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We provide models of the exceptional simple modular Lie superalgebras in
characteristic p≥ 3 that appeared in the 2007 classification by Bouarroudj,
Grozman and Leites of Lie superalgebras with indecomposable symmetriz-
able Cartan matrices. The models relate these exceptional Lie superalge-
bras to some low-dimensional nonassociative algebraic systems.

Introduction

Finite-dimensional modular Lie superalgebras with indecomposable symmetriz-
able Cartan matrices over algebraically closed fields are classified in [Bouarroudj
et al. 2007] under some extra technical hypotheses. Their results assert that, for
characteristic ≥ 3, apart from Lie superalgebras obtained as the analogues of Lie
superalgebras in the classification in characteristic 0 [Kac 1977], by reducing the
Cartan matrices modulo p, there are the following exceptions that have to be added
to the list of known simple Lie superalgebras:

(1) Two exceptions in characteristic 5: br(2; 5) and el(5; 5). (The superalgebra
el(5; 5) first appeared in [Elduque 2007b].)

(2) A family of exceptions given by the Lie superalgebras that appear in the super-
magic square in characteristic 3 considered in [Cunha and Elduque 2007a;
2007b]. With the exception of g(3, 6)= g(S1,2, S4,2) these Lie superalgebras
first appeared in [Elduque 2006b; 2007b].

(3) Another two exceptions in characteristic 3, similar to the ones in characteristic
5: br(2; 3) and el(5; 3).

The Lie superalgebra el(5; 5) was shown in [Elduque 2007b] to be related to
Kac’s 10-dimensional exceptional Jordan superalgebra, by means of the Tits con-
struction [1966] of Lie algebras in terms of alternative and Jordan algebras.
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The purpose of this paper is to provide models of the other three exceptions:
br(2; 3) and el(5; 3) in characteristic 3, and br(2; 5) in characteristic 5.

Actually, the superalgebra br(2; 3) already appeared in [Elduque 2006b, The-
orem 3.2(i)] related to a symplectic triple system of dimension 8. Here it will be
shown to be related to a nice five-dimensional orthosymplectic triple system.

The Lie superalgebra el(5; 3) will be shown to be a maximal subalgebra of the
Lie superalgebra

g(8, 3)= g(S8, S1,2)

in the supermagic square. Furthermore, it will be shown to be related to an or-
thogonal triple system defined on the direct sum of two copies of the octonions
and, finally, it will be proved to be the Lie superalgebra of derivations of a specific
orthosymplectic triple system, and this latter result will relate el(5; 3) to the Lie
superalgebra

g(6, 6)= g(S4,2, S4,2)

in the supermagic square.
Finally, a very explicit model of the Lie superalgebra br(2; 5) will be con-

structed.
The paper is organized as follows. The construction of the extended magic

square (or supermagic square) in characteristic 3 in terms of composition superal-
gebras is recalled in Section 1. Then, in Section 2, the Lie superalgebra el(5; 3)
(in characteristic 3) is shown to be a maximal subalgebra of the Lie superalgebra
g(S8, S1,2) in the supermagic square. This gives a very concrete realization of
el(5; 3) in terms of simple components: copies of the three-dimensional simple
Lie algebra sl2 and of its natural two-dimensional module. Orthogonal triple sys-
tems are reviewed in Section 3 and the Lie superalgebra el(5; 3) is shown to be
isomorphic to the Lie superalgebra of an orthogonal triple system defined on the
direct sum of two copies of the split Cayley algebra. Then the orthosymplectic
triple systems, which extend both the orthogonal and symplectic triple systems,
are recalled in Section 4. A very simple such system is defined on the set of
trace zero elements of the 4|2-dimensional composition superalgebra B(4, 2). (The
dimension being 4|2 means that the even part has dimension 4 and the odd part
dimension 2.) The Lie superalgebra naturally attached to this orthosymplectic triple
system is shown to be isomorphic to the Lie superalgebra br(2; 3). Section 5 deals
with another distinguished orthosymplectic triple system, which lives inside the
Lie superalgebra g(S8, S1,2) in the supermagic square. It turns out that the Lie
superalgebra el(5; 3) is isomorphic to the Lie superalgebra of derivations of this
system. This shows also how el(5; 3) embeds in the Lie superalgebra g(S4,2, S4,2)

of the supermagic square. Finally, Section 6 is devoted to give an explicit model
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of the Lie superalgebra br(2; 5) (in characteristic 5) in terms of two copies of sl2
and of their natural modules.

All the vector spaces and superspaces considered in this paper will be assumed
to be finite-dimensional over a ground field k of characteristic 6= 2. In dealing with
elements of a superspace V =V0̄⊕V1̄, an expression like (−1)uv, for homogeneous
elements u, v, is a shorthand for (−1)p(u)p(v), where p is the parity function.

1. The supermagic square in characteristic 3

Recall that an algebra C over a field k is said to be a composition algebra if it
is endowed with a regular quadratic form q (that is, its polar form b(x, y) =
q(x + y) − q(x) − q(y) is a nondegenerate symmetric bilinear form) such that
q(xy) = q(x)q(y) for any x, y ∈ C . The unital composition algebras will be
termed Hurwitz algebras. On the other hand, a composition algebra is said to be
symmetric in case the polar form is associative: b(xy, z)= b(x, yz).

Hurwitz algebras are the well-known algebras that generalize the classical real
division algebras: real and complex numbers, quaternions and octonions. Over any
algebraically closed field k, there are exactly four of them: k, k × k, Mat2(k) and
C(k) (the split Cayley algebra), with dimensions 1, 2, 4 and 8.

Let us superize the above concepts.
A quadratic superform on a Z2-graded vector space

U =U0̄⊕U1̄

over a field k is a pair q = (q0̄, b) where q0̄ : U0̄ → k is a quadratic form, and
b : U ×U → k is a supersymmetric even bilinear form such that b|U0̄×U0̄

is the
polar of q0̄:

b(x0̄, y0̄)= q0̄(x0̄+ y0̄)− q0̄(x0̄)− q0̄(y0̄)

for any x0̄, y0̄ ∈U0̄.
The quadratic superform q = (q0̄, b) is said to be regular if the bilinear form b

is nondegenerate.
Then a superalgebra

C = C0̄⊕C1̄

over k, endowed with a regular quadratic superform q = (q0̄, b), called the norm,
is said to be a composition superalgebra (see [Elduque and Okubo 2002]) if

q0̄(x0̄ y0̄)= q0̄(x0̄)q0̄(y0̄),(1-1a)

b(x0̄ y, x0̄z)= q0̄(x0̄)b(y, z)= b(yx0̄, zx0̄),(1-1b)

b(xy, zt)+ (−1)xy+xz+yzb(zy, xt)= (−1)yzb(x, z)b(y, t)(1-1c)
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for any x0̄, y0̄ ∈C0̄ and homogeneous elements x, y, z, t ∈C . Since the character-
istic of the ground field is assumed not to be 2, (1-1c) already implies (1-1a) and
(1-1b).

The unital composition superalgebras are termed Hurwitz superalgebras, while
a composition superalgebra is said to be symmetric in case its bilinear form is
associative, that is,

b(xy, z)= b(x, yz),

for any x, y, z.
Only over fields of characteristic 3 there appear nontrivial Hurwitz superalgebras

(see [Elduque and Okubo 2002]):

• Let V be a two-dimensional vector space over a field k, endowed with a
nonzero alternating bilinear form 〈 · | · 〉 (that is 〈v|v〉 = 0 for any v ∈ V ).
Consider the superspace B(1, 2) (see [Shestakov 1997]) with

(1-2) B(1, 2)0̄ = k 1, and B(1, 2)1̄ = V,

endowed with the supercommutative multiplication given by

1x = x1= x and uv = 〈u|v〉1

for any x ∈ B(1, 2) and u, v ∈ V , and with the quadratic superform q = (q0̄, b)
given by

(1-3) q0̄(1)= 1, b(u, v)= 〈u|v〉,

for any u, v ∈ V . If the characteristic of k is equal to 3, then B(1, 2) is a
Hurwitz superalgebra [Elduque and Okubo 2002, Proposition 2.7].

• Moreover, with V as before, let f 7→ f̄ be the associated symplectic involution
on Endk(V ) (so 〈 f (u)|v〉 = 〈u| f̄ (v)〉 for any u, v ∈ V and f ∈ Endk(V )).
Consider the superspace B(4, 2) (see [Shestakov 1997]) with

(1-4) B(4, 2)0̄ = Endk(V ), and B(4, 2)1̄ = V,

with multiplication given by the usual one (composition of maps) in Endk(V ),
and by

v · f = f (v)= f̄ · v ∈ V,

u · v = 〈 · |u〉v ∈ Endk(V )
for any f ∈ Endk(V ) and u, v ∈ V , where 〈 · |u〉v denotes the endomorphism
w 7→ 〈w|u〉v, and with quadratic superform q = (q0̄, b) such that

q0̄( f )= det( f ), b(u, v)= 〈u|v〉,

for any f ∈ Endk(V ) and u, v ∈ V . If the characteristic is equal to 3, B(4, 2)
is a Hurwitz superalgebra ([Elduque and Okubo 2002, Proposition 2.7]).
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Given any Hurwitz superalgebra C with norm q= (q0̄, b), its standard involution
is given by

x 7→ x̄ = b(x, 1)1− x .

A new product can be defined on C by means of

x • y = x̄ ȳ.

The resulting superalgebra, denoted by C̄ , is called the para-Hurwitz superalgebra
attached to C , and it turns out to be a symmetric composition superalgebra.

Given a symmetric composition superalgebra S, its triality Lie superalgebra
tri(S)= tri(S)0̄⊕ tri(S)1̄ is defined by

tri(S)ī = {(d0, d1, d2) ∈ osp(S, q)3ī :

d0(x • y)= d1(x) • y+ (−1)i x x • d2(y) for all x, y ∈ S0̄ ∪ S1̄},

where ī = 0̄, 1̄, and osp(S, q) denotes the associated orthosymplectic Lie superal-
gebra. The bracket in tri(S) is given componentwise.

Now, given two symmetric composition superalgebras S and S′, one can form
(see [Cunha and Elduque 2007a, §3], or [Elduque 2004] for the non-super situation)
the Lie superalgebra

g= g(S, S′)=
(
tri(S)⊕ tri(S′)

)
⊕

( 2⊕
i=0

ιi (S⊗ S′)
)
,

where ιi (S⊗ S′) is just a copy of S⊗ S′ (i = 0, 1, 2), with bracket given by

• the Lie bracket in tri(S)⊕ tri(S′), which thus becomes a Lie subalgebra of g,

• [(d0, d1, d2), ιi (x ⊗ x ′)] = ιi (di (x)⊗ x ′),

• [(d ′0, d ′1, d ′2), ιi (x ⊗ x ′)] = (−1)d
′

i x ιi (x ⊗ d ′i (x
′)),

• [ιi (x⊗ x ′), ιi+1(y⊗ y′)] = (−1)x
′yιi+2((x • y)⊗ (x ′ • y′)) (indices modulo 3),

•
[ιi (x ⊗ x ′), ιi (y⊗ y′)]

= (−1)xx ′+xy′+yy′b′(x ′, y′)θ i (tx,y)+ (−1)yx ′b(x, y)θ ′i (t ′x ′,y′),

for any i = 0, 1, 2 and homogeneous x, y ∈ S, x ′, y′ ∈ S′, (d0, d1, d2) ∈ tri(S), and
(d ′0, d ′1, d ′2) ∈ tri(S′). Here θ denotes the natural automorphism

θ : (d0, d1, d2) 7→ (d2, d0, d1)

in tri(S), while tx,y is defined by

tx,y =
(
σx,y,

1
2 b(x, y)1− rx ly,

1
2 b(x, y)1− lxry

)
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S1 S2 S4 S8 S1,2 S4,2

S1 sl2 pgl3 sp6 f4 psl2,2 sp6⊕ (14)
S2 pgl3⊕ pgl3 pgl6 ẽ6 (pgl3⊕ sl2)⊕ (psl3⊗ (2)) pgl6⊕ (20)
S4 so12 e7 (sp6⊕ sl2)⊕ ((13)⊗ (2)) so12⊕ spin12
S8 e8 (f4⊕ sl2)⊕ ((25)⊗ (2)) e7⊕ (56)

S1,2 so7⊕ 2spin7 sp8⊕ (40)
S4,2 so13⊕ spin13

Table 1. Supermagic square (characteristic 3).

with lx(y)= x • y, rx(y)= (−1)xy y • x , and

(1-5) σx,y(z)= (−1)yzb(x, z)y− (−1)x(y+z)b(y, z)x

for homogeneous x, y, z ∈ S. Also θ ′ and t ′x ′,y′ denote the analogous elements for
tri(S′).

Over a field k of characteristic 3, let Sr (r =1, 2, 4 or 8) denote the para-Hurwitz
algebra attached to the split Hurwitz algebra of dimension r (this latter algebra
being either k, k × k, Mat2(k) or C(k)). Also, denote by S1,2 the para-Hurwitz
superalgebra B(1, 2), and by S4,2 the para-Hurwitz superalgebra B(4, 2). Then the
Lie superalgebras g(S, S′), where S, S′ run over {S1, S2, S4, S8, S1,2, S4,2}, appear
in Table 1, which has been obtained in [Cunha and Elduque 2007a].

Since the construction of g(S, S′) is symmetric, only the entries above the diago-
nal are needed. In Table 1, f4, e6, e7, e8 denote the simple exceptional classical Lie
algebras, ẽ6 denotes a 78-dimensional Lie algebra whose derived Lie algebra is
the 77-dimensional simple Lie algebra e6 in characteristic 3. The even and odd
parts of the nontrivial superalgebras in the table which have no counterpart in
the classification in characteristic 0 [Kac 1977] are displayed, spin denotes the
spin module for the corresponding orthogonal Lie algebra, while (n) denotes a
module of dimension n, whose precise description is given in [Cunha and Elduque
2007a]. Thus, for example, g(S4, S1,2) is a Lie superalgebra whose even part is
(isomorphic to) the direct sum of the symplectic Lie algebra sp6 and of sl2, while
its odd part is the tensor product of a 13-dimensional module for sp6 and the natural
2-dimensional module for sl2.

In Table 2, a more precise description of the Lie superalgebras that appear in
the supermagic square is given. This table displays the even parts and the highest
weights of the odd parts. The numbering of the roots follows Bourbaki’s conven-
tions [1968]. The fundamental dominant weight for sl2 will be denoted by ω, while
the fundamental dominant weights for a Lie algebra with a Cartan matrix of order
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S1,2 S4,2

S1 psl2,2 sp6⊕ V (ω3) [5.3]

S2 (pgl3⊕ sl2)⊕
(
V (ω1+ω2)⊗ V (ω)

)
[5.28] pgl6⊕ V (ω3) [5.16]

S4 (sp6⊕ sl2)⊕
(
V (ω2)⊗ V (ω)

)
[5.24] so12⊕ V (ω6) [5.5]

S8 (f4⊕ sl2)⊕
(
V (ω4)⊗ V (ω)

)
[5.26] e7⊕ V (ω7) [5.8]

S1,2 so7⊕ 2V (ω3) [5.19] sp8⊕ V (ω3) [5.12]

S4,2 so13⊕ V (ω6) [5.10]

Table 2. Even and odd parts in the supermagic square.

n will be denoted by ω1, . . . , ωn . After each entry in the square brackets is the
proposition number in [Cunha and Elduque 2007a] where the result can be found.

A precise description of these modules and of the superalgebras in Table 2 as Lie
superalgebras with a Cartan matrix is given in the same reference. All inequivalent
Cartan matrices for these simple Lie superalgebras are listed in [Bouarroudj et al.
2006].

With the exception of g(S1,2, S4,2), all these superalgebras have appeared pre-
viously [Elduque 2006b; 2007b]. Some relationships between the Lie superalge-
bras g(S1,2, S) and g(S4,2, S) to other algebraic structures have been considered in
[Cunha and Elduque 2007b].

2. The Lie superalgebra el(5; 3)

The aim of this section is to show how the Lie superalgebra el(5; 3) embeds in a
nice way as a maximal subalgebra in the simple Lie superalgebra g(S8, S1,2) of the
supermagic square.

Throughout this section the characteristic of the ground field k will be assumed
to be 3.

The para-Hurwitz superalgebra S1,2= B(1, 2) is described as S1,2= k 1⊕V (see
(1-2) and (1-3)), where (S1,2)0̄= k 1 is a copy of the ground field, and (S1,2)1̄=V is
a two-dimensional vector space equipped with a nonzero alternating bilinear form
〈 · | · 〉. The multiplication is given by

1 • 1= 1, 1 • u =−u = u • 1, u • v = 〈u|v〉1,

for any u, v ∈ V , and the norm q = (q0̄, b) is given by

q0̄(1)= 1, b(u, v)= 〈u|v〉,

for any u, v ∈ V .
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Recall from [Elduque and Okubo 2002] or [Cunha and Elduque 2007a, Corol-
lary 2.12] that the triality Lie superalgebra of S1,2 is given by

(2-1) tri(S1,2)= {(d, d, d) : d ∈ osp(S1,2, q)},

and thus tri(S1,2) can (and will) be identified with the Lie superalgebra

b0,1 = sp(V )⊕ V

(see [Cunha and Elduque 2007a, (2.18)]), with even part sp(V ) (∼= sl2), odd part
V , where [ρ, v] = ρ(v) and [u, v] = γu,v for any ρ ∈ sp(V ) and u, v ∈ V , with
γu,v = 〈u| · 〉v+〈v| · 〉u.

Besides, the action of b0,1 on S1,2 is given by

ρ :

{
1 7→ 0,

u 7→ ρ(u),
u :

{
1 7→ −u,

v 7→ −〈u|v〉1,

for any ρ ∈ sp(V ) and u, v ∈ V (see [Cunha and Elduque 2007a, (2.16)]).
Consider now the Lie superalgebra g(S8, S1,2) in the supermagic square:

g(S8, S1,2)=
(
tri(S8)⊕ tri(S1,2)

)
⊕

( 2⊕
i=0

ιi (S8⊗ S1,2)

)
.

This is Z2×Z2-graded with

g(S8, S1,2)(0,0) = tri(S8)⊕ tri(S1,2),

g(S8, S1,2)(1,0) = ι0(S8⊗ S1,2),

g(S8, S1,2)(0,1) = ι1(S8⊗ S1,2),

g(S8, S1,2)(1,1) = ι2(S8⊗ S1,2),

and, therefore, the linear map τ , defined by

τ =

{
id on g(S8, S1,2)(0,0)⊕ g(S8, S1,2)(1,0),

− id on g(S8, S1,2)(0,1)⊕ g(S8, S1,2)(1,1),

is a Lie superalgebra automorphism. On the other hand, the grading automorphism

σ =

{
id on g(S8, S1,2)0̄,

− id on g(S8, S1,2)1̄,

commutes with τ . Consider the order two automorphism ξ = στ = τσ , which
provides a Z2-grading of g(S8, S1,2) with even and odd components given by

(2-2)
g(S8, S1,2)+ = (tri(S8)⊕sp(V ))⊕ι0(S8⊗1)⊕ι1(S8⊗V )⊕ι2(S8⊗V ),

g(S8, S1,2)− = V⊕ι0(S8⊗V )⊕ι1(S8⊗1)⊕ι2(S8⊗1).
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Theorem 2.1. In the situation above, the subalgebra g(S8, S1,2)+ of g(S8, S1,2)

fixed by the automorphism ξ is a maximal subalgebra of g(S8, S1,2) isomorphic to
the Lie superalgebra el(5; 3).

Proof. As a module for the subalgebra tri(S8)⊕ sp(V ) of g(S8, S1,2)+, the odd
component g(S8, S1,2)− relative to the Z2-grading given by ξ decomposes as the
direct sum of the nonisomorphic irreducible modules

V, ι0(S8⊗ V ), ι1(S8⊗ 1), ι2(S8⊗ 1).

Actually, identifying tri(S8) to the orthogonal Lie algebra so8 through the pro-
jection onto the first component (this is possible because of the local principle
of triality [Knus et al. 1998, §35]), ι1(S8 ⊗ 1) and ι2(S8 ⊗ 1) are the two half-
spin representations of so8, while ι0(S8 ⊗ V ) is the tensor product of the natural
modules for so8 and for sp(V ), so these four modules are indeed nonisomorphic.
Therefore, any g(S8, S1,2)+-submodule of g(S8, S1,2)− is a direct sum of some of
them. But the definition of the Lie bracket in g(S8, S1,2) shows that any of these
spaces generates g(S8, S1,2)− as a module over g(S8, S1,2)+. Hence g(S8, S1,2)−
is an irreducible module for g(S8, S1,2)+ and, therefore, g(S8, S1,2)+ is a maximal
subalgebra of g(S8, S1,2).

From now on, the proof relies heavily on the description of g(S8, S1,2) given in
[Cunha and Elduque 2007a, §5.10] (which follows the ideas in [Elduque 2007a]).
This description is obtained in terms of five vector spaces V1, . . . , V5 of dimension
2, endowed with nonzero alternating bilinear forms

(2-3) g(S8, S1,2)=
⊕
σ∈S8,3

V (σ ),

with

S8,3 =
{
∅, {1, 2, 3, 4}, {5}, {1, 2}, {3, 4}, {1, 2, 5}, {3, 4, 5},

{2, 3}, {1, 4}, {2, 3, 5}, {1, 4, 5}, {1, 3}, {2, 4}, {1, 3, 5}, {2, 4, 5}
}
.

Here V (∅)=
⊕5

i=1 sp(Vi ), while for ∅ 6= σ ={i1, . . . , ir }, V (σ )= Vi1⊗· · ·⊗Vir .
Also, any σ ⊆ {1, 2, 3, 4, 5} can be thought of as an element in Z5

2 (for instance,
{1, 3, 5} = (1̄, 0̄, 1̄, 0̄, 1̄) ∈ Z5

2), so it makes sense to consider σ + τ for σ, τ ⊆
{1, 2, 3, 4, 5}.

The brackets V (σ )×V (τ )→V (σ+τ) are nonzero scalar multiples of the “con-
traction maps” ϕσ,τ in [Cunha and Elduque 2007a, (4.9)]. Under this description,

(2-4) g(S8, S1,2)+ =
⊕
σ∈S̃8,3

V (σ ),

with

S̃8,3 =
{
∅, {1, 2, 3, 4}, {1, 2}, {3, 4}, {2, 3, 5}, {1, 4, 5}, {1, 3, 5}, {2, 4, 5}

}
.
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Thus, the even and odd degrees are

80̄ = {±2εi : 1≤ i ≤ 5}∪{±ε1±ε2±ε3±ε4}∪{±εi±ε j : (i, j) ∈ {(1,2),(3,4)}},

81̄ = {±ε5}∪{±εi±ε j±ε5 : (i, j) ∈ {(2,3),(1,4),(1,3),(2,4)}},

in the same notation of [Cunha and Elduque 2007a, §5]. With the lexicographic
order given by 0 < ε1 < ε2 < ε3 < ε4 < ε5 in §5.10 of the same reference, the set
of irreducible degrees is

5 = {α1= ε5−ε2−ε4, α2= ε2−ε1, α3= 2ε1, α4= ε4−ε1−ε2−ε3, α5= 2ε3},

which is a Z-linearly independent set with 8 = 80̄ ∪81̄ ⊆ Z5. The associated
Cartan matrix is 

0 −2 0 0 0
−1 2 −2 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2


which is equal to the second matrix in [Bouarroudj et al. 2007, §13.2] for el(5; 3)
with the third and fourth rows and columns permuted. This shows that g(S8, S1,2)+
is isomorphic to el(5; 3). Note that the 4×4 submatrix on the lower right corner is
the Cartan matrix of type B4, and indeed it corresponds to the subalgebra tri(S8)⊕

ι0(S8 ⊗ 1), which is isomorphic to the orthogonal Lie algebra so9 (tri(S8) being
isomorphic to so8 and S8 to its natural module). �

3. Orthogonal triple systems and the Lie superalgebra el(5; 3)

We now prove that el(5; 3) is the Lie superalgebra associated to a particular orthog-
onal triple system defined on the direct sum of two copies of the split octonions.
Recall from [Okubo 1993] the notion of orthogonal triple systems:

Definition 3.1. Let T be a vector space over a field k endowed with a nonzero
symmetric bilinear form ( · | · ) : T × T → k, and a triple product

T × T × T → T : (x, y, z) 7→ [xyz].

Then (T, [ . . . ], ( · | · )) is said to be an orthogonal triple system if it satisfies, for
any elements x, y, u, v, w ∈ T ,

[xxy] = 0,(3-1a)

[xyy] = (x |y)y− (y|y)x,(3-1b)

[xy[uvw]] = [[xyu]vw] + [u[xyv]w] + [uv[xyw]],(3-1c)

([xyu]|v)+ (u|[xyv])= 0.(3-1d)
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Equation (3-1c) shows that

inder T = span {[xy.] : x, y ∈ T }

is a subalgebra (actually an ideal) of the Lie algebra der T of derivations of T . The
elements in inder T are called inner derivations. Because of (3-1b), if dim T ≥ 2,
then der T is contained in the orthogonal Lie algebra so(T, ( · | · )). Also note that
(3-1d) is a consequence of (3-1b) and (3-1c) (see the comments after [Elduque
2006b, Definition 4.1]).

An ideal of an orthogonal triple system (T, [ . . . ], ( · | · )) is a subspace I such
that [I T T ] + [T I T ] + [T T I ] is contained in I . The orthogonal triple system is
said to be simple if it does not contain any proper ideal.

Some of the main properties of these systems are summarized in the next result,
taken from [Elduque 2006b, Proposition 4.4, Theorem 4.5 and Theorem 5.1] (see
also [Cunha and Elduque 2007b, Theorem 4.3]):

Proposition 3.2. Let (T, [ . . . ], ( · | · )) be an orthogonal triple system of dimension
≥ 2. Then

(1) (T, [ . . . ], ( · | · )) is simple if and only if ( · | · ) is nondegenerate.

(2) Let (V, 〈 · | · 〉) be a two-dimensional vector space endowed with a nonzero al-
ternating bilinear form. Let s be a Lie subalgebra of der T containing inder T .
Define the superalgebra g= g(T, s)= g0̄⊕ g1̄ with{

g0̄ = sp(V )⊕ s,

g1̄ = V ⊗ T,

and superanticommutative multiplication given by

• the multiplication on g0̄ coincides with its bracket as a Lie algebra (the
direct sum of the ideals sp(V ) and s);

• g0̄ acts naturally on g1̄, that is,

[s, v⊗ x] = s(v)⊗ x, [d, v⊗ x] = v⊗ d(x),

for any s ∈ sp(V ), d ∈ s, v ∈ V , and x ∈ T ;
• for any u, v ∈ V and x, y ∈ T ,

(3-2) [u⊗ x, v⊗ y] = −(x |y)γu,v +〈u|v〉dx,y

where γu,v = 〈u| · 〉v+〈v| · 〉u and dx,y = [xy.].

Then g(T, s) is a Lie superalgebra. Moreover, g(T, s) is simple if and only if
s coincides with inder T and T is a simple orthogonal triple system.
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Conversely, given a Lie superalgebra g= g0̄⊕ g1̄ with{
g0̄ = sp(V )⊕ s (direct sum of ideals),

g1̄ = V ⊗ T (as a module for g0̄),

where T is a module over s, by sp(V )-invariance of the Lie bracket, (3-2) is
satisfied for a symmetric bilinear form ( · | · ) :T×T→k and an antisymmetric
bilinear map d·,· : T ×T→ s. Then, if ( · | · ) is not 0 and a triple product on T
is defined by means of [xyz]=dx,y(z), T becomes an orthogonal triple system
and the image of s in gl(T ) under the given representation is a subalgebra of
der T containing inder T .

(3) If the characteristic of the ground field k is equal to 3, define the Z2-graded
algebra g̃= g̃(T )= g̃0̄⊕ g̃1̄, with

g̃0̄ = inder(T ), g̃1̄ = T,

and anticommutative multiplication given by:
• the multiplication on g̃0̄ coincides with its bracket as a Lie algebra;
• g̃0̄ acts naturally on g̃1̄, that is, [d, x] = d(x) for any d ∈ inder(T ) and

x ∈ T ;
• [x, y] = dx,y = [xy.], for any x, y ∈ T .

Then g̃(T ) is a Lie algebra. Moreover, T is a simple orthogonal triple system
if and only if g̃(T ) is a simple Z2-graded Lie algebra.

The Lie superalgebra
g(T )= g(T, inder(T ))

in item (2) above will be called the Lie superalgebra of the orthogonal triple system
T and, if the characteristic is 3, the Lie algebra g̃(T ) will be called the Lie algebra
of the orthogonal triple system T .

The classification of the simple finite-dimensional orthogonal triple systems in
characteristic 0 appears in [Elduque 2006b, Theorem 4.7]. In characteristic 3,
there appears at least one new family of simple orthogonal triple systems, which
are attached to degree 3 Jordan algebras (see Examples 4.20 of the same reference):

Let J =Jord(n, 1) be the Jordan algebra of a nondegenerate cubic form n with
basepoint 1, over a field k of characteristic 3, and assume that dimk J ≥ 3. Then
any x ∈ J satisfies a cubic equation [McCrimmon 2004, II.4]

(3-3) x◦3− t (x)x◦2+ s(x)x − n(x)1= 0,

where t is its trace linear form, s(x) is the spur quadratic form and the multiplica-
tion in J is denoted by x ◦ y. For our purposes it is enough to consider the Jordan
algebras in (3-5) below.



MODELS OF SOME SIMPLE MODULAR LIE SUPERALGEBRAS 61

Let J0 = {x ∈ J : t (x) = 0} be the subspace of trace zero elements. Since
char k = 3, t (1)= 0, so that k 1 ∈ J0. Consider the quotient space Ĵ = J0/k 1. For
any x ∈ J0, we have s(x) = − 1

2 t (x◦2) and, by linearization of (3-3), we get, for
any x, y ∈ J0,

(3-4)
y◦2 ◦ x − (x ◦ y) ◦ y ≡−2t (x, y)y− t (y, y)x mod k 1,

≡ t (x, y)y− t (y, y)x mod k 1.

Let us denote by x̂ the class of x modulo k 1. Since J0 is the orthogonal complement
of k 1 relative to the trace bilinear form t (a, b)= t (a◦b), t induces a nondegenerate
symmetric bilinear form on Ĵ defined by t (x̂, ŷ)= t (x, y) for any x, y ∈ J0. Now,
for any x, y ∈ J0 consider the inner derivation of J given by

Dx,y : z 7→ x ◦ (y ◦ z)− y ◦ (x ◦ z)

(see [Jacobson 1968]). Since the trace form is invariant under the Lie algebra of
derivations, Dx,y leaves J0 invariant, and obviously satisfies Dx,y(1) = 0, so it
induces a map

dx,y : Ĵ → Ĵ , ẑ 7→ D̂x,y(z)

and a well-defined bilinear map

( · , · ) : Ĵ × Ĵ → gl( Ĵ ), (x̂, ŷ) 7→ dx,y .

Consider now the triple product [ . . . ] on Ĵ defined by

[x̂ ŷ ẑ] = dx,y(ẑ)

for any x, y, z ∈ J0. This is well-defined and satisfies (3-1a), because of the anti-
symmetry of d·,·. Also, (3-4) implies that

[x̂ ŷ ŷ] = dx,y(ŷ)= t (x, y)ŷ− t (y, y)x̂ = t (x̂, ŷ)ŷ− t (ŷ, ŷ)x̂,

so (3-1b) is satisfied too, relative to the trace bilinear form. Since Dx,y is a
derivation of J for any x, y ∈ J , (3-1c) follows immediately, while (3-1d) is a
consequence of Dx,y being a derivation and the trace t being associative.

Therefore, by nondegeneracy of the trace form, ( Ĵ , [ . . . ], t ( · , · )) is a simple
orthogonal triple system over k [Elduque 2006b, Examples 4.20].

Now, let e 6= 0, 1 be an idempotent (e◦2= e) of such a Jordan algebra. Changing
e by 1−e if necessary, it can be assumed that t (e)= 1. Consider the Peirce 1-space

J1(e)= {x ∈ J : e ◦ x = 1
2 x}.

Note that J1(e) is contained in J0, because for any x ∈ J1(e), we have

t (x)= 2t (e ◦ x)= 2t ((e ◦ e) ◦ x))= 2t (e ◦ (e ◦ x))= 1
2 t (x),
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so t (x)=0, and since 1∈ J0(e)⊕ J2(e), J1(e) embeds in Ĵ = J0/k 1. Besides, since
J1(e)◦ J1(e)⊆ J0(e)⊕ J2(e) and (J0(e)⊕ J2(e))◦ J1(e)⊆ J1(e) (see [McCrimmon
2004, II.8]), it follows that J1(e) is an orthogonal triple subsystem of the orthogonal
triple system Ĵ above.

In particular, let C be a Hurwitz algebra over the field k of characteristic 3
with norm q and polar form b, and consider the Jordan algebra J = H3(C, ∗) of
hermitian 3× 3 matrices (where (ai j )

∗
= (ā j i )) under the symmetrized product

x ◦ y = 1
2(xy+ yx).

Let S be the associated para-Hurwitz algebra. Then,

(3-5) J = H3(C, ∗)=

{α0 ā2 a1

a2 α1 ā0

ā1 a0 α2

 : α0, α1, α2 ∈ k, a0, a1, a2 ∈ S

}

=

( 2⊕
i=0

kei

)
⊕

( 2⊕
i=0

ιi (S)
)
,

where

e0 =

1 0 0
0 0 0
0 0 0

 , ι0(a)= 2

0 0 0
0 0 ā
0 a 0

 ,
e1 =

0 0 0
0 1 0
0 0 0

 , ι1(a)= 2

0 0 a
0 0 0
ā 0 0

 ,
e2 =

0 0 0
0 0 0
0 0 1

 , ι2(a)= 2

0 ā 0
a 0 0
0 0 0

 ,
for any a ∈ S. Then J is the Jordan algebra of the nondegenerate cubic form n
with basepoint 1, where

n(x)= α0α1α2+ b(a0a1a2, 1)−
2∑

i=0

αi q(ai ),

for

x =
2∑

i=0

αi ei +

2∑
i=0

ιi (ai ).

Here the trace form t is the usual trace: t (x)=
∑2

i=0 αi .
Identify ke0⊕ ke1⊕ ke2 with k3 by means of

α0e0+α1e1+α2e2 ' (α0, α1, α2).
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Then the Jordan product becomes
(α0, α1, α2) ◦ (β1, β2, β3)= (α0β0, α1β1, α2β2),

(α0, α1, α2) ◦ ιi (a)= 1
2(αi+1+αi+2)ιi (a),

ιi (a) ◦ ιi+1(b)= ιi+2(a • b),

ιi (a) ◦ ιi (b)= 2b(a, b)(ei+1+ ei+2),

for any αi , βi ∈ k, a, b ∈ S, where i = 0, 1, 2, and indices are taken modulo 3.
Now, e= e0 is an idempotent of trace 1 and the Peirce 1-space is ι1(S)⊕ ι2(S).

Denote by T2S this orthogonal triple system. Then, in case S= S8, T2S8 is an orthog-
onal triple system defined on the direct sum of two copies of the split octonions,
and we obtain:

Theorem 3.3. Let k be a field of characteristic 3. Then the Lie superalgebra
g(T2S8) of the orthogonal triple system T2S8 is isomorphic to el(5; 3).

Proof. Let C be the split Cayley algebra over k, whose associated para-Hurwitz
algebra is S8, and let J be the degree three simple Jordan algebra H3(C, ∗) consid-
ered above. Then, as vector spaces, T2S8 coincides with the Peirce 1-space J1(e0).
The decomposition in (3-5) is a grading over Z2 × Z2 of the Jordan algebra J ,
and thus the Lie algebra of derivations of J is also Z2×Z2-graded as follows (see
[Cunha and Elduque 2007b, (3.12)]):

der J = Dtri(S8)⊕

( 2⊕
i=0

Di (S8)

)
,

where, for (d0, d1, d2) ∈ tri(S8),{
D(d0,d1,d2)(ei )= 0,

D(d0,d1,d2)(ιi (a))= ιi (di (a))

for any i = 0, 1, 2 and a ∈ S8 (see [Cunha and Elduque 2007b, (3.6)]), while

Di (a)= 2[L ιi (a), Lei+1]

(indices modulo 3) for 0≤ i≤2 and a∈ S8, where L x denotes the left multiplication
by x .

Note that Dtri(S8)⊕ D0(S8) leaves

J1(e0)= ι1(S8)⊕ ι2(S8)

invariant, and therefore embeds naturally in der T2S8 .
Besides, the Lie superalgebra of the orthogonal triple system Ĵ is (see [Cunha

and Elduque 2007b, §4])

g(J )= (sp(V )⊕ der J )⊕ (V ⊗ Ĵ ),
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which is shown in [Cunha and Elduque 2007b, Theorem 4.9] to be isomorphic to
g(S8, S1,2). Under this isomorphism V ⊗ T2S8 corresponds to

ι1(S8⊗ V )⊕ ι2(S8⊗ V )

inside g(S8, S1,2) which, under the isomorphism in Theorem 2.1, corresponds to
the odd part of el(5; 3), and this odd part generates el(5; 3) as a Lie superalgebra.
Therefore, the Lie superalgebra generated by V ⊗ T2S8 corresponds to the sub-
algebra g(S8, S1,2)+ (isomorphic to el(5; 3)). Using the isomorphism in [Cunha
and Elduque 2007b, Theorem 4.9], this proves that the subalgebra generated by
V ⊗ T2S8 in g(J ) is(

sp(V )⊕ (Dtri(S8)⊕ D0(S8))
)
⊕ (V ⊗ T2S8).

Since this is a simple Lie superalgebra, by Proposition 3.2 (2) it follows that it is
isomorphic to the Lie superalgebra of the orthogonal triple system T2S8 . �

Remark 3.4. Proposition 3.2 (3) shows that g̃(T2S8) is a simple Lie algebra. By the
proof above, it is Z2-graded with even component isomorphic to Dtri(S8)⊕D0(S8),
which is isomorphic to the orthogonal Lie algebra so9, and with odd component (in
the Z2-grading) given by T2S8 , which is the spin module for the even component.
It follows that g̃(T2S8) is the exceptional Lie algebra of type F4.

4. Orthosymplectic triple systems and the Lie superalgebra br(2; 3)

Orthosymplectic triple systems are the superversion of the orthogonal triple sys-
tems. They unify both orthogonal and symplectic triple systems. The definition
was given in [Cunha and Elduque 2007b, Definition 6.2]:

Definition 4.1. Let T = T0̄ ⊕ T1̄ be a vector superspace endowed with an even
nonzero supersymmetric bilinear form

( · | · ) : T × T → k

(that is, (T0̄|T1̄) = 0, ( · | · ) is symmetric on T0̄ and alternating on T1̄) and a triple
product

[ . . . ] : T × T × T → T, (x, y, z) 7→ [xyz]

([xi y j zk] ∈ Ti+ j+k for any xi ∈ Ti , y j ∈ T j , z ∈ Tk , where i, j, k = 0̄ or 1̄).
Then T is said to be an orthosymplectic triple system if it satisfies, for any

homogeneous elements x, y, u, v, w ∈ T ,
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[xyz] + (−1)xy
[yxz] = 0,(4-1a)

[xyz] + (−1)yz
[xzy] = (x |y)z+ (−1)yz(x |z)y− 2(y|z)x,(4-1b)

[xy[uvw]] = [[xyu]vw] + (−1)(x+y)u
[u[xyv]w](4-1c)

+ (−1)(x+y)(u+v)
[uv[xyw]],

([xyu]|v)+ (−1)(x+y)u(u|[xyv])= 0.(4-1d)

Remark 4.2. If T1̄ = 0, this is just the definition of an orthogonal triple system,
while if T0̄ = 0, then it reduces to a symplectic triple system.

As for orthogonal triple systems, the subspace

inder T = span {[xy.] : x, y ∈ T }

is a subalgebra (actually an ideal) of the Lie superalgebra der T of derivations of
T , whose elements are called inner derivations.

Proposition 4.3. Let T be a simple orthosymplectic triple system. Then its super-
symmetric bilinear form ( · | · ) is nondegenerate. The converse is valid unless the
characteristic of k is 3, T = T1̄ and dim T = 2.

Proof. Given an orthosymplectic triple system, the kernel of its supersymmetric
bilinear form: T⊥={x ∈ T : (x |T )= 0}, satisfies [T T T⊥]⊆ T⊥ because of (4-1d),
while (4-1a) and (4-1b) show that

[T T⊥T ] = [T⊥T T ] ⊆ [T T T⊥] + T⊥,

so T⊥ is an ideal of T . Thus, if T is simple, then ( · | · ) is nondegenerate.
Conversely, assume T⊥ = 0 and let I = I0̄ ⊕ I1̄ be a proper ideal of T . For

homogeneous elements x, y, z ∈ T , (4-1b) shows that the element

(x |y)z+ (−1)yz(x |z)y− 2(y|z)x

belongs to I if at least one of x, y, z is in I . For x ∈ I we obtain

(x |y)z+ (−1)yz(x |z)y ∈ I,

while for y ∈ I , after permuting x and y,

(x |y)z− 2(−1)yz(x |z)y ∈ I,

for homogeneous x ∈ I , y, z ∈ T . If the characteristic of k is not 3, it follows
that (I |T )T ⊆ I , so I = T , a contradiction. But, even if the characteristic is 3, it
follows that the codimension 1 subspace

(kx)⊥ = {y ∈ T : (x |y)= 0}
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is contained in I for any homogeneous element x ∈ I , and I = T unless dim T = 2.
In the latter case, either T = T0̄ or T = T1̄. But for T = T0̄, (x |y)y ∈ I for any
homogeneous x ∈ I and y ∈ T , and hence also {y ∈ T : (x |y) 6= 0} is contained in
I , so I = T . Thus T = T1̄. �

Remark 4.4. The two-dimensional symplectic triple system in [Elduque 2006b,
Proposition 2.7(i)] shows that there are indeed nonsimple orthosymplectic triple
systems of superdimension 0|2 (that is, dim T0̄ = 0, dim T1̄ = 2).

Proposition 4.5 [Cunha and Elduque 2007b, Theorem 6.3]. Let (T, [ . . . ], ( · | · ))
be an orthosymplectic triple system and let (V, 〈 · | · 〉) be a two-dimensional vector
space endowed with a nonzero alternating bilinear form. Let s be a Lie sub-
superalgebra of der T containing inder T . Define the Z2-graded superalgebra
g= g(T, s)= g(0)⊕ g(1) with{

g(0)= sp(V )⊕ s (so g(0)0̄ = sp(V )⊕ s0̄, g(0)1̄ = s1̄),

g(1)= V ⊗ T (with g(1)0̄ = V ⊗ T1̄, g(1)1̄ = V ⊗ T0̄, V is odd!)

and superanticommutative multiplication given by:

• the multiplication on g(0) coincides with its bracket as a Lie superalgebra;

• g(0) acts naturally on g(1):

[s, v⊗ x] = s(v)⊗ x, [d, v⊗ x] = (−1)dv⊗ d(x),

for any s ∈ sp(V ), v ∈ V , and homogeneous elements d ∈ s and x ∈ T ;

• for any u, v ∈ V and homogeneous x, y ∈ T :

(4-2) [u⊗ x, v⊗ y] = (−1)x(−(x |y)γu,v +〈u|v〉dx,y)

where γu,v = 〈u| · 〉v+〈v| · 〉u and dx,y = [xy.].

Then g(T, s) is a Z2-graded Lie superalgebra. Moreover, g(T, s) is simple if and
only if s coincides with inder T and ( · | · ) is nondegenerate.

Conversely, given a Z2-graded Lie superalgebra g= g(0)⊕ g(1) with{
g(0)= sp(V )⊕ s,

g(1)= V ⊗ T,

where T is an s-module and V is considered as an odd vector space, by sp(V )-
invariance of the bracket, (4-2) is satisfied for an even supersymmetric bilinear
form ( · | · ) : T × T → k and a superantisymmetric bilinear map d·,· : T × T → s.
Then, if ( · | · ) is not 0 and a triple product on T is defined by means of [xyz] =
dx,y(z), T becomes an orthosymplectic triple system and the image of s in gl(T )
under the given representation is a subalgebra of der T containing inder T .
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The Lie superalgebra g(T ) = g(T, inder(T )) is called the Lie superalgebra of
the orthosymplectic triple system T .

If the characteristic of the ground field k is equal to 3, then for any homogeneous
elements x, y, z in an orthosymplectic triple system, we have:

[xyz] + (−1)x(y+z)
[yzx] + (−1)(x+y)z

[zxy]

= [xyz] + (−1)x(y+z)
[yzx] − 2(−1)(x+y)z

[zxy]

= ([xyz] + (−1)yz
[xzy])

− (−1)xy+xz+yz([zyx] + (−1)xy
[zxy]) (by (4-1a))

= ((x |y)z+ (−1)yz(x |z)y− 2(y|z)x)

− (−1)xy+xz+yz((z|y)x + (−1)xy(z|x)y− 2(y|x)z) (by (4-1b))

= 3((x |y)z− (y|z)x)= 0,

so that, as in [Elduque 2006b, Theorem 5.1]:

Proposition 4.6. Let (T, [ . . . ], ( · | · )) be an orthosymplectic triple system over a
field k of characteristic 3. Define the Z2-graded superalgebra

g̃= g̃(T )= g̃(T )+⊕ g̃(T )−,

with g̃+ = inder(T ), g̃− = T and superanticommutative multiplication given by:

• the multiplication on g̃+ coincides with its bracket as a Lie superalgebra;

• g̃+ acts naturally on g̃−, that is, [d, x] = d(x) for any d ∈ inder(T ) and x ∈ T ;

• [x, y] = dx,y = [xy.], for any x, y ∈ g̃− = T .

Then g̃ is a Z2-graded Lie superalgebra, with the even part g̃0̄ = inder(T )0̄ ⊕ T0̄
and the odd part g̃1̄ = inder(T )1̄ ⊕ T1̄. Moreover, T is a simple orthosymplectic
triple system if and only if g̃ is simple as a Z2-graded Lie superalgebra.

Now, let C be a Hurwitz superalgebra of dimension > 1 over a field k of
characteristic 6= 2, with norm q = (q0̄, b), and standard involution x 7→ x̄ . For
any homogeneous elements x, y, z, the following holds (see [Elduque and Okubo
2002]):

b(xy, z)= (−1)xyb(y, x̄ z)= (−1)yzb(x, z ȳ),

x ȳ+ (−1)xy yx̄ = b(x, y)1= x̄ y+ (−1)xy ȳx,

x̄(yz)+ (−1)xy ȳ(xz)= b(x, y)z = (zx)ȳ+ (−1)xy(zy)x̄ .

Consider the subspace of trace zero elements,

C0
= {x ∈ C : b(1, x)= 0} = {x ∈ C : x̄ =−x}.
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Then, for any homogeneous elements x, y ∈ C0, we have

xy+ (−1)xy yx =−(x ȳ+ (−1)xy yx̄)=−b(x, y)1,

while xy− (−1)xy yx = [x, y]. Thus

(4-3) xy = 1
2(−b(x, y)1+ [x, y]).

Also, for any homogeneous elements x, y, z ∈ C0, we have

b([x, y], z)= b(xy− (−1)xy yx, z)= b(x, (−1)yzz ȳ− ȳz)

= b(x, yz− (−1)yzzy)= b(x, [y, z]),

so

(4-4) b([x, y], z)= b(x, [y, z])

for any x, y, z ∈ C0. Using (4-3) and (4-4) we obtain:

[[x, y], z] + (−1)yz
[[x, z], y]

= b([x, y], z)1+ 2[x, y]z+ (−1)yz(b([x, z], y)1+ 2[x, z]y)

= 2([x, y]z+ (−1)yz
[x, z]y)

= 2
(
b(x, y)z+ 2(xy)z+ (−1)yz(b(x, z)y+ 2(xz)y)

)
= 2(b(x, y)z+ (−1)yzb(x, z)y)− 4((xy)z̄+ (−1)yz(xz)ȳ)

= 2b(x, y)z+ 2(−1)yzb(x, z)y− 4b(y, z)x,

for any homogeneous x, y, z ∈ C0. Therefore, with (x |y) = 2b(x, y), for any
x, y, z ∈ C0 we have:

(4-5) [[x, y], z] + (−1)yz
[[x, z], y] = (x |y)z+ (−1)yz(x |z)y− 2(y|z)x .

Now, if the characteristic of the ground field k is equal to 3, for any homogeneous
x, y, z ∈ C0 we have:

[[x, y], z] + (−1)x(y+z)
[[y, z], x] + (−1)(x+y)z

[[z, x], y]

= [[x, y], z] + (−1)x(y+z)
[[y, z], x] − 2(−1)(x+y)z

[[z, x], y]

= [[x, y], z] + (−1)yz
[[x, z], y]

− (−1)xy+xz+yz([[z, y], x] + (−1)xy
[[z, x], y])

= ((x |y)z+ (−1)yz(x |z)y− 2(y|z)x)

− (−1)xy+xz+yz((z|y)x + (−1)xy(z|x)y− 2(y|x)z)

= 3((x |y)z− (y|z)x)= 0.
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Thus, (C0, [ · , · ]) is a Lie superalgebra, and then (4-4) and (4-5) show the validity
of the first assertion in the following result:

Theorem 4.7. Let C be a Hurwitz superalgebra of dimension ≥ 2 over a field k
of characteristic 3 with norm q = (q0̄, b). Then, with the triple product [xyz] =
[[x, y], z] and the supersymmetric bilinear form ( · | · )= 2b( · , · ), C0 becomes an
orthosymplectic triple system. Moreover, if the dimension of C is ≤ 3, then the
triple product is trivial, otherwise the inner derivation algebra inder(C0) equals
adC0 , the linear span of the adjoint maps adx : y 7→ [x, y] for any x ∈ C0.

Proof. Only the last assertion needs to be verified. If the dimension of C is at most
3, then C is supercommutative, so [C0,C0

] = 0. However, if the dimension of C
is at least 4 (hence either 4, 6 or 8) then [C0,C0

] = C0. �

Corollary 4.8. Let C be a Hurwitz superalgebra of dimension ≥ 4 over a field k of
characteristic 3. Let V be a two-dimensional vector space endowed with a nonzero
alternating bilinear form 〈 · | · 〉. Consider the anticommutative superalgebra

g= (sp(V )⊕C0)⊕ (V ⊗C0),

with g0̄ = (sp(V )⊕ (C
0)0̄)⊕ (V ⊗ (C

0)1̄) and g1̄ = (C
0)1̄ ⊕ (V ⊗ (C

0)0̄), and
multiplication given by:

• the usual Lie bracket in the direct sum of the Lie algebra sp(V ) and the Lie
superalgebra C0,

• [γ, v⊗ x] = γ (v)⊗ x , for any γ ∈ sp(V ), v ∈ V and x ∈ C0,

• [x, v⊗ y] = (−1)xv⊗[x, y], for any homogeneous x, y ∈ C0 and v ∈ V ,

• [u ⊗ x, v ⊗ y] = (−1)x(−(x |y)γu,v + 〈u|v〉[x, y]) ∈ sp(V ) ⊕ C0, for any
u, v ∈ V and homogeneous x, y ∈C0 (where, as before, (x |y)= 2b(x, y) and
γu,v = 〈u| · 〉v+〈v| · 〉u).

Then g is a Lie superalgebra.

Proof. It suffices to note that the Lie superalgebra g is just the Lie superalgebra

g(C0, inder(C0))

in Proposition 4.5 of the orthosymplectic triple system (C0, [ . . . ], ( · | · )) after the
natural identification of inder(C0)= adC0 with C0. �

If the dimension of C in Corollary 4.8 is 4 (and hence C is a quaternion algebra),
it is not difficult to see that the Lie superalgebra g is a form of the orthosymplectic
Lie superalgebra osp3,2. Also, if the dimension of C is 8, so that C is an algebra
of octonions, then g is a form of the Lie superalgebra that appears in [Elduque
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2006b, Theorem 4.22(i)], which is the derived subalgebra of the Lie superalge-
bra g(S2, S1,2) in the supermagic square (see [Cunha and Elduque 2007b, Corol-
lary 4.10(ii)] and [Elduque 2007c, §3]). Also note that if the characteristic is not
3, then C0 is still an orthogonal triple system, but its associated Lie superalgebra
is a simple Lie superalgebra of type G(3) (see [Elduque 2006b, Theorem 4.7 (G-
type)]).

We are left with the 4|2-dimensional Hurwitz superalgebra C = B(4, 2) in (1-4)
over a field k of characteristic 3. The Lie bracket of elements in C0 is given by:

• The usual bracket [ f, g] = f g− g f in sl(V )= sp(V );

• [ f, u] = f · u− u · f =−2 f (u)= f (u) for any f ∈ sp(V ) and u ∈ V ;

• [u, v]=u ·v−(−1)uvv ·u=u ·v+v ·u=b( · , u)v+b( · , v)u= (u| · )v+(v| · )u
for any u, v ∈ V (recall that ( · | · )= 2b( · , · )=−b( · , · )).

Proposition 4.9. The Lie superalgebra B(4, 2)0 is isomorphic to the orthosym-
plectic Lie superalgebra osp1,2.

Proof. The orthosymplectic Lie superalgebra osp1,2 is the subalgebra of the general
Lie superalgebra gl(1, 2) given by:

osp1,2 =


 0 −ν µ

µ α β

ν γ −α

 : α, β, γ, µ, ν ∈ k

 .
Fix a basis {u, v} of V with (u|v)= 1, and consider the linear map:

C0
= sp(V )⊕ V → osp1,2,

f ∈ sp(V ) 7→

 0 0 0
0 α β

0 γ −α

 with

{
f (u)= αu+ γ v,

f (v)= βu−αv,

µu+ νv ∈ V 7→

 0 −ν µ
µ 0 0
ν 0 0

 .
This is checked to be an isomorphism of Lie algebras by straightforward compu-
tations. �

Also note that for f ∈ sp(V ), f 2
= − det( f )1 (by the Cayley–Hamilton equa-

tion) and q0̄( f ) = det( f ) and tr( f 2) = −2 det( f ) = det( f ), so q0̄( f ) = tr( f 2),
b( f, g) = 2 tr( f g), and ( f |g) = tr( f g) for any f, g ∈ sp(V ) = (C0)0̄. (Here tr
denotes the usual trace in Endk(V )= B(4, 2)0̄).

Theorem 4.10. The Lie superalgebra of the orthosymplectic triple system B(4, 2)0

is isomorphic to the Lie superalgebra br(2; 3).
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Proof. Since there are two vector spaces of dimension 2 involved here, let us denote
them by V1 and V2, whose nonzero alternating bilinear forms will be both denoted
by 〈 · | · 〉. Then consider the Hurwitz superalgebra C = B(4, 2)= Endk(V2)⊕ V2,
as defined in (1-4). The Lie superalgebra associated to the orthosymplectic triple
system C0 is given, up to isomorphism, in Corollary 4.8:

g= (sp(V1)⊕C0)⊕ (V1⊗C0).

Its even part is
g0̄ = (sp(V1)⊕ sp(V2))⊕ (V1⊗ V2),

with multiplication given by the natural Lie bracket in the direct sum sp(V1)⊕

sp(V2), the natural action of this subalgebra on V1⊗ V2, and by

[a⊗ u, b⊗ v] = (u|v)γa,b−〈a|b〉γu,v,

for any a, b ∈ V1 and u, v ∈ V2, where ( · | · ) = 2b( · , · ). Here γa,b = 〈a| · 〉b+
〈b| · 〉a, while γu,v = (u| · )v+(v| · )u. This Lie algebra is precisely the Lie algebra
L(1) of Kostrikin [1970] (see also [Elduque 2006b, Proposition 2.12]).

On the other hand, its odd part is

g1̄ = V2⊕ (V1⊗ sp(V2)).

Since C0 is a simple orthosymplectic triple system, the Lie superalgebra g is simple
(Proposition 4.5). Fix bases {ai , bi } of Vi (i = 1, 2) with 〈a1|b1〉 = 1 = (a2|b2),
and let hi , ei , fi ∈ sp(Vi ) be given by

(4-6)

hi (ai )= ai , hi (bi )=−bi ,

ei (ai )= 0, ei (bi )= ai ,

fi (ai )= bi , fi (bi )= 0.

Then span {h1, h2} is a Cartan subalgebra of g, and it is the (0, 0)-component of the
Z×Z-grading of g obtained by assigning deg(ai )= εi , deg(bi )=−εi for i = 1, 2,
where {ε1, ε2} is the canonical basis of Z×Z. The set of nonzero degrees is

8= {±2ε1,±2ε2,±ε1± ε2,±ε2,±ε1,±ε1± 2ε2}.

Consider the elements

E1 = a1⊗ f2, F1 = b1⊗ e2, H1 = [E1, F1] = h1− h2,

E2 = a2, F2 =−b2, H2 = [E2, F2] = h2.

Then we have that the subspace span {H1, H2} = span {h1, h2} is the previous Car-
tan subalgebra of g, E1 belongs to the homogeneous component gε1−2ε2 in the
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Z× Z-grading, and similarly F1 ∈ g−ε1+2ε2 , E2 ∈ gε2 , and F2 ∈ g−ε2 . Also, the
elements E1, E2, F1, F2 generate the Lie superalgebra g. Besides,

[H1, E1] = h1(a1)⊗ f2− a1⊗[h2, f2] = a1⊗ f2+ 2a1⊗ f2 = 0,

[H1, E2] = (h1− h2)(a2)=−a2,

[H2, E1] = a1⊗[h2, f2] = −2a1⊗ f2,

[H2, E2] = h2(a2)= a2,

and similarly for the action of the Hi ’s on the F j ’s. It follows, with the same
arguments as in [Cunha and Elduque 2007a, §4], that g is the Lie superalgebra
with Cartan matrix (

0 −1
−2 1

)
,

which is the first Cartan matrix of the Lie superalgebra br(2; 3) given in [Bouar-
roudj et al. 2007, §10.1]. �

In this way, the Lie superalgebra br(2; 3), of superdimension 10|8 is completely
determined by the orthosymplectic triple system B(4, 2)0 (that is, by the orthosym-
plectic triple system obtained naturally from the Lie superalgebra osp1,2) of su-
perdimension 3|2.

5. Orthosymplectic triple systems and the Lie superalgebra el(5; 3)

In this section, the characteristic of the ground field k will always be assumed to
be 3, since we will be dealing with the superalgebras S1,2 and el(5; 3), which only
make sense in this characteristic.

Equation (2-2), together with Theorem 2.1, which allows us to identify the Lie
superalgebra el(5; 3) with the maximal subalgebra g(S8, S1,2)+, show that there is
a decomposition of g(S8, S1,2) into the direct sum (Z2-grading)

g(S8, S1,2)= el(5; 3)⊕ T,
where

(5-1)
el(5; 3)= (tri(S8)⊕ sp(V ))⊕ ι0(S8⊗ 1)⊕ (ι1(S8⊗ V )⊕ ι2(S8⊗ V )),

T = (ι1(S8⊗ 1)⊕ ι2(S8⊗ 1))⊕ (V ⊕ ι0(S8⊗ V )),

where V is a two-dimensional vector space endowed with a nonzero alternating
bilinear form.

This section will show that T is an orthosymplectic triple system, with the triple
product given by [xyz] = [[x, y], z] and a suitable supersymmetric bilinear form,
and that el(5; 3) is isomorphic to the Lie superalgebra of derivations of this or-
thosymplectic triple system.

A few preliminary results are needed.
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Lemma 5.1. There exists a unique supersymmetric associative bilinear form

B : g(S8, S1,2)× g(S8, S1,2)→ k

such that

(5-2) B(ιi (x ⊗ u), ι j (y⊗ v))= δi j b(x, y)b(u, v),

for any i, j = 0, 1, 2, x, y ∈ S8 and u, v ∈ S1,2. Here δi j is the usual Kronecker
delta and b denotes the polar form of the norm in both S8 and S1,2.

Proof. This is proved as in [Elduque 2006a, Corollary 4.9]. First there is a unique
invariant supersymmetric bilinear form B1,2 on the orthosymplectic Lie superalge-
bra osp(S1,2, q) such that

B1,2(d, σu,v)= b(d(u), v)

for any u, v ∈ S1,2 and d ∈ osp(S1,2, q), where σu,v is defined in (1-5). Actually,
B1,2 is given by B1,2(d, d ′)=−1

2 str(dd ′), where str denotes the supertrace. Note
that

str(σx,yσu,v)=−2
(
(−1)y ub(x, u)b(y, v)− (−1)(y+u)vb(x, v)b(y, u)

)
.

Also, in [Elduque 2006a] it is proved that there is a unique invariant symmetric
bilinear form B8 on tri(S8) such that

B8((d0, d1, d2), θ
i (tx,y))= b(di (x), y)

for any x, y ∈ S8 and (d0, d1, d2) ∈ tri(S8).
Then the supersymmetric invariant bilinear form B required is defined by im-

posing the following conditions:

• The restriction of B to tri(S1,2) is given by B1,2 (after identifying tri(S1,2)

with osp(S1,2, q) because of (2-1)).

• The restriction of B to tri(S8) is given by B8.

• The restriction of B to
⊕2

i=0 ιi (S8⊗ S1,2) is given by (5-2). �

Note that g(S8, S1,2) is then the orthogonal direct sum, relative to B, of the
subspaces tri(S8), tri(S1,2) and ιi (S8⊗ S1,2) for i = 0, 1, 2.

Now, the description of g(S8, S1,2) in the proof of Theorem 2.1 becomes quite
useful in the proof of the next result:

Lemma 5.2. Any derivation of the Lie superalgebra g(S8, S1,2) is inner.

Proof. As in [Cunha and Elduque 2007a], take five two-dimensional vector spaces
V1, . . . , V5 endowed with nonzero alternating bilinear forms 〈 · | · 〉. Take symplec-
tic bases {vi , wi } of Vi for any i=1, . . . , 5 with 〈vi |wi 〉=1 and the basis {hi , ei , fi }



74 ALBERTO ELDUQUE

of sp(Vi ) given by

hi = γvi ,wi , ei = γwi ,wi , fi =−γvi ,vi ,

which satisfy

[hi , ei ] = 2ei , [hi , fi ] = −2 fi , and [ei , fi ] = hi .

Consider the description of g(S8, S1,2) in (2-3):

g(S8, S1,2)=
⊕
σ∈S8,3

V (σ ).

This shows that g(S8, S1,2) is Z5-graded, by assigning

degwi = εi , deg vi =−εi ,

where {ε1, . . . , ε5} is the canonical basis of Z5. The vector subspace

h= span {h1, . . . , h5}

is a Cartan subalgebra of g(S8, S1,2). Consider the Z-linear map

R : Z5
→ h∗, εi 7→ R(εi ) : h j 7→ δi j .

The set of nonzero degrees of g(S8, S1,2) in the Z5-grading is given by

8= {±2εi : i = 1, . . . , 5}

∪
{
±εi1 ± · · ·± εir : 1≤ i1 < · · ·< ir ≤ 5, {i1, . . . , ir } ∈ S8,3 \ {∅}

}
.

The set R(8) is the set of roots of g(S8, S1,2) relative to the Cartan subalgebra h.
Note that the restriction of R to8 fails to be one-to-one only because {±2ε5,±ε5}

is contained in 8, and R(±2ε5)= R(∓ε5), as the characteristic is equal to 3.
The Lie superalgebra of derivations of g = g(S8, S1,2) inherits the Z5-grading,

so in order to prove Lemma 5.2 it is enough to prove that homogeneous derivations
(in this Z5-grading) are inner. Thus, assume that d ∈ der(g)ν , with ν ∈ Z5:

(1) If ν 6=0 and d(h)=0 (note that the Cartan subalgebra h is just the 0-component
in this grading), then d preserves the eigenspaces (root spaces) of h, and hence
d(gµ)= 0 for any µ∈8\{±2ε5,±ε5}, as d(gµ)must simultaneously be contained
in gµ+ν and in the root space of root R(µ). But the subspaces gµ, with µ ∈
8 \ {±2ε5,±ε5} generate the Lie superalgebra g. (This can be checked easily, but
it also follows from [Cunha and Elduque 2007a, Proposition 5.25].) Hence d = 0,
which is trivially inner.
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(2) If ν 6= 0 and d(h) 6= 0, then d(h) is contained in gν , which has dimension at
most 1. Thus gν = kxν for some xν . Then for any h ∈ h, d(h)= f (h)xν for some
f ∈ h∗. Then, for any h, h′ ∈ h,

0= d([h, h′])= [d(h), h′] + [h, d(h′)] =
(
−R(ν)(h′) f (h)+ R(ν)(h) f (h′)

)
xν .

As R(ν) 6= 0, it follows that there is a scalar α ∈ k with

f = αR(ν) and d ′ = d −α ad xν

is another derivation in der(g)ν with d ′(h) = 0, so d ′ must be 0 by the previous
case, and hence d is inner.

(3) Finally, if ν=0, then d(ei )∈g2εi = kei , so d(ei )=αi ei for any i . Also, d( fi )=

βi fi for any i (αi , βi ∈ k). As kei+k fi+khi is a Lie subalgebra isomorphic to sl2,
it follows at once that αi + βi = 0. Then the derivation d ′ = d − 1

2 adα1h1+···+α5h5

satisfies d ′(ei )= 0= d ′( fi ) for any i , so d ′(hi )= 0, and hence d ′(sp(Vi ))= 0 for
any i . As d ′ preserves degrees, it preserves each subspace V (σ ), for ∅ 6= σ ∈S8,3,
which is an irreducible module for

⊕5
i=1 sp(Vi ). By Schur’s Lemma, there is a

scalar ασ ∈ k such that the restriction of d ′ to any V (σ ) is ασ id. But

0 6= [V (σ ), V (σ )] ⊆
5⊕

i=1

sp(Vi ),

so 2ασ = 0 for any such σ and d ′ = 0. Thus d is inner in this case, too. �

Consider now the triple product on the subspace T (the odd component in
the Z2-grading of g(S8, S1,2) considered so far) inherited from the Lie bracket in
g(S8, S1,2):

T ⊗ T ⊗ T → T, X ⊗ Y ⊗ Z 7→ [XY Z ] = [[X, Y ], Z ].

As T is the odd component of g(S8, S1,2), it is a Lie triple supersystem. Therefore
(T, [ . . . ]) satisfies equations (4-1a) and (4-1c).

Also, if we consider the supersymmetric bilinear form ( · | · ) on T given by
the restriction of the bilinear form B given in Lemma 5.1, the invariance of B
immediately shows that (T, [ . . . ], ( · | · )) also satisfies (4-1d).

Theorem 5.3. (T, [ . . . ], ( · | · )) is an orthosymplectic triple system whose Lie su-
peralgebra of derivations is isomorphic to el(5; 3). Moreover, the associated Lie
superalgebra g(T ) is isomorphic to the Lie superalgebra g(S4,2, S4,2) in the super-
magic square.

Proof. It is enough to check (4-1b).
Take a symplectic basis {a, b} of the two-dimensional vector space V in (5-1)

(that is, 〈a|b〉 = 1), then T is generated, as a module over el(5; 3) by ι0(S8⊗a) or



76 ALBERTO ELDUQUE

by ι0(S8⊗b). Also, T⊗T is generated by ι0(S8⊗a)⊗ι0(S8⊗b). Both the left and
right sides of (4-1b) are given by el(5; 3)-invariant trilinear maps T ⊗T ⊗T → T .
Therefore, it is enough to prove that

[X ι0(y⊗ a) ι0(z⊗ b)] − [X ι0(z⊗ b) ι0(y⊗ a)]

= (X |ι(y⊗ a))ι0(z⊗ b)− (X |ι0(z⊗ b))ι0(y⊗ a)+ b(y, z)X

for any X ∈ T and y, z ∈ S8.

• For X =u ∈V ' tri(S1,2)1̄, since {a, b} is a symplectic basis, u=〈u|b〉a−〈u|a〉b,
so

[u ι0(y⊗ a) ι0(z⊗ b)] = −〈u|a〉[ι0(y⊗ 1), ι0(z⊗ b)]

= −〈u|a〉b(y, z)t1,b =−〈u|a〉b(y, z)b,

where, as before, V is identified with tri(S1,2)1̄. Thus,

[X ι0(y⊗ a) ι0(z⊗ b)] − [X ι0(z⊗ b) ι0(y⊗ a]

= −〈u|a〉b(y, z)b+〈u|b〉b(y, z)a = b(y, z)u = b(y, z)X.

Since (X |ι0(y⊗ a))= 0= (X |ι0(z⊗ b)), the result follows in this case.

• For X = ι0(x ⊗ u) with x ∈ S8 and u ∈ V , we have

[ι0(x ⊗ u) ι0(y⊗ a) ι0(z⊗ b)]

= [〈u|a〉tx,y + b(x, y)tu,a, ι0(z⊗ b)]

= 〈u|a〉ι0(σx,y(z)⊗ b)+ b(x, y)ι0(z⊗ σu,a(b))

= 〈u|a〉ι0
(
b⊗ (b(x, z)y− b(y, z)x)

)
− b(x, y)ι0

(
z⊗ (〈u|b〉a+〈a|b〉u)

)
.

Thus,

[X ι0(y⊗ a) ι0(z⊗ b)] − [X ι0(z⊗ b) ι0(y⊗ a)]

= −b(x, y)ι0
(
z⊗ (〈u|b〉a+〈a|b〉u+〈u|b〉a)

)
+ b(x, z)ι0

(
y⊗ (〈u|a〉b+〈b|a〉u+〈u|a〉b)

)
+ b(y, z)ι0

(
x ⊗ (−〈u|a〉b+〈u|b〉a)

)
= b(x, y)〈u|a〉ι0(z⊗ b)− b(x, z)〈u|b〉ι0(y⊗ a)+ b(y, z)ι0(x ⊗ u)

= (X |ι0(y⊗ a))ι0(z⊗ b)− (X |ι0(z⊗ b))ι0(y⊗ a)+ b(y, z)X.

• For X = ι1(x ⊗ 1), we have

[ι1(x ⊗ 1) ι0(y⊗ a) ι0(z⊗ b)] = [ι2(y • x ⊗ a), ι0(z⊗ b)] = ι1((y • x) • z⊗ 1)

as a • 1=−a and a • b = 1 and

[ι1(x ⊗ 1)ι0(z⊗ b)ι0(y⊗ a)] = [ι2(z • x ⊗ b), ι0(y⊗ a)] − ι1((z • x) • y⊗ 1)
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as b • 1=−b, b • a =−1. Thus,

[X ι0(y⊗ a) ι0(z⊗ b)] − [X ι0(z⊗ b) ι0(y⊗ a)]

= ι1
(
((y • x) • z+ (z • x) • y)⊗ 1

)
= b(y, z)X,

because the associativity of the bilinear form b in a symmetric composition algebra
is equivalent to the condition

(x • y) • x = q(x)y = x • (y • x)

(see [Knus et al. 1998, (34.1)]) and hence it follows that

(y • x) • z+ (z • x) • y = b(y, z)x

by linearization.

• For X = ι2(x ⊗ 1) the situation is similar.

Therefore, (T, [ . . . ], ( · | · )) is an orthosymplectic triple system and, by its own
construction, its Lie superalgebra of inner derivations is isomorphic to el(5; 3), as
[T T ·] = ad[T,T ] = adel(5;3). Thus, the Lie superalgebra g̃(T ) in Proposition 4.6 is
isomorphic to the Lie superalgebra g(S8, S1,2).

But any derivation d ∈ der T extends to a derivation of g̃(T ) which is inner (by
Lemma 5.2). It follows that der T = inder T is isomorphic to el(5; 3), as required.

The associated Lie superalgebra (see Proposition 4.5) is

(5-3) g= (sp(V )⊕ el(5; 3))⊕ (V ⊗ T ).

Consider again the description of g(S8, S1,2) in (2-3):

g(S8, S1,2)=
⊕
σ∈S8,3

V (σ ).

Then, as in (2-4),

el(5, 3)=
⊕
σ∈S+

V (σ ), T =
⊕
σ∈S−

V (σ ),

with

S+ = {∅, {1, 2, 3, 4}, {1, 2}, {3, 4}, {2, 3, 5}, {1, 4, 5}, {1, 3, 5}, {2, 4, 5}},

S− = {{5}, {1, 2, 5}, {3, 4, 5}, {2, 3}, {1, 4}, {1, 3}, {2, 4}}.

Now, assign the index 6 to the new copy of V in (5-3). Then,

g=
⊕
σ∈S̃

V (σ ),
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with S̃⊆ 2{1,2,3,4,5,6} given by

S̃=
{
∅, {1, 2, 3, 4}, {1, 2}, {3, 4}, {2, 3, 5}, {1, 4, 5}, {1, 3, 5}, {2, 4, 5}

{5, 6}, {1, 2, 5, 6}, {3, 4, 5, 6}, {2, 3, 6}, {1, 4, 6}, {1, 3, 6}, {2, 4, 6}
}
.

We now write

1̄= 1, 2̄= 3, , 3̄= 5, 4̄= 2, 5̄= 4, 6̄= 6

and obtain

S̃=
{
∅, {1̄, 2̄, 3̄, 5̄}, {1̄, 4̄}, {2̄, 5̄}, {2̄, 3̄, 4̄}, {1̄, 3̄, 5̄}, {1̄, 2̄, 3̄}, {3̄, 4̄, 5̄}

{3̄, 6̄}, {1̄, 3̄, 4̄, 6̄}, {2̄, 3̄, 5̄, 6̄}, {2̄, 4̄, 6̄}, {1̄, 5̄, 6̄}, {1̄, 2̄, 6̄}, {4̄, 5̄, 6̄}
}
,

and this coincides with SS4,2,S4,2 in [Cunha and Elduque 2007a, §5.4]. Hence this
superalgebra is a Lie superalgebra with the same Cartan matrix AS4,2,S4,2 in [Cunha
and Elduque 2007a, §5.4], thus proving that g is isomorphic to the Lie superalgebra
g(S4,2, S4,2) in the supermagic square. �

Remark 5.4. Theorem 5.3 shows that the Lie superalgebra el(5; 3) lives inside
g(S4,2, S4,2), and that, in fact, g(S4,2, S4,2) contains a maximal subalgebra isomor-
phic to sl2⊕ el(5; 3).

6. The Lie superalgebra br(2; 5)

In this section a model of the simple Lie superalgebra br(2; 5) is explicitly built.
To this aim, consider the Z2×Z2-graded vector space

g= g(0,0)⊕ g(1,0)⊕ g(0,1)⊕ g(1,1),

with
g(0,0) = sp(V1)⊕ sp(V2),

g(1,0) = sp(V1)⊗ V2,

g(0,1) = V1⊗ sp(V2),

g(1,1) = V1⊗ V2,

where, as usual, V1 and V2 are two-dimensional vector spaces endowed with non-
zero alternating bilinear forms denoted by 〈 · | · 〉.

This vector space becomes a superspace with

g0̄ = g(0,0)⊕ g(1,1),

g1̄ = g(1,0)⊕ g(0,1).

Now, define a superanticommutative product on g by means of the natural Lie
bracket on g(0,0), the natural action of g(0,0) on each g(i, j) (Vi is the natural module
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for sp(Vi ), while sp(Vi ) is its adjoint module), and by

(6-1)

[ f ⊗ u, g⊗ v] = 〈u|v〉[ f, g] + 2 tr( f g)γu,v,

[a⊗ p, b⊗ q] = −(2 tr(pq)γa,b+〈a|b〉[p, q]),

[a⊗ u, b⊗ v] = 〈u|v〉γa,b+〈a|b〉γu,v,

[ f ⊗ u, a⊗ p] = f (a)⊗ p(u),

[ f ⊗ u, a⊗ v] = f (a)⊗ γu,v,

[a⊗ p, b⊗ v] = −γa,b⊗ p(v),

for any

a, b ∈ V1, u, v ∈ V2, f, g ∈ sp(V1)= sl(V1) and p, q ∈ sp(V2)= sl(V2).

Here, as before,

γa,b = 〈a| · 〉 + 〈b| · 〉a

and similarly for γu,v.
This multiplication converts g into a Z2×Z2-graded anticommutative superal-

gebra.

Theorem 6.1. Let k be a field of characteristic 5. Then the superalgebra g above
is a Lie superalgebra isomorphic to br(2; 5).

Proof. It is clear that all the products in (6-1) are invariant under the action of

sp(V1)⊕ sp(V2).

Several instances of the Jacobi identity have to be checked. To do so, it is harmless
to assume that the ground field k is infinite (extend scalars otherwise) and hence,
Zariski topology can be used.

First, for elements a, b, c ∈ V1 and u, v, w ∈ V2, to check that the Jacobian

J (a⊗ u, b⊗ v, c⊗w)

= [[a⊗ u, b⊗ v], c⊗w] + [[b⊗ v, c⊗w], a⊗ u] + [[c⊗w, a⊗ u], b⊗ v]

is 0, it can be assumed, by Zariski density, that 〈a|b〉 6= 0 and 〈u|v〉 6= 0. (Note that
the set {(a, b) ∈ V ×V : 〈a|b〉 6= 0} is a nonempty open set in the Zariski topology
of V × V , and hence it is dense.) Moreover, scaling now b and v if necessary, it
can be assumed that 〈a|b〉 = 1 = 〈u|v〉, that is, {a, b} is a symplectic basis of V1

and {u, v} is a symplectic basis of V2. Now

c = αa+βb and w = µu+ νv
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for some α, β, µ, ν ∈ k. Then

J (a⊗ u, b⊗ v, c⊗w)
= [[a⊗ u, b⊗ v], c⊗w] + [[b⊗ v, c⊗w], a⊗ u] + [[c⊗w, a⊗ u], b⊗ v]

= 〈u|v〉γa,b(c)⊗w+〈a|b〉c⊗ γu,v(w)+〈v|w〉γb,c(a)⊗ u+〈b|c〉a⊗ γv,w(u)

+〈w|u〉γc,a(b)⊗ v+〈c|a〉b⊗ γw,u(v)

= (βb−αa)⊗ (µu+ νv)+ (αa+βb)⊗ (νv−µu)

+µ(αa+ 2βb)⊗ u+αa⊗ (µu+ 2νv)

− ν(2αa+βb)⊗ v−βb⊗ (2µu+ νv)

= 0.

Hence, g0̄ = g(0,0) ⊕ g(1,1) is a Lie algebra, which can be easily checked to be
isomorphic to the symplectic Lie algebra sp(V1 ⊥ V2)' sp4.

Now, for elements f, g, h ∈ sp(V1) and u, v, w∈V2, it can be assumed as before
that 〈u|v〉 = 1 and that w = µu+ νv. Then,

[[ f ⊗ u, g⊗ v], h⊗w] = [〈u|v〉[ f, g] + 2 tr( f g)γu,v, h⊗w]

= 〈u|v〉[[ f, g], h]⊗w+ 2 tr( f g)h⊗ γu,v(w),

so that

(6-2) J ( f ⊗ u, g⊗ v, h⊗w)

= [[ f⊗u, g⊗v], h⊗w] + [[g⊗v, h⊗w], f⊗u] + [[h⊗w, f⊗u], g⊗w]

= 〈u|v〉[[ f, g], h]⊗w+ 2 tr( f g)h⊗ γu,v(w)

+〈v|w〉[[g, h], f ]⊗ u+ 2 tr(gh) f ⊗ γv,w(u)

+〈w|u〉[[h, f ], g]⊗ v+ 2 tr(h f )g⊗ γw,u(v)

= µ
(
[[ f, g], h] − 2 tr( f g)h− [[g, h], f ] − 2 tr(gh) f + 4 tr(h f )g

)
⊗ u

+ ν
(
[[ f, g], h] + 2 tr( f g)h− 2 tr(gh) f − [[h, f ], g] + 2 tr(h f )g

)
⊗ v.

But for any f ∈ sl(V1), f 2
= − det( f ) = 1

2 tr( f 2) id. Hence f g+ g f = tr( f g) id
for any f, g ∈ sl(V1), and thus

f g f = tr( f g) f − g f 2
= tr( f g) f − 1

2 tr( f 2)g.

Hence,

[[g, f ], f ] = g f 2
+ f 2g− 2 f g f = 2 tr( f 2)g− 2 tr( f g) f

and
[[g, f ], h] + [[g, h], f ] = 4 tr( f h)g− 2 tr( f g)h− 2 tr(gh) f.
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This shows that the Jacobian in (6-2) is trivial. Therefore, the subspace g(0,0)⊕g(1,0)
is a Lie superalgebra. The same happens to the subspace g(0,0)⊕ g(0,1).

Take now elements a, b ∈ V1, f ∈ sp(V1) and u, v, w ∈ V2. Then it can be
assumed that 〈a|b〉 = 1= 〈u|v〉, and w = µu+ νv. In this situation,

J (a⊗ u, b⊗ v, f ⊗w)

= [[a⊗ u, b⊗ v], f ⊗w] + [[b⊗ v, f ⊗w], a⊗ u] + [[ f ⊗w, a⊗ u], b⊗ v]

= 〈u|v〉[γa,b, f ]⊗w+〈a|b〉 f ⊗ γu,v(w)+ γa, f (b)⊗ γv,w(u)− γ f (a),b⊗ γu,w(v)

= µ([γa,b, f ] − f − γa, f (b)− 2γ f (a),b)⊗ u

+ ν([γa,b, f ] + f − 2γa, f (b)− γ f (a),b)⊗ v.

But, since the bilinear map (c, d) 7→ γc,d is sp(V1)-invariant,

[ f, γa,b] = γ f (a),b+ γa, f (b).

Hence,

(6-3) J (a⊗ u, b⊗ v, f ⊗w)

=−µ( f + 3γ f (a),b+ 2γa, f (b))⊗ u+ ν( f − 2γ f (a),b− 3γa, f (b)).

Also, by taking the coordinate matrix of f in the symplectic basis {a, b}, it is
checked at once that f = − 1

2γ f (a),b +
1
2γa, f (b). Since the characteristic of k is

equal to 5, this proves that the Jacobian in (6-3) is trivial.
The other instances of the Jacobi identity are checked in a similar way.
Finally, fix symplectic bases {ai , bi } of Vi (i = 1, 2). Then g is Z×Z-graded by

assigning

deg(ai )= εi , deg(bi )=−εi ,

where {ε1, ε2} denotes the canonical Z-basis of Z×Z. Let {hi , ei , fi } be the basis
of sp(Vi ) defined as in (4-6). Then span {h1, h2} is a Cartan subalgebra of g, and
coincides with the (0, 0)-component in the Z × Z-grading. The set of nonzero
degrees is

8= {±2ε1,±2ε2,±ε1± ε2,±ε2,±2ε1± ε2,±ε1,±ε1± 2ε2}.

Consider the elements

E1 = a1⊗ f2, F1 =−b1⊗ e2, H1 = [E1, F1] = −2h1− h2,

E2 = h1⊗ a2, F2 = h1⊗ b2, H2 = [E2, F2] = h2.

Then, span {H1, H2} coincides with the previous Cartan subalgebra span {h1, h2}

of g, E1 belongs to the homogeneous component gε1−2ε2 in the Z×Z-grading, and
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similarly F1 ∈ g−ε1+2ε2 , E2 ∈ gε2 , and F2 ∈ g−ε2 . The elements E1, E2, F1, F2

generate the Lie superalgebra g. Besides,

[H1, E1] = −2h1(a1)⊗ f2− a1⊗[h2, f2] = −2a1⊗ f2+ 2a1⊗ f2 = 0,

[H1, E2] = h1⊗ (−h2)(a2)=−h1⊗ a2,

[H2, E1] = a1⊗[h2, f2] = −2a1⊗ f2,

[H2, E2] = h1⊗ h2(a2)= h1⊗ a2,

and similarly for the action of the Hi ’s on the F j ’s. It follows, with the same
arguments as in [Cunha and Elduque 2007a, §4], that g is the Lie superalgebra with
Cartan matrix

( 0 −1
−2 1

)
, which is the first Cartan matrix of the Lie superalgebra

br(2; 5) given in [Bouarroudj et al. 2007, §12]. �
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