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ASYMPTOTICS OF EIGENFUNCTIONS ON PLANE DOMAINS

DANIEL GRIESER AND DAVID JERISON

We consider a family of domains (�N)N>0 obtained by attaching an N × 1
rectangle to a fixed set �0 = {(x, y) : 0 < y < 1, −φ( y) < x < 0}, for a
Lipschitz function φ ≥ 0. We derive full asymptotic expansions, as N→∞,
for the m-th Dirichlet eigenvalue (for any fixed m∈N) and for the associated
eigenfunction on �N . The second term involves a scattering phase arising
in the Dirichlet problem on the infinite domain �∞. We determine the first
variation of this scattering phase, with respect to φ, at φ ≡ 0. This is then
used to prove sharpness of results, obtained previously by the same authors,
about the location of extrema and nodal line of eigenfunctions on convex
domains.

1. Introduction

For a Lipschitz function φ : [0, 1]→ [0,∞) and for N ∈ [0,∞] consider the plane
domain (see figure)

(1-1) �N = {(x, y) ∈ R2
: 0< y < 1, −φ(y) < x < N }

and the eigenvalue problem for the Dirichlet Laplacian on �N :

(1+µ)u = 0 on �N ,

u = 0 at ∂�N .
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For N < ∞ let µ1(�N ) < µ2(�N ) ≤ · · · be the eigenvalues, counted with
multiplicities. The object of this paper is to study, for fixed m ∈N, the asymptotic
behavior of µm(�N ) and of the associated eigenfunctions, as N →∞. This will
then be used to answer some questions left open in our study [Jerison 1995; Grieser
and Jerison 1996; 1998] of the first and the second eigenfunction on general plane
convex domains.

Our first main theorem is:

Theorem 1. There is a number a(φ) ∈ [0,maxφ] such that for each m ∈ N the
m-th Dirichlet eigenvalue of �N satisfies

(1-2) µm(�N )= π
2
+

m2π2

(N + a(φ))2
+ O(N−5), N →∞.

In particular, the eigenvalues µ1, . . . , µm of �N are simple for N sufficiently
large. The suitably rescaled eigenfunction um satisfies, for all multiindices α,

sup
x>3 log N

∣∣∣Dα
(

um(x, y)− sin mπ
x + a(φ)
N + a(φ)

sinπy
)∣∣∣= O(N−3),(1-3)

sup
x≤3 log N

|um(x, y)| = O(N−1log N ).(1-4)

The constants in the error terms only depend on k, α and maxφ.

Thus, the spectral data are very close to the data obtained on the rectangle

[−a(φ), N ]× [0, 1].

In fact, we will get complete asymptotic expansions for the eigenvalue and the
eigenfunction and also much more precise information about the eigenfunction for
small values of x ; see Remark 12 and Theorem 15 (in connection with (3-11)).

The number a(φ) is closely related to a scattering phase in an associated non-
compact problem; see Section 2, in particular Remark 8. Therefore, its dependence
on φ is very subtle. Our second main theorem gives a perturbation analysis of a(φ)
around φ ≡ 0:

Theorem 2. Fix a Lipschitz function φ : [0, 1] → [0,∞). Then, as ε→ 0,

a(εφ)= 2ε
∫ 1

0
φ(y)(sinπy)2 dy+ O(ε2).

As already mentioned, one motivation for the present study is to complement the
results about the first and second eigenfunction u1, u2 on a plane convex domain�
obtained in [Jerison 1995; Grieser and Jerison 1998]. In these papers we consid-
ered the maximum of u1 (which is, without loss of generality, assumed positive)
and the nodal line of u2, and a central goal was to localize these objects in terms
of corresponding objects for eigenfunctions of an associated ordinary differential
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operator. To state this more precisely, we first normalize � by a rotation and a
dilation so that among all projections of� onto lines the projection onto the y-axis
has shortest possible length and this length equals one. Let π(x, y) = x be the
projection map to the x-axis. Let I = π(�) and h : I → (0,∞) be the “height
function” of �, that is,

h(x)= length of the interval π−1({x})∩�.

Let φ1, φ2 be the first and second eigenfunction of the Schrödinger operator

−
d2

dx2 +
π2

h(x)2

on I , with Dirichlet boundary conditions (defined in terms of the variational prin-
ciple on H 1

0 (I )).

Theorem 3 [Jerison 1995; Grieser and Jerison 1998]. Let the domain � be nor-
malized as above and let h : I → (0,∞) be its height function. Denote by M the
set where u1 achieves its maximum, by N= u−1

2 (0) the nodal line, and let {m} and
{n} be the corresponding sets for φ1, φ2.

There is an absolute constant C so that

(1-5) π(M)⊂ [m−C,m+C], π(N)⊂ [n−C, n+C].

Actually, M consists of a single point, by a well-known argument using the con-
vexity of �. Also, the uniqueness of the point m follows standard arguments from
the convexity of h, while the uniqueness of n is a general fact from Sturm theory.

A consequence of the theorem is that, while clearly the interval I and the func-
tion h do not determine � uniquely, these data do determine the location of the
distinctive features of u1, u2 up to a bounded error, uniformly for all domains
normalized as above (in particular, uniformly as |I | →∞).

The question left open in [Jerison 1995; Grieser and Jerison 1998] is whether
the result (1-5) is sharp in order of magnitude as |I | → ∞. We will derive from
Theorems 1 and 2 that this is in fact true:

Theorem 4. There is c > 0 and, for each N ′ > 0, a pair of domains �, �̃, nor-
malized as above and with π(�) = π(�̃) of length N ′ and with the same height
function, such that

dist(π(M), π(M̃)) > c, dist(π(N), π(Ñ)) > c.

See the figure on page 132. This should be put in contrast with the main result of
[Grieser and Jerison 1996] which states that the length of the interval π(N) is not
bounded away from zero, but actually bounded above by C/|I |, for an absolute
constant C .
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Our approach to Theorem 1 is through the method of matched asymptotic ex-
pansions. This is carried out in Section 3. Here one has to deal with two limiting
problems. The first is the equation

(
−d2/dξ 2

+λ
)
ψ(ξ)= 0 on the interval [0, 1],

and is easily solved explicitly. The second one is the equation (1+π2)U =0 on the
unbounded domain�∞; we need some results about generalized eigenfunctions on
�∞, which are known from scattering theory. For completeness we give a direct
derivation of what we need in Section 2. Here, the quantity a(φ) arises. Theorem
2 is proved in Section 4 and Theorem 3 in Section 5.

The asymptotic behavior of spectral quantities on degenerating spaces similar
to the family (�N )N>0 has been studied by many authors in different contexts.
Regarding invariants involving all the eigenvalues (like the determinant of the
Laplacian) we only mention [Hassell et al. 1995; Müller 1994; Park and Woj-
ciechowski 2002]. Our results are also related to the investigations of so-called
thick graphs (or graph-like thin manifolds): When rescaling �N by a factor 1/N ,
one obtains a domain which is a 1/2N -neighborhood of a unit interval, except
for a fixed (scaled) perturbation at the ends of the interval. Instead of the interval
(considered as a graph with two nodes and one edge of length one connecting
them) one may consider more general embedded graphs, and their ε-neighborhoods
(or more general “ε-thin” manifolds modeled on the graph). The convergence of
eigenvalues, as ε tends to zero, to spectral data on the graph itself (then sometimes
called a “quantum graph”) was studied in [Kuchment and Zeng 2001; Rubinstein
and Schatzman 2001; Exner and Post 2005], for the Neumann and closed prob-
lems. The Dirichlet problem is more difficult to handle since the dependence on
the counting parameter k appears in a lower order term; compare with (1-2). The
Dirichlet and mixed boundary value problems are studied in [Grieser 2008a] and
[Molchanov and Vainberg 2007]. The existence of asymptotic expansions for the
eigenvalues and eigenfunctions in terms of ε = N−1 can also be proved by the
methods of these papers; however, Theorem 1 contains more precise information
that we need here, which is specific to the situation of domains (1-1). While in
these papers the graph edges are always straight lines, the case of a curved line
(but without the perturbation at the end) is considered in [Freitas and Krejčiřı́k
2008], where a nodal line theorem is proved. We refer to [Grieser 2008b] for a
survey of related results and more references.

2. Eigenfunctions on the infinite domain

In this section we prove the results about generalized eigenfunctions on�∞ needed
in the proof of Theorem 1. Since, for any m, the m-th eigenvalue on �N converges
to π2 as N →∞ (by domain comparison), we need to consider the spectral value
π2, which is the bottom of the continuous spectrum of −1Dir on �∞.
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Proposition 5. (1) There is a unique function U on �∞ satisfying

(2-1)

(1+π2)U = 0 on �∞,

U = 0 at ∂�∞,

U − x sinπy is bounded.

(2) For this function U define

(2-2) a(φ)= 2
∫ 1

0
U (0, y) sinπy dy.

Then

(2-3) U (x, y)= (x + a(φ)) sinπy+ r(x, y)

where the remainder decays exponentially as x→∞, more precisely,

(2-4) r(x, y)=
∞∑

k=2

r (k)(x) sin kπy, |d p
x r (k)(x)| ≤ C pe−kx/2 for all p, k.

Here, C p is independent of k and x and is bounded in terms of maxφ.

Note that in the special case where φ is a constant A, the function U is simply
(x + A) sinπy, so a(φ)= A. Therefore, for general φ, the number a(φ) tells how
much the “standard” problem, with �∞ = [0,∞) × [0, 1], has to be shifted so
that its first (generalized) eigenfunction coincides asymptotically with that of the
“perturbed” problem. See also Remark 8.

For simplicity, we assume all functions are real valued. Basic to all considera-
tions is the explicit form of solutions of the homogeneous equation:

Lemma 6. Assume u solves (1+ π2)u = 0 in x ≥ x0, y ∈ (0, 1), vanishes for
y = 0 and y = 1 and has at most polynomial growth as x→∞. Then

(2-5) u(x, y)= (A1+ B1x) sinπy+
∞∑

k=2

Ake−
√

k2−1πx sin kπy,

for x ≥ x0 and certain numbers Ak , B1.

Proof. The function u is smooth, so for each fixed x it is the sum of its Fourier
series,

u(x, y)=
∞∑

k=1

uk(x) sin kπy,

where

uk(x)= 2
∫ 1

0
u(x, y) sin kπy dy.
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From (1+π2)u = 0 one gets

u′′k + (1− k2)π2uk = 0.

This gives u1(x)= A1+ B1x and

uk(x)= Ake−
√

k2−1πx
+ Bke

√
k2−1πx

for k ≥ 2. Since u is polynomially bounded, so is uk , and therefore Bk = 0 for
k ≥ 2. �

Lemma 7. Let w ∈ L2(�∞) be supported in �1.

(1) If u ∈ H 1(�∞) solves

(2-6)

(1+π2)u = w on �∞,

u = 0 at ∂�∞,

u is bounded,

then

(2-7) ‖u‖2H1(�1)
≤−C(u, w),

where C is bounded in terms of the maximum of φ.

(2) Problem (2-6) has a unique solution u.

Proof. (1) We integrate by parts and use the support assumption to obtain

−(u, w)=−
∫
�1

u(1+π2)u =−
∫
∂�1

uun +

∫
�1

|∇u|2−π2
∫
�1

u2,

where un is the outward normal derivative. Therefore, it is sufficient to prove the
following two facts:

(i) If u is as in (2-5) and bounded then∫ 1

0
u(x0, y)

∂u(x0, y)
∂x

dy ≤ 0.

(ii) If u ∈ H 1(�1) and u = 0 on ∂�1 \ {x = 1} then∫
�1

|∇u|2−π2
∫
�1

u2
≥ c‖u‖2H1(�1)

.

To prove (i), observe that B1 = 0 in (2-5) since u is bounded. Therefore,∫ 1

0
u(x0, y) ∂x u(x0, y) dy =−π2

∞∑
k=2

A2
k

√
k2− 1e−2

√
k2−1πx0 ≤ 0.
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To prove (ii), consider the domain �̃ which is the union of �1, the boundary
piece {1}× (0, 1), and the reflection of �1 across this boundary. Since

�̃⊂ (−A, A)× (0, 1)

for some A, the first Dirichlet eigenvalue of �̃ is strictly bigger than π2, so it equals
(π2
+ c)/(1− c) for some c> 0. The function on �̃ which equals u for x ≤ 1 and

is symmetric with respect to the line {x = 1} is in H 1
0 (�̃), so we can use it as test

function and obtain

(1− c)
∫
�1

|∇u|2 ≥ (π2
+ c)

∫
�1

u2,

which implies (ii). In this proof A and therefore c only depend on maxφ.
(2) Uniqueness is clear from (1). To prove existence, we reduce to a compact

problem. Define Dirichlet-to-Neumann operators N1, N∞, acting on functions on
S= {1}×(0, 1), as follows: Given f ∈ H 1

0 (S)∩H 2(S), let v1, v∞ be the solutions
of (1+ π2)v = 0 on �1 and D = (1,∞)× (0, 1), respectively, with boundary
values f at S and zero elsewhere, and v∞ bounded. Existence and uniqueness
follow for v1 from the fact that the first Dirichlet eigenvalue of �1 is bigger than
π2, and for v∞ by explicit computation as in Lemma 6. Set

N1 f := ∂v1/∂x|S and N∞ f := ∂v∞/∂x|S.

The restrictions exist and are in H 1(S) since v1, v∞ are in H 5/2 near S by standard
regularity theory.

From (i) applied to u = v∞ we have (N∞ f, f )≤ 0, and from (ii)

(N1 f, f )=
∫
∂�1

(v1)nv1 =

∫
�1

|∇v1|
2
−π2

∫
�1

v2
1 ≥ c‖v1‖

2
H1(�1)

≥ ‖ f ‖2H1/2(S),

so we obtain

(2-8) ((N1− N∞) f, f )≥ c‖ f ‖2H1/2(S), f ∈ H 1
0 (S)∩ H 2(S).

Along the same lines one sees that

(N1 f, g)≤ ‖ f ‖H1/2(S)‖g‖H1/2(S), f, g ∈ H 1/2
0 (S),

and this shows that N1 can be extended to a bounded operator

H 1/2
0 (S)→ H−1/2(S),

and similarly for N∞. By approximation, (2-8) continues to hold for f ∈ H 1/2
0 (S).

This shows that N1 − N∞ has closed range and therefore is surjective, for if g ∈
H 1/2

0 (S) is orthogonal to the range then applying (2-8) to g implies g = 0.
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Now we find a solution u of (2-6) as follows: Let v be the unique solution of
(1+π2)v=w on �1, v|∂�1 = 0, and define f on S by (N1−N∞) f =−∂v/∂x|S .
For f find functions v1, v∞ as above. Define the function u by v+v1 on�1 and by
v∞ on D; at S, u has the value f from the left and right, and ∂u/∂x is ∂v/∂x+N1 f
from the left and N∞ f from the right, which are equal by construction. Therefore,
u is the desired solution. �

Proof of Proposition 5. (1) Let ψ(x) be a smooth function vanishing for x ≤ 0 and
equal to one for x ≥ 1. Let u be the solution of (2-6) with

w =−(1+π2)(ψ(x)x sinπy).

Then U = u+ψ(x)x sinπy solves (2-1). From (2-7) we have

‖u‖H1(�1) ≤ C‖w‖L2(�1) ≤ C ′

and therefore also

(2-9) ‖U‖H1(�1) ≤ C,

with C only depending on maxφ. Uniqueness is clear from the uniqueness for u.

(2) Apply Lemma 6 to U with x0 = 0. Since U − x sinπy is bounded, we have
B1 = 1. Since, from (2-9) and the trace theorem,

∞∑
k=1

A2
k =

1
2

∫ 1

0
U (0, y)2 dy ≤ C‖U‖2H1(�1)

≤ C ′,

this gives (2-3) and (2-4) with a(φ)= A1, and evaluating∫ 1

0
U (0, y) sinπy dy

yields (2-2). �

Remark 8. We explain the relation of a(φ) to the scattering phase. Standard scat-
tering theory (see, for example, [Guillopé 1989]) yields that for s > 0 close to zero
the equation (1+π2

+ s2)E = 0, E|∂�∞ = 0 has a unique polynomially bounded
solution on �∞ of the form

Es = (e−isx
+ S(s)eisx) sinπy+ rs(x, y)

for some number S(s) (the scattering matrix) and a remainder rs(x, y) of the form
(2-4). The function S extends holomorphically to a neighborhood of zero in C and
is real and of modulus one for real argument, hence may be written as S(s)= eiγ (s)

for a holomorphic function γ , the scattering phase. rs is also holomorphic in s and
the estimates (2-4) are uniform in s near zero, so one can take the limit s→ 0 to
get a solution of (1+π2)U = 0. This solution is bounded, hence constant equal to
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zero by Proposition 5. Therefore S(0) = −1 and r0 ≡ 0. One can get a nontrivial
solution by taking

lim
s→0

1
s

Es =
d
ds |s=0

Es,

and this has leading term −2i(x + γ ′(0)/2) sinπy. Comparison with (2-3) then
yields

a(φ)= 1
2γ
′(0).

We will also need an extension of Proposition 5:

Lemma 9. Assume v is a smooth function on �∞ which vanishes at ∂�∞ and for
x ≥ 0 has the form

v(x, y)= p(x) sinπy+ r(x, y),

with p a polynomial and r satisfying the estimates (2-4).
Then any polynomially bounded solution of the problem

(2-10)
(1+π2)u = v on �∞,

u = 0 at ∂�∞

has the same form u(x, y) = q(x) sinπy+ s(x, y), where s satisfies the estimates
(2-4) and

(2-11) q ′′ = p.

Such solutions exist, and are unique up to adding multiples of U , where U is defined
in Proposition 5.

Proof. Let u be a solution of (2-10). Taking the Fourier decomposition of u(x, · )
we get

u(x, y)= q(x) sinπy+
∞∑

k=2

s(k)(x) sin kπy,

and then (2-10) gives (2-11) and, for each k ≥ 2,

(2-12) (d2
x + 1− k2)s(k) = r (k).

For any initial condition s(k)(0)= ak , (2-12) has the unique polynomially bounded
solution

s(k)(x)= ake−αx
−

1
2α

∫
∞

0

(
e−α|x−z|

− e−α(x+z))r (k)(z) dz

where α =
√

k2− 1. Since u is given and s(k)(x) = 2
∫ 1

0 u(x, y) sin kπy dy, we
have ak = 2

∫ 1
0 u(0, y) sin kπy dy. An easy calculation shows

|d p
x s(k)(x)| ≤ Ce−kx/2,
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and this proves the first claim.
To prove existence of a solution, choose q0 satisfying q ′′0 = p, and a cutoff

function χ , equal to zero for x ≤ 1 and to one for x ≥ 2, and set

u0(x, y)= χ(x)
(

q0(x) sinπy+
∞∑

k=2

s(k)0 (x) sin kπy
)
.

This is polynomially bounded. Then u=u0+h solves (2-10) if and only if h solves
(1+π2)h = v1, h|∂�∞ = 0, where v1 = v− (1+π

2)u0 is compactly supported.
Lemma 7 guarantees the existence of a bounded solution h.

Uniqueness is clear from Lemma 6 and Proposition 5. �

3. Asymptotic expansions of eigenfunctions and eigenvalues

In order to prove Theorem 1 we use the idea of matched asymptotic expansions.
The strategy is this: First, we make reasonable guesses about the asymptotic be-
havior, as N → ∞, of the m-th eigenvalue and of certain scaled limits of the
eigenfunction. This leads to an ansatz in the form of formal asymptotic series in
terms of powers of 1/N , whose coefficients are undetermined numbers (for the
eigenvalue) and, respectively, functions (for the eigenfunction). The eigenvalue
equation, the boundary condition and the condition that the various scaled lim-
its must fit together (“match”) in the transition region between different scaling
regimes, yield a recursive system of equations for these coefficients. This system
has a unique solution (Proposition 10). Given any approximation order, one then
obtains a candidate for an approximate eigenvalue (by truncating the formal series),
and also for an approximate eigenfunction, which is obtained by a suitable patching
of the data from the different scaling regimes. These candidates satisfy the eigen-
value equation with a small error (Proposition 13), and from this we derive that they
are close to actual eigenvalues. A domain comparison yields an a priori estimate
on the actual eigenvalues, and this allows to conclude that all actual eigenvalues
are obtained in this way, as well as a lower bound on the spectral gap. The spectral
gap estimate then implies that the approximate eigenfunctions are close to actual
eigenfunctions (Theorem 15). Using this explicit information, it is easy to derive
Theorem 1.

The ansatz, formal eigenvalue and eigenfunction. Fix an integer m≥ 1. We want
to find the m-th eigenvalue and eigenfunction of �N , asymptotically as N →∞.
In this and the next subsection we simply write λ for the m-th eigenvalue and u
for an associated eigenfunction. As a guide, recall that for the unperturbed case
�N = [0, N ]× [0, 1], we have (for N > m/2)

λ= π2
+ N−2m2π2, u(x, y)= sin(N−1mπx) sin(πy).
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Our ansatz is guided by the following expectations:

(1) The eigenvalue should have complete asymptotics: There exists λi ∈ R for
i = 2, 3, 4, . . . such that

λ∼ π2
+

∞∑
i=2

N−iλi , N →∞.

Note that λ= π2
+ O(N−2) follows from domain comparison.

(2) At any fixed x, y, suitably normalized eigenfunctions should converge as N→
∞, and even have complete asymptotics: There exists fi : �∞→ R for i =
0, 1, 2, . . . such that

(3-1) u(x, y)∼
∞∑

i=0

N−i fi (x, y), N →∞, (x, y) ∈�∞.

(3) When fixing ξ = x/N and y, and letting N →∞, u should converge, and
even have complete asymptotics: There exists g j : [0, 1] × [0, 1] → R for
j = 0, 1, 2, . . . such that

(3-2) u(Nξ, y)∼
∞∑
j=0

N− j g j (ξ, y), N →∞, (ξ, y) ∈ [0, 1]× [0, 1].

We get conditions on all the coefficients from three sources:

(I) The equation (1 + λ)u = 0. Formally inserting the asymptotics above, dif-
ferentiating term by term, and successively equating powers of N , we get, for
i, j = 0, 1, 2, . . . :

(1+π2) fi =−

i∑
k=2

λk fi−k,(f)

(∂2
y +π

2)g j =−∂
2
ξ g j−2−

j∑
k=2

λk g j−k(g)

(terms with negative indices are set equal to zero).

(II) Boundary conditions on ∂�N . Equations (3-1), (3-2) give

fi = 0 at ∂�∞,(bd f)

g j = 0 at {y = 0} ∪ {y = 1} ∪ {ξ = 1}.(bd g)

We will prove below that (f), (bd f) imply that each fi has the form

(3-3) fi (x, y)= ϕi (x) sinπy+ ri (x, y), ϕi (x)=
i∑

l=0

wil
x l

l!
,

with ri satisfying condition (2-4).
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(III) Matching conditions. To ensure small errors when patching the fi and the g j

to get an approximate eigenfunction, we need to correlate the large x behavior of
the fi with the behavior at ξ = 0 of the g j . This is done by formally writing∑

i

N−i fi (x, y)=
∑

j

N− j g j (x/N , y),

expanding fi according to (3-3) and g j in Taylor series at ξ = 0 and equating the
coefficients of N−i x l . This gives wil sinπy = ∂ l

ξgi−l(0, y). This suggests to seek
g j in the form

(3-4) g j (ξ, y)= ψ j (ξ) sinπy,

and then the matching conditions read

(Mil) wil =
dlψi−l

dξ l (0), l ≤ i.

Let us call a pair ( ∞∑
i=0

N−i fi ,

∞∑
j=0

N− j g j

)
of formal series, with fi , g j of the form (3-3), (3-4), a formal eigenfunction with
formal eigenvalue π2

+
∑
∞

i=2 N−iλi if (f), (g), (bd f), (bd g) and (Mil) are satisfied
for all indices, and not both f0, g0 are identically zero. Clearly, multiplying a
formal eigenfunction by a nonzero scalar, that is, a series

∑
∞

i=0 N−i ai with a0 6= 0,
yields a formal eigenfunction again, with the same formal eigenvalue.

Proposition 10. If π2
+
∑
∞

i=2 N−iλi is a formal eigenvalue then

(3-5) λ2 = m2π2, for some m ∈ N.

Conversely, for each m ∈N there is a unique formal eigenvalue with λ2=m2π2,
and the formal eigenfunction is unique up to multiplication by scalars.

Furthermore, we have
∞∑
j=2

N− jλ j =
m2π2

(N + a)2
+ O(N−5),(3-6)

∞∑
j=0

N− jψ j

( x
N

)
= sin mπ

x + a
N + a

+ O(N−3),(3-7)

where a = a(φ) is defined in (2-2).
The λ j , the coefficients of the ϕ j , and the constants in the estimates (2-4) of

the remainders r j and in (3-6) and (3-7) are all bounded in terms of j and the
maximum of φ.
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Proof. Because of (3-4) we may rewrite (g), (bd g) as

(d2
ξ + λ2)ψ j =−

j+2∑
l=3

λlψ j+2−l,(ψ)

ψ j (1)= 0,(bd ψ)

where we shifted the index by two.
To prove (3-5), note that f0 is bounded and satisfies (1+ π2) f0 = 0 on �∞,

hence is zero by Lemma 7 (2). Then, (M00) gives ψ0(0)= 0, so we have

(d2
ξ + λ2)ψ0 = 0, ψ0(0)= ψ0(1)= 0, ψ0 6≡ 0,

and this implies (3-5).
Now fix m ∈ N. We construct a formal eigenvalue and formal eigenfunction

with λ2 = m2π2, and satisfying the normalization condition

(3-8) 2
∫ 1

0
ψ j (ξ) sin mπξ dξ = δ0 j , j = 0, 1, 2, . . . ,

and simultaneously prove its uniqueness. Since multiplying any formal eigenfunc-
tion by the scalar (

2
∞∑
j=0

N− j
∫ 1

0
ψ j (ξ) sin mπξ dξ

)−1

yields a formal eigenfunction satisfying (3-8), this will prove Proposition 10.
First, by the argument proving (3-5), and by (3-8), we must have

f0 ≡ 0, ψ0(ξ)= sin mπξ.

We now apply iteratively the following lemma.

Lemma 11. Let J ≥ 1. Given ψ0, . . . , ψJ−1, f0, . . . , f J−1, λ2, . . . , λJ+1 satisfy-
ing the equations (ψ), (f), (M jl) and the boundary conditions for j < J , there are
unique ψJ , f J , λJ+2 satisfying these equations for j = J and the normalization
(3-8).

Proof. First, we choose a solution f J of (f) (with i= J ) of the form (3-3), according
to Lemma 9, removing the indeterminacy by prescribing wJ1 = ψ

′

J−1(0). This
determines wJ0, and therefore ψJ (0) by MJ0. Next, equation (ψ) with j = J has a
solution with given values at 0 and 1, if and only if the right hand side satisfies one
linear condition, and then the solution is unique up to multiples of ψ0 = sin mπy,
therefore uniquely determined by condition (3-8). The solvability condition is ob-
tained by taking the scalar product of both sides with ψ0 and integrating by parts
on the left. This gives

(3-9) ψJ (0)dξψ0(0)=−λJ+2/2,
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where we have used (3-8), and this determines λJ+2.
To finish the proof, we only need to check that (MJl) is satisfied for l ≥ 2. Now

from (2-11), the polynomial ϕJ occurring in f J satisfies

ϕ′′J =−

J∑
k=2

λkϕJ−k .

Equating coefficients of 1
(l−2)!

x l−2 sinπy we get

wJl =−

J∑
k=2

λkwJ−k,l−2.

Using the matching conditions (with j ≤ J−2) on the right and then the (l−2)-th
derivative of equation (ψ), with j = J − l, we see that this sum equals dl

ξψJ−l(0).
�

The boundedness of all quantities in terms of maxφ is also proved inductively,
using the corresponding claims in Proposition 5 and Lemma 7.

As an illustration, we carry this out for J = 1: ψ0(ξ) = sin mπξ gives w11 =

ψ ′0(0) = mπ , this determines f1 = mπU , and (2-3) yields w10 = mπa, hence
ψ1(0)= mπa. Equation (3-9) now gives λ3 =−2m2π2a, and we have

ψ1(ξ)= mπa(1− ξ) cos mπa.

It remains to check (3-6) and (3-7). The calculations of higher order terms can
be simplified by introducing new variables x̃ = x + a, Ñ = N + a, expressing all
functions in terms of x̃ and ξ̃ = x̃/Ñ , and using formal series in Ñ . This must give
the same result (after changing variables and up to normalization) by uniqueness.
We get in the J = 1 step:

ψ̃0(ξ̃ )= sin mπξ̃

implies w̃11 = mπ , so

f̃1 = mπŨ

(where Ũ (x̃, y) = U (x, y)) as before, but now Ũ (x̃) = x̃ sinπy + O(e−x̃), so
w̃10 = 0 and thus ψ̃1(0)= 0, from which we get, using (3-9)

ψ̃1 ≡ 0, λ̃3 = 0.

The J = 2 step yields w̃21= 0, and since (1+π2) f̃2= 0, we get from Proposition
5 that f̃2 = 0. As before, this gives ψ̃2 ≡ 0, λ̃4 = 0, and this proves (3-6), (3-7). �

Remark 12. The next term can be obtained as follows. For J = 3 we get w̃31= 0,
but now (1+ π2) f̃3 = −λ̃2 f̃1 = −m3π3Ũ . To obtain an expression for w̃30, we
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multiply this with Ũ , integrate over �̃A, apply Green’s formula and let A→∞.
A short calculation (using (2-11) also) gives

w̃30 = 2m3π3b, b := lim
A→∞

(∫
�̃A

Ũ 2 dx̃ dy− A3

6

)
,

and then (3-9) yields the first term missing in (3-6)

λ̃5 =−4m4π4b.

Construction of an approximate solution from a formal solution. For any order
of approximation M ∈ N, we now use the formal solution obtained above to con-
struct a candidate for an approximate eigenvalue and eigenfunction on �N . See
Remark 14 for a motivation of our matching procedure. In this subsection we still
fix m and omit it from the notation.

Choose cut-off functions χ f , χg on �N as follows: Choose a smooth function
χ on R which equals one on (−∞, 1/2) and zero on ( 3

4 ,∞). Then set

χ f (x, y)= χ(x/N ), χg(x, y)= 1−χ(x).

Further, set

(3-10)

f (M) =
M−1∑
i=0

N−i fi ,

g(M)(x, y)=
M−1∑
j=0

N− j g j

( x
N
, y
)
,

w(M)(x, y)=
M−1∑
i=0

N−iϕi (x) sinπy.

w(M) describes the essential large x behavior of f (M) and the small ξ behavior of
g(M). Set

(3-11) U (M)
= χ f f (M)+χgg(M)−χ f χgw

(M).

That is, U (M) is given by f (M) for x < 1/2, by g(M) for x > 3
4 N , and by a smooth,

appropriately scaled transition in between. Finally, set

(3-12) λ(M) = π2
+

M−1∑
i=2

N−iλi .

Proposition 13. Define

V (M)
= (1+ λ(M))U (M).
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For any m,M, p ∈ N there are constants c,C > 0 such that for all N we have

|1pV (M)
| ≤ C

( log N
N

)M
uniformly in �N ,(3-13)

U (M),1pV (M)
= 0 on ∂�N ,(3-14)

‖U (M)
‖L2(�N ) ≥ cN 1/2.(3-15)

All constants C , as well as c−1, are bounded in terms of maxφ.

Proof. The idea is to split up (3-11) in two ways: First, as the f term plus g−w,
which gives estimates on the order of (x/N )M and then as the g term plus f −w
which gives estimates on the order of N−M

+e−x . One of these is always bounded
as in (3-13).

Denote 〈x〉 = 1+ |x |. First, using the equations (f) for i < M we get

(1+ λ(M)) f (M) =
∑

i,l≤M−1
i+l≥M

N−(i+l)λl fi .

Applying (f) again, we see that 1 fi is a linear combination of the f j , j ≤ i , and
by induction over p we get that 1p(1 + λ(M)) f (M) is a linear combination of
f1, . . . , fM−1, with coefficients bounded by N−M . This implies

(3-16) 1p(1+ λ(M))χ f f (M) = O
(
〈x〉M−1

N M

)
uniformly in�N , since each fi =O(〈x〉i ), and since derivatives of χ f are O(N−1)

and only occur where x ≥ N/2, where each N−i fi , and therefore f (M), and its
derivatives of any order are uniformly bounded. Similarly, equation (g) and (3-4)
give

(1+ λ(M))g(M) =
∑

j,l≤M−1
j+l≥M+2

N−( j+l)λ j gl,

and using (g) again and boundedness of the g j we get

(3-17) 1p(1+ λ(M))χgg(M) = O(N−M−2) for x ≥ 1.

Next, expanding

g j (ξ, y)=
M−1∑
l=0

∂ l
ξg j (0, y)

ξ l

l!
+ ξM R j (ξ, y),

with R j smooth, we get

g(M)−χ fw
(M)

=

M−1∑
j,l=0

N− j−l x l ∂
l
ξg j (0, y)

l!
−χ

( x
N

) M−1∑
i=0

∑
l≤i

N−i x lwil

l!
sinπy+ ξM

M−1∑
j=0

N− j R j .
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Writing i = j+ l in the first sum, we see from (Mil) that all terms of order at most
N−M+1 cancel, so we get

(3-18) 1pχg(g(M)−χ fw
(M))= O

(
〈x〉M

N M

)
.

Finally, we have

(3-19) 1pχ f ( f (M)−χgw
(M))= O(e−x) for x ≥ 1

immediately from (3-3) and (2-4).
Writing U (M)

= χ f f (M)+χg(g(M)−χ fw
(M)), we get from (3-16) and (3-18)

(3-20) 1p(1+ λ(M))U (M)
= O

(
〈x〉M

N M

)
,

and writing U (M)
= χgg(M)+χ f ( f (M)−χgw

(M)) we get from (3-17) and (3-19)

(3-21) 1p(1+ λ(M))U (M)
= O(N−M−2

+ e−x), x ≥ 1.

Using (3-20) for x ≤ M log N and (3-21) otherwise we obtain (3-13).
The boundary conditions (3-14) are also clear from the arguments above (note

that χ f , χg only depend on x , so one only gets x-derivatives of fi , g j in the terms
where the cut-offs are differentiated).

Equation (3-15) follows immediately from the estimate

|sin mπx/N | ≥ sinπ/8> 0, x ∈
(

N
(

1− 1
4m

)
, N
(

1− 1
8m

))
,

which implies U (M)
≥ 1/10 for these x and y ∈ (1/4, 3/4), for large N . �

Remark 14. Let us clarify our procedure of obtaining asymptotic eigenfunctions,
by relating it to a simpler, “compact” problem. First recall how one may obtain a
smooth function u(s, t) on R2 with given Taylor expansions u ∼

∑
i t i Fi (s)/ i ! at

t = 0 and u ∼
∑

j s j G j (t)/j ! at s = 0, at least up to a certain order M : First, such
a u exists if and only if the mixed derivatives of u at (0, 0) obtained from the two
expansions agree, that is, if

(3-22) d j
s Fi (0)= d i

t G j (0) for all i, j.

Calling this common value wi j and setting, for a given order of approximation M ,

F (M) =
M−1∑
i=0

t i

i !
Fi (s), G(M)

=

M−1∑
j=0

s j

j !
G j (t), w(M) =

M−1∑
i, j=0

t i s j

i ! j !
wi j ,

one may set
u(M) = F (M)+G(M)

−w(M).
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From

F (M)−w(M) =
M−1∑
i=0

t i

i !

(
Fi (s)−

M−1∑
j=0

d j
s Fi (0)

j !
s j
)
= O(s M)

one sees that u(M) −G(M)
= O(s M) uniformly for (s, t) near zero, and similarly

u(M)− F (M) = O(t M) uniformly near zero, which was our goal. These estimates
continue to hold if one formally differentiates both sides any number of times.

This may be used to construct asymptotic solutions of partial differential equa-
tions: Let P be a partial differential operator of b-type, that is, a polynomial in s∂s ,
t∂t with smooth coefficients. Suppose one can determine the Fi and G j so that

P F (M) = O(t M), PG(M)
= O(s M),

uniformly near zero, (which amounts to solving a recursive set of ordinary differ-
ential equations for the Fi and the G j ) then

Pu(M) = PG(M)
+ P(F (M)−w(M))= O(s M)

and similarly Pu(M) = O(t M), so

(3-23) Pu(M) = O(min{s M , t M
})= O((st)M/2).

This relates to our problem as follows: We want to describe the eigenfunction
u uniformly in x and N , that is, as a function on

D = {(N , x, y) : (x, y) ∈�N } ⊂ R3.

In the sequel we suppress the y-dependence for simplicity. Our ansatz postulates
that u has nice expansions in terms of smooth functions of x and x/N . This may
be expressed as follows: Introduce new variables

s =
1
x
, t =

x
N

in the subset {x ≥ 1} of D. Allowing the value N =∞ (that is, adding �∞) and
then s = 0, we get a compactification D̃ of D, given by adding a point at infinity
for each value of t ∈ [0, 1] and y ∈ [0, 1]. What we prove is that u extends to a
function on D̃ which is smooth in s and t up to s = 0, t = 0. The expansion (3-1)
may be rewritten

u ∼
∑

i

t i

i !
Fi (s), s fixed, where Fi (s)= si fi

(1
s

)
i !,

and (3-2) becomes

u ∼
∑

j

s j

j !
G j (t), t fixed, where G j (t)= t j g j (t) j !.
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The matching conditions (Mil) are precisely the conditions (3-22), with l = i − j .
Note that Fi is smooth at s = 0 by (3-3).

The cutoff functions in (3-11) must be introduced since F (M) does not satisfy the
boundary conditions at t = 1 and G(M) does not satisfy the boundary conditions at
s→∞, that is, at the left end of �N . In (s, t) coordinates, the cut-offs are simply
functions of s and, respectively, t , and this motivates their choice in (3-11).

We have
∂x =

∂s
∂x
∂s +

∂t
∂x
∂t =−s2∂s + st∂t ,

so the Laplacian is of b-type. The estimate (3-13) is actually stronger than what
should be expected from (3-23) (which gives O(N−M/2) only) since in our problem
the structure of P yields

G j = O(t j ) and F (M)−w(M) = O(e−1/s).

Closeness to actual solution, proof of Theorem 1.

Theorem 15. Denote the Dirichlet eigenvalues of −1 on �N by µ1 < µ2 ≤ · · · ,
and denote the approximate m-th eigenvalue constructed above by λ(M)m , and the
approximate eigenfunction by U (M)

m . Fix m. For sufficiently large N the first m
eigenvalues on �N are simple, and for each M

(3-24) |µ j − λ
(M)
j | = O(N−M) for j = 1, . . . ,m.

Furthermore, for j ≤ m there is an eigenfunction u j for the eigenvalue µ j satisfy-
ing, for any α ≥ 0,

(3-25) sup
�N

|Dα(u j −U (M)
j )| = O(N−M), j = 1, . . . ,m.

The implied constants only depend on M, j, α and maxφ.

Proof. Let v1, v2, . . . be an orthonormal basis of eigenfunctions on �N , corre-
sponding to the eigenvalues µ1, µ2, . . . . For fixed j ∈ {1, . . . ,m} write

U (M)
j =

∑
l

alvl .

Then al = (U
(M)
j , vl) (scalar product in L2(�N )). For

V (M)
j = (1+ λ

(M)
j )U (M)

j

we then obtain
(V (M)

j , vl)= (λ
(M)
j −µl)al,

using integration by parts and U (M)
j |∂�N

= 0, and then by induction

(1pV (M)
j , vl)= µ

p
l (λ

(M)
j −µl)al
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for all p ≥ 0 using (3-14). Since (3-13) implies ‖1pV (M)
j ‖L2 ≤ C N−M+1 we get

from Parseval’s formula and (3-15) ∑
l

|al |
2
≥ cN(3-26) ∑

l

|al |
2µ

2p
l (λ

(M)
j −µl)

2
≤ C N−2M+2.(3-27)

From (3-26) and (3-27), with p= 0, we get |λ(M)j −µl | ≤C N−M+1/2 for some l.
Taking M ≥ 4, we get that there is an eigenvalue µl j in a C N−3-neighborhood

of π2
+ j2π2/N 2, for each j = 1, . . . ,m. Since these neighborhoods are disjoint

for N sufficiently large, we have µl1 < · · · < µlm , in particular µlm ≥ µm . On the
other hand, comparing �N to the larger domain [−C, N ] × [0, 1], we see that the
m-th eigenvalue (counting multiplicity) of �N is at least

π2
+

m2π2

(N +C)2
= π2

+
m2π2

N 2 + O(N−3).

Therefore, µm ≥ µlm . This implies that, for N sufficiently large, µ j = µl j for
j = 1 . . . ,m , so the eigenvalues µ j are all simple and

|µ j − λ
(M)
j | = O(N−M+1/2).

Replacing M by M + 1 and subtracting N−MλM, j from λ
(M+1)
j we obtain (3-24).

In particular, we have |µl − λ
(M)
j | ≥ cN−2 for l 6= j , so we get from (3-27)∑

l 6= j

µ
2p
l |al |

2
≤ C N−2M+6,

which means that

‖1p(U (M)
j − a jv j )‖L2(�N ) ≤ C N−M+3.

By the Sobolev embedding theorem (applied to any unit width strip in �N ) we
have

‖r‖Cα(�N ≤ C‖1pr‖L2(�N )+C‖r‖L2(�N )

for any function r on �N , whenever 2p>α+1. Therefore, replacing M by M+3
and then subtracting terms of order N−i , i > M , on the left we get (3-25) with
u j = a jv j . �

Proof of Theorem 1. Equation (1-2) follows with M = 5 from (3-6), (3-12) (where
the index m was omitted in the notation) and (3-24) (for j = m).

For the eigenfunction we first recall (3-11), which gives, for x > 1,

(3-28) U (M)
m = g(M)+χ f ( f (M)−w(M))
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(where χg(x)= 1). From (3-10), (3-4) and (3-7) we have

(3-29) g(M)(x, y)= sin mπ
x + a
N + a

sinπy+ O(N−3),

and from (3-19) we have for x > 3 log N

(3-30) χ f ( f (M)−w(M))= O(N−3).

Clearly, the estimates (3-29) and (3-30) may be differentiated any number of times.
Therefore, (3-25), (3-28), (3-29) and (3-30) give the eigenfunction estimate (1-3).

Finally, from

[0, N ]× [0, 1] ⊂�N ⊂ [−maxφ, N ]× [0, 1]

one has by domain monotonicity

π2
+

m2π2

(N +maxφ)2
≤ µm(�N )≤ π

2
+

m2π2

N 2 ,

and combining this with (1-2) one obtains 0≤ a(φ)≤maxφ. �

4. Perturbation of the domain

In this section we prove Theorem 2.
First, we derive an alternative formula for a(φ). Equation (2-2) can be rewritten

a(φ)= 2
∫
∂�0

U
∂(x sinπy)

∂n
,

where ∂/∂n denotes differentiation in direction of the outward unit normal n.
Therefore, by applying Green’s formula on�0 and using the equality (1+π2)U =
(1+π2)(x sinπy)= 0 we obtain

(4-1) a(φ)= 2
∫
∂�0

∂U
∂n

x sinπy ds(y)

= 2
∫ 1

0
(∂x +φ

′(y)∂y)U|(−φ(y),y) φ(y) sinπy dy,

since n = (−1,−φ′)/
√

1+ (φ′)2 and ds =
√

1+ (φ′)2dy.
Now fix φ and denote by �εN the domain �N defined using εφ, and by U ε the

associated function U from Proposition 5.
Note that Theorem 2 would follow from (4-1) (with φ replaced by εφ) if U =U ε

could be replaced by U 0(x, y) = x sinπy. Therefore, writing vε = U ε
−U 0 we

only need to show that ∥∥∥∂vε
∂n

∥∥∥
L2(Bε)

= O(ε),
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where Bε = {(−εφ(y), y) : y ∈ [0, 1]} is the left boundary. Since

vε
|Bε =−εφ sinπy,

this follows from the following lemma.

Lemma 16. Let h be a function on ∂�∞ supported in

B = {(−φ(y), y) : y ∈ [0, 1]},

and suppose v solves
(1+π2)v = 0 on �∞,

v = h at ∂�∞,

v is bounded.

Then ∥∥∥∂v
∂n

∥∥∥
L2(B)
≤ C‖h‖H1(B)

where C is bounded in terms of the Lipschitz constant of φ.

Proof. Write v = u + H , where H is an extension of h to �∞, supported in �1,
satisfying ‖H‖H1(�1) ≤ C‖h‖H1(B). Then u satisfies the assumptions of Lemma 7
with w =−(1+π2)H , so (2-7) gives

‖u‖H1 ≤ ‖w‖H−1 ≤ ‖H‖H1

and therefore

(4-2) ‖v‖H1(�1) ≤ C‖h‖H1(B).

Next, we choose a smooth cut-off function χ(x), equal to one in x ≤ 1/2 and
to zero in x ≥ 3/4, and set ṽ = χv. This satisfies 1ṽ = w, where

w := −π2ṽ+ 2∇χ∇v+ (1χ)v,

and ṽ|∂�1 = h, so standard estimates give∥∥∥∂ṽ
∂n

∥∥∥
L2(B)
≤ C(‖w‖L2(�1)+‖h‖H1(B))≤ C‖h‖H1(B)

using ‖w‖L2 ≤ C‖v‖H1 and (4-2). Since v = ṽ near B, this proves the lemma. �

5. Maximum set and nodal line

Here we prove Theorem 4. First, we obtain a corollary of Theorem 1:

Corollary 17. Consider the eigenfunctions u1, u2 on �N .
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(a) If u1 assumes its maximum at a point (x, y) then∣∣∣∣x − N − a(φ)
2

∣∣∣∣= O(N−1).

(b) If (x, y) is an interior point of �N with u2(x, y)= 0 then

(5-1)
∣∣∣∣x − N − a(φ)

2

∣∣∣∣= O(N−2).

Proof. For shortness, we write a = a(φ). (a) First, from (1-3) with α= 0 and from
(1-4) it follows that, at a maximum (x, y), we must have x ∈ [N/3, 2N/3] and
sinπy > 1/2, for large N . Next, we use that ∂x u1 = 0 at a maximum. From (1-3)
with α = (1, 0), that is, taking x-derivatives, we obtain after multiplication by N
and division by sinπy

cosπ
x + a
N + a

= O(N−2).

With x = (N − a)/2+ ε the expression on the left becomes

cos
(
π
2
+

πε
N+a

)
=− sin

πε

N + a
,

so from | sin t | ≥ |t |/2 for small t we get |ε| = O(N−1).
(b) First, by integrating (1-3) with α= (0, 1) along the line from (x, 0) to (x, y)

we get ∣∣∣∣um(x, y)− sin mπ
x + a(φ)
N + a(φ)

sinπy
∣∣∣∣≤ CyN−3.

By a similar estimate in terms of distance to the upper boundary y = 1 we obtain,
after dividing by sinπy, the improvement of (1-3),

(5-2) sup
x>3 log N

∣∣∣∣um(x, y)
sinπy

− sin mπ
x + a(φ)
N + a(φ)

∣∣∣∣= O(N−3).

If u2(x, y) = 0 then, by [Jerison 1995, Theorem 1], we have x ∈ [N/3, 2N/3].
Therefore, we obtain from (5-2) (with m = 2)

sin 2π
x + a
N + a

= O(N−3).

As above this implies (5-1). �

We consider domains �N of the form (1-1) which are convex, that is, with a
concave function φ. By Corollary 17, to prove Theorem 4 it is enough to establish
two concave functions φ, φ̃ so that a(φ) 6= a(φ̃) and the corresponding domains
�N , �̃N have the same projection and height function.

Let
φ0(y)= 1

2 − |y−
1
2 | and φ̃0(y)= 1

2 y.
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Since φ0 is the symmetric decreasing rearrangement of φ̃0 around the point 1
2 , and

since (sinπy)2 is symmetric decreasing itself, we have∫ 1

0
φ0(y)(sinπy)2 dy >

∫ 1

0
φ̃0(y)(sinπy)2 dy,

so Theorem 2 implies a(εφ0) 6= a(εφ̃0) for some sufficiently small ε > 0. Since
the domains associated with φ = εφ0 and φ̃ = εφ̃0 clearly have the same height
function, the theorem is proved. �

The corresponding domains with same height function but distinct locations of
the nodal line are illustrated here:
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UNIVERSITÄT OLDENBURG

CARL VON OSSIETZKY STRASSE

26111 OLDENBURG

GERMANY

grieser@mathematik.uni-oldenburg.de

DAVID JERISON

DEPARTMENT OF MATHEMATICS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

77 MASSACHUSETTS AVE.
CAMBRIDGE, MA 02139
UNITED STATES

jerison@math.mit.edu

http://www.ams.org/mathscinet-getitem?mr=2003c:58024
http://www.emis.de/cgi-bin/MATH-item?0997.58016
http://www.ams.org/mathscinet-getitem?mr=2003b:35007
http://www.emis.de/cgi-bin/MATH-item?0997.49003
mailto:grieser@mathematik.uni-oldenburg.de
mailto:jerison@math.mit.edu

	1. Introduction
	2. Eigenfunctions on the infinite domain
	3. Asymptotic expansions of eigenfunctions and eigenvalues
	4. Perturbation of the domain
	5. Maximum set and nodal line
	References

