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Previously, we proved an addition formula for the Jacobi theta function,
which allows us to recover many important classical theta function identi-
ties. Here, we use this addition formula to derive a curious theta function
identity, which includes Jacobi’s quartic identity and some other important
theta function identities as special cases. We give new series expansions for
η2(τ), η6(τ), η8(τ), and η10(τ), where η(τ) is Dedekind’s eta function. The
series expansions for η6(τ) and η10(τ) lead to simple proofs of Ramanujan’s
congruences p(7n+5)≡0 (mod 7) and p(11n+6)≡0 (mod 11), respectively.

1. Introduction

Throughout this paper we take q = exp(2π iτ), where τ has positive imaginary
part. We first need to introduce the Jacobi theta functions.

Definition 1.1. The Jacobi theta functions θk for k = 1, 2, 3, 4 are defined as

θ1(z |τ)= 2
∞∑

n=0

(−1)nq(2n+1)2/8 sin(2n+ 1)z,

θ2(z |τ)= 2
∞∑

n=0

q(2n+1)2/8 cos(2n+ 1)z,

θ3(z |τ)= 1+ 2
∞∑

n=1

qn2/2e2niz,

θ4(z |τ)= 1+ 2
∞∑

n=1

(−1)nqn2/2e2niz.
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Using the theory of elliptic functions, we derived in [Liu 2007] the following gen-
eral theta function identity.

Theorem 1.2. Let h1 and h2 be two entire functions of z that satisfy the functional
equations

hi (z |τ)=−hi (z+π |τ)=−q3/2e6i zhi (z+πτ |τ) for i = 1, 2.

Then there is a constant C independent of x and y such that

(1-1) (h1(x |τ)− h1(−x |τ))(h2(y |τ)− h2(−y |τ))

− (h2(x |τ)− h2(−x |τ))(h1(y |τ)− h1(−y |τ))

= Cθ1(x |τ)θ1(y |τ)θ1(x + y |τ)θ1(x − y |τ).

This identity was then used to derive many identities, including Ramanujan’s cubic
theta function identity, Winquist’s identity, and the addition formula for Weier-
strass’s σ -function.

In this paper we will discuss additional applications of this identity. For brevity,
we will use ϑ ′1(τ ), ϑ2(τ ), ϑ3(τ ), and ϑ4(τ ) to denote θ ′1(0|τ), θ2(0|τ), θ3(0|τ),
and θ4(0|τ) respectively.

In Section 2, we shall use Theorem 1.2 to prove the following identity.

Theorem 1.3. Let θ1, θ2, θ3, and θ4 be the Jacobi theta functions. Then

θ1(x + y |τ)θ1(x − y |τ)θ2(u+ v |τ)θ2(u− v |τ)=

θ3(y+ u |τ)θ3(y− u |τ)θ4(x + v |τ)θ4(x − v |τ)

− θ3(x + u |τ)θ3(x − u |τ)θ4(y+ v |τ)θ4(y− v |τ).

This identity includes many well-known addition formulas for the Jacobi theta
functions. In Section 3 we will derive this corollary from Theorem 1.3:

Corollary 1.4.

2θ1(x + y |τ)θ1(x − y |τ)= θ3(y |τ/2)θ4(x |τ/2)− θ3(x |τ/2)θ4(y |τ/2).

In Section 4, this identity will be used to derive the following remarkable four-
term theta function identity.

Theorem 1.5. Let θ1, θ2, θ3, and θ4 be the Jacobi theta functions. Then we have

2θ2
1 (x + y |τ)θ2

1 (x − y |τ)= ϑ2
3 (τ )θ3(2x |τ)θ3(2y |τ)

−ϑ2
2 (τ )θ2(2x |τ)θ2(2y |τ)

−ϑ2
4 (τ )θ4(2x |τ)θ4(2y |τ).
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When y = 0, this identity will reduce to the beautiful but little known identity
[Enneper 1890, page 295, Equation (4)]

2θ4
1 (x |τ)= ϑ

3
3 (τ )θ3(2x |τ)−ϑ3

2 (τ )θ2(2x |τ)−ϑ3
4 (τ )θ4(2x |τ).

With θ1(0|τ) = 0, the (x, y) = (0, 0) case of Theorem 1.5 will give immediately
the well-known Jacobi quartic identity

ϑ4
3 (τ )= ϑ

4
2 (τ )+ϑ

4
4 (τ ).

Some applications of Theorem 1.5 to modular identities of degrees 3 and 5 are also
discussed in Section 4.

For convenience, we introduce the q-shifted factorial (a; q)∞ by

(a; q)∞ :=
∞∏

n=0

(1− aqn) for |q | < 1.

In this notation the well-known Dedekind eta function may be written as

η(τ)= q1/(24)(q; q)∞.

It is obvious that η(τ) is the same as Euler’s product (q; q)∞ except for an extra
factor q1/(24), and hence finding the series representation for ηr (τ ) is equivalent to
finding the series representation for (q; q)r

∞
, where r is an integer.

With Corollary 1.4, in Sections 5, 6, 7, 8, we will give new series expansions
of η2k(τ ) for k = 1, 3, 4, 5, respectively. We will use the series expansions for
η6(τ ) and η10(τ ) to give simple proofs of Ramanujan’s congruences p(7n+ 5)≡
0 (mod 5) and p(11n+ 6)≡ 0 (mod 11).

Theorem 1.6. (q; q)2
∞
=

1
2

∞∑
m,n=−∞

((−1)n − (−1)m)q(3m2
+3n2

+4m+1)/4.

Theorem 1.7. (q; q)6
∞
=

1
4

∞∑
m,n=−∞

(−1)m(n2
−m2)q(m

2
+n2
−1)/4.

A corollary of Theorem 1.7 is the Ramanujan partition congruence modulo 7.

Corollary 1.8. Let p(n) denote the number of unrestricted partitions of the posi-
tive integers n. Then p(7n+ 5)≡ 0 (mod 7).

Theorem 1.9. (q; q)8
∞
= −

1
4

∞∑
m,n=−∞

m2(3n+ 2)(1+ (−1)m+n)q(m
2
+3n2

+4n)/4.

Theorem 1.10.

(q; q)10
∞
=

1
2

∞∑
m,n=−∞

(3m+ 2)(3n+ 2)3
(
(−1)m − (−1)n

)
q(3m2

+3n2
+4m+4n+1)/4.
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A corollary of Theorem 1.10 is the Ramanujan partition congruence modulo 11.

Corollary 1.11. Let p(n) denote the number of unrestricted partitions of the posi-
tive integers n. Then p(11n+ 6)≡ 0 (mod 11).

Remark 1.12. Using Corollary 1.4 we can also derive for η4(τ ) the identity

(q; q)4
∞
=

1
2

∞∑
m,n=−∞

(−1)m+n(2n+ 1)q(n
2
+3m2

+n−m)/2,

which can be simply obtained by multiplying together Euler’s pentagonal number
identity for (q; q)∞ and Jacobi’s identity for (q; q)3

∞
, so we omit the details. This

identity can be used to prove Ramanujan’s congruence p(5n+4)≡ 0 (mod 5); see
for example [Hardy and Wright 1979, pages 287–289].

In this paper we also need the infinite product representations of theta functions.
We recall the Jacobi triple product identity (see for example [Andrews et al. 1999,
page 497; Berndt 1991, page 35; Berndt 2006, page 10; Hardy and Wright 1979,
page 282; Kongsiriwong and Liu 2003])

(q; q)∞(z; q)∞(q/z; q)∞ =
∞∑

n=−∞

(−1)nqn(n−1)/2zn.

Replacing z with e2i z in the Jacobi triple product identity will give

(1-2) θ1(z |τ)= 2q1/8(sin z)(q; q)∞(qe2i z
; q)∞(qe−2i z

; q)∞.

From the definitions of theta functions, by direct computations, we readily find that

(1-3)

θ2(z |τ)= θ1(z+π/2|τ),

θ3(z |τ)= q1/8ei zθ1(z+ (π +πτ)/2|τ),

θ4(z |τ)=−iq1/8ei zθ1(z+ (πτ)/2|τ).

Combining (1-2) and (1-3) gives the infinite product representations of θ2, θ3,
and θ4:

θ2(z |τ)= 2q1/8(cos z)(q; q)∞(−qe2i z
; q)∞(−qe−2i z

; q)∞,

θ3(z |τ)= (q; q)∞(−q1/2e2i z
; q)∞(−q1/2e−2i z

; q)∞,

θ4(z |τ)= (q; q)∞(q1/2e2i z
; q)∞(q1/2e−2i z

; q)∞.

Differentiating (1-2) with respect to z and then putting z = 0 will yield

ϑ ′1(τ )= 2q1/8(q; q)3
∞
= 2η3(τ ).
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2. The proof of Theorem 1.3

Our main aim of this section is to prove Theorem 1.3 using Theorem 1.2.

Proof. From the definitions of theta functions in Definition 1.1, we readily find that

θ1(z |τ)=−θ1(z+π |τ)=−q1/2e2i zθ1(z+πτ |τ),

θ3(z |τ)= θ3(z+π |τ)= q1/2e2i zθ3(z+πτ |τ),

θ4(z |τ)= θ4(z+π |τ)=−q1/2e2i zθ4(z+πτ |τ).

With these functional equations and by direct computations, we can easily verify
that

θ1(z |τ)θ3(z− v |τ)θ3(z+ v |τ) and θ1(z |τ)θ4(z− u |τ)θ4(z+ u |τ)

satisfy all the conditions of Theorem 1.2. Thus we can choose h1 and h2 as

h1(z |τ)= 1
2θ1(z |τ)θ3(z− v |τ)θ3(z+ v |τ),

h2(z |τ)= 1
2θ1(z |τ)θ4(z− u |τ)θ4(z+ u |τ)

in Theorem 1.2 and then cancel out the common factor θ1(x |τ)θ1(y |τ) in the
resulting equation to obtain

(2-1) Cθ1(x + y |τ)θ1(x − y |τ)=

θ3(y+ u |τ)θ3(y− u |τ)θ4(x + v |τ)θ4(x − v |τ)

− θ3(x + u |τ)θ3(x − u |τ)θ4(y+ v |τ)θ4(y− v |τ).

Putting x=v+(πτ)/2 in the this equation and then using the fact θ4((πτ)/2|τ)=0
in the resulting equation, we find that

Cθ4(y+ u |τ)θ4(y− u |τ)= θ4(y+ u |τ)θ4(y− u |τ)θ2(u+ v |τ)θ2(u− v |τ).

It follows that C = θ2(u+ v |τ)θ2(u− v |τ). Substituting this into (2-1), we arrive
at Theorem 1.3. �

Theorem 1.3 contains some interesting cases. If we let (u, v) equal

(0, 0), ((πτ)/2, 0), ((π +πτ)/2, 0), ((πτ)/2, (πτ)/2), (0, (πτ)/2),
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we find, respectively, that

(2-2)

ϑ2
2 (τ )θ1(x − y |τ)θ1(x + y |τ)= θ2

3 (y |τ)θ
2
4 (x |τ)− θ

2
4 (y |τ)θ

2
3 (x |τ),

ϑ2
3 (τ )θ1(x − y |τ)θ1(x + y |τ)= θ2

2 (y |τ)θ
2
4 (x |τ)− θ

2
4 (y |τ)θ

2
2 (x |τ),

ϑ2
4 (τ )θ1(x − y |τ)θ1(x + y |τ)= θ2

1 (x |τ)θ
2
4 (y |τ)− θ

2
1 (y |τ)θ

2
4 (x |τ),

ϑ2
2 (τ )θ1(x − y |τ)θ1(x + y |τ)= θ2

1 (x |τ)θ
2
2 (y |τ)− θ

2
1 (y |τ)θ

2
2 (x |τ),

ϑ2
3 (τ )θ1(x − y |τ)θ1(x + y |τ)= θ2

1 (x |τ)θ
2
3 (y |τ)− θ

2
1 (y |τ)θ

2
3 (x |τ).

The identities of (2-2) are usually called the addition formulas for the theta func-
tions and were known to Jacobi. See [Enneper 1890, pages 107–108] for more
identities of this type.

3. The proof of Corollary 1.4 and its dual form

In this section we will use Theorem 1.3 to prove Corollary 1.4 and its dual form

(3-1) θ1(x + y |τ)θ1(x − y |τ)= θ2(2y |τ)θ3(2x |τ)− θ3(2y |τ)θ2(2x |2τ).

Proof. Appealing to the infinite product representations of theta functions and using
direct computation, we find that

(3-2)

2θ4(z+ (πτ)/4|τ)θ4(z− (πτ)/4|τ)= q−1/(16)ϑ2(τ/2)θ4(z |τ/2),

2θ3(z+ (πτ)/4|τ)θ3(z− (πτ)/4|τ)= q−1/(16)ϑ2(τ/2)θ3(z |τ/2),

2ϑ2(τ )θ2((πτ)/2|τ)= q−1/8ϑ2
2 (τ/2).

Setting u=v= (πτ)/4 in Theorem 1.3, using (3-2), and canceling out the common
factor q−1/8θ2

2 (0|τ/2), we obtain Corollary 1.4.
Now we will use Corollary 1.4 to derive (3-1). First, by replacing (τ, x, y) by

(−1/τ, x/τ, y/τ) in Corollary 1.4, we have

(3-3) θ1

( x+y
τ

∣∣∣ − 1
τ

)
θ1

( x−y
τ

∣∣∣ − 1
τ

)
= θ2

( y
τ

∣∣∣ − 1
2τ

)
θ3

( x
τ

∣∣∣ − 1
2τ

)
− θ3

( y
τ

∣∣∣ − 1
2τ

)
θ2

( x
τ

∣∣∣ − 1
2τ

)
.

We apply the imaginary transformation formulas

θ1

( z
τ

∣∣∣ − 1
τ

)
=−i
√
−iτ exp((i z2)/(πτ))θ1(z |τ),

θ2

( z
τ

∣∣∣ − 1
τ

)
=
√
−iτ exp((i z2)/(πτ))θ4(z |τ),

θ3

( z
τ

∣∣∣ − 1
τ

)
=
√
−iτ exp((i z2)/(πτ))θ3(z |τ),

θ4

( z
τ

∣∣∣ − 1
τ

)
=
√
−iτ exp((i z2)/(πτ))θ2(z |τ)
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in (3-3) and then cancel out the common factors to obtain (3-1). Thus (3-1) and
Corollary 1.4 are equivalent under the imaginary transformations. This completes
the proofs of Corollary 1.4 and its dual form. �

Remark 3.1. Replacing x by x +π/2 in (3-1), we immediately find that

(3-4) θ2(x + y |τ)θ2(x − y |τ)= θ2(2y |2τ)θ3(2x |2τ)+ θ3(2y |τ)θ2(2x |2τ),

which is the same as [Enneper 1890, page 140, Equation (16)] and was known to
Jacobi. So (3-1) is just a variant of Jacobi’s identity (3-4). Ewell [1995] rediscov-
ered (3-1) and called it a sextuple product identity. Corollary 1.4 first appeared in
[Shen 1994, page 327, Equation (1.3d)] in a different form, and we may call it the
Jacobi–Shen identity.

4. The proof of Theorem 1.5 and its applications

The proof of Theorem 1.5. Taking τ to 2τ in Corollary 1.4 and then replacing x by
x +π/2 and x + (π + 2πτ)/2 in the resulting equations, we find respectively that

2θ2(x + y |2τ)θ2(x − y |2τ)= θ3(x |τ)θ3(y |τ)− θ4(x |τ)θ4(y |τ),

2θ3(x + y |2τ)θ3(x − y |2τ)= θ3(x |τ)θ3(y |τ)+ θ4(x |τ)θ4(y |τ).

Taking y = 0 in these two equations and then replacing x by 2x , we have

2θ2
2 (2x |2τ)= ϑ3(τ )θ3(2x |τ)−ϑ4(τ )θ4(2x |τ),(4-1)

2θ2
3 (2x |2τ)= ϑ3(τ )θ3(2x |τ)+ϑ4(τ )θ4(2x |τ).(4-2)

Replacing x by y in (4-2) and then multiplying the resulting equation with (4-1),
we find that

4θ2
2 (2x |2τ)θ2

3 (2y |2τ)= ϑ2
3 (τ )θ3(2x |τ)θ3(2y |τ)−ϑ2

4 (τ )θ4(2x |τ)θ4(2y |τ)

+ϑ3(τ )ϑ4(τ )θ3(2x |τ)θ4(2y |τ)−ϑ3(τ )ϑ4(τ )θ4(2x |τ)θ3(2y |τ).

If we interchange x and y in the above equation, then we immediately find that

4θ2
2 (2y |2τ)θ2

3 (2x |2τ)= ϑ2
3 (τ )θ3(2x |τ)θ3(2y |τ)−ϑ2

4 (τ )θ4(2x |τ)θ4(2y |τ)

+ϑ3(τ )ϑ4(τ )θ3(2y |τ)θ4(2x |τ)−ϑ3(τ )ϑ4(τ )θ4(2y |τ)θ3(2x |τ).

Adding the above two equations together and simplifying, we conclude that

(4-3) 2θ2
2 (2x |2τ)θ2

3 (2y |2τ)+ 2θ2
2 (2y |2τ)θ2

3 (2x |2τ)

= ϑ2
3 (τ )θ3(2x |τ)θ3(2y |τ)−ϑ2

4 (τ )θ4(2x |τ)θ4(2y |τ).

Using the infinite product representations of the theta functions, we readily find

(4-4) 2θ2(2z |2τ)θ3(2z |2τ)= ϑ2(τ )θ2(2z |τ).
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Squaring both sides of (3-1) and then using (4-4) in the resulting equation, we
find that

θ2
1 (x + y |τ)θ2

1 (x − y |τ)= θ2
2 (2y |2τ)θ2

3 (2x |2τ)+ θ2
2 (2x |2τ)θ2

3 (2y |2τ)

−
1
2ϑ

2
2 (τ )θ2(2x |τ)θ2(2y |τ).

Combining this identity with (4-3), we arrive at Theorem 1.5. �

Some modular identities of degrees 3 and 5. By taking y = 0 and x = π/3 in
Theorem 1.5, we immediately have

(4-5) 2θ4
1 (π/3|τ)= ϑ

3
2 (τ )θ2(π/3|τ)+ϑ3

3 (τ )θ3(π/3|τ)−ϑ3
4 (τ )θ4(π/3|τ).

Using the infinite product representations of theta functions, we find that

θ1(π/3|τ)=
√

3q1/8(q3
; q3)∞,

θ j (π/3|τ)=

√
(q; q)3

∞

(q3; q3)∞
×
ϑ j (3τ)
ϑ j (τ )

for j = 2, 3, 4.

Substituting these equations into (4-5) and simplifying, we can deduce that√
ϑ5

2 (τ )ϑ2(3τ)+
√
ϑ5

3 (τ )ϑ3(3τ)−
√
ϑ5

4 (τ )ϑ4(3τ)= 9
√
ϑ ′1(3τ)

3/ϑ ′1(τ ).

Applying the imaginary transformation to this identity, we conclude that√
ϑ5

3 (3τ)ϑ3(τ )−

√
ϑ5

2 (3τ)ϑ2(τ )+

√
ϑ5

4 (3τ)ϑ4(τ )=
√
ϑ ′1(τ )

3/ϑ ′1(3τ).

The above two identities are equivalent, respectively, to the two modular equations

(α5β)1/8− ((1−α)5(1−β))1/8+ 1= 9
m2

(
β3(1−β)3

α(1−α)

)1/8
,

1− (αβ5)1/8+ ((1−α)(1−β)5)1/8 = m2
(
α3(1−α)3

β(1−β)

)1/8
,

where α = ϑ4
2 (τ )/ϑ

4
3 (τ ), β = ϑ

4
2 (3τ)/ϑ

4
3 (3τ) and m = ϑ2

3 (τ )/ϑ
2
3 (3τ).

Using the infinite product representations of theta functions, we easily find that

(4-6)

θ1(π/5|τ)θ1(2π/5|τ)=
√

5q1/4(q; q)∞(q5
; q5)∞,

θ j (π/5|τ)θ j (2π/5|τ)=

√
(q; q)5

∞

(q5; q5)∞
×
ϑ j (5τ)
ϑ j (τ )

for j = 2, 3, 4.

Setting x = π/5 and y = (2π)/5 in Theorem 1.5 and simplifying, we find

2θ2
1 (π/5|τ)θ

2
1 (2π/5|τ)= ϑ

2
2 (τ )θ2(π/5|τ)θ2(2π/5|τ)

+ϑ2
3 (τ )θ3(π/5|τ)θ3(2π/5|τ)−ϑ2

4 (τ )θ4(π/5|τ)θ4(2π/5|τ).
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Substituting the equations of (4-6) into the above equations and simplifying, we
find that [Shen 1995]√

ϑ3
2 (τ )ϑ2(5τ)+

√
ϑ3

3 (τ )ϑ3(5τ)−
√
ϑ3

4 (τ )ϑ4(5τ)= 10
√
η5(5τ)/η(τ).

Applying the imaginary transformation to this identity, we find that [Shen 1995]√
ϑ3(τ )ϑ

3
3 (5τ)−

√
ϑ2(τ )ϑ

3
2 (5τ)+

√
ϑ4(τ )ϑ

3
4 (5τ)= 2

√
η5(τ )/η(5τ).

The two identities above are equivalent, respectively, to the two modular equations

1+ (α3β)1/8− ((1−α)3(1−β))1/8 = 5 3
√

2
m

(
β5(1−β)5

α(1−α)

)1/24
,

1− (αβ3)1/8+ ((1−α)(1−β)3)1/8 = 3
√

2m
(
α5(1−α)5

β(1−β)

)1/24
,

where α = ϑ4
2 (τ )/ϑ

4
3 (τ ), β = ϑ

4
2 (5τ)/ϑ

4
3 (5τ), and m = ϑ2

3 (τ )/ϑ
2
3 (5τ).

5. The proof of Theorem 1.6

Proof. Replacing τ by 3τ in Corollary 1.4 and then setting (x, y)= (πτ, 0) in the
resulting equation, we deduce that

(5-1) 2θ2
1 (πτ |3τ)= ϑ3(3τ/2)θ4(πτ |τ/2)−ϑ4(3τ/2)θ3(πτ |τ/2).

Appealing to the infinite product representation of θ1, we find easily that

θ1(πτ |3τ)= iq−1/8(q; q)∞.

Using the series representations of theta functions, we immediately find that

ϑ3(3τ/2)=
∞∑

n=−∞

q3n2/4, θ4(πτ |τ/2)=
∞∑

n=−∞

(−1)nq(3n2
+4n)/4,

ϑ4(3τ/2)=
∞∑

n=−∞

(−1)nq3n2/4, θ3(πτ |τ/2)=
∞∑

n=−∞

q(3n2
+4n)/4,

Substituting the five equations above into (5-1) and using a direct computation, we
arrive at Theorem 1.6. �

There are several different series representations for η2(τ ) in the literature. In a
famous paper, L. J. Rogers [1894] first proved the identity

(q; q)2
∞
=

∞∑
m,n=−∞

n≥2|m|

(−1)m+nqn(n+1)/2−m(3m−1)/2.
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In [1959, pages 418–427], Hecke rediscovered this identity. Andrews [1984; 1986]
and Kac and Peterson [1980] reproved this identity recently.

Liu [2002] proved the identity

(q; q)2
∞
=

∞∑
n=0

n∑
j=−n

(−1) j (1− q2n+1)q2n2
+n− j (3 j+1)/2

using a general q-series expansion formula.
Ewell [1982] and Shen [1999] respectively found these two formulas for η2(τ ):

(q; q)2
∞
=

∞∑
m,n=−∞

(q3m2
+3n2

+n
− q3m2

+3n2
+3m+2n+1),

(q; q)2
∞
=

∞∑
m,n=−∞

(−1)mqm2
+n2
+mn+n/2.

6. The proofs of Theorem 1.7 and Corollary 1.8

Proof. Differentiating both sides of Corollary 1.4 with respect to x twice and then
putting x = y = 0 in the resulting equation and noting that θ1(0|τ)= θ ′′1 (0|τ)= 0,
we conclude that

4ϑ ′1(τ )
2
= ϑ3(τ/2)θ ′′4 (0|τ/2)−ϑ4(τ/2)θ ′′3 (0|τ/2).

Substituting 4ϑ ′1(τ )
2
= 16q1/4(q; q)6

∞
and the series expansions of θ3 and θ4 into

this equation, we immediately arrive at the equation of Theorem 1.7.
Next we will prove Corollary 1.8 with the help of Theorem 1.7 . If we write

(6-1) (q; q)6
∞
=

∞∑
n=0

a(n)qn,

then equating coefficients of qn for n ≥ 1 on both sides of Theorem 1.7, we find

(6-2) a(n)= 1
4

∞∑
u,v=−∞

u2
+v2
−1=4n

(−1)u(v2
− u2).

If n ≡ 5 (mod 7), then u2
+ v2
≡ 0 (mod 7). By examining all cases modulo 7, we

find that both u, v ≡ 0 (mod 7). It follows from (6-2) that

(6-3) a(7n+ 5)≡ 0 (mod 72).
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Now from (6-1), we have
∞∑

n=0

p(n)qn
=

1
(q; q)∞

=
(q; q)6

∞

(q; q)7
∞

≡
(q; q)6

∞

(q7; q7)∞
=

∑
∞

n=0 a(n)qn

(q7; q7)∞
(mod 7).

Extracting those terms with indices of the form 7n + 5 and employing (6-3), we
conclude that

∞∑
n=0

p(7n+ 5)q7n+5
≡

∑
∞

n=0 a(7n+ 5)q7n+5

(q7; q7)∞
≡ 0 (mod 7).

Thus we have p(7n+ 5)≡ 0 (mod 7). This proves Corollary 1.8. �

Schoeneberg [1953] gave a beautiful formula for η6(τ ):

(q; q)6
∞
=

∞∑
m,n=−∞

Re(m+ 2ni)2q(m
2
+4n2

−1)/4.

Hirschhorn [1983] used his septuple product identity to give a series represen-
tation for η6(τ ), which he then used to prove that p(7n+ 5)≡ 0 (mod 7).

Ewell [1982] provided a series representation for η6(τ ) from a theta function
identity of Gauss, which let to an alternative proof of p(7n+ 5)≡ 0 (mod 7).

7. The proof of Theorem 1.9

Proof. Differentiating both sides of Corollary 1.4 with respect to x and then setting
y = x , we find that

(7-1) 2ϑ ′1(τ )θ1(2x |τ)= θ3(x |τ/2)θ ′4(x |τ/2)− θ
′

3(x |τ/2)θ4(x |τ/2).

Now we introduce two theta functions Q1(x |τ) and Q2(x |τ) by

Q1(x |τ)= (q; q)−1
∞
θ1(2x |τ)θ3(x |τ/2),

Q2(x |τ)= (q; q)−1
∞
θ1(2x |τ)θ4(x |τ/2).

Using the infinite product representations of theta functions and a direct computa-
tion, we easily find that

θ1(x |τ)θ2(x |τ)= ϑ4(2τ)θ1(2x |2τ).

Combining this equation with [Shen 1999, Equations (a) and (b)], we deduce that

(7-2)

Q1(x |τ)= 2q3/8
∞∑

n=−∞

(−1)nq(3n2
+4n)/4 sin(6n+ 4)x,

Q2(x |τ)=−2q3/8
∞∑

n=−∞

q(3n2
+4n)/4 sin(6n+ 4)x .
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We multiply both sides of (7-1) by (q; q)−1
∞
θ1(2x |τ) and obtain the identity

2(q; q)−1
∞
ϑ ′1(τ )θ1(2x |τ)= Q1(x |τ)θ ′4(x |τ/2)− Q2(x |τ)θ ′3(x |τ/2).

Dividing this equation by x2 and then letting x→ 0, we conclude that

(7-3) 8(q; q)−1
∞
ϑ ′1(τ )

3
= Q′1(0|τ)θ

′′

4 (0|τ/2)− Q′2(0|τ)θ
′′

3 (0|τ/2).

Substituting ϑ ′1(τ )= 2η3(τ ), (7-2), and the series expansion of θ3 and θ4 into (7-3)
and simplifying, we arrive at Theorem 1.9. �

Klein and Fricke [1890] (see also [Chan et al. 2007]) derived for η8(τ ) that

(q; q)8
∞
=

1
2

∑
α≡1 (mod 3)
β≡1 (mod 3)

(α+β)(2α−β)(2β −α)q(α
2
+β2
−αβ−1)/3.

Winquist [1969] (see also [Chan et al. 2007]) stated without proof that

(q; q)8
∞
=

1
2

∑
α≡1 (mod 3)

α+β≡0 (mod 3)

αβ2q(α
2
+3β2

−4)/12.

Schoeneberg [1953, Equation (11)] found a curious formula for η8(τ ):

(q; q)8
∞
=

1
6

∑
µ∈Z[exp(2π i/3)]

χ(µ)µ3q(|µ|
2
−1)/3,

where

χ(µ)=

{
1 if µ≡ 1 (mod

√
−3),

−1 if µ≡−1 (mod
√
−3).

8. The proofs of Theorem 1.10 and Corollary 1.11

Proof. Let Q1 and Q2 be as in (7-2). Multiplying both sides of Corollary 1.4 by
(q; q)−2

∞
θ1(2x |τ)θ1(2y |τ), we find that

2(q; q)−2
∞
θ1(2x |τ)θ1(2y |τ)θ1(x + y |τ)θ1(x − y |τ)

= Q1(y |τ)Q2(x |τ)− Q1(x |τ)Q2(y |τ).

Differentiating this equation with respect to x and then setting y = x , we find that

2(q; q)−2
∞
ϑ ′1(τ )θ

3
1 (2x |τ)= Q1(x |τ)Q′2(x |τ)− Q′1(x |τ)Q2(x |τ).

Dividing this equation by x3 and then letting x→ 0, we arrive at

(8-1) 16(q; q)−2
∞
ϑ ′1(τ )

4
= Q′′′1 (0|τ)Q

′

2(0|τ)− Q′1(0|τ)Q
′′′

2 (0|τ).
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From (7-2), it is easily seen that

Q′1(0|τ)= 4q3/4
∞∑

n=−∞

(−1)n(3n+ 2)q(3n2
+4n)/4,

Q′′′1 (0|τ)=−16q3/4
∞∑

n=−∞

(−1)n(3n+ 2)3q(3n2
+4n)/4,

Q′2(0|τ)=−4q3/4
∞∑

n=−∞

(3n+ 2)q(3n2
+4n)/4,

Q′′′1 (0|τ)= 16q3/4
∞∑

n=−∞

(3n+ 2)3q(3n2
+4n)/4.

Substituting the four equations above and ϑ ′1(τ )= 2η3(τ ) into (8-1) and simplify-
ing, we arrive at Theorem 1.10.

Now we begin to prove Corollary 1.11 using Theorem 1.10. If we write

(8-2) (q; q)10
∞
=

∞∑
n=0

b(n)qn,

then by equating coefficients of qn for n ≥ 1 on both sides of 1.10, we deduce that

(8-3) b(n)= 1
4

∞∑
u,v=−∞

3u2
+3v2

+4u+4v+1=4n

(
(−1)u − (−1)v

)
(3u+ 2)(3v+ 2)3.

If n ≡ 6 (mod 11), then 3u2
+3v2

+4u+4v≡ 1 (mod 11). By inspecting all cases
modulo 11, we find that both u, v ≡ 3 (mod 11). It follows from (8-3) that

(8-4) b(11n+ 6)≡ 0 (mod 114).

Now from (8-2), we have

∞∑
n=0

p(n)qn
=

1
(q; q)∞

=
(q; q)10

∞

(q; q)11
∞

≡
(q; q)10

∞

(q11; q11)∞
=

∑
∞

n=0 b(n)qn

(q11; q11)∞
(mod 11).

Extracting those terms with indices of the form 11n+ 6 and employing (8-4), we
conclude that

∞∑
n=0

p(11n+ 6)q11n+6
≡

∑
∞

n=0 b(11n+ 6)q11n+6

(q11; q11)∞
≡ 0 (mod 11).

Thus we have p(11n+ 6)≡ 0 (mod 11). This proves Corollary 1.11. �
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There are several different series representations of η10(τ ) in the literature.
Winquist [1969] derived an important identity, now known as the Winquist iden-

tity, which he then used to get the following identity for η10(τ ):

48(q; q)10
∞
=

∞∑
m,n=−∞

(−1)m+n(6m+ 3)(6n+ 1)

× ((6m+ 3)2− (6n+ 1)2)q(3m2
+3n2

+3m+n)/2.

Winquist then used this identity to give a simple proof of Ramanujan’s partition
congruence p(11n+ 6)≡ 0 (mod 11).

Berndt, Chan, Liu, and Yesilyurt [2004] used two results from Ramanujan’s
notebooks, and Liu [2005] used the theory of elliptic functions to prove

32(q; q)10
∞
=

∞∑
m,n=−∞

(−1)m+n(2m+ 1)(2n+ 1)

× (9(2m+ 1)2− (2n+ 1)2)q(9m2
+n2
+9m+n)/6,

which leads to a short proof of Ramanujan’s congruence p(11n+6)≡ 0 (mod 11).
By using some Lambert series expansions for infinite products, Chan [2005]

established that

3(q; q)10
∞
=

∞∑
m,n=−∞

(3m+1)(3n+1)(4(3m+1)2− (3n+1)2)q3m2
+2m+(3n2

+2n)/4.

Chu [2005; 2007] used the method of difference equations to prove that

3(q; q)10
∞
=

∞∑
m,n=−∞

(3m+ 1)(6n+ 1)(4(3m+ 1)2− (6n+ 1)2)q3m2
+3n2

+2m+n,

and then derived a proof of p(11n+ 6)≡ 0 (mod 11).
Chan, Cooper, and Toh [2007] provided the following formula by using a theta

function identity:

6(q; q)10
∞
=

∞∑
m,n=−∞

(6m+ 1)(6n+ 4)((6m+ 1)2− (6n+ 4)2)q3m2
+m+3n2

+4n+1.
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