Pacific Journal of Mathematics

ACTIONS OF LINEAR ALGEBRAIC GROUPS OF EXCEPTIONAL TYPE ON PROJECTIVE VARIETIES

KIWAMU WATANABE

Volume 239 No. 2

February 2009

ACTIONS OF LINEAR ALGEBRAIC GROUPS OF EXCEPTIONAL TYPE ON PROJECTIVE VARIETIES

KIWAMU WATANABE

Let *X* be a smooth projective variety of dimension *n* and *G* a simple linear algebraic group of exceptional type acting regularly and nontrivially on *X*. Then it is known that *n* has a lower bound r_G which only depends on the Dynkin type of *G*. In this article we give a classification of *X* with an action of *G* in the case where $n = r_G + 1$.

1. Introduction

Let X be a smooth projective variety of dimension n and r_G the minimum of the dimension of a homogeneous variety of a simple linear algebraic group G, that is, the minimum codimension of a maximal parabolic subgroup of G. M. Andreatta [2001] proved that if $r_G < n$, the only regular action of G on X is trivial, and if $r_G = n$, then X is homogeneous. He also gave a classification of smooth projective varieties on which a simple linear algebraic group of classical type acts regularly and nontrivially in the case where $n = r_G + 1$. Our main purpose of this article is to prove the following:

Theorem 1.1. Let X be a smooth projective variety of dimension n and G a simple, simply connected and connected linear algebraic group of exceptional type acting regularly and nontrivially on X. Assume that $n = r_G + 1$. Then X is one of the following; the action of G is unique for each case:

- (i) ℙ⁶,
- (ii) \mathbb{Q}^6 ,
- (iii) $E_6(\omega_1)$,
- (iv) $G_2(\omega_1 + \omega_2)$,
- (v) $Y \times Z$, where Y is $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$, and Z is a smooth projective curve,
- (vi) $\mathbb{P}(\mathbb{O}_Y \oplus \mathbb{O}_Y(m))$, where Y is as in (v) and m > 0.

MSC2000: primary 14L30, 14L40; secondary 14E30.

Keywords: group action, linear algebraic group of exceptional type, minimal model program. Supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Note that G-orbits on X are very simple (for example a projective space and a quadric) in the case where G is classical type, but they are not in our case. So we need other arguments than Andreatta's in several points.

Throughout this paper we work over the complex number field \mathbb{C} .

2. Preliminaries

We denote a simple linear algebraic group of Dynkin type *G* simply by *G* and for a dominant integral weight ω of *G*, the minimal closed orbit of *G* in $\mathbb{P}(V_{\omega})$ by $G(\omega)$, where V_{ω} is the irreducible representation space of *G* with highest weight ω . For example, $E_6(\omega_1)$ is the minimal closed orbit of an algebraic group of type E_6 in $\mathbb{P}(V_{\omega_1})$, where ω_1 is the first fundamental dominant weight in the standard notation of Bourbaki [1968]. Then we call $G(\omega)$ a *rational homogeneous variety*.

Lemma 2.1 [Andreatta 2001, Lemmas 1.4, 1.5]. Let X be a smooth projective variety on which a connected linear algebraic group G acts regularly and nontrivially. Then X has an extremal contraction $\phi : X \to Z$ which is G-equivariant, and G acts regularly on Z.

Definition 2.2 [Andreatta 2001, Definition 1.8]. Let *G* be a simple linear algebraic group. We define r_G to be the minimal codimension of parabolic subgroups of *G*.

Example 2.3 [Andreatta 2001, Example 1.0.1]. If *G* is an exceptional linear algebraic group, we have $r_{E_6} = 16$, $r_{E_7} = 27$, $r_{E_8} = 57$, $r_{F_4} = 15$ and $r_{G_2} = 5$.

Proposition 2.4 [Andreatta 2001, Proposition 2.1]. Suppose that a connected reductive linear algebraic group *G* acts effectively on a complete normal variety *Z*. Then the following are equivalent:

- (1) There exists a fixed point z such that its projectivized tangent cone, that is the variety $P_z = \operatorname{Proj}(\bigoplus_k m_z^k/m_z^{k+1})$, is a G-homogeneous variety.
- (2) Z is a projective quasihomogeneous cone over a homogeneous variety with respect to G.

Proposition 2.5 [Andreatta 2001, Lemma 2.2 and Proposition 3.1]. Let X be a smooth projective variety of dimension n and G a simple, simply connected, connected linear algebraic group acting regularly and nontrivially on X. Then

- (1) $n \ge r_G$;
- (2) if moreover $n = r_G$, then X is homogeneous;
- (3) if G is exceptional and $n = r_G + 1$, X has no fixed points.

Lemma 2.6 [Andreatta 2001, Lemma 4.2]. Let X and Y be smooth projective varieties on which a simple exceptional linear algebraic group G acts regularly and nontrivially. Assume that $r_G = \dim X - 1 = \dim Y - 1$. If X and Y each have a dense open orbit which is G-isomorphic, then we have a G-isomorphism $X \cong Y$.

Proposition 2.7 [Watanabe 2008]. Let X be a smooth projective variety and A a rational homogeneous variety $G(\omega)$, where G is exceptional. If A is an ample divisor on X, (X, A) is isomorphic to $(\mathbb{P}^6, \mathbb{Q}^5)$, $(\mathbb{Q}^6, \mathbb{Q}^5)$ or $(E_6(\omega_1), F_4(\omega_4))$.

Remark that a 5-dimensional smooth quadric \mathbb{Q}^5 is G_2 -homogeneous.

3. Proof of Theorem 1.1

By Lemma 2.1 we have a *G*-equivariant extremal contraction of a ray $\phi : X \to Z$. Assume that $\rho(X) \ge 2$.

Case 1. ϕ *is birational.* Let ϕ be birational and E the exceptional locus of ϕ . Since r_G is equal to n - 1 and X has no fixed points, ϕ is a divisorial contraction and E is contracted to a point z. Furthermore E is isomorphic to $E_6(\omega_1)(=E_6(\omega_5))$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)(=Q^5)$ and $G_2(\omega_2)$. The conormal bundle of the exceptional divisor is $N_{E/X}^* \cong \mathbb{O}(k)$ with $1 \le k \le i(E) - 1$, where i(E) is the Fano index of E.

Applying Proposition 2.4, we see that X is a completion of an open orbit G/K (see [Ahiezer 1977]). Here K is the kernel of the character map $\rho : P \to \mathbb{C}^*$ associated to the homogeneous line bundle $N_{E/X}^* \cong \mathbb{O}(k)$, where P is the parabolic subgroup which satisfies $E \cong G/P$.

On the other hand, $X_k = \mathbb{P}(N_{E/X}^* \oplus \mathbb{C})$ is also a completion of an open orbit G/K. By Lemma 2.6, X is isomorphic to $X_k = \mathbb{P}(N_{E/X}^* \oplus \mathbb{C})$.

Case 2. ϕ is a fibering type. Let ϕ be a contraction of fibering type.

First we assume that the induced action of *G* on *Z* is trivial. In this case, any fiber of ϕ is isomorphic to $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$ and dim Z = 1. Since rational homogeneous varieties are locally rigid, there is no ϕ which has both $F_4(\omega_1)$ and $F_4(\omega_4)$ (respectively $G_2(\omega_1)$ and $G_2(\omega_2)$) as fibers. So all fibers of ϕ are isomorphic to each other. Then we have $X = E_6(\omega_1) \times Z$, $E_7(\omega_1) \times Z$, $E_8(\omega_1) \times Z$, $F_4(\omega_1) \times Z$, $F_4(\omega_4) \times Z$, $G_2(\omega_1) \times Z$ or $G_2(\omega_2) \times Z$. This follows from [Mabuchi 1979, Theorem 1.2.1].

Second we assume that the induced action of *G* on *Z* is not trivial. Then *Z* is isomorphic to $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$. It follows that all fibers have dimension one. Moreover, all fibers of ϕ are isomorphic to each other. So ϕ is a conic bundle which fibers are isomorphic to \mathbb{P}^1 . Since the Brauer group of *Z* is trivial, *X* is $\mathbb{P}(\mathscr{E})$ with \mathscr{E} a rank 2 vector bundle on *Z*.

The assumption that $n = r_G + 1$ implies that the dimension of any orbit of *G* in $\mathbb{P}(\mathscr{E})$ is at least n - 1. If $\mathbb{P}(\mathscr{E})$ is *G*-homogeneous, then $\mathbb{P}(\mathscr{E})$ has another natural fibration structure $\mathbb{P}(\mathscr{E}) \to Z'$, where Z' is a *G*-homogeneous variety whose Picard number is 1 [Baston and Eastwood 1989, 2.4]. Since dim $Z + 1 = \dim X > \dim Z'$, (Z, Z') (or (Z', Z)) is $(E_6(\omega_1), E_6(\omega_5))$, $(F_4(\omega_1), F_4(\omega_4))$ or $(G_2(\omega_1), G_2(\omega_2))$ [Snow 1989, 9.3]. However, if (Z, Z') is $(E_6(\omega_1), E_6(\omega_5))$ or $(F_4(\omega_1), F_4(\omega_4))$,

the fiber of $\mathbb{P}(\mathscr{E}) \to Z$ is not \mathbb{P}^1 . Hence (Z, Z') is $(G_2(\omega_1), G_2(\omega_2))$ and we have $\mathbb{P}(\mathscr{E}) \cong G_2(\omega_1 + \omega_2)$.

If $\mathbb{P}(\mathscr{E})$ is not *G*-homogeneous, we have the *G*-orbit decomposition $\mathbb{P}(\mathscr{E}) = (\bigsqcup_{i \in I} Gx_i)$ or $\mathbb{P}(\mathscr{E}) = Gx \sqcup (\bigsqcup_{i \in I} Gx_i)$, where $x, x_i \in \mathbb{P}(\mathscr{E})$. Here, Gx is a *G*-orbit of dimension *n* and Gx_i is a rational homogeneous variety of dimension n-1 whose Picard number is 1. Since dim $Gx_i = \dim Z$, $\phi_{Gx_i} : Gx_i \to Z$ is a finite morphism. If the ramification divisor *R* of ϕ_{Gx_i} is not empty, *G* acts on *R*. But this contradicts homogeneity of Gx_i . So ϕ_{Gx_i} is étale. Hence we see that $\phi_{Gx_i} : Gx_i \to Z$ is isomorphic, because a Fano variety is simply connected. So Gx_i is a section of ϕ . Since any *G*-homogeneous vector bundle has no a transitive action of *G*, we have $\sharp I \neq 1$. So $\mathbb{P}(\mathscr{E})$ has two sections which do not intersect each other. Hence \mathscr{E} is decomposable. The uniqueness of action can be proved as above.

Assume that $\rho(X) = 1$. By using the list of parabolic subgroups of codimension *n* corresponding to one node of the Dynkin diagram, we see that *X* is not *G*-homogeneous. So *X* has a closed orbit *H* which is isomorphic to $E_6(\omega_1)$, $E_7(\omega_1)$, $E_8(\omega_1)$, $F_4(\omega_1)$, $F_4(\omega_4)$, $G_2(\omega_1)$ or $G_2(\omega_2)$. The condition $\rho(X) = 1$ implies *X* is a Fano variety. Furthermore, Pic(X) $\cong \mathbb{Z}$. Hence *H* is an ample divisor of *X*. By Proposition 2.7, we see that (*X*, *H*) is (\mathbb{P}^6 , \mathbb{Q}^5), (\mathbb{Q}^6 , \mathbb{Q}^5) or ($E_6(\omega_1)$, $F_4(\omega_4)$).

These X satisfy the assumption of the Theorem. In fact, we see that $F_4 \subset E_6$, $G_2 \subset SO(7) \subset SO(8)$. Here SO(k) means the special orthogonal group.

At last, we shall prove the uniqueness of action. We only deal with the case where X is $E_6(\omega_1)$. We can prove other cases as the same.

Let V_{27} be the irreducible representation space of E_6 with highest weight ω_1 . Then E_6 acts on V_{27} . If G whose Dynkin type is F_4 acts on $E_6(\omega_1)$, we obtain a 27-dimensional representation $G \to GL(V_{27})$. By the Weyl dimension theorem and our assumption, it is easy to see that V_{27} is a direct sum of a 26-dimensional irreducible representation space V_{26} and a 1-dimensional irreducible representation space V_1 . Furthermore, we see that irreducible representations $G \to GL(V_{26})$ and $G \to GL(V_1)$ are unique. This implies that the action of G on $E_6(\omega_1)$ is unique.

Acknowledgements

The author would like to express his gratitude to his supervisor Professor Hajime Kaji for some useful advice.

References

[[]Ahiezer 1977] D. N. Ahiezer, "Dense orbits with two endpoints", *Izv. Akad. Nauk SSSR Ser. Mat.* **41**:2 (1977), 308–324, 477. In Russian; translated in *Math. USSR-Izv.* **11** (1977), 293–307. MR 57 #12537 Zbl 0378.14009

- [Andreatta 2001] M. Andreatta, "Actions of linear algebraic groups on projective manifolds and minimal model program", *Osaka J. Math.* **38**:1 (2001), 151–166. MR 2002c:14075 Zbl 1054.14061
- [Baston and Eastwood 1989] R. J. Baston and M. G. Eastwood, *The Penrose transform: its interaction with representation theory*, Oxford University Press, New York, 1989. MR 92j:32112 Zbl 0726.58004
- [Bourbaki 1968] N. Bourbaki, *Groupes et algèbres de Lie, Chapitres IV–VI*, Actualités Scientifiques et Industrielles **1337**, Hermann, Paris, 1968. MR 39 #1590 Zbl 0186.33001
- [Mabuchi 1979] T. Mabuchi, "On the classification of essentially effective SL(2; C) ×SL(2; C)actions on algebraic threefolds", *Osaka J. Math.* **16**:3 (1979), 727–744. MR 81k:14033a Zbl 0422. 14029
- [Snow 1989] D. M. Snow, "Homogeneous vector bundles", pp. 193–205 in *Group actions and in-variant theory* (Montreal, 1988), edited by A. Bailynicki-Birula, CMS Conf. Proc. 10, Amer. Math. Soc., Providence, RI, 1989. MR 90m:14051 Zbl 0701.14017
- [Watanabe 2008] K. Watanabe, "Classification of polarized manifolds admitting homogeneous varieties as ample divisors", *Math. Ann.* **342**:3 (2008), 557–563. MR 2430990

Received September 4, 2008. Revised October 16, 2008.

KIWAMU WATANABE WASEDA UNIVERSITY DEPARTMENT OF MATHEMATICAL SCIENCES SCHOOL OF SCIENCE AND ENGINEERING 4-1 OHKUBO 3-CHOME SHINJUKU-KU, TOKYO 169-8555 JAPAN

kiwamu0219@fuji.waseda.jp