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THE CHABAUTY SPACE OF CLOSED SUBGROUPS OF THE
THREE-DIMENSIONAL HEISENBERG GROUP

MARTIN R. BRIDSON, PIERRE DE LA HARPE AND VICTOR KLEPTSYN

When equipped with the natural topology first defined by Chabauty, the
closed subgroups of a locally compact group G form a compact space C(G).
We analyse the structure of C(G) for some low-dimensional Lie groups, con-
centrating mostly on the 3-dimensional Heisenberg group H . We prove that
C(H) is a 6-dimensional space that is path-connected but not locally con-
nected. The lattices in H form a dense open subset L(H)⊂C(H) that is the
disjoint union of an infinite sequence of pairwise homeomorphic aspherical
manifolds of dimension six, each a torus bundle over (S3 r T )×R, where T
denotes a trefoil knot. The complement of L(H) in C(H) is also described
explicitly. The subspace of C(H) consisting of subgroups that contain the
centre Z(H) is homeomorphic to the 4-sphere, and we prove that this is a
weak retract of C(H).

1. Introduction

Let G be a locally compact topological group. We denote by C(G) the space of
closed subgroups of G equipped with the Chabauty topology; this is a compact
space. A basis of neighbourhoods for a closed subgroup C ∈ C(G) is formed by
the subsets

(1-1) VK ,U (C)= {D ∈ C(G) | D ∩ K ⊂ CU and C ∩ K ⊂ DU },

where K ⊆ G is compact and U is an open neighbourhood of the identity e ∈ G.
We will consider the induced topology on various subspaces of C(G), including the
space of lattices L(G), the larger space of discrete subgroups D(G), the space of
abelian closed subgroups A(G), and the space of normal closed subgroups N(G).
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C(G) is contained in the set of all closed subspaces of the topological space G.
There is a natural topology on this larger set, the study of which goes back in some
form to Hausdorff and Vietoris; we recall some of its basic properties in Section 3.
The Chabauty topology coincides with the restriction of this topology to C(G).

Chabauty’s purpose in introducing this topology was to generalize a criterion
of Mahler that allows one to prove that appropriate sets of lattices are relatively
compact. Mahler’s original work concerned lattices in Rn , while Chabauty’s gen-
eralization [1950] deals with lattices in a large class of locally compact groups;
this result is known as the Mahler–Chabauty compactness criterion. Two early
references concerning the Chabauty topology are [Macbeath and Świerczkowski
1960] and [Bourbaki 1963, chapitre 8, § 5]. The Chabauty topology is also induced
by a topology defined by Fell on spaces of closed subsets [Fell 1962].

The topology has been useful for the study of Fuchsian groups [Harvey 1977, in
particular, Section 2] and more generally of discrete subgroups of other semisimple
groups [Guivarc’h and Rémy 2006], as well as hyperbolic manifolds; see [Thurston
1979, Chapter 9] and [Canary et al. 1987, in particular, Section I.3.1]; for Fuchsian
and Kleinian groups, convergence with respect to the Chabauty topology is known
as geometric convergence. Observe that whenever a space X can be identified
with a family of closed subgroups of a locally compact group G, as is the case for
Riemannian symmetric spaces or Bruhat–Tits buildings, the closure of X in C(G)
provides a natural compactification of X , which is in many cases an efficient tool
for studying X (this is explicit in, for example, [Guivarc’h et al. 1998, Chapter IX],
[Guivarc’h and Rémy 2006], and [Borel and Ji 2006, Sections I.17 and III.17–19]).
We also draw the reader’s attention to [Ghys 2007] where, by studying a certain
flow on the space Lumod(C) of coarea-1 lattices in C, Ghys discovered fascinating
phenomena linking dynamics, knot theory and arithmetic.

When the group G is discrete, the Chabauty topology on C(G) coincides with
the restriction to C(G) of the product topology on the compact space 2G of all sub-
sets of G. In particular, if Fk is the free group on k generators, N(Fk) is the space of
marked groups on k generators, which has been the subject of much work since its
appearance in the final remarks of [Gromov 1981]; see among others [Grigorchuk
1984; Champetier 2000; Champetier and Guirardel 2005; de Cornulier et al. 2007;
2008].

Our purpose in this work is to describe some examples of spaces C(G). A theme
that the reader will observe quickly is that for the most easily understood of low-
dimensional Lie groups the space C(G) can be complicated and yet beguilingly
tractable.
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As a preliminary exercise, we consider in Section 2 the group

(1-2) Aff=
{(

es t
0 1

) ∣∣∣ s, t ∈ R
}

of orientation preserving affine transformations of the real line. Up to isomorphism,
this is the unique nonabelian connected real Lie group of dimension 2.

Proposition 1.1. The space C(Aff) is a compact, contractible space of dimen-
sion 2. More precisely, it is the union of a closed 2-disc D and a compact interval I
attached by one of its end points to a point on the boundary circle ∂D.

The disc D arises as a cone over the real projective line formed by the subgroups
isomorphic to R; the cone point is the trivial subgroup {e}.

The subspace N(Aff) consisting of the closed normal subgroups of Aff is the
disjoint union of the point {e} and the closed interval I ; in particular, N(Aff) is
disconnected.

In Section 3, we recall some general facts about the Chabauty topology. In
Section 4, we revisit the following result of [Hubbard and Pourezza 1979], proving
a more detailed version than stated here (Theorem 4.6 versus Theorem 1.2). This
result is needed in our analysis of the 3-dimensional Heisenberg group, which is
our main interest.

Some notation. For locally compact groups G, S, . . . , T , we denote by CS,...,T (G)
the subspace of C(G) of closed subgroups isomorphic to one of S, . . . , T . We write
6X to denote the suspension of a space X .

We write ≈ to indicate homeomorphism of topological spaces and ∼= to indicate
isomorphism of groups.

Theorem 1.2 (Hubbard and Pourezza). The space C(C) is homeomorphic to the
four-dimensional sphere S4.

More precisely, there is a homeomorphism C(C)→ S4
= 6S3 with the follow-

ing properties: It identifies CR(C) with a trefoil knot T in the equator S3
⊂ S4;

it maps {e} and C to the south and north poles s,n ∈ S4, respectively; it sends
the space of lattices L(C) onto the complement of the (not locally flat) 2-sphere
6T ⊂ 6S3; and it identifies CZ(C) and CR⊕Z(C) with the connected components
of 6T r (T ∪ {s, n}).

We want to emphasize how remarkable it is that C(R2) is a manifold: Even
when one knows the homeomorphism type of the subspaces corresponding to the
different types of subgroups, it is by no means obvious that they assemble to form a
sphere. For n ≥ 3, the space C(Rn) is much wilder: The space of lattices L(Rn)≈

GLn(R)/GLn(Z) continues to provide a dense connected open set of dimension n2



4 MARTIN R. BRIDSON, PIERRE DE LA HARPE AND VICTOR KLEPTSYN

and the lower-dimensional subspaces CRa⊕Zb(Rn) are easy to describe, but the
manner in which they assemble is not.

Another space that can be described in some detail is C(SO(3)). This space is
neither connected nor locally connected (like C(Z)). In more detail, the space of
torus subgroups is the base space of the Hopf-like fibration SO(3)→ P2, and if T
is such a torus subgroup, then any neighbourhood of T in C(SO(3)) contains finite
cyclic groups of arbitrarily large orders.

Beginning in Section 5, we will concentrate on the 3-dimensional Heisenberg
group H . For the most part we shall work with the model of this group in which

(1-3)

as a set, H = C×R,

the product is given by (z, t)(z′, t ′)= (z+ z′, t + t ′+ 1
2 Im(zz′)),

and there is a homomorphism p : (z, t) 7→ z from H onto C .

This model (1-3) for the Heisenberg group is isomorphic to the standard matrix
model via the isomorphism

C×R 3 (x + iy, t) 7→ exp

0 x t
0 0 y
0 0 0

=
 1 x t + 1

2 xy
0 1 y
0 0 1

 ∈
1 R R

0 1 R
0 0 1

 .
H is also isomorphic to the semidirect product Rnu R2 associated to the unipotent
action u : R×R2

→ R2 defined by

(1-4)
(

x,
( t

y

))
7→

(
1 x
0 1

)( t
y

)
=

( t+xy
y

)
.

Our examination of the structure of C(H) spans Sections 5 to 8. We summarize
the main results of these sections in the following two theorems. The first provides
an overview of the global structure of C(H), and the second gives more information
about the strata corresponding to the various types of subgroups as well as the
manner in which Aut(H) acts on them.

We define subspaces Ln(H)⊂ L(H) by declaring that a lattice 3 is in Ln(H)
if [3,3] has index n in 3 ∩ Z(H). The subset L∞(H) ⊂ C(H) is defined to
consist of the subgroups p−1(L) with L ∈ L(C). And L!!(H)= L(H)∪L∞(H).
We define C≥Z (H) as the space of closed subgroups of H that contain the centre
Z(H); observe that L∞(H)⊂ C≥Z (H).

We write P1 to denote the real projective line and P2 for the real projective plane.
The real projective line P1 is of course homeomorphic to the circle S1. How-

ever, in this work, we try to mark the difference between homeomorphism with a
circle related to the choice of a unit vector in a plane and homeomorphism with
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a circle related to the choice of a line in a plane; see for example the covering
S1
≈ ĈR2(H)→ CR2(H)≈ P1 of (6-5) below.

Theorem 1.3. The compact space C(H) is arc connected but not locally con-
nected. It can be expressed as the union of the following three subspaces.

(i) L(H), which is open and dense in C(H); this has countably many connected
components Ln(H), each of which is homeomorphic to a fixed aspherical
6-manifold that is a 2-torus bundle over L(C)≈ GL2(R)/GL2(Z).

(ii) A(H), which is homeomorphic to the space obtained from S4
×P1 by fixing a

tame arc I ⊂ S4 and collapsing each of the circles {{i}×P1
: i ∈ I } to a point.

(iii) C≥Z (H), from which there is a natural homeomorphism to S4; the complement
of L∞(H) in C≥Z (H) is a 2-sphere 62

⊂ S4 (which fails to be locally flat at
two points).

The union A(H)∪C≥Z (H) is the complement of L(H) in C(H), the intersection

A(H)∩C≥Z (H)= {C ∈ C≥Z (H) | p(C)⊂ C{0},Z,R(C)}

is a closed 2-disc in 62, and the space L!!(H) = L(H) ∪ L∞(H) is precisely
{C ∈ C(H) | p(C) ∈ L(C)}.

C≥Z (H) is a weak retract of C(H): there is a continuous map f : C(H)→ S4,
constant on A(H), such that f ◦ j ' idS4 , where j : S4

→ C≥Z (H) is the home-
omorphism of (iii), and where ' denotes homotopy equivalence. In particular,
π4(C(H)) surjects onto Z.

The subspace N(H) of normal closed subgroups of H is the union of C≥Z (H)
(which is homeomorphic to C(C)≈ S4) and the interval {C ∈ C(H) | C ⊂ Z(H)},
attached to the sphere C≥Z (H) by one of its endpoints.

For our second compendium of results concerning C(H) we need the following
notation. We denote by K the Klein bottle (that is, the total space of the nontrivial
P1 bundle over P1). We write p−1

∗ (CR⊕Z(C)) for the subspace of C(H) consisting
of closed subgroups C of H with p(C) a subgroup of C isomorphic to R⊕ Z;
observe that p−1

∗
(CR⊕Z(C))⊂ C≥Z (H).

Theorem 1.4. The spaces Ln(H) are homeomorphic to a common aspherical ho-
mogeneous space, namely the quotient of the 6-dimensional automorphism group
Aut(H)∼= R2 o GL2(R) by the discrete subgroup Z2 o GL2(Z).

The frontier of Ln(H), which is independent of n, consists of the following sub-
spaces:

(i) the trivial group {e};

(ii) CR(H)≈ P2;

(iii) CZ(H)≈ P2
×]0,∞[;



6 MARTIN R. BRIDSON, PIERRE DE LA HARPE AND VICTOR KLEPTSYN

(iv) CR2(H)≈ P1;

(v) CR⊕Z(H)≈K×]0,∞[ , which is a (P1
×]0,∞[)-bundle over P1;

(vi) CZ2(H), which is a (S4 r62)-bundle over P1;

(vii) p−1
∗ (CR⊕Z(C));

(viii) the full group H.

In particular, the frontier of Ln(H), which is independent of n, is the union of
A(H) and the complement 62 of L∞(H) in C≥Z (H); the part A(H) is itself the
union of the subspaces (i) to (vi), and 62 r (62

∩A(H)) is itself the union of the
subspaces (vii) and (viii). The frontier of

⋃
∞

n=1 Ln(H) further contains

(ix) L∞(H).

Each of these spaces, except (vi), consists of finitely many Aut(H)-orbits.

The action of Aut(H) on CZ2(H), which has uncountably many orbits and which
is minimal, is described in the proof of Proposition 6.1 in terms of the standard
action of SL2(Z) on P1.

Observe that, as L(H) is open dense, the spaces (i) to (ix) of Theorem 1.4
together with the spaces Ln(H) for n ≥ 1 constitute a partition of C(H).

The subspaces of C(H) are described more precisely in later sections. Section 6
describes A(H) and C≥Z (H), Section 7 describes Ln(H), and Section 8 describes
L!!(H) and C(H)r A(H).

2. First examples, including the affine group Aff

The space C(G) has a straightforward description when G is a 1-dimensional Lie
group: C(R) is homeomorphic to the closed interval [0,∞], with λ∈ ]0,∞[ corre-
sponding to the subgroup Zλ−1, and C(R/Z) is homeomorphic to C(Z), which is
homeomorphic to {1, 1

2 ,
1
3 , . . . , 0} ⊂ [0, 1], with 1

n corresponding to the subgroup
of index n and 0 corresponding to {0} =

⋂
∞

n=1 Zn. (In passing, we note that C(Z)
is also homeomorphic to C(Zp) for an arbitrary prime p, where Zp denotes the
additive group of p-adic integers.)

The direct observation C(R/Z) ≈ C(Z) illustrates the more general fact that
if G is a locally compact abelian group with Pontryagin dual Ĝ, then there is a
homeomorphism C(G)→ C(Ĝ) associating to each closed subgroup C ⊂ G its
orthogonal C⊥={χ ∈ Ĝ |χ(c)= 1 for all c ∈ C}. In the case G=R, if we choose
an isomorphism of R̂ with R, the above homeomorphism defines an involution of
the interval [0,∞] that exchanges the two endpoints.
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Closed subgroups of the affine group Aff

We now turn to an example that is only marginally more involved, namely the
affine group of the real line, Aff as described in (1-2). The commutator subgroup
[Aff,Aff] is the translation subgroup, described by the equation s = 0. The fol-
lowing properties are straightforward to check.

• The Lie algebra aff of Aff consists of the set of matrices
( x y

0 0

)
with x, y ∈R.

• The exponential mapping aff→ Aff is a diffeomorphism given by

exp
(

x y
0 0

)
=

(
ex y(ex

− 1)/x
0 1

)
.

• Any 1-dimensional subspace of aff distinct from [aff, aff] is conjugate under
the adjoint representation to the subspace with equation y=0; more precisely,
when x0 6= 0, we have(

1 y0/x0

0 1

)(
sx0 sy0

0 0

)(
1 −y0/x0

0 1

)
=

(
sx0 0
0 0

)
for any s ∈ R.

• Any g ∈Aff with g 6= e lies in a unique one parameter subgroup of Aff which
is its centralizer ZAff(g).

• Every nonabelian closed subgroup of Aff contains [Aff,Aff].

Consequently, closed subgroups of Aff can be listed as follows:

(i) the trivial group {e};

(ii) the infinite cyclic subgroups;

(iii) the one parameter subgroups;

(iv) the groups generated by [Aff,Aff] and one element g=
(
λ(g) t

0 1

)
with λ(g)>0;

(v) the group Aff itself.

For the Chabauty topology, abelian closed subgroups, which are the subgroups
of types (i), (ii), and (iii), and which are also the unimodular1 closed subgroups,
constitute a closed subspace D of C(Aff) homeomorphic to the 2-disc; it is natural
to regard it as a cone (P1

× [0,∞])/((x, 0)∼ (y, 0)) over the real projective line.
The vertex corresponds to the trivial group {e}, the points in P1

× {∞} to the one
parameter subgroups isomorphic to R, and the other points to the infinite cyclic
subgroups (each infinite cyclic subgroup being contained in a unique one param-
eter subgroup). The parameter λ(g) defines a homeomorphism from the subspace
formed by subgroups of type (iv) to the open interval ]0,∞[ . The closure of this

1Compare with [Bourbaki 1963, chapitre 8, §5, théorème 1.i]: if G is a locally compact group,
the subset of unimodular closed subgroups is closed in C(G).
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subspace is a compact interval with endpoints Aff and [Aff,Aff]. It intersects D in
a single point, namely the point in P1

×{∞} corresponding to [Aff,Aff].
The proof of Proposition 1.1 is complete.

3. A reminder concerning the Chabauty topology

Aspects of Proposition 1.1 and Theorems 1.2 to 1.4 illustrate properties that hold
in more general groups. We record some of these in Proposition 3.4 for future
reference. Two preliminary lemmas are required.

Lemma 3.1. Let G be a topological group. Let K be a compact subset, and let
V1, . . . , Vn be open subsets of G such that K ⊂

⋃n
j=1 V j . Then there exists a

neighbourhood U of e such that, for all x ∈ K , there exists j ∈ {1, . . . , n} with
U x ⊂ V j .

Remark. This is strongly reminiscent of (and inspired by) the so-called Lebesgue
number lemma, according to which if V is an open covering of a compact metric
space X , there exists ε > 0 such that every subset of X of diameter less than ε is
contained in an element V of V. See for example [Munkres 1975, Section 3.7].

Proof. For each y ∈ K , choose j = j (y) such that y ∈ V j . Then V j y−1 is a
neighbourhood of e and there exist neighbourhoods Uy and U ′y of e such that
UyU ′y ⊂ V j y−1. Set Wy =U ′y y; this is a neighbourhood of y, and Uy Wy ⊂ V j .

From the open cover (Wy)y∈K we extract a finite subcover indexed by (say)
y1, . . . , yN ∈ K . Set U = Uy1 ∩ · · · ∩UyN . Then, for any x ∈ K ⊂

⋃N
k=1 Wyk , we

have U x ⊂Uyk Wyk ⊂ V j for some k ∈ {1, . . . , N } and j = j (yk). �

Recall that a closed subgroup C of G is cocompact if there exists a compact
subset K of G such that G = C K . A lattice in a locally compact group G is a
discrete subgroup 3 such that there exists a G-invariant finite probability measure
on G/3.

For subsets A, B, . . . and elements g, h, . . . of a group G, we will denote by
〈A, B, . . . , g, h, . . . 〉 the subgroup of G generated by A ∪ B ∪ · · · ∪ {g, h, . . . }.
(This subgroup need not be closed.)

Lemma 3.2. Let G be a topological group that is compactly generated, let K be
a compact generating set of G such that e ∈ K and K−1

= K , and let W be a
relatively compact nonempty open subset of G. Let c1, . . . , cn ∈ G be such that

(3-1) W K ⊂
n⋃

j=1

c j W.

Then there exists a symmetric neighbourhood U of e in G such that, for any
d1, . . . , dn ∈ G with d j ∈ Uc j for all j = 1, . . . , n, we have 〈d1, . . . , dn〉W = G.
In particular, the closed subgroup 〈d1, . . . , dn〉 is cocompact.
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Proof. Let us first check that condition (3-1) is open in c1, . . . , cn .
By the previous lemma, there exists a neighbourhood U of e in G such that,

for any x ∈ W K , there exists j ∈ {1, . . . , n} with U x ⊂ c j W . There is no loss
of generality if we also assume that U−1

= U . For j ∈ {1, . . . , n}, consider any
d j ∈ Uc j . Let u j ∈ U be such that d j = u j c j . For x ∈ W K with U x ⊂ c j W , we
have u−1

j x ∈ c j W , namely x ∈ d j W . Hence

(3-2) W K ⊂
n⋃

j=1

d j W.

Set F ={d1, . . . , dn}; now (3-2) reads FW ⊃W K . By induction on m, we have

Fm W ⊃ Fm−1W K ⊃ Fm−1W K ⊃W K m

for any m ≥ 2. Consequently 〈F〉W ⊃W 〈K 〉; note that, at this point, we have used
the hypothesis e ∈ K and K−1

= K . Hence 〈F〉W ⊃ W G = G, and in particular
〈F〉 is cocompact. �

Remark 3.3. Upon replacing U by U ′ =
⋂n

k=1 c−1
k Uck , we can add the following

conclusion to Lemma 3.2: For any d1, . . . , dn ∈ G, if d j ∈ c jU ′ for j = 1, . . . , n,
then the closed subgroup 〈d1, . . . , dn〉 is cocompact.

For a Hausdorff topological group, the following two properties are clearly
equivalent: (i) every neighbourhood of the identity contains a nontrivial subgroup,
and (ii) every neighbourhood of the identity contains a nontrivial closed subgroup.
(Indeed, for any neighborhood U of the identity, there exists a neighborhood V of
the identity such that V ⊂U ; for any subgroup S inside V , the closure S is a closed
subgroup inside U .) Recall that, by definition, a group has no small subgroup, or
is NSS, if these properties do not hold.

Proposition 3.4. Let G be a locally compact group.

(i) The space A(G) of closed abelian subgroups of G is closed in C(G).

(ii) The space K(G) of cocompact closed subgroups of G is open in C(G) if and
only if G is compactly generated.

(iii) If G is NSS, the space D(G) of discrete subgroups of G is open in C(G).

(It follows that, if G is compactly generated, the space of cocompact lattices of G
is open in C(G).)

Remarks. Claim (ii) is essentially a result of Stieglitz and Oler [Oler 1973]. Com-
pare (ii) with [Bourbaki 1963, chapitre 8, §5, no 3, théorème 1(i), (ii)]: If U(G)
denotes the space of unimodular closed subgroups of G, then U(G) is closed in
C(G). If, moreover, G is compactly generated, then K(G)∩U(G) is open in U(G).
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Compare (iii) with [Bourbaki 1963, chapitre 8, §5, no 4, théorème 2(i), (iii)]:
If G is NSS, then D(G) is locally closed in C(G). If, moreover, G is compactly
generated, then D(G)∩K(G) is locally closed in C(G).

Proof. (i) Towards showing that the complement of A(G) in C(G) is open, we fix
C ∈ C(G)r A(G) and x, y ∈ C such that xy 6= yx . There exist neighbourhoods
Ux and Uy of e in G such that, for all x ′ ∈ xUx and y′ ∈ yUy , we have x ′y′ 6= y′x ′.
Set U =Ux ∩Uy .

For any D ∈ V{x,y},U−1(C) we have {x, y} ⊂ DU−1; see (1-1). In other words,
there exist x ′, y′ ∈ D such that x ′ ∈ xU and y′ ∈ yU . In particular, D is not abelian.

(ii) Suppose first that K(G) is open in C(G). Since G is clearly in K(G), there
exist a compact subset K and a nonempty open subset U in G such that

VK ,U (G)= {D ∈ C(G) | K ⊂ DU } ⊂ K(G).

The closed subgroup 〈K 〉 generated by K is in VK ,U (G), a fortiori in K(G). (Note
that 〈K 〉 need not be closed. This justifies the introduction of 〈K , V 〉 below.) Let
V be any relatively compact open neighbourhood of e in G. On the one hand, the
subgroup 〈K , V 〉 generated by K ∪ V is open in G, and therefore also closed; on
the other hand, we have 〈K 〉 ⊂ 〈K , V 〉, and therefore 〈K , V 〉 ⊂K(G). Thus, there
exists a compact subset L of G such that 〈K , V 〉L =G. It follows that the compact
subset K ∪ V ∪ L generates G; in particular, G is compactly generated.

Suppose now that G is compactly generated, say by some compact subset K .
Without loss of generality, we assume that e ∈ K and K−1

= K . Let V be a
relatively compact open neighbourhood of e.

We fix C ∈ K(G) and choose a compact subset L of G such that C L = G.
Observe that LV is open in G; set M = LV , which is also a compact subset of G.
Since we have M K ⊂ G = C LV =

⋃
c∈C cLV with M K compact and the cLV ’s

open, there exists a finite family c1, . . . , cn in C such that M K ⊂
⋃n

j=1 c j LV .
By Lemma 3.2 and Remark 3.3, there exists an open neighbourhood U of e

such that, whenever d1, . . . , dn in G are such that d j ∈ c jU for j = 1, . . . , n, any
closed subgroup of G containing d1, . . . , dn is cocompact. Set F = {c1, . . . , cn}.
Then c1, . . . , cn ∈ DU−1 for any closed subgroup D ∈ VF,U−1(C); see (1-1). In
other words, any D ∈VF,U−1(C) contains elements d1, . . . , dn such that d j ∈ c jU
for all j . We have shown that the neighbourhood VF,U−1(C) of C is contained
in K(G). This ends the proof of (ii).

(iii) Since locally compact NSS groups are metrisable (see for example [Kaplan-
sky 1971, Chapter II, Theorem 2]), there exists a left-invariant distance function
δ : G×G→ R+ defining the topology of G. For a closed subgroup C of G, define
the minimum distance minδ(C)=min{δ(e, c) |c∈C, c 6=e}∈R∗

+
∪{∞}. Following

the standard convention, we set minδ({e})=∞. It is easy to check that the mapping
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C(G)→R∗
+
∪{∞} given by C 7→minδ(C) is continuous, and it follows that D(G)

is open in C(G). �

Remark 3.5. (i) The space L(G) of lattices of G need not be open in C(G).

(ii) There are classes of groups G in which all lattices are cocompact, and L(G)
is open in C(G) for such groups. This applies for example to soluble Lie
groups with countably many connected components; see [Raghunathan 1972,
Theorem 3.1].

(iii) A locally compact group which is not unimodular does not contain any lattice
[Raghunathan 1972, Remark 1.9]. In particular, for a solvable Lie group G,
the space L(G) is empty “in most cases”.

An example to which Remark 3.5(i) applies is the group PSL2(R) of fractional
linear transformations of the Poincaré half-plane H = {z ∈ C | Im(z) > 0}. For
each real number s ≥ 2, let 0s denote the subgroup of PSL2(R) generated by the
transformations [

1 s
0 1

]
: z 7→ z+ s and

[
1 0
s 1

]
: z 7→ z

sz+1
.

It is standard that 0s is a nonabelian free group of rank 2 for any s ≥ 2, that 02 is a
lattice in PSL2(R), and that Vol(0s\H)=∞ for s > 2 (so then 0s is not a lattice);
see for example [de la Harpe 2000, Exercise II.33].

Thus, in C(PSL2(R)), any neighbourhood of the lattice 02 contains for ε small
enough a nonlattice 02+ε .

Let us assume that the locally compact group G is metrisable and that its topol-
ogy is defined by a left-invariant distance function δ relative to which closed balls
are compact. Then C(G) is also metrisable, and there is a basis of neighbourhoods
of any point C in C(G) that consists of the subsets

(3-3) VR,ε(C)=

{
D ∈ C(G)

∣∣∣∣∣ δ(x, D) < ε for all x ∈ C ∩ B R and

δ(y,C) < ε for all y ∈ D ∩ B R

}
.

Here, BR denotes for R > 0 the open ball {g ∈ G | δ(g, e) < R}.
There is another way to describe this topology. In C(G), a sequence (Cn)n≥1

converges to C if and only if

(3-4a) for any strictly increasing map ϕ :N→N, and for any sequence (gϕ(n))n≥1

converging to some g ∈ G with gϕ(n) ∈ Cϕ(n) for all n ≥ 1, we have g ∈ C ;

(3-4b) for any g ∈C , there exists a sequence (gn)n≥1 converging to g with gn ∈Cn

for all n ≥ 1.

This has been observed by many authors; a proof can be found in [Benedetti
and Petronio 1992, Section E.1] or in [Guivarc’h and Rémy 2006, Section 2.1].
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4. Closed subgroups of the group C

This section is an exposition of [Hubbard and Pourezza 1979]. We describe the
space C(C) in four steps: First we describe the closed subspace Cnl(C) of closed
subgroups that are not lattices and the open subspace L(C) of lattices, then we
analyze the ways in which a sequence of lattices can converge to a nonlattice, and
finally we give a global description of C(C)= Cnl(C)∪L(C).

4.I. Closed subgroups in C that are not lattices.
There is an obvious identification of the space CR(C) of closed subgroups of C

isomorphic to R with the real projective line P1, and thus CR(C) is homeomorphic
to a circle. Each closed subgroup C ⊂C isomorphic to Z is contained in a unique
group C ∈ CR(C) and is determined by C and the “norm” |C | := min{|z| ∈ R∗

+
:

z ∈ C, z 6= 0}. Correspondingly, the space CZ(C) is homeomorphic to the direct
product of P1 with an open interval. Moreover, C → {0} as |C | → ∞, and for
λ ∈ [0, 1] we have λC → C as λ→ 0. Thus the space of closed subgroups of C
isomorphic to one of {0}, Z, or R is homeomorphic to a cone

C−nl(C)= (P
1
×[−1, 0])/((x,−1)∼ (y,−1)),

with the vertex ( ∗ ,−1) corresponding to {0}, points (x, t) with −1< t < 0 corre-
sponding to infinite cyclic groups, and the base P1

× {0} corresponding to groups
isomorphic to R. (The minus sign indicates that C−nl(C) is the lower hemisphere of
a 2-sphere that plays an important role in what follows.)

A closed subgroup C ⊂ C isomorphic to R ⊕ Z has an identity component
C0
∈CR(C) and is determined by C0 and the “norm” min{|z| ∈R∗

+
: z ∈C, z /∈C0

};
it is convenient to parametrise C by C0 and the inverse of this norm. This param-
eterisation gives a homeomorphism from CR⊕Z(C) to P1

×]0, 1[ . This extends to
an identification of the space of closed subgroups of C isomorphic to one of R,
R⊕Z, or C with the cone

C+nl(C)= (P
1
×[0, 1])/((x, 1)∼ (y, 1)),

with the vertex ( ∗ , 1) corresponding to C, points (x, t) with 0 < t < 1 to groups
isomorphic to R⊕Z, and the base of the cone P1

× {0} corresponding to groups
isomorphic to R.

By combining these observations we obtain the following proposition. This
proposition is in the paper of John Hubbard and Ibrahim Pourezza [1979], but
Hubbard informs us that they learned it from Adrien Douady. Moreover, it was
Douady who suggested that they determine the homeomorphism type of C(R2).
Apparently, this problem was of interest to Bourbaki at the time.
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Proposition 4.1. The space of closed subgroups of C that are not lattices is home-
omorphic to a 2-sphere

C(C)r L(C)= C{0},Z,R,R⊕Z,C(C)= C−nl(C)
⋃

CR(C)

C+nl(C)≈ S2.

4.II. Lattices in C.
Classically, one defines for any lattice L ⊂ C two complex numbers

(4-1) g2(L)= 60
∑

z∈L ,z 6=0

z−4 and g3(L)= 140
∑

z∈L ,z 6=0

z−6,

and one denotes by 1(L)= g2(L)3−27g3(L)2 the discriminant of L . The surface

6 = {(a, b) ∈ C2
| a3
− 27b2

= 0}

has an isolated singularity (cusp) at the origin and is smooth elsewhere. Set

T =6 ∩S3,

where S3
= {(a, b)∈C2

| |a|2+|b|2= 1} is the unit 3-sphere. The smooth curve T
is a trefoil knot. It is a classical and basic result that 1(L) 6= 0 and that, moreover,
the mapping

(4-2) g : L(C)→ C2 r6, L 7→ (g2(L), g3(L))

is a homeomorphism. There are two classical methods of proving this. One method
uses the modular function, often denoted by J ; see for example [Saks and Zyg-
mund 1965, Section VIII.13] or [Hurwitz 1964, Chapter II.4, Section 4]. The
other method provides an explicit inverse to g; this associates to (a, b) ∈ C2 r6

the period lattice of the holomorphic 1-form dX/Y on the genus-1 plane projective
curve with equation Y 2 Z = 4X3

−a X Z2
−bZ3; see for example [Mumford 1976,

Section 7.D].
Let Lumod(C) be the subspace of L(C) of unimodular lattices. The natural action

of the group SL2(R) on Lumod(C) is transitive and the isotropy subgroup of the
lattice Z[i] is SL(2,Z); hence Lumod(C) is homeomorphic to SL2(R)/SL2(Z).
The universal covering of this space is the universal covering S̃L2(R) of SL2(R),
which is homeomorphic to an open 3-disc. It follows2 that the higher homotopy
groups π j (L(C)) for j ≥ 2 are trivial and that π1(L(C)) is isomorphic to the
inverse image S̃L2(Z) of SL2(Z) in the universal covering of the group SL2(R).

2This is in sharp contrast with the situation for n ≥ 3. In that case, the universal covering of the
space SLn(R)/SLn(Z) of lattices in Rn is the two-sheeted covering S̃Ln(R), which is homotopic to
its maximal compact subgroup Spin(n). In particular, S̃Ln(R) is not contractible.
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There are two continuous actions of the multiplicative group C∗ that are both
natural and important in the present context:

(4-3)
C∗ acts on C(C) by (s,C) 7→

√
s C,

C∗ acts on C2 by (s, (a, b)) 7→ (s−2a, s−3b).

Several remarks are in order:
• The subgroup

√
s C is well defined even though

√
s is only defined up to a

sign, since −C = C .

• The action of C∗ on CZ2,R⊕Z,Z(C) defined this way is faithful (but the action
defined by (s,C) 7→ sC would not be).

• Each of the subspaces L(C), CR(C), CZ(C), {0}, CR⊕Z(C), and {C} of C(C)
is invariant by C∗.

• The action of C∗ on CZ(C) is free and transitive.

• The hypersurface 6 in C2 is C∗-invariant.

• The mapping g of (4-2) is C∗-equivariant (this carries over to g′; see (4-5)
below).

The actions of the subgroups R∗
+

(positive reals) and S1
= {z ∈ C∗ | |z| = 1}

obtained by restriction will also play a role below.
The action of R∗

+
on L(C) is free, and its orbits are transverse to Lumod(C);

similarly, the action of R∗
+

on C2r6 is free, and its orbits are transverse to S3rT .
It follows that L(C) is homeomorphic to a direct product3 Lumod(C)× R∗

+
, and

that we have a homeomorphism

(4-4) Lumod(C)≈ S3 r T .

In particular, the fundamental group S̃L2(Z) of the left-hand space is isomorphic
to the group of the trefoil knot, also known as the Artin braid group on three
strings. (The idea behind the argument leading to (4-4) is due to Daniel Quillen;
see [Milnor 1971, Section 10].)

The action of R∗
+

on CZ(C) is also free (as already observed), and its orbits
are transverse to the subspace of subgroups of the form Zw with w of modulus
one in C; similarly, the action of R∗

+
on 6 r {(0, 0)} is free, and its orbits are

3There are at least three tempting choices for a subspace L∗(C) that intersects every R∗
+

-orbit
exactly once, so that L(C) is homeomorphic to the direct product L∗(C) × R∗

+
and each L∗(C)

is homeomorphic to S3 r T . One choice is the space Lumod(C) introduced here; another choice
is the space Lshort=1(C) of lattices L whose shortest vector has norm 1, namely of lattices with
min {|z| : z ∈ L , z 6= 0}= 1; and a third choice is the space of lattices L with |g2(L)|2+|g3(L)|2= 1.
Each of these three choices has its own virtues. For example, is it apparent that there are sequences in
Lumod(C) that converge to a subgroup isomorphic to R, and sequences in Lshort=1(C) that converge
to subgroups isomorphic to Z.
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transverse to T . The three spaces CZ(C), 6r {(0, 0)}, and T ×R∗
+

are naturally
homeomorphic to each other.

An alternative description of SL2(R)/SL2(Z). For the reader familiar with the
geometry of 3-manifolds, we describe another way of seeing that SL2(R)/SL2(Z),
better viewed now as PSL2(R)/PSL2(Z), is homeomorphic to the complement of
the trefoil knot.

The action of PSL2(R) on the upper half-plane H by fractional linear transfor-
mations induces a simply transitive action on the unit tangent bundle UH (in the
hyperbolic metric). Thus we may identify PSL2(R) with UH and SL2(R)/SL2(Z)
with UH/PSL2(Z). The latter 3-manifold is a Seifert fibre space whose base
orbifold is the familiar H/PSL2(Z), a once punctured sphere with two cone points
where the local groups are cyclic of order 2 and 3, respectively. It is well known
that this Seifert fibred space is the complement of the trefoil knot.

Indeed the trefoil knot is the (2, 3)-torus knot, and for any p, q coprime, the
complement in S3 of the (p, q)-torus knot Tp,q is a Seifert fibred space whose base
orbifold is a disc with two cone points, one of order p and one of order q . Perhaps
the easiest way to see this is to observe that the nonsingular fibres of the map from
S3
⊂C2 to C∪{∞} = S2 (the complex projective line) given by (z1, z2) 7→ z p

1 /z
q
2

are (p, q)-torus knots; deleting one nonsingular fibre gives the structure we seek.
Returning now to the main argument, note that the mapping g of (4-2) extends

to a homeomorphism

(4-5) g′ : L(C)∪CZ(C)→ C2 r {(0, 0)},

which is onto and R∗
+

-equivariant. For any w ∈ C∗, we have

(4-6)

g2(Zw)= 60
∑

n∈Z,n 6=0

(nw)−4
=

4π4

3w4

g3(Zw)= 140
∑

n∈Z,n 6=0

(nw)−6
=

23π6

33w6

(by an easy computation, or by [Saks and Zygmund 1965, Chapter VIII, (12.8)]).
Summing up:

Proposition 4.2. With the notation above, the space of lattices in C is homeomor-
phic to C2 r6 or equivalently R∗

+
×(S3 rT ). Its fundamental group is isomorphic

to the trefoil knot group, and its universal covering is a 4-disc.
The homeomorphism L(C)≈C2 r6 extends to a homeomorphism CZ,Z2(C)≈

C2 r {(0, 0)}, and further to a homeomorphism C{0},Z,Z2(C)≈ C2.
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4.III. Degeneration of lattices in C.
Let L be a lattice in C. Choose w1, w2 ∈ L with w1 of smallest absolute value

among elements of L r {0}, with w2 of smallest absolute value among elements
of L r Zw1, and with Im(w2/w1) > 0. Then (w1, w2) is a positively oriented
Z-basis of L . Define the minimal length `1(L) := |w1|, the second minimal length
`2(L) := |w2|, and the distortion coefficient κ(L)= `2(L)/`1(L) of L . Clearly,
these depend on L only and not on the choice of w1 and w2 (unless κ(L)= 1, the
subgroup Zw1 is also well defined). The definition of `1 carries over to CZ(C),
and that of `2 (cum grano salis) to CR⊕Z(C). The functions

`1 : L(C)∪CZ(C) → ]0,∞[,

`2 : L(C)∪CR⊕Z(C)→ ]0,∞[,

κ : L(C)→ [1,∞[

are continuous. Observe that w2/w1 always belongs to the standard fundamental
domain for the action of PSL2(Z) on the Poincaré half-plane; hence the angle
spanned by w1 and w2 is always between π/3 and 2π/3.

Proposition 4.3. Let (Ln)n≥1 be a sequence in L(C).

(i) limn→∞ Ln = {0} if and only if `1(Ln)→∞.

(ii) limn→∞ Ln = C if and only if `2(Ln)→ 0.

(iii) If limn→∞ Ln = C for some C ∈ C(C) with C /∈L(C), C 6= {0}, and C 6=C,
then κ(Ln)→∞.

Proof. We leave (i) and (ii) to the reader and prove (iii). We shall assume that
κ(Ln) does not tend to∞ and reach a contradiction.

By assumption, there exists a subsequence (Lnk )k≥1 such that κ(Lnk ) converges
to some κ0 <∞. Also, `1(Lnk ) is bounded above because C 6= {0}, and `2(Lnk )

is bounded below because C 6= C; since their quotients κ(Lnk ) are bounded,
both `1(Lnk ) and `2(Lnk ) are bounded simultaneously above and below. Upon
extracting a further appropriate subsequence, we can assume that Lnk contains
vectors w1(nk) and w2(nk) defined as above, and that we have limits in C, say
w1 = limk→∞w1(nk) and w2 = limk→∞w2(nk). But then the limit group C is the
lattice spanned by w1 and w2, and this is the desired contradiction. �

Our next proposition is a refinement of (iii) above; the proof is left to the reader.
We denote by [w] the class in C∗/{± id} of a vector w ∈ C∗, and by Rw its class
in P1.

Proposition 4.4. Let Ln→ C be as in the previous proposition, and let v ∈ C∗.

(i) C = Zv if and only if κ(Ln)→∞ and [w1(Ln)] → [v] ∈ C/{± id}.

(ii) C =Rv⊕Z(iv) if and only if κ(Ln)→∞ and [w2(Ln)]→ [iv] ∈C/{± id}.
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(iii) C = Rv if and only if `1(Ln)→ 0, `2(Ln)→∞, and Rw1(Ln)→ Rv ∈ P1.

Comment on (iii). If `1(Ln) < `2(Ln), recall that w1(Ln) is well defined up to
sign, so that Rw1(Ln) is well defined in P1. Since Ln→C by hypothesis, we have
Rw1(Ln)→ Rv in P1.

4.IV. The homeomorphism C(C)≈ S4 of [Hubbard and Pourezza 1979].
To prepare for Theorem 4.6, which is a detailed version of Theorem 1.2, it is

convenient to record the following identifications. The 4-sphere of Theorem 1.2 is
identified with the one-point compactification C2

∪{∞} of C2, its north and south
poles to∞ and (0, 0) respectively, and its equator to the unit sphere

S3
= {(a, b) ∈ C2

| ‖(a, b)‖ = 1}, where ‖(a, b)‖ =
√
|a|2+ |b|2.

We denote by B the open unit ball {(a, b) ∈ C2
| ‖(a, b)‖< 1}, and we denote by

γ : C2
→ C{0},Z,Z2(C)

the inverse of the homeomorphism g′ that appears in (4-5) and in Proposition 4.2.
As our aim is to define a homeomorphism f from C2

∪ {∞} to C(C), we will
first define its restriction to B. We want the image f (S3 r T ) to be the set of
unimodular lattices; in contrast, γ(S3 r T ) contains lattices with arbitrarily large
coareas (compare with note 3). The construction of f involves several auxiliary
mappings.

The coarea is traditionally defined as a function L(C)→ ]0,∞[ . We extend it
by defining coarea(C)=∞ if C ={0} or C ∼=Z and coarea(C)= 0 if C ∼=R⊕Z or
C =C; the resulting extension C(C)rCR(C)→[0,∞] is continuous. Therefore,
it makes sense to define

Ccoarea≥1(C)= {C ∈ C(C)r CR(C) | coarea(C)≥ 1},

which is a subset of CZ2,Z,{0}(C) containing CZ,{0}(C).
The second auxiliary mapping is the retraction

π : C2 r {(0, 0)} → S3, (a, b) 7→ R∗
+
(a, b)∩S3

which assigns to (a, b) the intersection with S3 of its R∗
+

-orbit; see (4-3). Observe
that π is S1-equivariant (for the actions of S1 viewed as a subgroup of C∗).

We define a third continuous mapping

ϕ : C2 r {(0, 0)} → ]0,∞], (a, b) 7→ (coarea(γ(π(a, b))))1/2.

Observe that ϕ is C∗-invariant; also, for (a, b) ∈ C2 r {0, 0}, we have (a, b) ∈6
if and only if π(a, b) ∈ T , if and only if γ(π(a, b)) ∼= Z, and if and only if
coarea(γ(π(a, b)))=∞.
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The fourth and last auxiliary mapping is a continuous function

h : B→ R+ ∪ {∞}

with the properties that

(i) h(0, 0)= 0 and

(ii) for (a, b) ∈ B r {(0, 0)}, there exists an order-preserving homeomorphism
ηϕ(a,b) from [0, 1] onto [0, ϕ(a, b)] such that h(a, b)= ηϕ(a,b)(‖(a, b)‖).

The notation indicates that the homeomorphism ηϕ(a,b) depends on (a, b) through
its image by ϕ only; in particular, for any t and θ in R, the homeomorphisms
associated to (a, b), (t−2a, t−3b), and (e−2iθa, e−3iθb) are identical. It follows
from (i) and (ii) that, for (a, b) ∈ B,

(iii) h(a, b)=∞ if and only if (a, b) ∈ T ;

(iv) h(a, b)= 0 if and only if (a, b)= (0, 0);

(v) (1/h(a, b))γ(π(a, b)) ∈ Lumod(C) if and only if (a, b) ∈ S3 r T .

The other properties of the mapping h do not play any important role below. One
possibility (out of many others) would be to require ηϕ(a,b) to be a fractional linear
homeomorphism tangent to the identity at the origin, and therefore to set

(4-7) h(a, b)=
‖(a, b)‖

1+ (1/ϕ(a, b)− 1) ‖(a, b)‖

if (a, b) 6= (0, 0), and h(0, 0)= 0.
Checking that the map defined by (4-7) is continuous is equivalent to checking

that the homeomorphisms ηc : [0, 1] → [0, c] depend continuously on c ∈ ]0,∞]
with respect to the uniform topology on the space of mappings from [0, 1] to the
compact interval [0,∞].

For a closed subgroup C of C, we denote by

σ(C)= {z ∈ C | z ∈ C}

the complex conjugate of C .

Proposition 4.5. Let f : B→ CZ2,R,Z,{0}(C) be the mapping defined by

f (a, b)= 1
h(a,b)γ(π(a, b))= 1

ϕ(a,b)γ(a, b) for (a, b) ∈ S3 r T ,

f (a, b)= Rw for (a, b) ∈ T ,

f (a, b)= 1
h(a,b)γ(π(a, b)) for (a, b) ∈ B r {(0, 0)},

f (0, 0)= {0},

where w is defined by γ(a, b)= Zw in the second case.
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Then f is a homeomorphism of B onto Ccoarea≥1(C)∪CR(C). Moreover, f is
compatible with complex conjugation: f (a, b)= σ( f (a, b)) for all (a, b) ∈ B.

Proof. To show that f is a homeomorphism, since B is compact, it is sufficient to
show that f is continuous, injective, and that its image is Ccoarea≥1(C)∪CR(C).

First step: f is injective with image as indicated. The domain of f is the disjoint
union of four subsets

{(0, 0)}, T, 6 ∩ (B r {(0, 0)}), B r (6 ∩ B).

From the definitions of γ, ϕ, h, and f , it is clear that f maps these subsets to

{0}, CR(C), CZ(C), Lcoarea≥1(C),

respectively. As it is obvious that f induces a bijection from the one-point subset
{(0, 0)} of B onto the one-point subset {0} of C(C), there are three more cases to
check.

(i) The group S1 acts freely transitively on both T and CR(C). Because f is
S1-equivariant, it follows that f induces a bijection from T onto CR(C).

(ii) Let (a, b)∈6∩(B r{(0, 0)}). Then π(a, b)∈ T , there exists a nonzero w ∈C
such that f (a, b) = Zw, and w is well defined up to a change of sign. Moreover,
ϕ(a, b) = ∞ and h(a, b) = ‖(a, b)‖/(1− ‖(a, b)‖). Thus f induces a bijection
from the part R∗

+
(a, b)∩ B in B of the R∗

+
-orbit of (a, b) onto the set of infinite

cyclic subgroups of C contained in Rw. It follows that f induces a bijection from
6 ∩ (B r {(0, 0)}) onto CZ(C).

(iii) Let (a, b)∈ B r(6∩B). Then π(a, b)∈S3 rT and L0 := γ(π(a, b))∈L(C).
Thus f induces a bijection from R∗

+
(a, b)∩ B onto the set of lattices of the form

(1/t)L0 with 0< t≤ (coarea(L0))
1/2, namely, with coarea((1/t)L0)≥1. It follows

that f induces a bijection from B r (6 ∩ B) onto Lcoarea≥1(C).

Second step: f is continuous. It is clear that f is continuous at any point of
B r (T ∪ {(0, 0)}), because the mappings γ, π , ϕ, and h are continuous (and,
moreover, h(a, b) <∞). It remains to check the continuity of f first at the origin
and at the points of T .

(i) To show that f is continuous at (0, 0), it is enough by Proposition 4.3(i) to show
that `1( f (a, b))→∞ when (a, b)→ (0, 0). Since the function

S3
→ R∗

+
, (a, b) 7→ `1(γ(a, b))

is continuous and positive on a compact domain, its minimum is positive. Since
lim(a,b)→(0,0) h(a, b)= 0, we have

`1( f (a, b))= 1
h(a,b)`1(γ(π(a, b)))→∞ if (a, b)→ (0, 0).
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Thus f is indeed continuous at the origin.

(ii) Let (a0, b0) ∈ T . If (a, b) tends to (a0, b0) inside T , then f (a, b) ∼= R tends
to f (a0, b0)∼= R by the continuity of the S1-action (which is transitive on both T
and CR(C)) and the S1-equivariance of f . If (a, b) tends to (a0, b0) inside 6∩ B,
it is a straightforward consequence of the definition of f and of the continuity
of h that f (a, b) ∼= Z tends to f (a0, b0) ∼= R. Therefore, we can assume from
now on that (a, b) tends to (a0, b0) inside B r (6 ∩ B), and we have to show that
f (a, b)∼= Z2 tends to f (a0, b0)∼=R; for this, we are going to check that the three
conditions of Proposition 4.4(iii) are satisfied.

We have `1( f (a, b))=`1(γ(π(a, b)))/h(a, b). The function `1◦γ is continuous
on S3, so `1(γ(π(a, b))) is bounded, and h(a, b)→∞. Hence `1( f (a, b))→ 0
when (a, b)→ (a0, b0).

We have 1 ≤ coarea( f (a, b)) ≤ `1( f (a, b))`2( f (a, b)). The previous point
implies that `2( f (a, b))→∞ when (a, b)→ (a0, b0).

For points (a, b) inside B r (6 ∩ B) and near enough to (a0, b0), we have
`1(γ(a, b)) < `2(γ(a, b)), so Rw1(γ(a, b)) is well defined in P1; moreover

Rw1(γ(a, b))= Rw1(γ(π(a, b)))= Rw1( f (a, b)).

Since the mappings γ and (a, b) 7→ Rw1(γ(a, b)) are continuous in appropriate
domains, we have Rw1( f (a, b))→ Rv.

Third step. For each C ∈L(C)∪CZ(C) we have g2(σ (C))= g2(C), and similarly
for g3. It follows that f (a, b)= σ( f (a, b)) for all (a, b) ∈ B. We leave the details
to the reader. �

We can now state the final result of this expository section. We denote by δ the
inversion of C2

∪ {∞} that exchanges (0, 0) and ∞ and that is defined on other
points by δ(a, b)= (a, b)/‖(a, b)‖2. For a closed subgroup C of C, we denote by

C∗ = {z ∈ C | Im(zw) ∈ Z for all w ∈ C}

the dual of C . It is straightforward to check that this duality is a homeomorphism
that exchanges the following pairs of groups:

{0} ! C,
Zw ! Rw⊕Z(i/w),
Rw ! Rw,

Zw1⊕Zw2 ! 1
Im(w1w2)

(Zw1⊕Zw2).

In particular, its fixed point set in C(C) is exactly the image Lumod(C)∪CR(C)
by f of the fixed point set S3 of the inversion δ. The main result of this section
(and of [Hubbard and Pourezza 1979]) follows:
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Theorem 4.6. Let f : C2
∪ {∞} → C(C) be the extension of the mapping f of

Proposition 4.5 defined by f (a, b) = f (δ(a, b))∗ when (a, b) /∈ B. Then f is a
homeomorphism from C2

∪ {∞}, which is homeomorphic to S4, to the space C(C)
of closed subgroups of C, equipped with the Chabauty topology. Moreover, f has
the following properties:

(i) The images of the subspaces

C2 r6, S3 r T, T, (6∩ B)r {(0, 0)}, {(0, 0)}, 6∩ (C2 r B), {∞}

of C2
∪ {∞} are, respectively, these subspaces of C(C):

L(C), Lumod(C), CR(C), CZ(C), {0}, CR⊕Z(C), {C}.

(ii) Inversion in C2 corresponds to duality in C(C):

f (δ(a, b))= f (a, b)∗ for all (a, b) ∈ C2
∪ {∞}.

(iii) For the action of S1 defined by (4-3), the mapping f is equivariant:

f (e−i2θa, e−i3θb)= eiθ/2 f (a, b) for all (a, b) ∈ C2 and θ ∈ R.

(iv) The homeomorphism f is compatible with complex conjugation:

f (a, b)= σ( f (a, b)) for all (a, b) ∈ C2
∪ {∞}.

(v) For the action of R∗
+

defined by (4-3) and for (a, b) ∈ C2 r 6, the lattices
f (a, b) and g−1(a, b), see (4-2), are in the same R∗

+
-orbit.

5. Generalities on the real Heisenberg group

The rest of this article is dedicated to the study of the 3-dimensional Heisenberg
group H and its subgroups.

We begin by recalling a few basic properties of H . Its centre Z(H) can be
identified with the second factor R in the description H = C×R of (1-3); more-
over, Z(H) coincides with the commutator subgroup [H, H ]. There is a canonical
projection

(5-1) p : H → H/Z(H)= C,

as in (1-3), and H is an extension of C by R which does not split (unlike the
extension corresponding to Equation (1-4)). It is useful to have the formula for
commutators

(5-2) (z, t)(z′, t ′)(z, t)−1(z′, t ′)−1
= (0, Im(zz′)).
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We denote by Aut(H) the group of continuous4 automorphisms of H . Any
8∈Aut(H) preserves the center and thus descends to a continuous automorphism
of H/Z(H)∼= R2. Hence we have a homomorphism

(5-3) 5 : Aut(H)→ GL2(R).

This is onto. The inner automorphisms act on H by

(5-4) Int(w,∗)(z, t)= (w, ∗)(z, t)(w, ∗)−1
= (z, t + Im(wz)),

where Int(w,∗) is written for Int(w,s), with s arbitrary; these automorphisms form a
normal subgroup Int(H) of Aut(H) isomorphic to H/Z(H)∼=R2. It follows from
(5-4) that Int(H)⊂ ker(5), so that we have a sequence

(5-5) {1} → Int(H)→ Aut(H)
5
−→ GL2(R)→ {1}.

Proposition 5.1. The sequence (5-5) is exact and split, so that the group of contin-
uous automorphisms of H is a semidirect product

(5-6) Aut(H)= Int(H)o GL2(R)∼= R2 o GL2(R).

In particular, in its natural topology, Aut(H) has two connected components.

Note. We write GL2(R) on the right side of Int(H)oGL2(R), but nevertheless we
regard GL2(R) as acting from the left on R2 ∼= Int(H).

Proof. The group Aut(H) contains a copy of GL2(R), acting by

(5-7)
(

a b
c d

)
(x + iy, t)= ((ax + by)+ i(cx + dy), (ad − bc)t).

Consequently, the homomorphism 5 in (5-5) has a section. As we have already
observed that Int(H)⊂ ker(5), it remains to justify the opposite inclusion.

Let 8 ∈ ker(5). Since 8 acts as the identity on H/Z(H), it is of the form

(x + iy, t) 7→ (x + iy, t +ϕ(x + iy, t))

for some mapping ϕ : H → R. The multiplication identity

8(x + iy, t)8(x ′+ iy′, t ′)=8((x + iy, t)(x ′+ iy′, t ′))

reduces to ϕ(x + iy, t)+ ϕ(x ′ + iy′, t ′) = ϕ((x + iy, t)(x ′ + iy′, t ′)). Thus, ϕ is
a continuous group homomorphism with values in the abelian group R. It follows
that ϕ factors through a homomorphism H/[H, H ] ∼= R2

→ R, namely a linear
form on R2, say (x, y) 7→ −vx + uy for some u, v ∈ R. If w = u+ iv, it follows
from (5-4) that 8= Intw,∗ ∈ Int(H). �

4Any automorphism of H happens to be continuous, but this fact does not play any role in our
presentation.
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We record here a few more observations concerning Aut(H).

• The centre Z(H) is fixed elementwise by the derived group of Aut(H), namely
by R2 o SL2(R).

• The projection p of (5-1) is GL2(R)-equivariant, where the action on C is the
standard action.

• The simple group SL2(R) is a Levi factor in the identity component of the
group Aut(H). There are many choices for such a factor, and each one corre-
sponds to a choice of a “supplement” C to the centre as one writes H =C×R;
indeed, once the Levi factor SL2(R) is chosen, the slices C∗ × {t0} are the
SL2(R)-orbits in H .

Proposition 5.2. (i) Let C be a closed subgroup of H such that C ∩ Z(H) 6= {e}.
Then the subgroup p(C) of C is closed. In particular, if C is any nonabelian
closed subgroup of H , then p(C) is closed.

(ii) Let C be a nonabelian closed subgroup of H. Then, either C contains Z(H)
or C is a lattice in H. In other words, C(H)= L(H)∪A(H)∪C≥Z (H).

(iii) The assignment C 7→ p(C) defines a continuous map

p∗ : C(H)r A(H)→ C(C).

(iv) The spaces L(H) and L!!(H) are open in C(H).

(v) The assignment C 7→ C ∩ Z(H) defines a continuous map

C(H)r A(H)→ C(Z(H)).

Remark. In (i), the condition that C is nonabelian cannot be removed. Consider
for example the subgroup Aθ in H =C×R generated by (θ, 1) and (1, 1), where θ
is an irrational real number. This subgroup is closed, isomorphic to Z2, and its
projection in C is dense in a real line.

Similarly, the map of (v) is not continuous on the whole of C(H).
The map p∗ of (iii) doesn’t extend continuously on C(H); see Proposition 8.8.

Proof. (i) Let (zn)n≥1 be a sequence in p(C) that converges to a limit z ∈C. There
exists a sequence (tn)n≥1 in R such that (zn, tn)∈C for all n≥ 1. Upon multiplying
each (zn, tn) by (0, t ′n) for appropriate t ′n ∈ C ∩ Z(H), we can assume that the
sequence (tn)n≥1 is bounded; upon extracting a subsequence, we can assume that
the sequence (tn)n≥1 is convergent in R. It follows that the sequence ((zn, tn))n≥1

converges to some element (z, t) ∈ C with z = p(z, t) ∈ p(C).
The last claim of (i) follows from the fact that, whenever C contains two non-

commuting elements, their commutator is in (C ∩ Z(H))r {e}.
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(ii) Let C be in C(H)r A(H), so p(C) ∈ CZ2,R⊕Z,C(C). Recall from Subsection
4.IV that the coarea of p(C) is well defined and lies in [0,∞[ . We distinguish two
cases.

In the first case, coarea(p(C)) = 0. For every ε > 0, there exist two non-
commuting elements (z, t), (z′, t ′)∈C such that 0< |Im(zz′)|<ε. The commutator
of these two elements is (0, Im(zz′)) ∈ C ∩ Z(H). Since C is closed, it follows
that Z(H)⊂ C .

In the second case, coarea(p(C))>0. Now p(C)∈L(C), and by Equation (5-2)
the commutator group [C,C] is generated by (0, coarea(p(C))). If C ∩ Z(H) is
not the whole of Z(H) ≈ R then, being closed, it must be cyclic (hence discrete)
and contain [C,C] as a subgroup of finite index, n say, in which case C ∈Ln(H).

(iii) Let (Cn)n≥1 be a sequence converging to some C0 in C(H)r A(H). By (i),
p(Cn) is a closed subgroup of C for all n ≥ 1. We have to show that (p(Cn))n≥1

converges to p(C0).
Let ϕ :N→N be a strictly increasing map and let (yϕ(n))n≥1 be a sequence in C

converging to some y ∈ C, with yϕ(n) ∈ p(Cϕ(n)) for all n ≥ 1. For n ≥ 1, choose
xϕ(n) ∈ Cϕ(n) such that p(xϕ(n))= yϕ(n). Upon multiplying xϕ(n) by an appropriate
element in Cϕ(n)∩Z(H), see claim (ii), we can assume that the sequence (xϕ(n))n≥1

is bounded in H , and therefore has a subsequence that converges to some x ∈ H .
As (Cn)n≥1 converges to C0, we have x ∈C , and therefore y = p(x)∈ p(C). Thus
condition (3-4a) applies.

It is straightforward to check condition (3-4b).

(iv)We know from Remark 3.5(ii) that L(H) is open in C(H). (And we also know
that L(H) is nonempty; more on this in Section 7.)

Consider L!!(H) = {C ∈ C(H)r A(H) | p(C) ∈ L(C)}. It follows from (iii)
and the openness of L(C) in C(C) that L!!(H) is open in C(H)r A(H). As the
latter space is open in C(H), by Proposition 3.4, L!!(H) is also open in C(H).

(v) Let Cn→C0 be as in the beginning of the proof of (iii). We have to show that
(Cn ∩ Z(H))n≥1 converges to C0∩Z(H). Since condition (3-4a) is straightforward
to check, we need only verify condition (3-4b). Let t ∈ C0 ∩ Z(H); we have to
find tk ∈ Ck ∩ Z(H) so that limk→∞ tk = t .

Choose u, v ∈ C0 such that [u, v] 6= e. For all k ≥ 1, choose also gk, uk, vk ∈

Ck such that limk→∞ gk = t , limk→∞ uk = u, and limk→∞ vk = v. Observe
that limk→∞ p(gk) = 0; also, p(u) and p(v) are R-linearly independent (since
[u, v] 6= e), so p(uk) and p(vk) are R-linearly independent for k large enough. Set
I = {k ≥ 1 | gk /∈ Ck ∩ Z(H)}. In case I is finite, we can set tk = gk if k /∈ I and
choose tk arbitrarily if t ∈ I . From now on, for convenience, we assume that I is
an infinite set of integers.
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As p(gk) 6= 0 and limk∈I,k→∞ p(gk)= 0, it follows that the coarea of the lattice
generated in C by p(gk), p(uk), p(vk) tends to 0, and therefore that Ck ∩ Z(H)
is more and more dense in Z(H) when k ∈ I, k →∞. Thus we can assure that
limk→∞ tk = t by defining tk = gk when k /∈ I and choosing tk ∈ Ck ∩ Z(H)
sufficiently close to gk when k ∈ I . �

Let 3 be a nonabelian closed subgroup of H that does not contain Z(H). It
follows from Proposition 5.2 that 3 is a lattice; moreover, the commutator sub-
group [3,3] is of finite index in the centre Z(3) = 3 ∩ Z(H) of 3. For each
integer n ≥ 1, recall from Section 1 that we denote by Ln(H) the space of lattices
3 such that [Z(3) : [3,3]] = n. We define

(5-8) pn : Ln(H)→ L(C)

to be the projection induced by p.

Proposition 5.3. (i) For any n ≥ 1, the subspace Ln(H) is open in C(H).

(ii) For (z, t), (z′, t ′)∈ H , if z and z′ generate a lattice in C, then (z, t) and (z′, t ′)
generate a lattice in H.

Proof. (i) The function J : L!!(H)→ R+ defined by

J (D)=
{

1/n if D ∈ Ln(H),
0 if D ∈ L∞(H)

is continuous because

J (D)=min{|t | | t ∈ D ∩ Z(H), t 6= e}/coarea(p(D))

and each of the functions

L!!(H)→ C(Z(H)), D 7→ D ∩ Z(H),

CZ,R(Z(H))→ R+, D 7→ inf{|t | | t ∈ D, t 6= e},

L(C)→ R∗
+
, L 7→ coarea(L)

is continuous.
Thus Ln(H) is open in L(H) since it is the inverse image of the point 1/n,

which is open in the image of J . As L(H) is open in C(H), the space Ln(H) is
also open in C(H).

(ii) Denote by 0 the subgroup of H generated by two elements a = (z, t) and
b = (z′, t ′), and set 3 = p(0). Since H is nilpotent of class two, each element
γ ∈ 0 can be written as γ = aqbr

[a, b]s , where q, r, s ∈ Z.
Assume that 3 is a lattice in C. Then p(γ) = qz + r z′ = 0 if and only if

q = r = 0, and therefore 0 ∩ ker(p) is the infinite cyclic group generated by
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[a, b] = (0, Im(zz′)). Since p(0)=3 and 0∩ker(p)=0∩ Z(H) are lattices in C
and Z(H) respectively, 0 is a lattice in H . �

6. Closed subgroups of the Heisenberg group which are not lattices

Our analysis of C(H) is spread over the next three sections. In the present section
we describe the subspace formed by the closed subgroups that are not lattices. In
Subsections 6.I and 6.II, we deal with closed subgroups that have Zariski closures
of dimension 1 and 2, respectively; observe that, since H is torsion-free, the trivial
group {e} is the only subgroup with Zariski closure of dimension 0. In 6.III, we
consider the subgroups which contain the centre Z(H); some, but not all, appear
already in Subsections 6.I and 6.II. In 6.IV, we describe the action of the group
Aut(H) on the nonlattice part of C(H).

6.I. Groups isomorphic to R and Z.

(I.i) One-parameter subgroups in H . Any such subgroup is a real line through
the origin in C×R, that is, it is of the form

{(sz0, st0) ∈ H | s ∈ R} for some (z0, t0) ∈ H with (z0, t0) 6= (0, 0).

The centre Z(H) corresponds to z0 = 0. In the Chabauty topology, these groups
constitute a space

(6-1) CR(H)≈ P2

that is homeomorphic to a real projective plane.

(I.ii) Infinite cyclic subgroups. Any h 6= e in H generates a closed subgroup
isomorphic to Z, and each of these subgroups has exactly two generators. Thus the
subgroups isomorphic to Z constitute a space

(6-2) CZ(H)= (H r {e})/{id, J } ≈ P2
×]0,∞[

homeomorphic to the direct product of a real projective plane and an open interval.
Here J denotes the antiautomorphism of H mapping each element h = (z, t) to its
inverse h−1

= (−z,−t).

(I.iii) The closure of the space of cyclic subgroups. The closure in C(H) of
CZ(H) is the space of subgroups that are of type (0), (I.i) or (I.ii). It is a closed
cone on a projective plane

(6-3) C{0},Z,R(H)≈ (P2
×[0,∞])/((x, 0)∼ (y, 0)),

with the vertex (∗, 0) of the cone corresponding to {e}, the points in P2
× ]0,∞[

corresponding to infinite cyclic subgroups, and the points in P2
× {∞} to one pa-

rameter subgroups.
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6.II. Other abelian groups: those isomorphic to R2, R⊕Z, and Z2.

(II.i) Maximal abelian subgroups. The multiplication formula (1-3) shows that
the maximal abelian subgroups of H are of the form

{(sz0, t) ∈ H | (s, t) ∈ R2
} for some z0 ∈ C∗;

they are all isomorphic to R2. There is an obvious homeomorphism from the space
of such subgroups to the space of real lines through the origin in C, that is,

(6-4) CR2(H)≈ P1.

Note that every maximal abelian subgroup of H contains the centre Z(H)∼= R.
It is convenient to fix a left-invariant Riemannian metric on H for which the

submanifold C× {0} of H (caveat: it is not a subgroup of H !) is orthogonal to
the centre {0}×R= Z(H). The induced Riemannian metric on each A ∈ CR2(H)
makes it isometric to the Euclidean plane R2. There are two isometric isomor-
phisms A→ C extending the isomorphism Z(H) → R implicit in the notation
{0}×R= Z(H); these correspond to a choice of orientation on A. We define
ĈR2(H) to be the set of such groups A together with an orientation (equivalently,
choice of isomorphism to C). There is an obvious bijection from ĈR2(H) to the
circle S1 of unit vectors in the slice C×{0} of H =C×R. The change of orientation
map defines a free (Z/2Z)-action on ĈR2(H), and we have a two-sheeted covering

(6-5) S1
≈ ĈR2(H)→ CR2(H)≈ P1

which, tracing through the identifications, is the standard degree-two covering
of P1 (see the remark just before Theorem 1.3).

Notation. Any closed abelian subgroup A of H that is not contained in Z(H) is
contained in a unique closed subgroup of H isomorphic to R2, and we shall denote
this by A. When we place a hat on a letter, such as B̂, this will denote an oriented
group, that is, an element of ĈR2(H).

(II.ii) Subgroups isomorphic to R⊕Z. The space CR⊕Z(H) is the total space of
a fibration

(6-6) CR⊕Z(H)→CR2(H)≈P1, A 7→ A, with fibre CR⊕Z(C)≈P1
×]0,∞[ .

To avoid confusion between the roles played by the two copies of P1 in (6-6),
we will write P1

Z for the one corresponding to CR2(H) (maximal abelian subgroups
of H containing Z(H)) and write P1

R for the one corresponding to the choice of
the R-factor in CR⊕Z(C). Observe that the circle S1 that appears a few lines below
double covers P1

Z .
Consider the two-fold cover ĈR⊕Z(H) := {(A, orientation on A)} of the total

space of the previous fibration. The corresponding fibration ĈR⊕Z(H)→ ĈR2(H)
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is trivial. Indeed, an oriented plane B̂ ⊂ H has a unique positive basis consisting
of the unit central vector (0, 1) and a unit vector (z0, 0) orthogonal to Z(H); the
resulting canonical isomorphism from B̂ onto C sends (0, 1) ∈ B̂ to 1 ∈ C and
(z0, 0) ∈ B̂ to i ∈C. Recall from Subsection 4.I that CR⊕Z(C) is homeomorphic to
P1

R×]0,∞[ (the open interval, ]0, 1[ in Subsection 4.I, is better rescaled as ]0,∞[
here). It follows that

(6-7) ĈR⊕Z(H)= CR⊕Z(C)× ĈR2(H)≈ (P1
R×]0,∞[)×S1.

The total space CR⊕Z(H) of the fibration (6-6) is the quotient of ĈR⊕Z(H) by
the orientation-reversing Z/2Z-action.

Consider a closed subgroup A ∼= R⊕Z of H . Complex conjugation exchanges
the maps A→ C corresponding to the two orientations of A. Thus, if

(θ, ρ, ϕ) ∈ P1
R×]0,∞[×S1

≈ ĈR⊕Z(H)

are the coordinates corresponding to one orientation, the other orientation corre-
sponds to coordinates (σ (θ), ρ, ϕ+π), where θ 7→ σ(θ) denotes the symmetry of
CR⊕Z(C) ≈ P1

R that replaces the chosen R-factor with its complex conjugate, and
the coordinate ρ is the inverse of the appropriate minimal norm (as described in
Subsection 4.I). Hence

(6-8)
CR⊕Z(H)≈ (P1

R×]0,∞[×S1)/((θ, ρ, ϕ)∼ (σ (θ), ρ, ϕ+π))

≈K×]0,∞[ .

Consequently, (6-6) is the direct product with ]0,∞[ of the standard fibration of
the Klein bottle K over the projective line P1

Z , in other words, of the nontrivial
circle bundle over the circle.

(II.iii) The closure of CR⊕Z(H). The frontier of CR⊕Z(H) in C(H) is the union
of two pieces, namely CR(H) and CR2(H). Convergence to points in the first
piece occurs when the ρ-coordinate tends to 0, while convergence to points in the
second piece arises when ρ→∞. Moreover, all frontier points A arise as limits of
sequences (An) with An constant — equal to Ã, say — with only the ρ-coordinate
varying.

Given a closed subgroup A of H isomorphic to R, there are two cases to distin-
guish. If A 6= Z(H), then we define Ã ∼= R2 to be the subgroup generated by A
and Z(H). But if A = Z(H) then every subgroup in CR2(H) ≈ P1

Z is an equally
strong candidate for Ã. Hence the factor K in CR⊕Z(H) can be obtained from
CR(H)≈ P2 by blowing-up the point Z(H) and making the identification A 7→ Ã
elsewhere.
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Thus CR(H) ≈ P2 is attached to the end of CR⊕Z(H) ≈ K× ]0,∞[ near 0 by
means of the map K→ P2 that blows-down the circle that appears in (6-8) as the
image of {Z(H)}×S1

⊂ P1
R×S1.

The attachment of CR2(H) ≈ P1 to the end of CR⊕Z(H) where ρ → ∞ is
straightforward: CR⊕Z,R2(H) is homeomorphic to the quotient of K× ]0,∞] by
the relation that identifies (k,∞) to (k ′,∞) whenever k, k ′ ∈ K are in the same
fibre of the natural fibration K→ (S1/(ϕ ∼ ϕ+π)).

Thus CR,R⊕Z ,R2(H), the closure of CR⊕Z(H) in C(H), is homeomorphic to
the space obtained from K× [0,∞] by blowing down a circle in K× {0} and by
collapsing K×{∞} to P1 in the manner described above.

(II.iv) Subgroups isomorphic to Z2. As in (II.ii), the space CZ2(H) is the total
space of a fibration

(6-9) CZ2(H)→ CR2(H)≈ P1, A 7→ A with fibre L(C)≈ C2 r6,

where6 denotes as in Section 4 the complex affine curve of equation a3
−27b2

=0.
For A ∈ CZ2(H), the two orientations of A correspond, as before, to conjugate

embeddings A→ C. The values taken by the classical invariants g2 and g3 on the
image of these two embeddings are conjugate. Hence

(6-10) ĈZ2(H)= L(C)× ĈR2(H)≈ (C2 r6)×S1

and

(6-11) CZ2(H)≈ ((C2 r6)×S1)/((g2, g3, ϕ)∼ (g2, g3, ϕ+π)).

(II.v) Subgroups of rank 2. We have a fibration

(6-12) CZ2,R⊕Z,R2(H)→ CR2(H)≈ P1, A 7→ A with fibre CZ2,R⊕Z,R2(C).

Set ĈZ2,R⊕Z,R2(H) = ĈZ2(H)∪ ĈR⊕Z(H)∪ ĈR2(H). As in Subsections (II.ii)
and (II.iv), the two-fold cover of (6-12)

ĈZ2,R⊕Z,R2(H)→ ĈR2(H)

is a trivial fibration. Recall from Section 4 that CZ2,R⊕Z,R2(C) is homeomorphic to
the complement of a 2-disc in a 4-sphere, that is,

CZ2,R⊕Z,R2(C)' (C2
∪ {∞})r6−,

where6−={(a, b)∈C2
|a3
=27b2 and |a|2+|b|2≤1} is a 2-disc D2 (as before,'

denotes a homotopy equivalence). Thus,

(6-13)
ĈZ2,R⊕Z,R2(H)= CZ2,R⊕Z,R2(C)× ĈR2(H)

≈ ((C2
∪ {∞})r6−)×S1

≈ (S4 r D2)×S1,
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where the embedding of D2 in S4 is not locally flat. Reflection in the real axis in C
(which corresponds to changing the orientation of A) acts on C(C)≈ C2

∪ {∞} as
(a, b)→ (a, b). Thus the space CZ2,R⊕Z,R2(H) is homeomorphic to

(6-14)
(
((C2
∪ {∞})r6−)×S1) / ((a, b, ϕ)∼ (a, b, ϕ+π)

)
.

In particular, the space CZ2,R⊕Z,R2(H) is a topological manifold of dimension 5.

(II.vi) Closure of subgroups of rank 2. The closure in C(H) of CZ2(H) is the
whole space A(H) of abelian closed subgroups. More precisely:

Proposition 6.1. (i) The space A(H) of abelian closed subgroups of H is homeo-
morphic to

A(H)≈ (S4
×S1)/((x, ϕ)∼ (x, ϕ′) if x ∈ I ),

where I ⊂ S4 is a tame closed interval.

(ii) Every Aut(H)-orbit in CZ2(H) is dense in A(H).

Proof. (i) Let us introduce the two spaces

Âen(H)+ {(A, B̂) ∈A(H)× ĈR2(H) | A ⊂ B̂},

Aen(H)+ {(A, B) ∈A(H)×CR2(H) | A ⊂ B},

where “en” stands for “enhanced”. There is an obvious two-sheeted covering
Âen(H)→Aen(H) and an equally obvious projection Aen(H)→A(H).

For each B̂0 ∈ ĈR2(H) ≈ S1, we have a canonical identification of B̂0 with C,
as in (II.ii), so the subspace of Âen(H) consisting of pairs (A, B̂0) is canonically
identified with C(C); moreover, the change of orientation in ĈR2(H) corresponds
to the involution σ that complex conjugation induces on C(C). Thus

Aen(H)≈ (C(C)×S1)/((C, ϕ)∼ (σ (C), ϕ+π)).

And by employing the homeomorphism f −1 of Theorem 4.6 we get

(6-15) Aen(H)≈
(
(C2
∪ {∞})×S1) / (((a, b), ϕ)∼ ((a, b), ϕ+π)

)
.

For ϕ ∈ S1, let ρϕ be the homeomorphism of C2
∪ {∞} defined by

ρϕ(a1+ ia2, b1+ ib2)= (a1+ i(a2 cosϕ− b2 sinϕ), b1+ i(a2 sinϕ+ b2 cosϕ)).

Observe that the complex conjugate of ρϕ(a, b) is ρϕ+π (a, b). Define, then, a
homeomorphism R of (C2

∪ {∞})×S1 by

R((a, b), ϕ)= (ρϕ(a, b), ϕ).
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Writing s : ((a, b), ϕ) 7→ ((a, b), ϕ+π) for the involution of (C2
∪{∞})×S1 that

appears in (6-15), we have

R−1s R((a, b), ϕ)= R−1s(ρϕ(a, b), ϕ)= R−1(ρϕ+π (a, b), ϕ+π)= ((a, b), ϕ+π).

Thus we obtain a homeomorphism

(6-16)

Aen(H)≈ ((C2
∪ {∞})×S1)/{s}

≈ ((C2
∪ {∞})×S1)/{R−1s R}

= (C2
∪ {∞})×P1.

The points in the right-hand term of (6-15) corresponding to pairs (A, B)∈Aen(H)
with A⊂ Z(H) are the points ((a, b), ϕ) with a, b ∈R, a, b≥ 0, a2

+b2
≤ 1, and

a3
= 27b2. (This follows from Section 4, since A is isomorphic to one of {0}, Z,

or R, and the corresponding C ∈ C(C) is invariant under the action of σ .)
Near each (A, B) ∈ Aen(H) with A 6⊂ Z(H), the projection Aen(H)→ A(H)

is a local homeomorphism, and if A ⊂ Z(H) then all pairs (A, B) ∈Aen(H) have
the same image in A(H). It follows that

A(H)≈
(
(C2
∪{∞})×P1)/ (((a, b), ψ)∼ ((a, b), ψ ′) for (a, b)∈ I, ψ,ψ ′∈P1),

where I is the tame arc

I = {(a, b) ∈ R2
| a, b ≥ 0, a2

+ b2
≤ 1, a3

= 27b2
}

of (C2
∪ {∞})×P1. This ends the proof of (i).

(ii) For any closed subgroup C0 of H , let Aut(H)C0 be the closure in C(H) of its
Aut(H)-orbit. Let R× R denote the closed subgroup {(x + iy, t) ∈ H | y = 0}
of H , and note that its Aut(H)-orbit is the whole of CR2(H). (Indeed the subgroup
SO(2) has only one orbit in CR2(H).) Thus, in order to prove (ii), it suffices to
show that for any closed subgroup C0 of R× R isomorphic to Z2, the subspace
{C ∈ Aut(H)C0 | C ⊂ R×R} coincides with {A ∈ A(H) | A ⊂ R×R}. We will
do this in three steps.

Step one. Let P be the group of automorphisms of R × R that extend to auto-
morphisms of H . We regard P as a subgroup of the full automorphism group
GL(R×R) of R×R (which should not be confused with the subgroup of Aut(H)
previously denoted GL2(R)). As any automorphism of H leaves the centre invari-
ant, P consists entirely of matrices of the form

(
∗ 0
∗ ∗

)
. Now, from the diagonal

matrices diag(a, b) in the subgroup GL2(R) of Aut(H), we can obtain any di-
agonal matrix diag(a, ab) in P . On the other hand, using inner automorphisms
Int(−iv,∗) : (x, t) 7→ (x, t + vx), we can obtain any unipotent matrix

(
1 0
v 1

)
in P . It

follows that P is the full group of lower triangular matrices in GL(R×R).
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Step two. Let G+ be the subgroup of GL(R × R) consisting of matrices with
positive determinant, and let P+ = P ∩ G+. As G+ can be seen as the set of
oriented bases of R×R, there is a projection G+→ L(R×R) mapping a matrix
to the lattice generated by its columns; this is a principal bundle whose structure
group is SL2(Z), acting on G+ by right multiplication. The group G+ itself acts
on the right on the projective line P1 of R×R by

P1
×G+→ P1,

(
R(x, t),

(
a b
c d

))
7→ R(xa+ tc, xb+ td).

This action is transitive, and the isotropy group of the second factor Z(H) of
R × R is P+. Thus we may identify P+\G+ with P1. The double coset space
P+\G+/SL2(Z) can be viewed equally as the set of P+-orbits in the quotient
space G+/SL2(Z) ≈ L(R×R) and as the set of SL2(Z)-orbits in the projective
line P+\G+ ≈ P1.

Step three. It is well known that the natural action of SL2(Z) on the projective
line P1 is minimal, that is, all its orbits are dense. Here is an ad hoc argument:
Let t be an arbitrary point in P1

= R∪ {∞}, and let F = SL2(Z)t denote its orbit
closure. Since

(
1 n
0 1

)
t →∞ when n→∞, we have∞ ∈ F . For a/b ∈ Q, with

a and b in Z and coprime, there exist c, d ∈ Z with ad − bc = 1, namely with( a c
b d
)
∈ SL2(Z), and a/b =

( a c
b d
)
∞∈ F , so that Q⊂ F and therefore F = P1.

It follows from step two that the action of P+ on L(R×R) is also minimal. In
particular, the orbit closure P+C0 contains the subspace L(R×R), and therefore
coincides with {A ∈A(H) | A ⊂ R×R}. A fortiori, we have

{C ∈ Aut(H)C0 | C ⊂ R×R} = {A ∈A(H) | A ⊂ R×R}. �

6.III. The space C≥Z(H) of subgroups that contain the centre.

Each closed subgroup C of H that contains Z(H) is uniquely determined by its
image p(C) in C, and the assignment C 7→ p(C) gives a homeomorphism

(6-17) C≥Z (H)≈ C(C)≈ S4,

where the homeomorphism of C(C) with a 4-sphere is the one from [Hubbard and
Pourezza 1979]. More precisely, C≥Z (H)≈ S4

≈6S3 is naturally the union of six
subspaces:

(i) The central subgroup Z(H) corresponds to the south pole.

(ii) The subgroups isomorphic to R2 correspond to a trefoil T in S3.

(iii) The subgroups isomorphic to R⊕ Z correspond to points on half-meridians
between points of T and the south pole.

(iv) The whole group H corresponds to the north pole.
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(v) The subgroups C ∈ C(H) with p(C) ∼= R⊕Z correspond to points on half-
meridians between points of T and the north pole.

(vi) The subgroups in L∞(H), namely the inverse images in H of lattices in
C, correspond to the complement of 6T in 6S3, which is open and dense
in C≥Z (H).

We introduce here more notation:

• the union of the subspaces in (i), (ii), and (iii) is a closed disc D− inside
C≥Z (H),

• the union of the subspaces in (ii), (iv), and (v) is a closed disc D+ inside
C≥Z (H).

For reference in Section 8, we record part of the previous discussion as follows:

Lemma 6.2. With the above notation,

C≥Z (H)∩A(H)= D− = {C ∈ C≥Z (H) | p(C) ∈ C{0},Z,R(C)}.

6.IV. Aut(H)-orbits in A(H)
⋃

D− C≥Z(H).
In the next proposition, the items are numbered in accordance with Theorem 1.4.

Proposition 6.3. For the natural action of the automorphism group Aut(H) on
C(H), we have

(i) the one-point orbit {e};

(ii) two Aut(H)-orbits on CR(H)≈ P2, see (6-1);

(iii) two Aut(H)-orbits on CZ(H)≈ P2
×]0,∞[ , see (6-2);

(iv) one Aut(H)-orbit on CR2(H)≈ P1, see (6-4);

(v) two Aut(H)-orbits on CR⊕Z(H)≈K×]0,∞[ , see (6-6) and (6-8);

(vi) uncountably many Aut(H)-orbits on CZ2(H), see (6-9) and (6-11);

(vii) one orbit in p−1
∗ (CR⊕Z(C));

(viii) the one-point orbit H ;

(ix) and one orbit in L∞(H).

Moreover, for any point in C(H), its orbit under the identity component of Aut(H)
coincides with its orbit under the whole of Aut(H).

Comments. The details of the proof are left to the reader but we wish to highlight
the following points.

In CR(H), one orbit is a single point, the centre; the other orbit is its comple-
ment. In CZ(H), one orbit consists of central subgroups, the other of noncentral
ones. Of the two orbits in CR⊕Z(H), one is 2-dimensional and consists of the
subgroups whose identity component is Z(H); the other orbit is 3-dimensional.
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Concerning the uncountably many orbits in CZ2(H): The space CZ2(H) is
5-dimensional whereas the quotient of Aut(H) by the isotropy subgroup of a point
in CZ2(H) is only 4-dimensional.

The orbits of Aut(H) in C≥Z (H) are in natural bijection with the orbits of
GL2(R) in C(C). In particular, there are six orbits in C≥Z (H), namely

• the centre Z(H), which is one of the two Aut(H)-orbits in CR(H),

• the space CR2(H),

• one of the two Aut(H)-orbits in CR⊕Z(H),

• the whole group H ,

• the space p−1
∗ (CR⊕Z(C)), and

• the space L∞(H).

The dimension of these orbits is 0, 1, 2, 0, 2, 4, respectively.

The preceding proposition accounts for all of the Aut(H)-orbits in C(H) except
for those in Ln(H), which will be described in Proposition 7.2.

7. The structure of the space of lattices in the real Heisenberg group

We remind the reader that the space of lattices L(H) is a disjoint union of the
subspaces Ln(H) defined by declaring that a lattice 3 is in Ln(H) if [3,3] has
index n in 3∩ Z(H). In this section we shall describe the structure of the spaces
Ln(H). The map

(7-1) pn : Ln(H)→ L(C)

from Section 5 will play a prominent role in our discussion, so we remind the
reader that this is the projection induced by p : H → C.

Example 7.1. For an integer n ≥ 1, the subgroup 3n of H generated by

(1, 0), (i, 0), and (0, 1/n)

is a lattice in H , and 3n ∈ Ln(H). Moreover, as a subset of H = C×R,

(7-2) 3n = Z[i]× 1
n Z if n is even

and

(7-3) 3n =
{(

x + iy, 1
2n t
)
∈ Z[i]× 1

2n Z
∣∣ xy ≡ t (mod2)

}
if n is odd.
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In all cases (n even and odd), the lattice 3n corresponds to1 Z 1
n Z

0 1 Z
0 0 1

⊂
1 R R

0 1 R
0 0 1


in the matrix picture.

Proof. Let us assume that n is odd, and let us show the equality in (7-3). The
verification of the other claims is left to the reader.

Denote by 3̃n the right-hand term of (7-3). By definition, and since both the
commutator [(1, 0), (i, 0)] and (0, 1/n) are central,3n is the set of elements of the
form

(7-4) (1, 0)x(i, 0)y(0, 1/n)s =
(
x + iy, 1

2 xy+ s
n
)

with x, y, s ∈ Z.

Set t + 2n
( 1

2 xy + s
n
)

and observe that t = nxy + 2s ≡ xy (mod 2), so that the
element (7-4) is in 3̃n . This shows that 3n ⊂ 3̃n .

Conversely, if
(
x + iy, 1

2n t
)
∈ 3̃n , set s + 1

2(t − nxy), and observe that s ∈ Z,
so that (

x + iy, 1
2n t
)
= (1, 0)x(i, 0)y(0, 1/n)s ∈3n.

This shows that 3̃n ⊂3n . �

Proposition 7.2. For every positive integer n, the space Ln(H) is a homogeneous
space for the group Aut(H).

Proof. Let3∈Ln(H) and let3n be as in Example 7.1. We have to find g∈Aut(H)
such that g(3)=3n .

Since GL2(R) acts transitively on the space of lattices in C, there exists a
g ∈ GL2(R)⊂ Aut(H) such that pn(g3)= pn(3n)=Z[i]⊂C. Thus, without loss
of generality, we can assume that pn(3)=Z[i], namely, that3 has three generators
of the form (1, s), (i, t), and (0, 1/n). The inner automorphism Int(−t+is,0) maps
these three generators to (1, 0), (i, 0), and (0, 1/n), respectively, and therefore
Int(−t+is,0)(3)=3n . �

A pleasant property of3n is that it corresponds to a familiar lattice in the matrix
picture. But we shall see below that the lattice of the next example serves as a more
convenient basepoint when one studies the isotropy of the Aut(H) action on 3n .
We’ll say more about this in Remark 7.6.

Example 7.3. For an integer n ≥ 1, the subgroup 3′n of H = C×R generated by

(1, 1/2), (i, 1/2), (0, 1/n)

is a lattice in H , and 3′n ∈ Ln(H). Moreover

(7-5) 3′n =3n
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if n is even, and

(7-6) 3′n =

{(
x + iy, 1

2n t
)
∈ Z[i]× 1

2n Z
∣∣∣∣ t even if 1

2(x + iy) ∈ Z[i],
t odd otherwise

}
6=3n

if n is odd.

Proof. The equality in (7-5) follows from the fact that, if n is even, (0, 1/2) is a
power of (0, 1/n). We assume from now on that n is odd.

Denote by 3̃′n the set described explicitly in (7-6). By definition, 3′n is the set
of elements of the form

(7-7)
(
1, 1

2

)x(i, 1
2

)y(0, 1
n

)s
=
(
x + iy, 1

2(x + y+ xy)+ s
n
)

with x, y, s ∈ Z.

Set t + 2n
(1

2(x + y+ xy)+ s
n
)

and observe that

t = n(x + y+ xy)+ 2s ≡ (x + 1)(y+ 1)− 1 (mod 2),

so that the element (7-7) is in 3̃′n . This shows that3′n⊂ 3̃
′
n . The opposite inclusion

is proved similarly. (Compare with the proof of Example 7.1.)
To check that 3′n 6= 3n , observe for example that (1, 1/(2n)) and (i, 1/(2n))

are in 3′n and not in 3n , while (1, 0) and (i, 0) lie in 3n but not in 3′n . �

We will describe now the action of the automorphism group of H on spaces of
lattices.

Considerw= (u, v)∈R2, corresponding to an inner automorphism Int(w,∗) as in
(5-4), and let g=

(
a b
c d

)
∈GL2(R) be viewed as an automorphism of H as in (5-7).

We will denote by

(7-8) 8w,g =
(
Int(w,∗)

)
g ∈ Aut(H)

the resulting composition. From Proposition 5.1, we have

8w,g8w′,g′ =8w+g(w′),gg′ .

For an integer n ≥ 1, we set

(7-9) S′n =
{
8w,g ∈ Aut(H)

∣∣ w ∈ ( 1
n Z
)2 and g ∈ GL2(Z)

}
.

We leave it to the reader to check that S′n is a subgroup of Aut(H) and that we have
a natural split extension

(7-10) {0} →
( 1

n Z
)2
−→ S′n −→ GL2(Z)→ {1},

where the homomorphisms are given by w 7→8w,id and 8w,g 7→ g.

Proposition 7.4. For each integer n ≥ 1, the subgroup S′n of Aut(H) is the stabi-
lizer of the lattice 3′n ∈ Ln(H).
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Proof. Denote by Stab′n the stabilizer of 3′n in Aut(H); we have to show that
Stab′n = S′n .

Consider 8w,g ∈ Aut(H), as in (7-8). Then 8w,g = 8w,id80,g. The actions of
80,g and 8w,id on the first two generators of 3′n are given by

(7-11) 80,g
(
1, 1

2

)
=
(
a+ ic, 1

2

)
, 80,g

(
i, 1

2

)
=
(
b+ id, 1

2

)
,

and, for w = (u, v),

(7-12)
8(u,v),id

(
1, 1

2

)
−
(
1, 1

2

)
=−nv

(
0, 1

n

)
,

8(u,v),id
(
i, 1

2

)
−
(
i, 1

2

)
= nu

(
0, 1

n

)
.

Suppose first that 8w,g ∈ S′n . Since (a, c) /∈ (2Z)2 and (b, d) /∈ (2Z)2, the
equalities of (7-11) and similar equalities for 80,g−1 imply that 80,g ∈ Stab′n .
Since n(−v, u) ∈ Z2, the equalities of (7-12) imply that 8w,id ∈ Stab′n . Hence
8w,g ∈ Stab′n .

Suppose now that 8w,g ∈ Stab′n . Then g preserves pn(3
′
n) = Z[i], so that g ∈

GL2(Z) and 80,g ∈ S′n . Using the previous step, we have 80,g ∈ S′n ⊂ Stab′n , hence
8w,id = 8w,g(80,g)

−1
∈ Stab′n . The equalities of (7-12) imply that w ∈ ( 1

n Z)2. It
follows that 8g,w ∈ S′n . �

Remark 7.5. Proposition 7.4 implies that the extensions (7-10) corresponding to
different values of n are semidirect products; indeed they are all isomorphic to the
obvious extension

(7-13) {0} → Z2
−→ Z2 o GL2(Z)−→ GL2(Z)→ {1}

where the action of GL2(Z) on Z2 is the standard one.

Proof. For each real number ρ > 0, the map

R2 o GL2(R)→ R2 o GL2(R), (w, g) 7→ (ρw, g)

is a group automorphism. It follows that, for various values of n, the split exten-
sions

{0} → ( 1
n Z)2 −→ S′n −→ GL2(Z)→ {1}

are pairwise isomorphic. �

Remark 7.6. For all n ≥ 1, the following sequence splits:

{0} → ( 1
n Z)2 −→ Stab(3n)−→ GL2(Z)→ {1}.

However, the splitting is more cumbersome in this case, which is why we prefer
to work with 3′n .

Proposition 7.7. (i) For every integer n ≥ 1, the projection pn :Ln(H)→L(C)
of (7-1) is a fibre bundle with fibre a 2-torus.



38 MARTIN R. BRIDSON, PIERRE DE LA HARPE AND VICTOR KLEPTSYN

(ii) For two integers n, n′, the two fibre bundles pn, pn′ are isomorphic over the
identity L(C)→ L(C).

In particular, for any pair n, n′ of positive integers, the total spaces Ln(H)
and Ln′(H) are homeomorphic to each other.

Proof. (i) Given L0 ∈L(C), we choose a positively oriented Z-basis (z0, z′0) for it.
Each lattice L in a small neighbourhood U ⊂ L(C) of L0 has a unique positively
oriented Z-basis (z, z′) close to (z0, z′0), and the commutator in H of elements
of the form (z, ∗) and (z′, ∗) is (0, Im(zz′)) = (0, area(C/L)), which is close to
(0, area(C/L0)).

For any choice of r, r ′ ∈ [0, 1
n [, let 3r,r ′ ∈ Ln(H) be the lattice generated

by (z, r Im(zz′)), (z′, r ′ Im(zz′)), and (0, 1
n Im(zz′)). Then p(3r,r ′) = L and

3r,r ′ =3s,s′ if and only if n(r − s, r ′ − s ′) ∈ Z × Z. Thus (z, z′, r, r ′) provide
coordinates for a trivialisation near L0.

(ii) Consider the automorphism 9n of Aut(H) defined by

9n(8w,g)=8w/n,g.

In Proposition 7.4 we proved that the stabilizer of 3′n in Aut(H) is S′n , and it is
clear from the definition of S′n that

(7-14) 9(S′1)= S′n.

If 5 : Aut(H)→ GL2(R) is as in (5-3), observe that

(7-15) 59n =5.

Denote by π ′n the restriction of 5 to S′n . The diagram

(7-16)

S′n //

π ′n
��

Aut(H) //

5

��

Aut(H)/S′n = Ln(H)

pn

��
GL2(Z) // GL2(R) // GL2(R)/GL2(Z)= L(C)

is commutative. By (7-14), if we apply the homomorphism9−1
n to S′n and Aut(H),

and the identity to the groups and space of the bottom row of (7-16), we find the
diagram corresponding to (7-16) for the value n = 1. It follows that the bundles
pn and p1 are isomorphic over the identity of L(C). �

Let us now point out a natural factorisation of the spaces Ln(H). The group
of positive real numbers acts naturally on L(C), see Section 4, as well as on H
by (s, (z, t)) 7→ (sz, s2t), see Section 5. The latter action induces free actions on
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L(H) and L∞(H), and we have homeomorphisms

(7-17)
Ln(H)≈ Lumod

n (H)×R∗
+

for all n ≥ 1,

L∞(H)≈ Lumod
∞

(H)×R∗
+
,

where the superscript “umod” indicates that the lattice pn(3) in C is unimodular
for 3 ∈ Lumod

n (H), and similarly for 3 ∈ Lumod
∞

(H). The mapping pn introduced
above, as well as the homeomorphism p∞ : L∞(H)→ L(C), have restrictions,
again denoted by the same letters

pn : L
umod
n (H)→ Lumod(C) for all n ≥ 1,

p∞ : Lumod
∞

(H)
≈
→ Lumod(C).

These mappings are SL2(R)-equivariant; since SL2(R) acts transitively on the
space Lumod(C), it follows that these mappings are also onto.

Let SAut(H) denote the subgroup of Aut(H) of those automorphisms 8 which
induce on H/Z(H) an orientation-preserving and area-preserving automorphism.
Then SAut(H) is isomorphic to the standard semidirect product R2 oSL2(R). For
each integer n ≥ 1, the proofs of Propositions 7.2 and 7.4 show that Lumod

n (H) is
a homogeneous space SAut(H)/Jn and that we have a split exact sequence

(7-18) {0} → ( 1
n Z)2 −→ Jn = (

1
n Z)2 o SL2(Z)−→ SL2(Z)→ {1},

where Jn = S′n ∩ SAut(H). The group J1 = Z2 o SL2(Z) appears in analytical
number theory as the Jacobi group; see [Eichler and Zagier 1985, Section 1.1].

As in Section 4, we denote by S̃L2(R) the universal covering of SL2(R), by
S̃L2(Z) the inverse image of SL2(Z) in this group, and by R2oS̃L2(R) the standard
semidirect product, which can be identified with the universal covering group of
SAut(H). The space Lumod

n (H) is also diffeomorphic to the homogeneous space

(R2 o S̃L2(R))/(Z2 o S̃L2(Z)).

As R2 o S̃L2(R) is a contractible space, it follows that Lumod
n (H) is an Eilenberg–

Mac Lane space with fundamental group isomorphic to Z2 o S̃L2(Z). In view of
the factorisations (7-17) and of the last claim of Proposition 7.7, we have proved
the following proposition.

Proposition 7.8. For any positive integer n, the space Ln(H) is a 6-dimensional
connected manifold that is an Eilenberg–Mac Lane space with fundamental group
Z2 o S̃L2(Z).

The proof Theorem 1.3 (i)–(iii) is now complete: See Proposition 7.8 for (i),
about L(H), Proposition 6.1 for (ii), about A(H), and Subsection 6.III for (iii),
about C≥Z (H).
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8. On the global structure of the space C(H)

In this section we shall describe the closure of the space of lattices in H and
complete the proof of the theorems stated in the introduction. We begin with an
analysis of the closure of the strata Ln(H). For each n, the frontier ∂Ln(H) is as
described in Theorem 1.4; it contains all of the nonlattice subgroups of H except
those in L∞(H). In Proposition 8.5, we show that L∞(H) lies in the closure of
the union of the Ln(H), thus completing the proof that the lattices form an open
dense subset of C(H). This also leads easily to a proof that C(H) is not locally
connected at points of L∞(H).

Recall from the proof of Proposition 6.1 that we denote by R× R the closed
subgroup {(x + iy, t) ∈ H | y = 0} of H .

8.I. The frontier of Ln(H), the frontier of
⋃

n≥1 Ln(H), and related matters.
Let n be a fixed positive integer.

We consider a sequence (Ak)k≥1 of closed subgroups of R×R, a closed subgroup
A of R×R, and a sequence (tk)k≥1 of nonzero real numbers with the following
properties:

• Ak ∼= Z2 for all k ≥ 1 and A ∼= Z2;

• Ak ∩ Z(H)= 〈(0, tk)〉 for all k ≥ 1;

• Ak→ A and |tk | →∞ for k→∞.

(Recall that 〈 · · · 〉 indicates the subgroup generated by · · · .) An example of such
data is provided by Ak = 〈(1, 0), (−1/k, 1)〉, A = Z2, and tk = k.

Lemma 8.1. Let (Ak)k≥1, A, and (tk)k≥1 be as above.

(i) There exists a sequence (3k)k≥1 in Ln(H) such that 3k ∩ (R×R) = Ak for
all k ≥ 1.

(ii) For any (3k)k≥1 as in (i), we have limk→∞3k = A in C(H).

Proof. (i) Let k ≥ 1. Since Ak ∩ Z(H) ∼= Z, the projection p(Ak) ⊂ R ⊂ C
is a closed subgroup isomorphic to Z. Choose uk ∈ R∗ such that p(Ak) = 〈uk〉;
observe that Ak is generated by (uk, sk) and (0, tk) for some sk ∈ R. Define 3k to
be the subgroup of H generated by Ak and (in tk/uk, 0). Then 3k ∈ Ln(H) and
3k ∩ (R×R)= Ak for all k ≥ 1.
(ii) Let (3k)k≥1 be as in (i). Three observations are in order.
First, the group p(A) is not reduced to {0}, because A ∼= Z2 is closed in H

(note that p(A) need not be closed in C); it follows that supk≥1|uk |<∞. Second,
coarea(p(3k))= n|tk | is arbitrarily large when k→∞. Finally,

Im(z) ∈ Zcoarea(p(3k))
|uk |

for all z ∈ p(3k),



THE SPACE OF SUBGROUPS OF THE HEISENBERG GROUP 41

so that
|Im(z)| ≥ coarea(p(3k))

|uk |
for all z ∈ p(3k), z /∈ R.

It follows from the first two observations that the right-hand term of the last in-
equality tends to∞ when k tends to∞.

Hence limk→∞3k = limk→∞3k ∩ p−1(R)= limk→∞ Ak = A. �

Recall from Section 1 that L!!(H)=
(⋃
∞

n=1 Ln(H)
)
∪L∞(H), from Lemma 6.2

that we have defined closed discs D−,D+ ⊂ C≥Z (H), and that the interior of D+
is

◦

D+ = {C ∈ C≥Z (H) | p(C) ∈ CR⊕Z,C(C)} = C≥Z (H)r (L∞(H)∪D−) .

Lemma 8.2. Let (Ck)k≥1 be a sequence in L!!(H) and C ∈
◦

D+.
Then limk→∞ Ck = C in C(H) if and only if limk→∞ p(Ck)= p(C) in C(C).

Proof. If limk→∞ Ck = C , then limk→∞ p(Ck) = p(C) by the continuity of p∗;
see Proposition 5.2.

If limk→∞ p(Ck) = p(C), then limk→∞ coarea(p(Ck)) = coarea(p(C)) = 0;
hence limk→∞(Ck ∩ Z(H))= Z(H), and it follows that limk→∞ Ck = C . �

Proposition 8.3. (i) For each n ≥ 1, the frontier of Ln(H) in C(H) is

A(H)
⋃

D− (C≥Z (H)r L∞(H)).

(ii) The closure of L∞(H) in C(H) is C≥Z (H).

Proof. We leave the proof of (ii) to the reader, and we split that of (i) in three steps.

First step: The frontier of Ln(H) contains A(H). Lemma 8.1 shows that this
frontier contains at least one point of CZ2(H). Since Ln(H) is invariant under the
action of Aut(H), its frontier is also invariant, and contains therefore at least one
Aut(H)-orbit in CZ2(H). It follows from Proposition 6.1(ii) that the frontier of
Ln(H) contains A(H).

Second step: The frontier of Ln(H) contains
◦

D+. This is clear from Lemma 8.2,
since L(C) is dense in C(C).
Third step. It remains to show that L∞(H) is disjoint from Ln(H). This will be a
consequence of Lemma 8.4(iii) below. �

For an open subset W in L(C) and a positive integer N , set

UW,N =

{
D ∈

( ∞⋃
n=N+1

Ln(H)
)
∪L∞(H)

∣∣∣ p(D) ∈W
}
.

Lemma 8.4. (i) For W and N as above, the subset UW,N is open in C(H).

(ii) For C ∈ L∞(H), the set {UW,N }, with W 3 p(C) and N ≥ 1, is a basis of
neighbourhoods of C in C(H).
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(iii) Let (Ck)k≥1 be a sequence in L(H) and C ∈ L∞(H); for k ≥ 1, let nk be the
integer such that Ck ∈ Lnk (H).

Then limk→∞ Ck=C if and only if limk→∞ p(Ck)= p(C) and limk→∞ nk=∞.

Proof. (i) Recall from Proposition 5.3 and its proof that the functions

J : L!!(H)→ R+, J (C)=
{

1/n if D ∈ Ln(H),
0 if D ∈ L∞(H)

and
p∗ : L!!(H)→ L(C), D 7→ p(D)

are continuous. Hence the subset

UW,N = J−1([0, 1/N [)∩ p−1
∗
(W)

is open in C(H).

(ii) Consider the function ` : H → R+ defined by `(z, t) = |z| + |t | and the
function δ : H × H → R+ defined by

δ((z, t), (z′, t ′))= `((z, t)−1(z′, t ′))= |z′− z| + |t ′− t − 1
2 Im(zz′)|.

The function δ is not a distance function, because it does not satisfy the triangle
inequality. But we go on as if it were (compare with (3-3)); thus, we set

BR = {(z, t) ∈ H | `(z, t) < R} for all R > 0

and we define for all C ∈ C(H) and R, ε > 0

(8-1) VR,ε(C)=
{

D ∈ C(H)
∣∣∣∣ δ((z, t), D) < ε for all (z, t) ∈ C ∩ B R

δ((z′, t ′),C) < ε for all (z′, t ′) ∈ D ∩ B R

}
.

We leave it to the reader to check that (VR,ε(C))R>0,ε>0 is a basis of neighbour-
hoods of C in C(H), each of which are relatively compact.

Consider C ∈ L∞(H), a pair R, ε > 0, and the resulting open neighbourhood
VR,ε(C) of C . Set η = ε/(R+ 2) and

W= {L ∈ VR,η(p(C))∩L(C) | coarea(L) < 2 coarea(p(C))},

N = d2 coarea(p(C))/ηe

(where d · · · e indicates the upper integral part). To complete the proof, it suffices
to show that UW,N ⊂VR,ε(C). In other words, we choose D ∈UW,N and we have
to verify the two conditions on C and D that appear in the right side of (8-1).

For z, z′ ∈ C with |z|< R and |z′− z|< η, note that

(8-2) |Im(zz′)| = |Im(z(z′− z))|< Rη.
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For (z, t), (z′, t ′) ∈ BR ⊂ H with |z′− z|< η and |t ′− t |< η, note that

(8-3) δ((z, t), (z′, t ′))≤ |z′− z| + |t ′− t | + 1
2 |Im(zz′)|< 2η+ 1

2 Rη < ε.

Consider now (z′, t ′) ∈ D with `(z′, t ′) ≤ R. Since p(D) ∈ VR,η(p(C)) and
since z′ ∈ p(D) satisfies |z′| ≤ R, there exists z ∈ p(C) with |z− z′|< η. We have
(z, t ′) ∈ C and δ((z′, t ′), (z, t ′)) < ε by (8-2). This shows that δ((z′, t ′),C) < ε.

Consider finally (z, t) ∈ C with `(z, t) ≤ R. Since p(D) ∈ VR,η(p(C)) and
since z ∈ p(C) satisfies |z| ≤ R, there exists z′ ∈ p(D) with |z′ − z| < η. Since
D ∈UW,N , there exists u ∈ R such that (0, u) ∈ D ∩ Z(H) and

|u| ≤ coarea(p(D))/N ≤ 2 coarea(p(C))/N ,

namely with |u|<η (by the choice of N ). Hence there exists t ′ ∈R with (z′, t ′)∈ D
and |t ′− t |< η. We have

δ((z, t), (z′, t ′))= `(z′− z, t ′− t − 1
2 Im(zz′)) < |z′− z| + |t ′− t | + 1

2 Rη < ε.

This shows that δ((z, t), D) < ε, and thus completes the proof of (ii).

(iii) This claim is a straightforward consequence of (ii). �

Proposition 8.5. (i) The frontier of L(H)=
⋃
∞

n=1 Ln(H) contains L∞(H).

(ii) The space C(H) is not locally connected. Indeed, any point C ∈L∞(H) does
not have any connected neighbourhood contained inside L!!(H).

(iii) The subspaces L(H) and L!!(H) are open and dense in C(H).

(iv) The space C(H) is arc connected.

Proof. Claim (i) follows from Lemma 8.4(ii).

(ii) Let C ∈ L∞(H) and let U be a neighbourhood of C contained in L!!(H). By
Lemma 8.4, U contains a neighbourhood UW,N . The function J , from the proof
of Proposition 5.3, is continuous on U , takes its values in {1, . . . , 1/n, . . . , 0}, and
is not constant on U since it is not constant on UW,N . Hence U is not connected,
and this establishes (ii).

(iii) The spaces L(H) and L!!(H) are open; see respectively Remark 3.5(ii) and
Proposition 5.2(v). The closure of L(H) is the whole of C(H) by Proposition 8.3
and by (i).

(iv) First note that the space D(H) of discrete subgroups of H is arc connected
and contains {e}. Indeed, for positive s ∈ R, denote by ϕs the automorphism
(z, t) 7→ (sz, s2t) of H . Then we have lims→∞ ϕs(0) = {e} in D(H) for each
discrete subgroup 0 of H . If 3 is a lattice then we have also lims→0 ϕs(3) = H ,
so that H lies in the path component of {e}.
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The path component of {e} also contains A(H), see Proposition 6.1, while the
path component of H contains C≥Z (H) since the latter is homeomorphic to S4.
Since C(H) is the union of D(H),A(H), and C≥Z (H), this completes the proof
of (iv). �

8.II. The space L!!(H) as a bundle over L(C), and the homotopy type of C(H).
Let us denote by L the subset {1, 1/2, . . . , 1/n, . . . , 0} of the real line, endowed
with the induced topology from R, which makes it a countable compact space. For
any topological space X , denote by LX the quotient of X ×L by the equivalence
relation (x, 0)∼ (x ′, 0) for all x, x ′ ∈ X (we will resist writing more than once that
LX is the “discrete cone” over X ). Observe that if X is compact, so is LX . For a
fibre bundle p : E→ B, with fibre F , let Lbu(p) : Lbu E→ B be the fibre bundle,
with fibre LF , of which the total space is the quotient of E×L by the equivalence
relation (e, 0)∼ (e′, 0) for e, e′ ∈ E with p(e)= p(e′); we will denote by p(e) the
class of (e, 0).

Proposition 8.6. The projection p : L!!(H)→ L(C) is a fibre bundle that is iso-
morphic to Lbu(p1) : LbuL1(H)→ L(C).

Proof. For n ≥ 1, denote by 2n : Ln(H)→ L1(H) the bundle isomorphism of
Proposition 7.7. Define 2 : L!!(H)→ LbuL1(H) by

2(C)=
{
(2n(C), 1/n) if C ∈ Ln(H),
p(C) if C ∈ L∞(H).

Then 2 is clearly a bijection above the identity on L(C). As its domain and its
range are fibre bundles with compact fibres (which are of the form LT , with T
a 2-torus) over a locally compact basis (the space L(C)), it only remains to check
that 2 is continuous at each point.

The continuity of 2 at a point C ∈ Ln(H) follows from the continuity of 2n

and from the fact that Ln(H) is open in L!!(H). The continuity of 2 at a point
C ∈ L∞(H) follows from Lemma 8.4(ii). �

Let X be a topological space, B an open dense subspace, and p : E → B a
fibre bundle. We define the fibre-collapse continuation of p over X as the space
E∗ = E t (X r B) with the projection p∗ : E∗→ B defined by p∗(e) = p(e) for
e ∈ E and p∗(x) = x for x ∈ X r B; the topology on E∗ is defined by decreeing
that E is open and that x ∈ X r B has a basis of open neighbourhoods consisting
of the sets p−1

∗
(U ), with U an open neighbourhood of x in X .

Proposition 8.7. The bundle projection p :L!!(H)→L(C) extends to the contin-
uous mapping

p∗ : C(H)r A(H)= L!!(H)∪
◦

D+→ L(C)∪CR⊕Z,C(C)
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of Proposition 5.2(iii), which is isomorphic to the fibre-collapse continuation of p
over L(C)∪CR⊕Z,C(C). In particular, the restriction of p∗ to

◦

D+ is a homeomor-
phism onto CR⊕Z,C(C).

One might hope that p∗ has an extension to C(H) showing that C≥Z (H) is a
retract of C(H). The next proposition shows that this optimism is too naive. But
all is not lost, as Proposition 8.9 shows that the desired retraction does exist at the
level of homotopy.

Proposition 8.8. The mapping p∗ of Proposition 8.7 does not have a continuous
extension C(H)→ C(C).

Proof. If such an extension p∗ : C(H)→ C(C) were to exist, it would be unique,
since A(H) is nowhere dense. Moreover, p∗ would be equivariant with respect to
the homomorphism 5 : Aut(H)→ GL2(R) of (5-3), since this is the case for p∗.

Let Ak = 〈(1, 0), (−1/k, 1)〉 for k ≥ 1, and let A = Z2 be as just before
Lemma 8.1. Let (3k)k≥1 be the corresponding sequence of lattices, and note
Lemma 8.1(ii). Then limk→∞ p(3k)= R⊂ C, and therefore p∗(Z2)= R.

Let (ϕs)s>0 be the automorphisms of H from the proof of Proposition 8.5. Then
lims→∞ ϕs(Z2)= {e} and ϕs(R)=R for all s > 0. Hence p∗({e})=R. But this is
impossible, since the action of Aut(H) on {e} is trivial and the action of GL2(R)
on R is not. �

We denote by

q∗ : C(H)r A(H)= L!!(H)∪
◦

D+→ L∞(H)∪
◦

D+

the composition of p∗ with the natural homeomorphism from L(C)∪CR⊕Z,C(C)
onto L∞(H)∪

◦

D+.
Let C(H)/A(H) denote the compact space obtained from C(H) by identifying

all points of A(H) with each other. Let similarly C≥Z (H)/D− denote the compact
space obtained from C≥Z (H) by identifying all points of D− with each other;
observe that it is the union of L∞(H)∪

◦

D+ = C≥Z (H)r D− and the point [D−]
(the class of D−).

We denote by
qext
∗
: C(H)/A(H)→ C≥Z (H)/D−

the extension of q∗ mapping the point [A(H)] to the point [D−].

Proposition 8.9. (i) With the notation above, qext
∗

is a retraction.

(ii) There exists a continuous map ψ : C≥Z (H)/D− → C≥Z (H) such that the
composition

C≥Z (H)→ C≥Z (H)/D−
ψ
−→ C≥Z (H)

is homotopic to the identity.
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(iii) The composition

(8-4) C(H)→ C(H)/A(H)
qext
∗

−→ C≥Z (H)/D−
ψ
−→ C≥Z (H)

is a weak retraction.

(iv) The fourth homotopy group π4(C(H)) has an infinite cyclic quotient.

Proof. (i) For C ∈ C(H)r A(H), we have qext
∗
(C)= 〈C, Z(H)〉; this implies that

the restriction of qext
∗

to C≥Z (H)/D− is the identity.
Note that qext

∗
(C) = p−1(p(C)) for any C ∈ C(H)r A(H). We have to check

that qext
∗

is continuous at each point. The continuity of qext
∗

at points distinct from
[A(H)] results from the continuity of C 7→ p(C) at these points (Proposition 5.2)
and the continuity of p−1 as a mapping from closed subsets of C to closed subsets
of H . It remains to check that qext

∗
is continuous at [A(H)].

Let (Ck)k≥1 be a sequence in C(H)r A(H) such that

lim
k→∞

Ck = [A(H)] ∈ C(H)/A(H).

Since the projection p∗ : C(H) r A(H) → C(C) r C{0},Z,R(C) is proper (see
Proposition 8.7), it follows that limk→∞ qext

∗
(Ck)= [D−].

(ii) In Subsection 6.III we saw that there is a homeomorphism from C≥Z (H) to
the 4-sphere that identifies D− with a subset of a closed hemisphere S−. Thus the
identity map of C≥Z (H) induces a continuous map C≥Z (H)/D−→C≥Z (H)/S−,
and we can define ψ to be the composition of this map and a homotopy inverse to
C≥Z (H)→ C≥Z (H)/S−.

(iii) The mapping of (8-4) is continuous as a composition of continuous maps, and
its restriction to C≥Z (H) is homotopic to the identity by (i) and (ii).

(iv) This is a straightforward consequence of (iii) and of the homeomorphisms of
C≥Z (H) with S4. �
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