J ∈
SU(2, 1) be a regular elliptic isometry of order 3 and write L2 = J (L1). Let R1

and R2 = J R1 J−1 denote the complex reflections through angle ψ fixing L1 and
L2 respectively. Then

tr(R1 R2)= eiψ/3(2− |τ |2)+ e−2iψ/3

where τ is given by (2-2).

Corollary 2.5. If |τ |> 2 then R1 R2 is loxodromic. If |τ | = 2 cos(θ) then R1 R2 has
eigenvalues e−2iψ/3, −eiψ/3+2iθ and −eiψ/3−2iθ .

Proof. Each point on L1 is an e−iψ/3 eigenvector for R1 and each point on L2 is
an e−iψ/3 eigenvector for R2. Therefore if z ∈ C2,1 lies on the intersection of L1

and L2 we have
R1 R2(z)= e−iψ/3 R1(z)= e−2iψ/3z.

Hence z is an e−2iψ/3 eigenvector for R1 R2.
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If |τ | > 2 then R1 R2 has an eigenvalue whose modulus is greater than one.
Hence R1 R2 is loxodromic.

So we assume that |τ | = 2 cos(θ). Since R1 R2 has an eigenvalue e−2iψ/3 and
determinant 1, we see that its other eigenvalues must be−eiψ/3+2iθ and−eiψ/3−2iθ

as claimed. �

2.3. Angles. Conjugacy classes of elliptic isometries in PU(2, 1) are characterised
by an unordered angle pair {θ1, θ2} with θi ∈R/2πZ. These angles can be defined
by noting that an elliptic isometry g belongs to a maximal compact subgroup of
PU(2, 1), which is a group conjugate to U(2). Then all elements of U(2) which
are conjugate to g have the same eigenvalues of norm 1, which we define to be
eiθ1 and eiθ2 . In concrete terms, a matrix A ∈ U(2, 1) whose associated isometry
g ∈PU(2, 1) is elliptic is semisimple with eigenvalues of norm 1, say eiα1 , eiα2 and
eiα3 . One of these is of negative type in the sense that the associated eigenspace
intersects the negative cone in C3 of the ambient Hermitian form (of signature
(2, 1)). Supposing for instance that eiα3 is of negative type, the angle pair of g is
then {α1−α3, α2−α3}. It is thus in general not sufficient to know the eigenvalues
of an elliptic matrix to obtain the angle pair of the corresponding isometry; one
must determine which of them is of negative type.

This can also be seen in terms of the trace of matrix representatives in SU(2, 1).
Recall from [Goldman 1999] that elliptic isometries have matrix representatives
in SU(2, 1) whose trace lies in the closure of the region 1 given in (2-3). Multi-
plication of A, and hence of its trace, by a cube root of unity corresponds to the
same complex hyperbolic isometry in PU(2, 1). Up to this ambiguity, the map
from angle pairs to traces is given by

{θ1, θ2} 7→ e2iθ1/3−iθ2/3+ e2iθ2/3−iθ1/3+ e−iθ1/3−iθ2/3.

This map is three-to-one, except at the exceptional central point {4π/3, 2π/3}
which is the only preimage of 0. The three preimages in this case correspond
to the fact that one of the three eigenvalues has negative type. There are three
possible choices and the trace is the same for each of them. Conversely, given a
trace τ = eiα

+ eiβ
+ e−iα−iβ the three preimages of this trace are the three angle

pairs

{2α+β, α+ 2β}, {α−β, −α− 2β}, {β −α, −2α−β}.

In order to get these into the parameter space where 06 θ1 6 2π and 06 θ2 6 θ1

one may have to add a multiple of 2π to either or both angles and one may have to
change their order. See [Paupert 2005, pp. 29–30] for more details on angle pairs
and their relation to traces.
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2.4. The trace parameter space. Suppose we are given a symmetric configuration
of three complex lines L1, L2 and L3 with polar vectors n1, n2 and n3. This
means that there exists a regular elliptic isometry J of order 3 such that J (L j ) =

L j+1 (with j = 1, 2, 3 taken mod 3), or equivalently J (n j ) = n j+1 (where J is
understood to act on all of CP2). Because J preserves the Hermitian form, 〈n j ,n j 〉

is the same positive real number for each j . We normalise n j so that this number
is 2 sin(ψ/2). Likewise 〈n j+1,n j 〉 = 〈J (n j ),n j 〉 is the same complex number for
each j . Using Corollary 2.2 we see that

〈J (n j ),n j 〉 =
τ 〈n j ,n j 〉

e2iψ/3− e−iψ/3 =−ie−iψ/6τ.

That is,

(2-4)
〈n1,n1〉 = 〈n2,n2〉 = 〈n3,n3〉 = 2 sin(ψ/2),

〈n2,n1〉 = 〈n3,n2〉 = 〈n1,n3〉 = −ie−iψ/6τ.

All of this works for any Hermitian form of signature (2, 1). We now make a
choice of vectors n1, n2 and n3. This determines a Hermitian form. We choose

n1 =

1
0
0

 , n2 =

0
1
0

 , n3 =

0
0
1

 .
Together with (2-2), this means that, with this choice, the Hermitian form must be
〈z,w〉 = w∗Hτ z, where

(2-5) Hτ =

2 sin(ψ/2) −ie−iψ/6τ ieiψ/6τ

ieiψ/6τ 2 sin(ψ/2) −ie−iψ/6τ

−ie−iψ/6τ ieiψ/6τ 2 sin(ψ/2)

 .
We can immediately write down

J =

0 0 1
1 0 0
0 1 0


and, using (2-1), the expressions for the reflections R j :

(2-6)

R1 =

e2iψ/3 τ −eiψ/3 τ

0 e−iψ/3 0
0 0 e−iψ/3

 , R2 =

 e−iψ/3 0 0
−eiψ/3 τ e2iψ/3 τ

0 0 e−iψ/3

 ,
R3 =

e−iψ/3 0 0
0 e−iψ/3 0
τ −eiψ/3 τ e2iψ/3

 .
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From this it is clear that the groups 0 = 〈R1, J 〉 and 1 = 〈R1, R2, R3〉 are com-
pletely determined up to conjugacy by the parameter τ . However, not all val-
ues of τ correspond to complex hyperbolic triangle groups. It may be that the
Hermitian matrix Hτ does not have signature (2, 1). We now determine this by
finding the eigenvalues of Hτ . In this lemma and throughout the paper we write
ω = e2π i/3

= (−1+ i
√

3)/2.
In what follows we will be interested in the case where R1 J is elliptic. In this

case its eigenvalues are unit modulus complex numbers whose product is 1. We
write them as eiα, eiβ and e−iα−iβ . This means that τ = eiα

+ eiβ
+ e−iα−iβ .

Lemma 2.6. Let Hτ be given by (2-5) where τ = eiα
+ eiβ

+ e−iα−iβ . Then the
eigenvalues of Hτ are

−8 sin(α/2+ψ/6+2kπ/3) sin(β/2+ψ/6+2kπ/3) sin(−α/2−β/2+ψ/6+2kπ/3)

for k = 0, 1, 2.

Proof. We could solve the characteristic polynomial of Hτ . However, it is easier
to observe that eigenvectors for Hτ are1

1
1

 ,
1
ω

ω

 ,
1
ω

ω

 .
We can immediately write down the eigenvalues as

λk = 2 sin(ψ/2)− ie−iψ/6−2kπ i/3τ + ieiψ/6+2kπ i/3τ

for k = 0, 1, 2. Subsitituting for τ gives

λk = 2 sin(ψ/2)+ 2 sin(−α−β −ψ/6− 2kπ/3)

+ 2 sin(α−ψ/6− 2kπ/3)+ 2 sin(β −ψ/6− 2kπ/3).

Using elementary trigonometry we see that this equals

−8 sin(α/2+ψ/6+2kπ/3) sin(β/2+ψ/6+2kπ/3) sin(−α/2−β/2+ψ/6+2kπ/3).

�

Corollary 2.7. When τ = eiα
+ eiβ

+ e−iα−iβ the matrix Hτ has signature (2, 1) if
and only if

(2-7) 8 sin(3α/2+ψ/2) sin(3β/2+ψ/2) sin
(
−3(α+β)/2+ψ/2

)
< 0.

Proof. Hτ has positive trace, so its signature is (2, 1) if and only if its determinant
is negative. Using the identity sin(3θ) = −4 sin(θ) sin(θ + 2π/3) sin(θ + 4π/3)
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we see that the product of the three eigenvalues is

8 sin(3α/2+ψ/2) sin(3β/2+ψ/2) sin
(
−3(α+β)/2+ψ/2

)
.

Hence Hτ has signature (2, 1) if and only if this expression is negative. �

The locus where each eigenvalue is zero corresponds to a line in C. These lines
divide C into seven components which fall into three types:

• The central triangle. Here all three eigenvalues are positive and Hτ is positive
definite.

• Three infinite components that each share a common edge with the central
triangle. Here two eigenvalues are positive and one negative. Hence Hτ has
signature (2, 1). This is our parameter space.

• Three infinite components that each only abut the central triangle in a point.
Here one eigenvalue is positive and two are negative. These correspond to
groups of complex hyperbolic isometries generated by three complex reflec-
tions that each fix a point.

Therefore the parameter space we are interested in, that is those values of τ satisfy-
ing (2-7), has three components related by multiplication by powers of ω= e2π i/3.
This corresponds to the fact that J ∈SU(2, 1) is only defined up to multiplication by
a cube root of unity. Hence τ is only defined up to a cube root of unity. If we factor
out by this equivalence, our parameter space becomes one of these components.

2.5. Arithmetic. When we are discussing the discreteness of 〈R1, R2, R3〉 below,
we shall analyse whether or not the group is arithmetic. In order to do so one must
find a suitable ring containing the matrix entries (after possibly conjugating).

Proposition 2.8. The maps R1, R2 and R3 may be conjugated within SU(2, 1) and
scaled so that their matrix entries lie in the ring Z[τ, τ , eiψ , e−iψ

].

Proof. Conjugating the matrices R1, R2 and R3 above by C=diag(e−iψ/3, 1, eiψ/3)

gives

C R1C−1
= e−iψ/3

eiψ τ −τ

0 1 0
0 0 1

 , C R2C−1
= e−iψ/3

 1 0 0
−eiψτ eiψ τ

0 0 1

 ,
C R3C−1

= e−iψ/3

 1 0 0
0 1 0

eiψτ −eiψτ eiψ

 .
Hence the group generated by eiψ/3C R j C−1 for j = 1, 2, 3 consists of matrices
whose entries lie in the ring Z[τ, τ , eiψ , e−iψ

]. �
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It is very important to keep track of what happens to Hτ when performing this
conjugation. The matrices above preserve the Hermitian form given by (any real
multiple of) C HτC−1. So we may take the Hermitian form to be given by
(2-8)

2 sin(ψ/2)C HτC−1
=

2− eiψ
− e−iψ (e−iψ

− 1)τ (1− e−iψ)τ

(eiψ
− 1)τ 2− eiψ

− e−iψ (e−iψ
− 1)τ

(1− eiψ)τ (eiψ
− 1)τ 2− eiψ

− e−iψ

 .
Hence the entries of 2 sin(ψ/2)C HτC−1 also lie in the ring Z[τ, τ , eiψ , e−iψ

].

2.6. The angle parameter space. Paupert [2007] characterised which angle pairs
can arise for the product AB (when it is elliptic), as A and B each vary inside a fixed
elliptic conjugacy class (i.e., each have a fixed angle pair). In the present case, R1

(the first generator) has angles {0, 2π/p}, and J (the second generator) has angles
{4π/3, 2π/3}. The allowable region in the surface T2/S2 is then a convex penta-
gon (degenerating to a triangle for p= 3) with the following properties, which we
quote from [Paupert 2007]. The two “totally reducible vertices” V1 and V2 (points
representing an abelian group) have respective coordinates {4π/3, 2π/3+ 2π/p}
and {4π/3+2π/p, 2π/3}. These two vertices are joined by a line segment of slope
−1 corresponding to the reducible groups which fix a point inside H2

C
. Each of

these vertices is also the endpoint of a line segment corresponding to the reducible
groups which stabilise a complex line. The first of these segments starts upward
at V1 with slope 2, bounces off the diagonal and goes on (with slope 1/2) until
it reaches the boundary of the square. The second segment starts upward at V2

with slope 1/2 and goes off to the boundary. The last side of the quadrilateral is
the resulting portion of the boundary segment {2π}×[0, 2π ]; in all corresponding
groups the product R1 J is parabolic, as was proven in [Paupert 2007]. The poly-
gons for p= 3, . . . , 10 are illustrated in Figure 1. In what follows we shall assume
that R1 R2 is elliptic. From Corollary 2.5, we see that this implies |τ | ≤ 2. This
condition does not have a striaghtforward interpretation in the angle coordinates.
In Figure 1 we have drawn the curve corresponding to |τ | = 2.

3. When R1 R2 R3 is elliptic and R1 R2 is nonloxodromic

We restrict our attention to those groups for which R1 R2 R3 is elliptic of finite order
and R1 R2 is either elliptic of finite order or parabolic. These are groups for which
τ lies inside or on the deltoid and inside or on the circle |τ | = 2. Since they have
finite order, the eigenvalues of R1 R2 R3 and R1 R2 are all roots of unity. This fact
leads to a linear equation in certain cosines of rational multiples of π . We find all
solutions to this equation using a theorem of Conway and Jones [1976]. We then
go on to find which of these solutions lie in our parameter space.
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3.1. The eigenvalue equation. We now investigate when both R1 R2 and R1 R2 R3

are elliptic of finite order. (Our proof will be valid when R1 R2 is parabolic as well.)
We know that R1 J (and hence R1 R2 R3) is elliptic of finite order if and only if

(3-1) τ = tr(R1 J )= eiα
+ eiβ

+ e−iα−iβ,

where α and β are rational multiples of π . Likewise for R1 R2. In fact we know
slightly more. Since the intersection of L1 and L2 is an e−iψ/3-eigenvector for
each of R1 and R2 it must be a e−2iψ/3-eigenvector for R1 R2. From Proposition
2.4 we know that

tr(R1 R2)= eiψ/3(2− |τ |2)+ e−2iψ/3.

Hence the other two eigenvalues of R1 R2 are−eiψ/3+2iθ and−eiψ/3−2iθ . (We have
taken minus signs in order to make our angles agree with [Parker 2008].) Thus

(3-2) |τ |2− 2= 2 cos(2θ),

where θ is a rational multiple of π .
We solve equations (3-1) and (3-2) by eliminating τ . That is, we seek θ , α, β

rational multiples of π so that

2 cos(2θ)+ 2= |τ |2 = 3+ 2 cos(α−β)+ 2 cos(α+ 2β)+ 2 cos(−2α−β).

Rearranging, this becomes

(3-3) 1
2 = cos(2θ)− cos(α−β)− cos(α+ 2β)− cos(−2α−β).

Parker [2008] used a theorem of Conway and Jones [1976] to solve (3-3). Up to
complex conjugating τ (so changing the sign of α and β) and multiplying by a
power of ω, the only solutions are those indicated in the table:

2θ α−β α+2β 2α+β α β α+β

(i) 2π/3 π−φ/2 π 2π−φ/2 π−φ/3 φ/6 π−φ/6
(ii) φ π/3−φ π/3+φ 2π/3 π/3−φ/3 2φ/3 π/3+φ/3
(iii) π/3 π/4 π/2 3π/4 π/3 π/12 5π/12
(iv) π/5 3π/10 2π/5 7π/10 π/3 π/30 11π/30
(v) 3π/5 π/10 4π/5 9π/10 π/3 7π/30 17π/30
(vi) π/2 2π/7 4π/7 6π/7 8π/21 2π/21 10π/21
(vii) π/2 π/15 11π/15 4π/5 13π/45 2π/9 23π/45
(viii) π/2 7π/15 17π/15 8π/5 31π/45 2π/9 41π/45
(ix) π/7 π/21 4π/7 13π/21 2π/9 11π/63 25π/63
(x) 5π/7 5π/21 19π/21 8π/7 29π/63 2π/9 43π/63
(xi) 3π/7 11π/21 25π/21 12π/7 47π/63 2π/9 61π/63
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We then write down τ = tr(R1 J ) = eiα
+ eiβ

+ e−iα−iβ and tr (R1 R2 R3) =

e3iα
+ e3iβ

+ e−3iα−3iβ using this table. As indicated earlier, the parameters τω j

for j = 1, 2 correspond to the same group as τ .

Proposition 3.1 [Parker 2008, Proposition 3.2]. Suppose that R1 R2 and R1 R2 R3

are both elliptic of finite order (or possibly R1 R2 is parabolic). Up to complex
conjugating τ and multiplying by a power of ω, then one of the following is true:

(i) τ =−e−iφ/3
=:m(φ) for some angle φ;

(ii) τ = e2iφ/3
+ e−iφ/3

= eiφ/6 2 cos(φ/2)=: s(φ), for some angle φ;

(iii) τ = eiπ/3
+ e−iπ/6 2 cos(π/4)=: σ(π/6, π/4);

(iv) τ = eiπ/3
+ e−iπ/6 2 cos(π/5)=: σ(π/6, π/5);

(v) τ = eiπ/3
+ e−iπ/6 2 cos(2π/5)=: σ(π/6, 2π/5);

(vi) τ = e2π i/7
+ e4π i/7

+ e8π i/7
=: σ(2π/7);

(vii) τ = e2π i/9
+ e−iπ/9 2 cos(2π/5)=: σ(π/9, 2π/5);

(viii) τ = e2π i/9
+ e−π i/9 2 cos(4π/5)=: σ(π/9, 4π/5);

(ix) τ = e2π i/9
+ e−iπ/9 2 cos(2π/7)=: σ(π/9, 2π/7);

(x) τ = e2π i/9
+ e−iπ/9 2 cos(4π/7)=: σ(π/9, 4π/7);

(xi) τ = e2π i/9
+ e−iπ/9 2 cos(6π/7)=: σ(π/9, 6π/7).

Before proceeding we explain the notation. The possible solutions τ either lie
on one of two curves or are on a finite list of points. The points on the curve from
part (i) (for p > 3) correspond to Mostow’s groups 0(p, t); compare [Mostow
1980]. So we call this the Mostow curve and denote points on it by m(φ). The
points on the curve from part (ii) correspond to subgroups of Mostow’s groups, by
the results of Section 5.1. These results generalise the isomorphisms discovered by
Sauter [1990], so we call this the Sauter curve and denote points on it by s(φ). The
remaining parts (iii) to (xi) consist of finitely many isolated points which we call
sporadic. All the points except for those in part (vi) depend on two angles and so we
write them as σ(φ, η)= e2iφ

+e−iφ2 cos(η). Note that complex conjugation sends
σ(φ, η) to σ(−φ, η) and multiplication by e2π i/3 sends σ(φ, η) to σ(φ−2π/3, η).

We use these various values of τ = tr(R1 J ) to parametrise groups in SU(2, 1);
note that while the values of τ in the above list do not depend on ψ (the angle of
rotation of the reflection R1), the corresponding groups do vary with ψ . We will
denote by 0(ψ, τ) the subgroup of SU(2, 1) generated by R1 and J , where the rota-
tion angle of R1 is ψ and the trace of R1 J is τ . Note that there should be no confu-
sion with Mostow’s notation 0(p, t), where p is an integer and t is real. Explicitly,
by a simple computation using Mostow’s generator R1 (appropriately normalised
in SU(2, 1)), Mostow’s group 0(p, t) is our 0(2π/p, eπ i(3/2+1/(3p)−t/3)).
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3.2. The points in angle parameters. We now list the corresponding points in the
angle parameter space. This involves considering the differences of the eigenvalues
and making sure we have a pair {θ1, θ2} with 4π/36 θ1 6 2π and 2π/36 θ2 6 θ1.

For the groups of Mostow and Sauter type the corresponding points in the angle
space are piecewise linear curves. We now write these down.

Lemma 3.2. (i) The point τ = m(φ) = −e−iφ/3 corresponds to the angle pair
{2π −φ/2, π} if φ/2 ∈ [0, π] and {2π +φ/2, π +φ/2} if φ/2 ∈ [−π, 0].

(ii) The point τ = s(φ) = e2iφ/3
+ e−iφ/3 corresponds to the angle pair {5π/3+

φ, 4π/3} if φ ∈ [−π/3, π/3] and {7π/3−φ, 5π/3−φ} if φ ∈ [π/3, π].

For the sporadic groups, in each case for τ the angle pair is {2π +β−α, 2π −
2α−β} and for τ it is either {2π−α−2β, 2π−2α−β} or {2π+β−α, α+2β}.
These angles may be read off from the table on page 366.

τ {θ1, θ2}

(iii) eπ i/3
+e−π i/62 cos(π/4) {7π/4, 5π/4}

e−π i/3
+eπ i/62 cos(π/4) {3π/2, 5π/4}

(iv) eπ i/3
+e−π i/62 cos(π/5) {17π/10, 13π/10}

e−π i/3
+eπ i/62 cos(π/5) {8π/5, 13π/10}

(v) eπ i/3
+e−π i/62 cos(2π/5) {19π/10, 11π/10}

e−π i/3
+eπ i/62 cos(2π/5) {19π/10, 4π/5}

(vi) e2π i/7
+e4π i/7

+e8π i/7
{10π/7, 8π/7}

e−2π i/7
+e−4π i/7

+e−8π i/7
{12π/7, 8π/7}

(vii) e2π i/9
+e−π i/92 cos(2π/5) {29π/15, 18π/15}

e−2π i/9
+eπ i/92 cos(2π/5) {29π/15, 11π/15}

(viii) e2π i/9
+e−π i/92 cos(4π/5) {8π/5, 17π/15}

e−2π i/9
+eπ i/92 cos(4π/5) {23π/15, 17π/15}

(ix) e2π i/9
+e−π i/92 cos(2π/7) {41π/21, 29π/21}

e−2π i/9
+eπ i/92 cos(2π/7) {10π/7, 29π/21}

(x) e2π i/9
+e−π i/92 cos(4π/7) {37π/21, 6π/7}

e−2π i/9
+eπ i/92 cos(4π/7) {37π/21, 19π/21}

(xi) e2π i/9
+e−π i/92 cos(6π/7) {12π/7, 25π/21}

e−2π i/9
+eπ i/92 cos(6π/7) {31π/21, 25π/21}

3.3. Points in parameter space. In this section we consider the values of τ from
Proposition 3.1 or the corresponding angle pairs and we determine which of them
is in the parameter space. In each case, we are only interested in the case where
ψ = 2π/p for some integer p > 2. In each case we know the eigenvalues eiα,
eiβ and e−iα−iβ of R1 J and we can use the criterion (2-7) of Corollary 2.7 to
determine for which values of p the form Hτ has signature (2, 1). Alternatively,
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Figure 1. The points together with the trace parameter space (top)
and the angle parameter space (bottom) for p = 3, . . . , 10.

we can use the angle pairs and check the linear conditions given in Section 2.6. We
have plotted the points and parameter spaces for p = 3, . . . , 10 in the τ -plane in
Figure 1, top and the same thing in the angle parameter space in Figure 1, bottom.
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Proposition 3.3. Let R1 have angle ψ ∈ (0, 2π).

(i) Suppose that τ = m(φ) = −e−iφ/3. Then Hτ has signature (2, 1) if and only
if sin(ψ +φ/2) cos(ψ/2−φ/2) > 0.

(ii) Suppose that τ = s(φ)= e2iφ/3
+ e−iφ/3. Then Hτ has signature (2, 1) if and

only if sin(ψ/2+φ) > 0.

Proof. We insert the values of α and β found above into Corollary 2.7 and simplify.
In (i) we have α=π−φ/3 and β = φ/6. This leads to 8 sin(3π/2−φ/2+ψ/2)×
sin(φ/4+ψ/2) sin(−3π/2+φ/4+ψ/2)<0. In (ii) we have α=π/3−φ/3 and β=
2φ/3, leading to 8 sin(φ+ψ/2) sin(−φ/2+π/2+ψ/2) sin(−φ/2−π/2+ψ/2)<
0. Simplifying, this is equivalent to sin(ψ/2+ φ)

(
cos(ψ − φ)+ 1

)
> 0. When

cos(ψ − φ) = −1 and |ψ | ≤ 2π/3 then sin(ψ/2 + φ) ≤ 0. Therefore Hτ has
signature (2, 1) if and only if sin(ψ/2+φ) > 0 as claimed. �

We remark that the case cos(ψ−φ)+1=0 only occurs when τ =e2iψ/3
−e−iψ/3.

In this case Hτ has a repeated eigenvalue of 0. These points correspond to the
totally reducible groups V1 and V2 described in section 2.6.

For the sporadic groups we simply work by inspection. Here are the results:

α β −α−β (2, 1) Degenerate (3, 0)

(iii) π/3 π/12 −5π/12 p≥ 3 p= 2
−π/3 5π/12 −π/12 3≤ p≤ 7 p= 2, 8 p≥ 9

(iv) π/3 π/30 −11π/30 p≥ 3 p= 2
−π/3 11π/30 −π/30 3≤ p≤ 19 p= 2, 20 p≥ 21

(v) π/3 7π/30 −17π/30 p≥ 3 p= 2
−π/3 17π/30 −7π/30 3≤ p≤ 6 p= 2 p≥ 7

(vi) 2π/7 4π/7 −6π/7 4≤ p≤ 6 p= 7 p= 2, 3, p≥ 8
−2π/7 −4π/7 6π/7 p≥ 3 p= 2

(vii) 2π/9 13π/45 −23π/45 p≥ 2
−2π/9 23π/45 13π/45 p= 2, 4 p= 3 p≥ 5

(viii) 2π/9 31π/45 −41π/45 p≥ 3 p= 2
−2π/9 41π/45 −31π/45 4≤ p≤ 29 p= 3, 30 p= 2, p≥ 31

(ix) 2π/9 11π/63 −25π/63 p≥ 2
−2π/9 25π/63 −11π/63 p= 2 p= 3 p≥ 4

(x) 2π/9 29π/63 −43π/36 4≤ p≤ 41 p= 42 p= 2, 3, p≥ 43
−2π/9 43π/63 −29π/63 p≥ 4 p= 3 p= 2

(xi) 2π/9 47π/63 −61π/63 p≥ 3 p= 2
−2π/9 61π/63 −47π/63 4≤ p≤ 8 p= 3 p= 2, p≥ 9
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4. Nondiscreteness results

There are two simple ways to see that a subgroup of PU(2, 1) is not discrete: finding
an elliptic element of infinite order in the group, or finding a subgroup which
stabilises a complex line, acting nondiscretely on it. Of course, these elementary
facts can only be useful if one finds the appropriate element (word) or subgroup.
We will present in this section some results of this nature.

4.1. Traces for certain words. We compute the traces of certain short words in
our generators R1 and J (or R1, R2, R3). These words seem relevant to us for
experimental and/or historical reasons (see [Mostow 1980] and [Schwartz 2002]
for instance). These traces can be computed in a straightforward manner from the
generators, or by using the formulae from [Pratoussevitch 2005]. The result is
shown here:

W tr(W )

R1 J τ

J−1 R1 −eiψ/3τ

R1 R2 J−1
= (R1 J )2 τ 2

−2τ
J R2 R1 = (J−1 R1)

2 e2iψ/3τ 2
+2e−iψ/3τ

R1 R2 e−2iψ/3
+eiψ/3

(
2−|τ |2

)
R1 R2 R3 R−1

2 e−2iψ/3
+eiψ/3

(
2−|τ 2

−τ |2
)

R1 R−1
2 R3 R2 e−2iψ/3

+eiψ/3
(
2−|τ 2

+eiψτ |2
)

R1 R−1
2 1+2 cos(ψ)+|τ |2

R1 R2 R−1
3 R−1

2 1+2 cos(ψ)+|τ 2
−τ |2

R1 R−1
2 R−1

3 R2 1+2 cos(ψ)+|τ 2
+eiψτ |2

R1 R2 R3 = (R1 J )3 3−3|τ |2+τ 3

R1 R2 R1 R−1
2 R−1

1 R−1
2 3+

(
|τ |2−1

)(
|τ |4+6|τ |2+2−2 cos(ψ)

)
We use this to prove nondiscreteness results, some valid for any value of p like

the following, and some depending on the value of p (see last section for p = 3).

Lemma 4.1. Let R1, R2 and R3 be given by (2-6). If |τ 2
−τ |> 2 then R1 R2 R3 R−1

2
is loxodromic. If |τ 2

−τ | ≤ 2 then R1 R2 R3 R−1
2 is elliptic with eigenvalues e−2iψ/3,

−eiψ/3+2iθ ′ and −eiψ/3−2iθ ′ where |τ 2
− τ | = 2 cos θ ′.

Proof. A short computation shows that the trace of R1 R2 R3 R−1
2 is

tr(R1 R2 R3 R−1
2 )= eiψ/3(2− |τ 2

− τ |2
)
+ e−2iψ/3.

Since all points of L1 (the mirror of R1) and of R2(L3) (the mirror of R2 R3 R−1
2 )

are e−iψ/3 eigenvectors for R1 and R2 R3 R−1
2 respectively, we see that their in-

tersection is an e−2iψ/3 eigenvector for R1 R2 R3 R−1
2 . If this point is outside H2

C
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then R1 R2 R3 R−1
2 is loxodromic. On the other hand, if this point is inside complex

hyperbolic space then R1 R2 R3 R−1
2 is elliptic with eigenvalues e−2iψ/3,−eiψ/3+2iθ ′

and −eiψ/3−2iθ ′ where |τ 2
− τ | = 2 cos θ ′. �

We now list |τ 2
−τ |2 for the values of τ given in Proposition 3.1. It is clear that

complex conjugating τ or multiplying by a cube root of unity does not affect this
quantity. We also give the value of θ ′ or indicate that R1 R2 R3 R−1

2 is loxodromic.

τ |τ |2 2θ |τ 2
−τ |2 2θ ′

(i) −e−iφ/3 1 2π/3 2+2 cos(φ) φ

(ii) e2iφ/3
+e−iφ/3 2+2 cos(φ) φ 2+2 cos(φ) φ

(iii) eiπ/3
+e−iπ/62 cos(π/4) 3 π/3 2 π/2

(iv) eiπ/3
+e−iπ/62 cos(π/5) 2+2 cos(π/5) π/5 3 π/3

(v) eiπ/3
+e−iπ/62 cos(2π/5) 2+2 cos(3π/5) 3π/5 3 π/3

(vi) e2πi/7
+e4πi/7

+e8πi/7 2 π/2 1 2π/3
(vii) e2iπ/9

+e−iπ/92 cos(2π/5) 2 π/2 2+2 cos(2π/5) 2π/5
(viii) e2iπ/9

+e−iπ/92 cos(4π/5) 2 π/2 2+2 cos(4π/5) 4π/5
(ix) e2iπ/9

+e−iπ/92 cos(2π/7) 2+2 cos(π/7) π/7 3+2 cos(2π/7) lox.
(x) e2iπ/9

+e−iπ/92 cos(4π/7) 2+2 cos(5π/7) 5π/7 3+2 cos(4π/7) irr.
(xi) e2iπ/9

+e−iπ/92 cos(6π/7) 2+2 cos(3π/7) 3π/7 3+2 cos(6π/7) irr.

In case (ix) |τ 2
− τ |2 > 4 and so R1 R2 R3 R−1

2 is loxodromic.
In the last two cases |τ 2

− τ |2 is less than 4. Therefore, using Lemma 4.1 we
see that R1 R2 R3 R−1

2 is elliptic and we find the angle θ ′ satisfying 2+2 cos(2θ ′)=
|τ 2
− τ |2 = 3+2 cos(4π/7) and 3+2 cos(6π/7), respectively. Using the theorem

of Conway and Jones [Conway and Jones 1976, Theorem 7], we see that θ ′ is not a
rational multiple of π and hence R1 R2 R3 R−1

2 is elliptic of infinite order. Therefore,
for these values of τ , the group 〈R1, J 〉 is not discrete. This proves:

Corollary 4.2. Suppose that τ or τ = e2π i/9
+ e−π i/92 cos(4π/7), or that τ or

τ = e2π i/9
+ e−π i/92 cos(6π/7). Then R1 R2 R3 R−1

2 is elliptic of infinite order.

Hence when examining possible candidates for discrete groups it suffices to
consider the values of τ given in parts (i) to (ix) of Proposition 3.1.

4.2. Triangle subgroups. We will systematically analyse triangle subgroups in or-
der to find conditions for discreteness. By triangle subgroups we mean subgroups
which fix a point in CP2; depending on the position of that point, the subgroup will
stabilise a complex line (if the point is outside of H2

C
), fix a point in H2

C
or on its

boundary. The two-generator group in question then acts as a hyperbolic, spherical,
or Euclidean triangle group respectively, and the angles of the triangle action are
obtained from the eigenvalues of the generators, see Proposition 4.4 below.
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We use the lists which answer the classical question of plane geometry: given
three angles α, β and γ , when do the reflections in the sides of an (α, β, γ ) triangle
generate a discrete group?

In the Euclidean case it is easy to see that there are only four possibilities
(see [Coxeter 1948]): (π/3, π/3, π/3), (π/2, π/4, π/4) and (π/2, π/3, π/6), and
(2π/3, π/6, π/6).

In the case of a spherical triangle, the list is due to Schwarz, and we show it
here arranged as in [Coxeter 1948]: colunar triangles appear together on one line,
in increasing order of size.

(π/2, π/2, pπ/q)

(π/2, π/3, π/3), (π/2, 2π/3, π/3), (π/2, 2π/3, 2π/3)
(2π/3, π/3, π/3), (2π/3, 2π/3, 2π/3)

(π/2, π/3, π/4), (π/2, 2π/3, π/4), (π/2, π/3, 3π/4), (π/2, 2π/3, 3π/4)
(2π/3, π/4, π/4), (π/3, 3π/4, π/4), (2π/3, 3π/4, 3π/4)

(π/2, π/3, π/5), (π/2, 2π/3, π/5), (π/2, π/3, 4π/5), (π/2, 2π/3, 4π/5)
(2π/5, π/3, π/3), (3π/5, 2π/3, π/3), (2π/5, 2π/3, 2π/3)
(2π/3, π/5, π/5), (π/3, 4π/5, π/5), (2π/3, 4π/5, 4π/5)

(π/2, 2π/5, π/5), (π/2, 3π/5, π/5), (π/2, 2π/5, 4π/5), (π/2, 3π/5, 4π/5)
(3π/5, π/3, π/5), (2π/5, 2π/3, π/5), (2π/5, π/3, 4π/5), (3π/5, 2π/3, 4π/5)

(2π/5, 2π/5, 2π/5), (3π/5, 3π/5, 2π/5)
(2π/3, π/3, π/5), (π/3, π/3, 4π/5), (2π/3, 2π/3, 4π/5)

(4π/5, π/5, π/5), (4π/5, 4π/5, 4π/5)
(π/2, 2π/5, π/3), (π/2, 3π/5, π/3), (π/2, 2π/5, 2π/3), (π/2, 3π/5, 2π/3)

(3π/5, 2π/5, π/3), (2π/5, 2π/5, 2π/3), (3π/5, 3π/5, 2π/3)

The list for hyperbolic triangles is due to Klimenko and Sakuma, following
earlier work of Knapp [1968]:

Proposition 4.3 [Klimenko and Sakuma 1998, Lemma 2.1]. Suppose that the
group generated by reflections in the sides of a hyperbolic triangle is discrete.
Then the angles of the triangle appear on the following list:

(i) π/p, π/q, π/r where 1/p+ 1/q + 1/r < 1;
(ii) π/p, π/p, 2π/r where r is odd and 1/p+ 1/r < 1/2;

(iii) π/p, π/2, 2π/p where p ≥ 7 is odd;
(iv) π/p, π/3, 3π/p where p ≥ 7 is not divisible by 3;
(v) π/p, π/p, 4π/p where p ≥ 7 is odd;

(vi) 2π/p, 2π/p, 2π/p where p ≥ 7 is odd;
(vii) π/7, π/3, 2π/7.



374 JOHN R. PARKER AND JULIEN PAUPERT

The case when two of the angles are π/p and π/q was proved by Knapp [1968,
Theorem 2.3]. This list is the same as that above without case (vi). Knapp’s
theorem was rediscovered as Theorem 3.7 of [Mostow 1988] except that Mostow
missed case (vii).

Given a group generated by reflections in the sides of a triangle (hyperbolic,
Euclidean or spherical) we can consider the index 2 group of holomorphic motions.
The product of a pair of reflections in sides that make an angle θ is an elliptic
rotation through 2θ . If we represent this map as a matrix in SU(2) or SU(1, 1)
the eigenvalues are −e±iθ . This group of holomorphic motions is generated by A
and B where A, B, AB are elliptic rotations corresponding to products of pairs of
reflections.

Proposition 4.4. For j = 1, 2 suppose that B j is a complex reflection in SU(2, 1)
with eigenvalues e2iψ j/3, e−iψ j/3, e−iψ j/3 and mirror L j . Then L1∩L2 corresponds
to an e−iψ1/3−iψ2/3 eigenvector of B1 B2. Suppose that B1 B2 is elliptic and its other
eigenvalues are −eiψ1/6+iψ2/6±iψ3/2. Then on the orthogonal complement of L1 ∩

L2 the group 〈B1, B2〉 acts as the holomorphic subgroup of a (ψ1/2, ψ2/2, ψ3/2)
triangle group.

Proof. We conjugate so that L1 ∩ L2 corresponds to the vector (1, 0, 0)T . Then
B1 and B2 are block diagonal matrices in S

(
U(1)×U(1, 1)

)
or S

(
U(1)×U(2)

)
.

Scaling, we may suppose that they lie in U(1)×SU(1, 1) or U(1)×SU(2). Then the
action on the orthogonal complement of L1∩ L2 is given by the 2×2 unimodular
matrices in the lower right hand block. These block matrices have eigenvalues
−e±iψ1/2, −e±iψ2/2, −e±iψ3/2 for B1, B2, B1 B2 (up to maybe scaling by −1). The
result follows from the remarks above. �

For example, consider R1 and R2. Their eigenvalues are e2iψ/3, e−iψ/3, e−iψ/3.
Scaling, we see that the eigenvalues of −e−iψ/6 R1 and −e−iψ/6 R2 are −eiψ/2,
−e−iψ/2, and −e−iψ/2. The eigenvalues of R1 R2 are −eiψ/3+2iθ , −eiψ/3−2iθ , and
e−2iψ/3, so that the eigenvalues of e−iψ/3 R1 R2 are −e2iθ , −e−2iθ , and e−iψ

=

(−e−iψ/2)(−e−iψ/2). Therefore 〈R1, R2〉 acts on the orthognal complement of
L1 ∩ L2 as the holomorphic subgroup of a (ψ/2, ψ/2, 2θ) triangle group.

Similarly, R1 and R2 R3 R−1
2 have a common eigenvector L1 ∩ R2(L3). When

R1 R2 R3 R−1
2 is elliptic the group 〈R1, R2 R3 R−1

2 〉 acts on the orthogonal comple-
ment of L1 ∩ R2(L3) as a (ψ/2, ψ/2, 2θ ′) triangle group.

We can apply the result of Klimenko and Sakuma, Proposition 4.3 (in fact we
only need the earlier version of [Knapp 1968]) to eliminate some of the cases,
using the values for 2θ and 2θ ′ given in Section 4.1. This gives the following:

Proposition 4.5. Suppose that ψ = 2π/p.

(i) If p > 3 and τ or τ = eiπ/3
+ e−iπ/62 cos(2π/5) then 〈R1, R2〉 is not discrete.
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(ii) If p 6= 3, 5 and τ or τ = e2π i/9
+ e−π i/92 cos(4π/5) then 〈R1, R2 R3 R−1

2 〉 is
not discrete.

5. The two curves in parameter space

In this section we determine exactly which points on the two curves from Propo-
sition 3.1 correspond to discrete groups.

The first curve corresponds to the original groups from [Mostow 1980], where
sufficient conditions for discreteness were found; these sufficient conditions were
generalised in [Mostow 1986] (to a condition which Mostow calls 6 INT, which
also contains the groups from [Deligne and Mostow 1993]). A necessary condi-
tion, using triangle subgroups, was then found in [Mostow 1988], leaving only
nine groups in dimension 2 and one in dimension 3 not covered by either of these
criteria. In this same paper Mostow proved that all but three of these are discrete;
the last three cases were shown to be discrete by Sauter [1990]. See the last two
references for more details on the history of this question.

Determining which points of the second curve (or Sauter curve) correspond to
discrete groups uses the result that every such group is a subgroup of a group on
the Mostow curve, see Section 5.1 below. It then remains to discard the possibility
that a discrete group on the Sauter curve could be a subgroup (of infinite index) of
a nondiscrete group on the Mostow curve (Theorem 5.8). This is done by a careful
analysis of triangle subgroups.

5.1. Sauter groups are subgroups of Mostow groups. In this section we prove
that each group on the Sauter curve is conjugate to a subgroup of a group on the
Mostow curve, but for a different value of ψ , the rotation angle of R1. Recall that
0(ψ, τ) denotes the group generated by R1 and J , where ψ is the rotation angle
of R1 and τ is the trace of R1 J .

Proposition 5.1. The group 0(φ, e2iψ/3
+ e−iψ/3) is conjugate to a subgroup of

0(ψ,−e−iφ/3).

Proof. We begin by defining some elements of 〈R1, J 〉, with ψ as rotation angle
of R1. These definitions follow Sauter.

A1 = R−1
2 R−1

1 J = J−1(J−1 R−1
1 )2 J =

 −τ eiψ/3τ e−iψ/3

e−iψ/3
(
1− |τ |2

)
τ 2
− τ e−2iψ/3τ

0 e2iψ/3 0

 ,
A2 = J R−1

2 R−1
1 = (J

−1 R−1
1 )2, A3 = J−1 R−1

2 R−1
1 J−1

= J (J−1 R−1
1 )2 J−1.

The result follows by noting that the subgroup 〈A1, J 〉 of 〈R1, J 〉 corresponds
to the required parameters. Namely, if τ =−e−iφ/3 then A1 is a complex reflection
with angle φ (as can be seen by its trace), and A1 J−1 has trace e−iψ/3(2−|τ |2)+
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e2iψ/3
=e−iψ/3

+e2iψ/3. Note that we have replaced J with J−1, which is conjugate
to J (as in Sauter’s isomorphisms). �

In fact we can say more:

Lemma 5.2. 〈A1, A2, A3〉 is a normal subgroup of 〈R1, J 〉.

Proof. If |τ | = 1 then Ri R j Ri = R j Ri R j . Using this and R2 = J R1 J−1, we find

R1 A1 R−1
1 = R1 R−1

2 R−1
1 J R−1

1 = R−1
2 R−1

1 R2 R−1
2 J = A1,

R1 A2 R−1
1 = R1 J R−1

2 R−1
1 R−1

1 = R1 R2 J−1J−1R−1
2 R−1

1 J−1J R−1
2 R−1

1 = A−1
2 A3 A2,

R1 A3 R−1
1 = R1 J−1R−1

2 R−1
1 J−1R−1

1 = J R−1
2 R−1

1 = A2.

(Compare the identities in Section 7 of [Parker 2006].) Moreover, from the defini-
tion of A1, A2, A3 we have J Ai J−1

= Ai+1, taking the index i mod 3. The lemma
follows. �

When τ = −e−iφ/3, Sauter considers the map R1 7→ A2, R2 7→ A1, R3 7→ A3.
That is, he considers the group for which the trace of the generator is τ 2

− 2τ =
e2iφ/3

+2e−iφ/3 and the parameter is e2iψ/3
+e−iψ/3. This is a point on the curve of

the second type. In fact, as Sauter is only interested in the case of Mostow groups,
he only considers this map in the case when ψ = 2π/3 [1990, Theorem 6.1]. In
this case e2iψ/3

+ e−iψ/3
= eiπ/9 which is an intersection point of the curves of

Mostow and Sauter types (see Section 5.5).
The special case of groups on the Mostow curve with τ = 1 (or equivalently

ω or ω) was considered in [Livné 1981]. Such groups have signature (2, 1) when
ψ < π/2. In [Parker 2006] we showed that Livné’s groups contain subgroups
that are triangle groups generated by involutions. This is another special case of
Proposition 5.1.

Conversely, if R1, R2 and R3 have the form (2-6) with τ = e2iφ/3
+ e−iφ/3 then

the map

Q =

e−iφ/3 0 0
0 0 eiψ/3+iφ/3

0 −e−iψ/3 e2iφ/3
+ e−iφ/3


satisfies

Q R1 Q−1
= R1, Q R2 Q−1

= R3, Q R3 Q−1
= R−1

3 R2 R3.

Therefore 〈R1, R2, R3〉 is a normal subgroup of 〈Q, R1, J 〉.

5.2. The Mostow curves.

Proposition 5.3. Suppose that ψ = 2π/p and τ = −e−iφ/3. Then the following
subgroups of 〈R1, J 〉 have a common fixed vector and on its orthogonal comple-
ment they act as (the holomorphic subgroup of ) a triangle group as follows:
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(i) 〈R1, R2〉 acts as a (ψ/2, ψ/2, 2π/3) triangle group;

(ii) 〈R1, R2 R3 R−1
2 〉 acts as a (ψ/2, ψ/2, φ) triangle group;

(iii) 〈R1, R−1
2 R3 R2〉 acts as a (ψ/2, ψ/2, π −ψ −φ) triangle group;

(iv) 〈A1, A2〉 = 〈R−1
2 R−1

1 J, J R−1
2 R−1

1 〉 acts as a (φ/2, φ/2, ψ) triangle group;

(v) 〈A1, A1 A3 A2〉 = 〈R−1
2 R−1

1 J, (R−1
2 R−1

1 )3〉 acts as a (φ/2, π/2−ψ/2−φ/2,
π/2− 3ψ/2) triangle group.

Proof. (i) The eigenvalues of R1 and R2 are e2iψ/3, e−iψ/3, e−iψ/3, and those of
R1 R2 are−eiψ/3+2iπ/3,−eiψ/3−2iπ/3, e−2iψ/3. The result follows from Proposition
4.4.

(ii) The eigenvalues of R1 and R2 R3 R−1
2 are e2iψ/3, e−iψ/3, e−iψ/3. The trace of

R1 R2 R3 R−1
1 is e−2iψ/3

− eiψ/32 cos(φ). Therefore its eigenvalues are −eiψ/3+iφ ,
−eiψ/3−iφ , e−2iψ/3. The result follows from Proposition 4.4.

(iii) This is similar to (ii) except that

tr(R1 R−1
2 R3 R2)= e−2iψ/3

+eiψ/32 cos(φ+ψ)= e−2iψ/3
−eiψ/32 cos(π−φ−ψ).

(iv) The eigenvalues of A1 and A2 are e2iφ/3, e−iφ/3, e−iφ/3. The trace of A1 A2

is e−2iφ/3
− eiφ/32 cos(ψ). Therefore its eigenvalues are e−2iφ/3, −eiψ+iφ/3 and

−e−iψ+iφ/3. The result is again similar.

(v) Finally, the eigenvalues of A1 are e2iφ/3, e−iφ/3, e−iφ/3 and those of A1 A3 A2=

(A1 J−1)3 = (R−1
2 R−1

1 )3 are e2iψ , −e−iψ , −e−iψ . The eigenvalues of A3 A2 =

(A−1
1 )(A1 A2 A3) are e−2iφ/3, −eiψ+iφ/3, −e−iψ+iφ/3. The result follows from

Proposition 4.4. �

Combining Proposition 5.3 with Proposition 4.3 we obtain:

Corollary 5.4. Suppose that ψ = 2π/p and τ = −e−iφ/3. If 〈R1, J 〉 is discrete
then either

(i) φ = 2π/q , π −ψ −φ = π − 2π/p− 2π/q = 2π/r or

(ii) φ = 2ψ = 4π/q and π − 3ψ = π − 6π/p = 2π/r where p is odd.

Suppose that p, q and r are integers (or possibly∞) in modulus at least 3, such
that 1/p+ 1/q + 1/r = 1/2. Then up to permutation p, q and r take one of the
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values in this table:

p 3 3 3 3 3 3 3 3 3 4 4 4 4 5 6
q 3 4 5 6 7 8 9 10 12 4 5 6 8 5 6
r −6 −12 −30 ∞ 42 24 18 15 12 ∞ 20 12 8 10 6

2p/(p−6) −2 −2 −2 −2 −2 −2 −2 −2 −2 −4 −4 −4 −4 −10 ∞
2q/(q−6) −2 −4 −10 ∞ 14 8 6 5 4 −4 −10 ∞ 8 −10 ∞
2r/(r−6) 1 4

3
5
3 2 7

3
8
3 3 10

3 4 2 20
7 4 8 5 ∞

Theorem 5.5 [Mostow 1988; Sauter 1990]. Suppose ψ = 2π/p and τ =−e−iφ/3,
where

max
{
−2ψ, ψ −π

}
< φ <min

{
π +ψ, 2π − 2ψ

}
The group 〈R1, J 〉 corresponding to these parameters is discrete if and only if one
of the following is true:

(i) p = 3, 4, 5, 6, 7, 8, 9, 10, 12, 18 or∞ and φ = 2π/q , π −ψ −φ = 2π/r
for some integers q, r (possibly infinity);

(ii) p = 5, 7 or 9 and φ = 4π/p;

(iii) p = 5, 7 or 9 and φ = π − 6π/p;

(iv) p = 15, 24, 42, −30 or −12 and φ = 2π/3;

(v) p = 15, 24, 42, −30 or −12 and φ = π/3− 2π/p.

Sauter [1990, Theorem 6.1] showed that the group from (v) with ψ = 2π/p and
φ = 2π/3 for p = 15, 24, 42, −30 or −12 is conjugate to the group from (i) with
ψ = 2π/3 and φ = 2π/p. This conjugation can be realised by the isomorphism
identifying A1 with R1 and J with J−1. He also showed in [Sauter 1990, Theorem
6.2] shows that the group from (ii) with ψ = 2π/p, φ = 4π/p is conjugate to the
group from (i) with ψ = 2π/p and φ = π . This isomorphism is slightly more
complicated and involves sending a square root of A1 to R1 and J to J−1. The
groups from (ii) and (iii) are conjugate as are the groups from (iv) and (v) via the
map that fixes R1 but sends J to J−1.

5.3. The Sauter curves.

Proposition 5.6. Suppose that ψ = 2π/p and τ = e2iφ/3
+ e−iφ/3. Then the

following subgroups of 〈R1, J 〉 have a common fixed vector and on its orthogonal
complement they act as (the holomorphic subgroup of ) a triangle group as follows:

(i) 〈R1, R2〉 acts as a (ψ/2, ψ/2, φ) triangle group;

(ii) 〈R1, R2 R3〉 acts as a (ψ/2, π/2−φ/2−ψ/2, π/2− 3φ/2) triangle group.
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Proof. When τ = e2iφ/3
+ e−iφ/3 then R1 R2 R3 = (R1 J )3 has one eigenvalue e2iφ

and a repeated eigenvalue −e−iφ . Also, R2 R3 has trace

tr(R2 R3)= eiψ/3(2− |τ |2)+ e−2iψ/3
= eiψ/32 cos(φ)+ e−2iψ/3.

Hence R2 R3 has eigenvalues e−2iψ/3, −eiψ/3+iφ and eiψ/3−iφ . Then n= L1∩L123

is a common eigenvector of R1 and R1 R2 R3, and hence of R2 R3. The eigenvalues
are e−iψ/3,−e−iφ and−eiψ/3−iφ respectively. Thus on the orthogonal complement
of n the group 〈R1, R2 R3〉 acts as a (ψ/2, π/2−φ/2−ψ/2, π/2−3φ/2) triangle
group. �

We again use Proposition 4.3 to eliminate all but finitely many points.

Corollary 5.7. Suppose that ψ = 2π/p and τ = e2iφ/3
+ e−iφ/3. If 〈R1, J 〉 is

discrete then φ = 2π/q where either

(i) π −ψ −φ = π − 2π/p− 2π/q = 2π/r and π − 3φ = π − 6π/q = 2π/s or

(ii) p = 3 and π/3−φ = π/3− 2π/q = 2π/s.

Proof. Using ψ = 2π/p in 〈R1, R2〉 and Proposition 4.3, we see that either φ =
2π/q or 4π/p and in the latter case p is odd.

Assume that φ = 2π/q. Then 〈R1, R2 R3〉 acts as a (π/p, π/2− π/p − π/q,
π/2−3π/q) triangle group. From Proposition 4.3 we see that either π/2−π/p−
π/q or π/2− 3π/q has the form π/r . The result follows from the table above.
Note that in (ii) we have 3π/s = π/2− 3π/q = 3(π/2−π/3−π/q) and, when s
is not divisible by 3 we are in case (iv) of Proposition 4.3.

If φ= 4π/p then 〈R1, R2 R3〉 acts as a (π/p, π/2−3π/p, π/2−6π/p) triangle
group. By inspection we see that the only possible values of p satisfying Propo-
sition 4.3 are p = 6, 8, 9, 10, 12, 14, 18. Of these, only p = 9 is odd. We now
eliminate this case.

Suppose that ψ = 2π/9 and φ = 4π/9. That is:

R1 =

e4π i/27 e2π i/272 cos(2π/9) −2 cos(2π/9)
0 e−2π i/27 0
0 0 e−2π i/27

 .
We calculate

(R1 R2)
6
=

 e4π i/9
(
2 cos(2π/9)− 1

)
−e16π i/27

(
2 cos(4π/9)+ 1

)
0

e8π i/27
(
2 cos(4π/9)+ 1

)
−e4π i/92 cos(2π/9) 0

0 0 e−8π i/9

 .
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The eigenvalues of (R1 R2)
6 are e16π i/9, e−8π i/9, e−8π i/9. Thus (R1 R2)

6 is a com-
plex reflection with angle 8π/3, that is 2π/3. Also

tr
(
(R1 R2)

6 J
)
=−e16π i/27(2 cos(4π/9)+ 1

)
.

This trace does not appear on our list of possible values of τ . Therefore 〈R1, J 〉 is
not discrete. Indeed, we may calculate that

tr
(
(R1 R2)

6(R2 R3)
6
)
= e8π i/9

(
2 cos(2π/9)− 1− 2 cos(4π/9)

)
+ e−16π i/9.

Now 2 cos(2π/9)− 1− 2 cos(4π/9) lies in (−2, 2), but is not equal to twice the
cosine of a rational multiple of π (for example this follows from the theorem of
Conway and Jones). Hence (R1 R2)

6(R2 R3)
6 is elliptic of infinite order. �

We now consider the points we have not eliminated by Corollary 5.7. By inspec-
tion, we see that each of these groups is a subgroup of one of the discrete groups
from Theorem 5.5. Therefore we have proven:

Theorem 5.8. Suppose that ψ = 2π/p and τ = e2iφ/3
+ e−iφ/3 where −π/p <

φ < π −π/p. The group 〈R1, J 〉 is discrete if and only if φ = 2π/q where either

(i) q = 3, 4, 5, 6, 7, 8, 9, 10, 12, 18 or∞ and π − 2π/p− 2π/q = 2π/r for
some integer r ;

(ii) p = 3 and q = 15, 24, 42, −30 or −12.

Note that (i) includes the case where p = 2 and r = −q (where q > 5),
which is Proposition 4.5 of [Parker 2008], and the case where p = 3 and q =
3, 4, 5, 6, 7, 8, 9, 10, 12, 18 or∞.

5.4. An example of a discrete group on the Sauter curve. Paupert [Paupert 2005,
§5.4.1] considered the group with p= 3 and angle parameters (5π/3, 4π/3). Writ-
ing R1 J as a unimodular matrix, these angle parameters translate to eigenvalues
1, eiπ/3 and e−iπ/3. (The fixed point of R1 J corresponds to the eiπ/3-eigenspace.)
Hence the trace of R1 J is τ = 1+ eiπ/3

+ e−iπ/3
= 2. This appears on the list of

discrete groups. In this case,

R1 =

e4π i/9 2 −2e2π i/9

0 e−2π i/9 0
0 0 e−2π i/9

 , R2 =

 e−2π i/9 0 0
−2e2π i/9 e4π i/9 2

0 0 e−2π i/9

 ,
R3 =

e−2π i/9 0 0
0 e−2π i/9 0
2 −2e2π i/9 e4π i/9

 .
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We can easily check that an eiπ/3-eigenvector of R1 J is e5π i/9

1
e−5π i/9

 ,
which is negative.

We now give another, more direct, way to see that this group is discrete. Using
Proposition 2.8 we see that 〈R1, R2, R3〉 may be conjugated in PU(2, 1) so that
their matrix entries lie in Z[e2π i/3

], the Eisenstein integers. Since this is a discrete
subring of C the group is automatically discrete.

5.5. The two curves are related for p = 3. In Section 5.1 we have seen that each
group on the Sauter curve is a subgroup of a group on the Mostow curve, but for
a different value of ψ (the angle of rotation of the generators). In the special case
whereψ=2π/3, we can apply this twice to see that each group on the Sauter curve
is a subgroup of a group on the Mostow curve, for the same value of ψ . Moreover,
Theorem 5.8 tells us that the Sauter subgroup in question is discrete only if the
larger Mostow group is discrete. In other words, in terms of discrete groups, the
two curves are the same; this is visible on Figure 3. The precise statement is the
following:

Proposition 5.9. The group 0(2π/3, e2iφ/3
+ e−iφ/3) is conjugate to a subgroup

of 0(2π/3,−e−iφ/3).

Proof. We have seen in Section 5.1 that 0(φ, e2iψ/3
+ e−iψ/3) is conjugate to

a subgroup of 0(ψ,−e−iφ/3). Applying this with ψ = 2π/3, we obtain that
0(φ, e4iπ/9

+ e−2iπ/9) is conjugate to a subgroup of 0(2π/3,−e−iφ/3). Now the
point is that e4iπ/9

+e−2iπ/9
= eiπ/9

=−e−8iπ/9, so that the former group (of Sauter
type) is also of Mostow type, and we can therefore repeat the process. This tells
us that 0(8π/3, e2iφ/3

+ e−iφ/3) is conjugate to a subgroup of 0(2π/3,−e−iφ/3).
Note that 8π/3= 2π/3 mod 2π . �

In fact we can say more and identify the corresponding subgroups in terms of
generators: 〈(R1 R2)

2, J 〉 is a subgroup of 〈A1, J 〉, which is in turn a subgroup of
〈R1, J 〉 (see Section 5.1), and these various subgroups correspond to the values of
the parameters described above.

Indeed, when p = 3 and |τ | = 1, we have tr((R1 R2)
2) = e16π i/9

+ 2e−8π i/9.
Therefore (R1 R2)

2 is a complex reflection with angle e24π i/9
= e2π i/3. We also

have tr((R1 R2)
2 J ) = τ 2

+ 2 cos(2π/3)τ . When τ = −e−iφ/3 then this trace is
e2iφ/3

+ e−iφ/3 as required.
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Figure 2. The sporadic points together with the trace parameter
space for p = 3.

6. Sporadic groups generated by complex reflections of order 3

We summarise the results in this section in the following theorem. Recall that
the sporadic values of τ are denoted σ(φ, η) = e2iφ

+ e−iφ2 cos(η), except for
σ(±2π/7)= e±2π i/7

+ e±4π i/7
+ e±8π i/7.

Theorem 6.1. Suppose that ψ = 2π/3. Then the groups associated to the sporadic
values of τ have the following properties:

(i) 0(2π/3, τ ) lies in SU(2, 1) unless τ = σ(π/9, 4π/7) or σ(2π/7).

(ii) 0(2π/3, τ ) fixes a point of H2
C

if and only if τ = σ(−π/9, η) where η =
2π/5, 4π/5, 4π/7, 6π/7.

(iii) 0(2π/3, τ ) preserves a complex line if and only if τ = σ(−π/9, 2π/7).

(iv) 0(2π/3, τ ) is contained in an arithmetic lattice in SU(2, 1) if and only if
τ = σ(−2π/7).

(v) If τ ∈
{
σ(±π/6, 2π/5), σ(π/9, 4π/5), σ(−π/9, 4π/7), σ(±π/9, 6π/7)

}
then 0(2π/3, τ ) is not discrete.
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2.5

3

3.5

4

4.5

5

4.5 5 5.5 6

Figure 3. The sporadic points (crosses) together with the angle
parameter space for p = 3. We have also included all discrete
points (diamonds) on the two curves.

6.1. Which sporadic points are in the parameter space? This was determined
earlier for all values of p (see Table 2). For p = 3, the situation is the following:

• Hτ has signature (2, 1) for the following sporadic values of τ :

σ(±π/6, π/4), σ (±π/6, π/5), σ (±π/6, 2π/5), σ (−2π/7)
σ (π/9, 2π/5), σ (π/9, 4π/5), σ (π/9, 2π/7), σ (π/9, 6π/7).

• Hτ is degenerate (signature (2,0) or (1,1), see below) for τ = σ(−π/9, η)
where η = 2π/5, 4π/5, 2π/7, 4π/7 or 6π/7. The corresponding five points
are on the boundary of our parameter space.

• Hτ is positive definite when τ = σ(π/9, 4π/7) and τ = σ(2π/7). The corre-
sponding two points are outside of our parameter space.
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Figure 4. Schematic picture of triangle group action when τ =
σ(−π/9, η) for η = 2π/5 (2), 4π/5 (1), 2π/7 (3).

6.2. Reducible sporadic groups. These groups correspond to τ = σ(−π/9, η)
where η = 2π/5, 4π/5, 2π/7, 4π/7 or 6π/7 and have a common eigenvector1

1
1

 .
As in Proposition 4.4 we analyse their action on the orthogonal complement of this
vector. In this case, normalising R1 for convenience as−e−iπ/9 R1, the eigenvalues
on this complement are−eiπ/3 and−e−iπ/3 for R1, −eiπ/3 and−e−iπ/3 for J , and
−eiη and −e−iη for R1 J . Therefore the group 〈R1, J 〉 acts as (the holomorphic
subgroup of) a (π/3, π/3, η) triangle group. For η = 2π/5 or 4π/5, this is in fact
a (finite) (2, 3, 5) triangle group; for η = 2π/7, it is a discrete hyperbolic (2, 3, 7)
triangle group. For η= 4π/7 or 6π/7, it is a nondiscrete spherical triangle group;
in fact we already know that these two groups are nondiscrete from Corollary 4.2,
as R1 R2 R3 R−1

2 is elliptic of infinite order.
In Figure 4 we draw a schematic picture of the triangle group action induced by

the generators in the three discrete cases.

6.3. Nondiscrete irreducible sporadic groups. The trace of R1 R−1
2 is

tr(R1 R−1
2 )= 2 cos(ψ)+ |τ |2+ 1.
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When ψ = 2π/3 we have

tr(R1 R−1
2 )= |τ |2 = 2+ 2 cos(2θ)

where 2θ is given in the table just before Proposition 3.1. Evaluating in each case
we can find whether R1 R−1

2 is loxodromic, parabolic or elliptic and, in the latter
case, whether or not it has finite order. This enables us to eliminate one pair of
complex conjugate τ (see also Proposition 4.5):

Lemma 6.2. Suppose that ψ = 2π/3 and τ = σ(±π/6, 2π/5). Then R1 R−1
2 is

elliptic of infinite order.

Proof. We know that

tr(R1 R−1
2 )= |τ |2 = 1+ 4 cos2(2π/5)= 3+ 2 cos(4π/5).

Since R1 R−1
2 has real trace it must have eigenvalues ei2, e−i2 and 1. Hence its

trace is 1+ 2 cos(2). In other words,

2 cos(2)= 2− 2 cos(π/5).

Using the theorem of Conway and Jones [1976, Theorem 7], we see that 2 is not
a rational multiple of π . This proves the result. �

The proof of the following lemma is similar to the proof of Lemma 4.1, once
we know that

tr(R1 R−1
2 R3 R2)= eiψ/3(2− |τ 2

− eiψτ |2
)
+ e−2iψ/3.

Lemma 6.3. Let R1, R2 and R3 be given by (2-6). If |τ 2
+ τeiψ

| > 2 then
R1 R−1

2 R3 R2 is loxodromic. If |τ 2
− τ | ≤ 2 then R1 R−1

2 R3 R2 is elliptic with eigen-
values e−2iψ/3, −eiψ/3+2i2 and −eiψ/3−2i2 where |τ 2

+ τeiψ
| = 2 cos2.

Corollary 6.4. Suppose that ψ = 2π/3 and τ = σ(π/9, 4π/5). Then R1 R−1
2 R3 R2

is elliptic of infinite order.

Proof. When ψ = 2π/3 and τ = σ(π/9, 4π/5) we see that

|τ 2
+ τeiψ

|
2
= 6−

√
5.

Hence |τ 2
+ τeiψ

| = 2 cos2 where 2 is not a rational multiple of π . �

6.4. Arithmeticity of sporadic groups. We begin by applying Proposition 2.8 to
show that when τ =σ(−2π/7) the group 〈R1, R2, R3〉 is contained in an arithmetic
lattice in SU(2, 1). In particular, putting ψ = 2π/3 into the expression in Equation
(2-8) for 2 sin(π/3)C HτC−1, where C = diag(e−2π i/9, 1, e2π i/9), we obtain:

√
3C HτC−1

=

 3 −(3+ i
√

3)τ/2 (3+ i
√

3)τ/2
−(3− i

√
3)τ/2 3 −(3+ i

√
3)τ/2

(3− i
√

3)τ/2 −(3− i
√

3)τ/2 3

 .
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Proposition 6.5. Let R1, R2 and R3 be complex reflections with angle ψ = 2π/3
so that the group 〈R1, R2, R3〉 has parameter τ = σ(−2π/7) = (−1− i

√
7)/2.

Then 〈R1, R2, R3〉 is contained in an arithmetic lattice in SU(2, 1) and hence is
discrete.

Proof. We have eiψ
= (−1+ i

√
3)/2 and τ = (−1− i

√
7)/2. Both of these are

algebraic integers in the field Q
(√

21, i
√

3
)
. In particular, using Proposition 2.8,

we can ensure that the matrix entries of all elements of 〈R1, R2, R3〉 are algebraic
integers in Q

(√
21, i
√

3
)
. This field is a totally imaginary quadratic extension

of the totally real number field Q
(√

21
)
. The only nontrivial Galois conjugation

in Q
(√

21
)

sends
√

21 to −
√

21. This is compatible with g, the Galois conju-
gation in Q

(√
21, i
√

3
)

fixing (−1+ i
√

3)/2 and sending τ = (−1− i
√

7)/2 to
τ = (−1 + i

√
7)/2. The matrix

√
3C HτC−1 has entries in the ring of integers

of Q
(√

21, i
√

3
)

and signature (2, 1). The Galois conjugation g sends
√

3Hτ to
√

3C HτC−1. But we know that the point τ lies outside our parameter space and so
corresponds to a group for which the signature is (3, 0). Therefore, using standard
arguments (for example [McReynolds 2006] or Proposition 4.3 of [Parker 2008]),
we see that this group is contained in an arithmetic lattice in SU(2, 1) and hence
discrete. �

There are ten more sporadic groups with signature (2, 1). The goal of the rest
of this section is to show that none of them are contained in an arithmetic lattice
in SU(2, 1).

Proposition 6.6. Let R1, R2 and R3 be complex reflections with angle ψ = 2π/3
so that the group 〈R1, R2, R3〉 has parameter τ 6= σ(−2π/7) = (−1− i

√
7)/2.

Then 〈R1, R2, R3〉 is not contained in an arithmetic lattice in SU(2, 1).

The method of proof will be very similar to the proof of Proposition 6.6 and we
give an outline. In each case we conjugate (multiples of) Hτ and R j so that their
matrix entries are algebraic integers in a number field E . In each case the number
field E will be a purely imaginary quadratic extension of a totally real field F . The
following lemma lists the values of τ and the number fields. It is easy to verify
and we leave the details to the reader. Note that in parts (i) and (ii) we conjugate
by C and in parts (iii) and (iv) we conjugate by C−1.

Lemma 6.7. Suppose that R1, R2 and R3 are given by (2-6) with ψ = 2π/3 and
that C = diag(e−2π i/9, 1, e2π i/9).

(i) If τ = σ(π/6, π/4) or σ(−π/6, π/4) then the entries of
√

3C HτC−1 and
e2π i/9C R j C−1, for j = 1, 2, 3, are algebraic integers in the number field
Q(
√

6, i
√

3).
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(ii) If τ = σ(π/6, π/5), σ(π/6, 2π/5), σ(−π/6, π/5) or σ(−π/6, 2π/5) then
the entries of

√
3C HτC−1 and e2π i/9C R j C−1, for j = 1, 2, 3, are algebraic

integers in the number field Q
(√

3,
√

5, i
)
.

(iii) If τ = σ(π/9, 2π/5) or σ(π/9, 4π/5) then the entries of
√

3C−1 HτC and
e2π i/9C−1 R j C , for j = 1, 2, 3, are algebraic integers in the number field
Q
(
2 cos(2π/5), e2π i/3

)
.

(iv) If τ = σ(π/9, 2π/7), σ(π/9, 4π/7) or σ(π/9, 6π/7) then the entries of the
matrices

√
3C−1 HτC and e2π i/9C−1 R j C , for j = 1, 2, 3, are algebraic in-

tegers in Q
(
2 cos(2π/7), e2π i/3

)
.

We then examine all Galois conjugations in E that are compatible with non-
trivial Galois conjugations in F . For the number fields in Lemma 6.7 the Galois
conjugations permute the values of τ given in each part.

For example, in part (ii) of Lemma 6.7 E is Q
(√

3,
√

5, i
)

and F is Q
(√

3,
√

5
)
.

The Galois conjugation in F fixing
√

3 and changing the sign of
√

5 extends
to a Galois conjugation g1 in E that fixes e2π i/3 and swaps σ(π/6, π/5) and
σ(π/6, 2π/5) and swaps σ(−π/6, π/5) and σ(−π/6, 2π/5). Likewise, the Ga-
lois conjugation in F fixing

√
5 and changing the sign of

√
3 extends to a Ga-

lois conjugation g2 in E that fixes e2π i/3 and swaps σ(π/6, π/5) and σ(−π/6+
2π/3, π/5) and swaps σ(π/6, 2π/5) and σ(−π/6+2π/3, 2π/5). Note that σ(φ+
2π/3, η) is equivalent to σ(φ, η). The remaining Galois conjugation in E is the
product of g1 and g2.

In each case all nontrivial Galois conjugations will send our value of τ to one of
the other sporadic values of τ . Since we have analysed which of the points τ lie in
our parameter space we know the signature of the corresponding Hermitian form
Hτ . In each case there will be at least one nontrivial Galois conjugation that sends
Hτ to another form of signature (2, 1). This is sufficient to ensure that 〈R1, R2, R3〉

is nonarithmetic; compare Corollary 12.2.8 of [Deligne and Mostow 1986]. This
completes our sketch proof of Proposition 6.6.
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