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Let X be a smooth projective variety of dimension n» and G a simple linear
algebraic group of exceptional type acting regularly and nontrivially on X.
Then it is known that » has a lower bound r; which only depends on the
Dynkin type of G. In this article we give a classification of X with an action
of G in the case where n =rg + 1.

1. Introduction

Let X be a smooth projective variety of dimension n and rg the minimum of the
dimension of a homogeneous variety of a simple linear algebraic group G, that
is, the minimum codimension of a maximal parabolic subgroup of G. M. An-
dreatta [2001] proved that if rg < n, the only regular action of G on X is trivial,
and if rg = n, then X is homogeneous. He also gave a classification of smooth
projective varieties on which a simple linear algebraic group of classical type acts
regularly and nontrivially in the case where n = rg + 1. Our main purpose of this
article is to prove the following:

Theorem 1.1. Let X be a smooth projective variety of dimension n and G a simple,
simply connected and connected linear algebraic group of exceptional type acting
regularly and nontrivially on X. Assume that n = rg + 1. Then X is one of the
following; the action of G is unique for each case:

(i) PS,

(i) Q°,

(iil) E¢(@1),

(iv) Ga(w) +w»),

(V) Y x Z, where Y is E¢(w1), E7(1), Eg(wi1), Fa(wi), Fa(ws), Go(1) or
Gy(an), and Z is a smooth projective curve,
(vi) P(Oy ®Oy(m)), where Y is as in (v) and m > 0.
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Note that G-orbits on X are very simple (for example a projective space and a
quadric) in the case where G is classical type, but they are not in our case. So we
need other arguments than Andreatta’s in several points.

Throughout this paper we work over the complex number field C.

2. Preliminaries

We denote a simple linear algebraic group of Dynkin type G simply by G and for a
dominant integral weight o of G, the minimal closed orbit of G in P(V,,) by G (w),
where V,, is the irreducible representation space of G with highest weight w. For
example, Eg(w) is the minimal closed orbit of an algebraic group of type E¢ in
P(V4,), where o is the first fundamental dominant weight in the standard notation
of Bourbaki [1968]. Then we call G(w) a rational homogeneous variety.

Lemma 2.1 [Andreatta 2001, Lemmas 1.4, 1.5]. Let X be a smooth projective
variety on which a connected linear algebraic group G acts regularly and nontriv-
ially. Then X has an extremal contraction ¢ : X — Z which is G-equivariant, and
G acts regularly on Z.
Definition 2.2 [Andreatta 2001, Definition 1.8]. Let G be a simple linear algebraic
group. We define rg to be the minimal codimension of parabolic subgroups of G.
Example 2.3 [Andreatta 2001, Example 1.0.1]. If G is an exceptional linear alge-
braic group, we have rg, =16, rg, =27, rg, =57, rp, =15 and rg, = 5.
Proposition 2.4 [Andreatta 2001, Proposition 2.1]. Suppose that a connected re-
ductive linear algebraic group G acts effectively on a complete normal variety Z.
Then the following are equivalent:

(1) There exists a fixed point z such that its projectivized tangent cone, that is the

variety P, = Proj (@kmlg/m’Z‘Jrl), is a G-homogeneous variety.
(2) Z is a projective quasihomogeneous cone over a homogeneous variety with
respect to G.

Proposition 2.5 [Andreatta 2001, Lemma 2.2 and Proposition 3.1]. Let X be a
smooth projective variety of dimension n and G a simple, simply connected, con-
nected linear algebraic group acting regularly and nontrivially on X. Then

(1) n=rg;

(2) if moreover n =rg, then X is homogeneous;

(3) if G is exceptional and n = rg + 1, X has no fixed points.
Lemma 2.6 [Andreatta 2001, Lemma 4.2]. Let X and Y be smooth projective
varieties on which a simple exceptional linear algebraic group G acts regularly

and nontrivially. Assume thatrg =dim X — 1 =dimY — 1. If X and Y each have
a dense open orbit which is G-isomorphic, then we have a G-isomorphism X =Y.
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Proposition 2.7 [Watanabe 2008]. Let X be a smooth projective variety and A
a rational homogeneous variety G(w), where G is exceptional. If A is an ample
divisor on X, (X, A) is isomorphic to (P®, @%), (Q°, @) or (Es(w1), F4(ws)).

Remark that a 5-dimensional smooth quadric @’ is G,-homogeneous.

3. Proof of Theorem 1.1

By Lemma 2.1 we have a G-equivariant extremal contraction of aray ¢ : X — Z.
Assume that p(X) > 2.

Case 1. ¢ is birational. Let ¢ be birational and E the exceptional locus of ¢. Since
rg is equal to n — 1 and X has no fixed points, ¢ is a divisorial contraction and
E is contracted to a point z. Furthermore E is isomorphic to E¢(w;)(= E¢(ws)),
E7(w1), Es(w), Fs(w1), F4(ws), G2(w1)(= Q%) and G2 (w,). The conormal bun-
dle of the exceptional divisor is Ng,x* = O(k) with 1 <k <i(E)— 1, where i (E)
is the Fano index of E.

Applying Proposition 2.4, we see that X is a completion of an open orbit G/K
(see [Ahiezer 1977]). Here K is the kernel of the character map p : P — C*
associated to the homogeneous line bundle Ng,x* =0(k), where P is the parabolic
subgroup which satisfies £E = G/ P.

On the other hand, Xy = P(Ng,x* @ 0) is also a completion of an open orbit
G/K. By Lemma 2.6, X is isomorphic to X; = P(Ng,x* @ 0).

Case 2. ¢ is a fibering type. Let ¢ be a contraction of fibering type.

First we assume that the induced action of G on Z is trivial. In this case, any fiber
Of¢ is isomorphic to E(,(C{)]), E7(w1), Eg(CO]), F4(a)1), F4(a)4), Gz(a)l) or G2(w2)
and dim Z = 1. Since rational homogeneous varieties are locally rigid, there is no ¢
which has both Fy(w1) and Fy(w4) (respectively G, (1) and G, (w;)) as fibers. So
all fibers of ¢ are isomorphic to each other. Then we have X = FEg(w;) x Z,
E7(a)1) X Z, Eg(a)l) X Z, F4(a)1) X Z, F4(a)4) X Z, Gz(a)l) X Z or Gz(a)z) x Z.
This follows from [Mabuchi 1979, Theorem 1.2.1].

Second we assume that the induced action of G on Z is not trivial. Then Z
is isomorphic to E¢(w1), E7(w1), Eg(w1), Fa(wy), Fi(ws), Ga(w1) or Ga(w). It
follows that all fibers have dimension one. Moreover, all fibers of ¢ are isomorphic
to each other. So ¢ is a conic bundle which fibers are isomorphic to P'. Since the
Brauer group of Z is trivial, X is [P(€) with € a rank 2 vector bundle on Z.

The assumption that n = rg + 1 implies that the dimension of any orbit of G in
P(€) is at least n — 1. If P(€) is G-homogeneous, then P(€) has another natural
fibration structure P(€) — Z’, where Z’ is a G-homogeneous variety whose Picard
number is 1 [Baston and Eastwood 1989, 2.4]. Since dim Z+1=dim X > dim Z’,
(Z,Z7') (or (Z', Z)) is (E¢(w1), Ee(®5)), (Fa(w1), Fa(ws)) or (Ga2(w1), G2(2))
[Snow 1989, 9.3]. However, if (Z, Z’') is (E¢(w1), E¢(ws)) or (F4(w1), Fi(ws)),
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the fiber of P(€) — Z is not P'. Hence (Z, Z") is (Ga(w1), Ga(w2)) and we have
I]:D(%) = Gz(CO] +a)2).

If P(€) is not G-homogeneous, we have the G-orbit decomposition P(€) =
(Llic;Gxi) or P(6) = Gx U (||;c;Gx;), where x, x; € P(). Here, Gx is a G-
orbit of dimension n and Gx; is a rational homogeneous variety of dimension
n — 1 whose Picard number is 1. Since dim Gx; =dim Z, ¢g,, : Gx; — Z is a
finite morphism. If the ramification divisor R of ¢g,, is not empty, G acts on R.
But this contradicts homogeneity of Gx;. So ¢g,, is étale. Hence we see that
dcy, 1 Gx; — Z is isomorphic, because a Fano variety is simply connected. So
Gx; is a section of ¢. Since any G-homogeneous vector bundle has no a transitive
action of G, we have I # 1. So P(€) has two sections which do not intersect
each other. Hence € is decomposable. The uniqueness of action can be proved as
above.

Assume that p(X) = 1. By using the list of parabolic subgroups of codimen-
sion n corresponding to one node of the Dynkin diagram, we see that X is not G-
homogeneous. So X has a closed orbit H which is isomorphic to E¢(w;), E7(w1),
Eg(wy), F4(wy), Fy(ws), Go(w1) or Go(ws). The condition p(X) =1 implies X is
a Fano variety. Furthermore, Pic(X) = Z. Hence H is an ample divisor of X. By
Proposition 2.7, we see that (X, H) is (P®, @), (Q°, @) or (Es(w1), F4(ws)).

These X satisfy the assumption of the Theorem. In fact, we see that Fy C Eg,
G, C SO(7) € SO(8). Here SO(k) means the special orthogonal group.

At last, we shall prove the uniqueness of action. We only deal with the case
where X is E¢(w;). We can prove other cases as the same.

Let V27 be the irreducible representation space of Eg with highest weight ;.
Then Eg acts on V7. If G whose Dynkin type is Fy4 acts on Eg(w;), we obtain
a 27-dimensional representation G — GL(V,7). By the Weyl dimension theorem
and our assumption, it is easy to see that V;7 is a direct sum of a 26-dimensional
irreducible representation space V¢ and a 1-dimensional irreducible representation
space V;. Furthermore, we see that irreducible representations G — GL(V56) and
G — GL(V)) are unique. This implies that the action of G on E¢(w;) is unique.
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