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In this paper we prove that, given a compact four-dimensional smooth Rie-
mannian manifold (M, g) with smooth boundary, there exists a metric con-
formal to g with constant T -curvature, zero Q-curvature and zero mean
curvature under generic and conformally invariant assumptions. The prob-
lem amounts to solving a fourth-order nonlinear elliptic boundary value
problem (BVP) with boundary conditions given by a third-order pseudodif-
ferential operator and homogeneous Neumann operator. It has a variational
structure, but since the corresponding Euler–Lagrange functional is in gen-
eral unbounded from below, we look for saddle points. We do this by using
topological arguments and min-max methods combined with a compactness
result for the corresponding BVP.

1. Introduction

Recent years have seen intense study of conformally covariant differential (or even
pseudodifferential) operators on compact smooth Riemannian manifolds, as well
as their associated curvature invariants. This study seeks to understand the rela-
tionships between analytic and geometric properties of such objects.

A model example is the Laplace–Beltrami operator on compact closed surfaces
(6, g), which governs the transformation law of the Gauss curvature. In fact under
the conformal change of metric gu = e2ug, we have

(1-1) 1gu = e−2u1g and −1gu+ Kg = Kgu e2u,

where 1g and Kg are the Laplace–Beltrami operator and the Gauss curvature of
(6, g), and 1gu and Kgu are the corresponding objects for (6,gu).
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Moreover we have the Gauss–Bonnet formula, which relates
∫
6 KgdVg to the

topology of 6 via ∫
6

KgdVg = 2πχ(6),

where χ(6) is the Euler–Poincaré characteristic of 6. From this we deduce that∫
6 KgdVg is a topological invariant (and hence also a conformal one). Of particular

interest is the classical uniformization theorem, which says the (6, g) carries a
conformal metric with constant Gauss curvature.

Suppose (M, g) is a four-dimensional compact closed Riemannian manifold. On
it, there exists a conformally covariant differential operator Pg called the Paneitz
operator, to which is associated a natural concept of curvature. This operator,
discovered by Paneitz in 1983 (see [2008]), and the corresponding Q-curvature
introduced by Branson (see [Branson and Ørsted 1991]) are defined in terms of the
Ricci tensor Ricg and the scalar curvature Rg as

Pgϕ =1
2
gϕ+ divg

( 2
3 Rgg− 2 Ricg

)
dϕ,(1-2)

Qg =−
1
12(1g Rg − R2

g + 3|Ricg|
2),(1-3)

where ϕ is any smooth function on M .
The Laplace–Beltrami operator governs the transformation law of the Gauss

curvature; the Paneitz operator does the same for the Q-curvature. Indeed under a
conformal change of metric gu = e2ug, we have

(1-4) Pgu = e−4u Pg and Pgu+ 2Qg = 2Qgu e4u .

Apart from this analogy, we also have an extension of the Gauss–Bonnet for-
mula, the Gauss–Bonnet–Chern formula∫

M
(Qg +

1
8 |Wg|

2)dVg = 4π2χ(M),

where Wg denotes the Weyl tensor of (M, g); see [Djadli and Malchiodi 2006].
Hence, from the pointwise conformal invariance of |Wg|

2dVg, it follows that the
integral of Qg over M is also conformally invariant.

In analogy to the uniformization theorem for (6, g), one can also ask if (M, g)
carries a metric that is conformally related to the background metric with constant
Q-curvature.

A first positive answer to this question was given by Chang and Yang [1995]
under the assumptions that Pg is nonnegative, ker Pg ' R and

∫
M Qg dVg < 8π2.

Later Djadli and Malchiodi [2006] extended Chang and Yang’s result to a large
class of compact closed four-dimensional Riemannian manifolds assuming that Pg

has no kernel and that
∫

M Qg dVg is not an integer multiple of 8π2.
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One can consider analogous questions in dimensions higher than four, where
there are there are higher-order analogues of the Laplace–Beltrami operator and
of the Paneitz operator and also of the associated curvatures (called again Q-
curvatures); see [Fefferman and Graham 2002; 1985; Graham et al. 1992].

For example, one can ask whether, for a compact closed Riemannian manifold
of arbitrary dimension, there exists a constant Q-curvature conformal metric.

Using a geometric flow, Brendle [2003] has given a first affirmative answer
in the even-dimensional case under the assumptions that the higher-dimensional
Paneitz operator is nonnegative and has trivial kernel and that the total integral of
the Q-curvature is less than (n−1)!ωn , where ωn is the area of the unit sphere Sn

of Rn+1. Brendle’s result and that of Djadli and Malchiodi [2006] were extended to
all dimensions in [Ndiaye 2007b]. However, some issues remain: Only the leading
term of the operator is known, and in the odd case the operator is pseudodifferential.

Instead of compact closed Riemannian manifolds, one can consider compact
smooth Riemannian manifolds with smooth boundary. Much work has already
been done in studying their conformally covariant differential operators, their asso-
ciated curvature invariants, the corresponding boundary operators and curvatures.

Suppose then (6, g) is a compact smooth surface with smooth boundary ∂6.
Let 1g be the Laplace–Beltrami operator, and let ∂/∂ng be the Neumann operator
on ∂6. Under a conformal change of metric, the pair (1g, ∂/∂ng) governs the
transformation laws of the Gauss curvature Kg of (6, g) and the geodesic curva-
ture kg of (∂6, g). In fact, under the conformal change of metric gu = e2ug, we
have

1gu = e−2u1g and ∂
∂ngu

= e−u ∂
∂ng

,

and
−1gu+ Kg = Kgu e2u in 6,

∂u
∂ng
+ kg = kgu eu on ∂6.

We have the Gauss–Bonnet formula

(1-5)
∫
6

KgdVg +

∫
∂6

kgd Sg = 2πχ(6),

where χ(6) is the Euler–Poincaré characteristic of6, dVg is the element area of6
and d Sg is the line element of ∂6. Thus

∫
6 KgdVg +

∫
∂6 kgd Sg is a topological

invariant and hence a conformal invariant.
In this context, the question about the analogue of the classical uniformization

theorem is, Does there exist a metric on6 that is conformally related to g and with
constant Gauss curvature and constant geodesic curvature? This problem has been
solved by the following theorem; for a proof see [Brendle 2002].
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Theorem 1.1. Every compact smooth Riemannian surface with smooth boundary
(6, g) carries a metric conformally related to g with constant Gauss curvature
and constant geodesic curvature.

Like compact closed four-dimensional Riemannian manifolds, 4-manifolds with
boundary admit the Paneitz operator P4

g and the Q-curvature. These are also de-
fined by formulas (1-2) and (1-3) and enjoy the same invariance properties as in
the case without boundary; see (1-4).

Chang and Qing [1997a] discovered a boundary operator P3
g defined on the

boundary of compact four-dimensional smooth Riemannian manifolds, and they
associated to it a natural third-order curvature Tg. These are defined by

P3
g ϕ =

1
2
∂1gϕ

∂ng
+1ĝ

∂ϕ
∂ng
− 2Hg1ĝϕ+ (Lg)ab(∇ĝ)a(∇ĝ)b

+∇ĝ Hg.∇ĝϕ+ (F − 1
3 Rg)

∂ϕ
∂ng

,

Tg =−
1
12
∂Rg

∂ng
+

1
2 Rg Hg −〈Gg, Lg〉+ 3H 3

g −
1
3 T r(L3)+1ĝ Hg.

Here ϕ is any smooth function on M , and ĝ is the metric induced by g on ∂M .
Also Lg = (Lg)ab=−

1
2∂gab/∂ng is the second fundamental form of ∂M ; from Lg

is defined Hg =
1
3 tr(Lg) =

1
3 gab Lab, the mean curvature of ∂M . (Here the gab

are the entries of the inverse g−1 of the metric g.) Finally Rk
bcd is the Riemann

curvature tensor, F = Ra
nan , Rabcd = gak Rk

bcd , and 〈Gg, Lg〉 = Ranbn(Lg)ab.
Just as the Laplace–Beltrami operator and the Neumann operator govern the

transformation law of the Gauss curvature and the geodesic curvature on compact
surfaces with boundary under conformal change of metrics, the pair (P4

g , P3
g ) does

the same for (Qg, Tg) on compact four-dimensional smooth Riemannian manifolds
with smooth boundary. In fact, after a conformal change of metric gu = e2ug we
have that

P4
gu
= e−4u P4

g and P3
gu
= e−3u P3

g ,

and
P4

g u+ 2Qg = 2Qgu e4u in M,

P3
g u+ Tg = Tgu e3u on ∂M.

In addition to this analogy, we have also an extension of the Gauss–Bonnet
formula (1-5), known as the Gauss–Bonnet–Chern formula, given by

(1-6)
∫

M

(
Qg +

1
8 |Wg|

2)dVg +

∫
∂M
(T + Z)d Sg = 4π2χ(M),

where Wg denotes the Weyl tensor of (M, g) and Zd Sg is pointwise conformally
invariant; for the definition of Z , see [Chang and Qing 1997a]. It turns out that Z
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vanishes when the boundary is totally geodesic (by totally geodesic we mean that
the boundary ∂M is umbilic and minimal). Setting

κP4
g
=

∫
M

Qg dVg and κP3
g
=

∫
∂M

Tgd Sg,

we conclude from (1-6) and the pointwise conformal invariance of Wg dVg and
Z d Sg that the quantity κP4

g
+ κP3

g
is itself conformally invariant; we put

(1-7) κ(P4,P3) = κP4
g
+ κP3

g
.

The celebrated Riemann mapping theorem says that an open, simply connected,
proper subset of the plane is conformally diffeomorphic to the disk. One can
ask if such a theorem remains true in four dimensions. Unfortunately, few four-
dimensional regions are conformally diffeomorphic to the ball. However, in the
spirit of the uniformization theorem (Theorem 1.1), one can still ask, On a given
compact four-dimensional smooth Riemannian manifold with smooth boundary,
does there exist a metric conformal to the background metric with zero Q-curvature,
constant T -curvature and zero mean curvature? Escobar [1992] has asked related
questions in the context of the Yamabe problem.

In this paper, we are interested in finding an analogue of the Riemann mapping
theorem (in the spirit of Theorem 1.1) for compact four-dimensional smooth Rie-
mannian manifolds with smooth boundary under generic and conformally invariant
assumptions. Writing gu = e2ug, the problem is equivalent to solving the BVP

P4
g u+ 2Qg = 0 in M,

P3
g u+ Tg = T e3u on ∂M,

∂u/∂ng − Hgu = 0 on ∂M.

Here T is a fixed real number, and ∂/∂ng is the inward normal derivative with
respect to g.

By a result by Escobar [1992], and by the fact that we are interested in the
problem under assumptions of conformal invariance, it is not restrictive to assume
that Hg = 0, since this can be always obtained through a conformal transformation
of the background metric. Thus we are lead to solve the following BVP with
Neumann homogeneous boundary condition:

(1-8)

P4
g u+ 2Qg = 0 in M,

P3
g u+ Tg = T e3u on ∂M,

∂u/∂ng = 0 on ∂M.
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Define {u ∈ H 2(M) : ∂u/∂ng = 0}, and define P4,3
g through

〈P4,3
g u, v〉L2(M) =

∫
M

(
1gu1gv+

2
3 Rg∇gu∇gv

)
dVg − 2

∫
M

Ricg(∇gu,∇gv)dVg

−2
∫
∂M

Lg(∇ĝu,∇ĝv)d Sg,

for every u, v ∈ H∂/∂n . Then, by the regularity result in Lemma 2.3 below, the
critical points in H∂/∂n of the functional

II(u)= 〈P4,3u, u〉L2(M)

+ 4
∫

M
Qgu dVg + 4

∫
∂M

Tgu d Sg −
4
3κ(P4,P3) log

∫
∂M

e3u d Sg,

which are weak solutions of (1-8), are also smooth and hence strong solutions.
A similar problem is addressed in [Ndiaye 2007a], where constant Q-curvature

metrics with zero T -curvature and zero mean curvature are found under generic
and conformally invariant assumptions.

In [Ndiaye 2007c], heat flow methods are used to prove that if the operator
P4,3

g is nonnegative, ker P4,3
g ' R, and κ(P4,P3) < 4π2, then the problem (1-8)

is solvable. Here we wish to extend this result under generic and conformally
invariant assumptions. The following result is the main theorem of this paper:

Theorem 1.2. Suppose ker P4,3
g ' R. If κ(P4,P3) 6= 4π2k for k = 1, 2, . . . , then

(M, g) admits a conformal metric with constant T -curvature, zero Q-curvature,
and zero mean curvature.

Remark 1.3. Our assumptions are conformally invariant and generic, so the re-
sult applies to a large class of compact 4-dimensional Riemannian manifolds with
boundary.

By the Gauss–Bonnet–Chern formula (1-6), Theorem 1.2 does not cover the case
of locally conformally flat Riemannian manifolds with totally geodesic boundary
and positive integer Euler–Poincaré characteristic.

Our assumptions include two cases:

Case 1.4. We have κ(P4,P3) < 4π2, or P4,3
g has k negative eigenvalues (counted

with multiplicity).

Case 1.5. We have κ(P4,P3) ∈ (4π2k, 4(k + 1)π2) for some k ∈ N∗, or P4,3
g has k

negative eigenvalues (counted with multiplicity).

Remark 1.6. Case 1.4 includes the condition (k= 0) under which the existence of
solutions to (1-8) is proved in [Ndiaye 2007c]; hence we do not consider this case
here. However due to a trace Moser–Trudinger type inequality (see Proposition
2.4 below) a solution can be found using direct methods of calculus of variation.



CONSTANT T -CURVATURE CONFORMAL METRICS ON 4-MANIFOLDS 157

To simplify the exposition, we will prove Theorem 1.2 in Case 1.5 under the
restriction that k = 0 (that is, we assume P4,3

g is nonnegative). At the end of
Section 4, a discussion to settle the general case will be made.

To prove Theorem 1.2, we look for critical points of II. Unless κ(P4,P3) < 4π2

and k = 0, this Euler–Lagrange functional is unbounded from above and below
(see Section 4), so it is necessary to find extremals that are possibly saddle points.
To do this we will use a min-max method: By classical arguments in critical point
theory, the scheme yields a Palais–Smale sequence (or PS sequence), namely a
sequence (ul)l ∈ H∂/∂n satisfying the properties

II(ul)→ c ∈ R and II′(ul)→ 0 as l→+∞.

Then, as is usual in min-max theory, one should recover existence by proving that
the Palais–Smale condition holds, that is, by proving every Palais–Smale sequence
has a converging subsequence or by proving a similar compactness criterion. Since
we do not know if the Palais–Smale condition holds, we will employ Struwe’s
monotonicity method [1988], which is also used in [Djadli and Malchiodi 2006;
Ndiaye 2007b]. The latter yields existence of solutions for arbitrary small pertur-
bations of the given equation, so to consider the original problem one is led to
study compactness of solutions to perturbations of (1-8). Precisely, we consider

(1-9)

P4
g ul + 2Ql = 0 in M,

P3
g ul + Tl = T le3ul on ∂M,

∂ul/∂ng = 0 on ∂M,

where

(1-10) T l→T 0>0 in C2(∂M), Tl→T0 in C2(∂M), Ql→Q0 in C2(M).

Remark 1.7. It follows from the Green representation formula given in Lemma 2.2
below that if ul is a sequence of solutions to (1-9), then ul satisfies

ul(x)=−2
∫

M
G(x, y)Ql(y)dVg − 2

∫
∂M

G(x, y)Tl(y)d Sg(y)

+ 2
∫
∂M

G(x, y)T l(y)e3ul (y)d Sg(y)+ u∂M,l .

Therefore under the assumption (1-10), if sup∂M ul ≤ C , then ul is bounded in
C4+α for every α ∈ (0, 1).

In this context, we may say by Remark 1.7 that a sequence (ul) of solutions
to (1-9) blows up if

(1-11) there exists an xl ∈ ∂M such that ul(xl)→+∞ as l→+∞,
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and we prove the following compactness result.

Theorem 1.8. Suppose ker P4,3
g ' R and that (ul) is a sequence of solutions to

(1-9) with T l , Tl and Ql satisfying (1-10). If (ul)l blows up (in the sense of (1-11))
and

(1-12)
∫

M
Q0 dVg +

∫
∂M

T0 d Sg + ol(1)=
∫
∂M

T le3ul d Sg,

then there exists an N ∈ N \ {0} such that∫
M

Q0 dVg +

∫
∂M

T0 d Sg = 4Nπ2.

From this we derive a corollary which will be used to ensure compactness of some
solutions to a sequence of approximate BVPs produced by the topological argument
combined with Struwe’s monotonicity method. Its proof is a trivial application of
Theorem 1.8 and Lemma 2.3 below.

Corollary 1.9. Suppose ker P4,3
g ' R.

(a) Let (ul) be a sequence of solutions to (1-9) with T l , Tl and Ql satisfying
(1-10). Assume also that∫

M
Q0 dVg +

∫
∂M

T0 d Sg + ol(1)=
∫
∂M

T le3ul d Sg

and

k0 =

∫
M

Q0 dVg +

∫
∂M

T0 d Sg 6= 4π2k for k = 1, 2, 3, . . . .

Then (ul)l is bounded in C4+α(M) for any α ∈ (0, 1).

(b) Let (ul) be a sequence of solutions to (1-8) for a fixed value of the constant T .
Assume also that κ(P4,P3) 6= 4π2k. Then (ul)l is bounded in Cm(M) for every
positive integer m.

(c) Let (uρk ) with ρk → 1 be a family of solutions to (1-8) with Tg replaced by
ρk Tg, with Qg replaced by ρk Qg, and with T replaced by ρk T for a fixed
value of the constant T . Assume also that κ(P4,P3) 6= 4π2k. Then (uρk )k is
bounded in Cm(M) for every positive integer m.

(d) If κ(P4,P3) 6= 4π2k for k = 1, 2, 3, . . . , then the set of metrics conformal to g
with constant T -curvature, with zero Q- and mean curvature, and with unit
boundary volume is compact in Cm(M) for every positive integer m.
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We are going to describe the main ideas needed to prove the above results. Since
the proof of Theorem 1.2 relies on the compactness result of Theorem 1.8 (see
Corollary 1.9), it is convenient to discuss first the latter. We use a strategy related
to that in [Druet and Robert 2006], but in our case, due to the Green representation
formula (see Lemma 2.2), we have to consider blow-ups at the boundary; see Re-
mark 1.7. In [Ndiaye 2007b; 2007a] a variant of this method was used that relies
strongly on the Green representation formula, transforming (1-8) into an integral
equation. Here we will employ a similar strategy, since for the BVP one has also the
existence of a Green representation formula; see Lemma 2.2. We point out that in
the present case, the nonlinearity appears only in the boundary term of the integral
representation. We consider the same scaling as in [Druet and Robert 2006] and
[Ndiaye 2007b; 2007a]. As already remarked, we have to consider only boundary
blow-up points. When dealing with the boundary blow-up phenomenon, we adopt
the same strategy as in [Ndiaye 2007b; 2007a] to conclude that the limit function
V0 describing the profile near the blow-up points satisfies the integral equation

(1-13) Ṽ0(x)=
∫

R3
σ3 log

(
|z|
|x−z|

)
e3Ṽ0(z)dz− 1

4 log(k3).

for some constants σ3 and k3. Recalling that we are looking for boundary quan-
tization, we have therefore only to understand the behavior of the singularity V0

at the boundary ∂M . For this, we follow an argument in [Ndiaye 2007b; 2007a],
which is based on a classification result of X. Xu [2005], and we deduce that the
restriction of V0 on R3 is a standard bubble (on R3) and the local volume is 4π2.
At this stage we finish by arguing as in [Ndiaye 2007b; 2007a] to show that the
residual volume tends to zero, and we obtain the desired quantization.

With this compactness result in hand, we can describe the proof of Theorem 1.2
assuming Case 1.5 and that P4,3

g is nonnegative (that is, k = 0). In [Djadli and
Malchiodi 2006; Ndiaye 2007b] the existence theorem was proved considering the
formal barycenters of the manifold M , which we will recall, together with the dif-
ferences with the present case. The arguments in [Djadli and Malchiodi 2006] can
be summarized as follows. First, from κP4 ∈ (k8π2, (k+1)8π2) and considerations
coming from an improvement of a Moser–Trudinger type inequality, it follows that
if II(u) attains large negative values, then e4u must concentrate near at most k points
of M . This means that, if we normalize u so that

∫
M e4u dVg = 1 (which is possible

because the functional is invariant under translation by a constant), then naively

e4u
'
∑k

i=1 tiδxi for xi ∈ M and ti ≥ 0 with
∑k

i=1 ti = 1.

Such a convex combination of Dirac deltas is called a formal barycenter of M of
order k (see [Djadli and Malchiodi 2006, Section 2]) and is denoted by Mk . With
further analysis (see [Djadli and Malchiodi 2006, Proposition 3.1]), it is possible
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to show that the sublevel {II<−L} for large L has the same homology as Mk . The
existence of solutions was found using this fact and the noncontractibility of Mk

(which is a crucial ingredient).
The present case differs in that Mk might be contractible and also boundary

concentration can appear, so the same arguments cannot be applied. However, due
to a trace Moser–Trudinger type inequality and its improvement, we are able to
derive that if κ(P4,P3) ∈ (k4π2, (k+ 1)4π2), then the fact that II(u) attains large
negative values implies that e3u

|∂M must concentrate near at most k points of ∂M .
This means that, if we normalize u so that

∫
∂M e3udsg = 1 (which is also possible

in this case because II is invariant under translation by a constant), then naively

e3u
|∂M '

∑k
i=1 tiδxi for xi ∈ ∂M and ti ≥ 0 with

∑k
i=1 ti = 1.

Such a convex combination of Dirac deltas is called a formal barycenter of ∂M
of order k (see Section 2) and will be denoted by ∂Mk . It is therefore natural to
use the set ∂Mk to describe the homology of very large negative sublevels of the
functional II. Indeed, with a further analysis (see Proposition 4.10 ), it is possible
to show that the sublevel {II < −L} for large L has the same homology as ∂Mk .
Using the noncontractibility of ∂Mk , we define a min-max scheme for a perturbed
functional IIρ with ρ close to 1, and we find a PS sequence at some level cρ .
Applying the monotonicity procedure of Struwe, we can show existence of critical
points of IIρ for almost all ρ, which means that the assumptions of Corollary 1.9
are satisfied.

The structure of the paper is as follows. In Section 2, we present notation and
some preliminaries, such as the existence of the Green function for (P4

g , P3
g ) with

homogeneous Neumann condition, a regularity result for BVPs of the type (1-8),
and a trace Moser–Trudinger-type inequality. In Section 3, we prove Theorem
1.8, from which the proof of Corollary 1.9 becomes a trivial application. Section
4, in which we prove Theorem 1.2, has four subsections. The first concerns an
improvement of the trace Moser–Trudinger-type inequality and its applications.
The second deals with the existence of a nontrivial global projection from negative
sublevels of II onto ∂Mk . The third concerns mapping ∂Mk into negative sublevels,
and the last deals with the min-max scheme.

2. Notations and preliminaries

In this brief section we first fix some useful notations. We then state a lemma
giving the existence of the Green function of the operator (P4

g , P3
g ) with homo-

geneous Neumann boundary condition, find its asymptotics near the singularity,
and present a trace analogue of the well-known Moser–Trudinger inequality for
the operator P4,3

g when it is nonnegative (that is, when k = 0).
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Let Bp(r) be the metric ball of radius r and center p. We let B+p (r)= Bp(r)∩M
if p∈∂M , but sometimes we use B+p (r) to denote Bp(r)∩M even if p /∈∂M . We let
Bx(r) be the Euclidean ball of center x and radius r . We let Bx

+
(r)= Bx(r)∩R4

+

if x ∈ ∂R4
+

, but again we use Bx
+
(r) to denote Bx(r)∩R4

+
even if x /∈ ∂R4

+
.

We denote by dg(x, y) the metric distance between x, y ∈ M and by dĝ(x, y)
the intrinsic distance between x, y ∈ ∂M . Here ĝ is the metric on ∂M induced
by g. Given a point x ∈ ∂M and r > 0, let B∂M

x (r) be the ball in ∂M centered at x
and with radius r with respect to the (intrinsic) distance dĝ( · , · ).

Let H 2(M) be the usual Sobolev space of functions on M of class H 2 in each
coordinate system.

We use C to denote a large positive constant, and the value of C is allowed to
vary from formula to formula and also within the same line.

Denote by M2 the cartesian product M×M and by diag(M) the diagonal of M2.
For u ∈ L1(∂M), denote by u∂M its average on ∂M , that is,

u∂M =
1

volĝ(∂M)

∫
∂M

u(x)d Sg(x), where volĝ(∂M)=
∫
∂M d Sg.

As usual, N is the natural numbers, and N∗ is the set of positive integers.
Al = ol(1) means that Al→ 0 as the integer l→+∞.
Aε = oε(1) means that Aε→ 0 as the real number ε→ 0.
Aδ = oδ(1) means that Aδ→ 0 as the real number δ→ 0.
Al = O(Bl) means that Al ≤ C Bl for some constant C independent of l.
We denote by dVg the Riemannian measure associated to the metric g, by d Sg

the Riemannian measure associated to ĝ, and by dσĝ the surface measure on the
boundary of balls of ∂M . We let | · |ĝ be the norm associated to ĝ.

The notation f = f (a, b, c, . . . ) means that f is a quantity that depends only
on a, b, c, . . . .

Define a family of formal sums by

(2-1) ∂Mk =
{∑k

i=1 tiδxi : ti ≥ 0,
∑k

i=1 ti = 1, xi ∈ ∂M
}
;

the set ∂Mk is called the formal set of barycenters relative to ∂M of order k. We
recall that ∂Mk is a stratified set, namely, a union of sets of various dimension with
maximum dimension equal to 4k− 1.

We recall the following result (see [Djadli and Malchiodi 2006, Lemma 3.7]),
which is necessary in order to carry out the topological argument below.

Lemma 2.1 (well known). For any k ≥ 1, one has H4k−1(∂Mk;Z2) 6= 0. As a
consequence, ∂Mk is noncontractible.

If ϕ ∈ C1(∂M) and if σ ∈ ∂Mk , the action of σ on ϕ is 〈σ, ϕ〉 =
∑k

i=1 tiϕ(xi ),
or we may write σ =

∑k
i=1 tiδxi .



162 CHEIKH BIRAHIM NDIAYE

Moreover, if f is a nonnegative L1 function on ∂M with
∫
∂M f dsg = 1, we can

define a distance of f from ∂Mk in through

(2-2) d( f, ∂Mk)= inf
σ∈∂Mk

sup
{∣∣∣∫

∂M
f ϕd Sg −〈σ, ϕ〉

∣∣∣ : ‖ϕ‖C1(∂M) = 1
}
.

We also define the set

(2-3) Dε,k =
{

f ∈ L1(∂M) : f ≥ 0, ‖ f ‖L1(∂M) = 1, d( f, ∂Mk) < ε
}
.

Now we state a lemma which asserts the existence of the Green function of
(P4

g , P3
g ) with homogeneous Neumann condition. Its proof is the same as that of

[Ndiaye 2007a, Proposition 2.3].

Lemma 2.2. Suppose ker P4,3
g ' R. Then the Green function G(x, y) of (P4

g , P3
g )

exists in the following sense:

(a) For all functions u ∈ C2(M) with ∂u/∂ng = 0, we have, for x ∈ M ,

u(x)− u∂M =

∫
M

G(x, y)P4
g u(y)dVg(y)+ 2

∫
∂M

G(x, y′)P3
g u(y′)d Sg(y′).

(b) G(x, y) = H(x, y)+ K (x, y) is smooth on M2
\ diag(M2), K extends to a

C2+α function on M2, and

H(x, y)=
{
(8π2)−1 f (r) log(1/r) if Bδ(x)∩ ∂M =∅,
(8π2)−1 f (r)(log(1/r)+ log(1/r)) otherwise.

Here r = dg(x, y) and r = dg(x, y). Also f (x) = 1 for x ∈ [−δ/2, δ/2] and
f ∈ C∞0 (−δ, δ), where δ ≤ 1

2 min{δ1, δ2}. In the latter, δ1 is the injectivity
radius of M in an extension M̃ of M , and δ2 = δ0/2.

Next we give a regularity result for boundary value problems of type (1-8), and
also give high order a priori estimates for sequences of solutions to BVPs like
(1-9) when the solutions are bounded from above. The proof is a trivial adaptation
of the arguments of [Ndiaye 2007a, Proposition 2.4].

Lemma 2.3. Let u ∈ H∂/∂n be a weak solution to

P4
g u = h in M and P3

g u+ f = f̄ e3u on ∂M

with f ∈ C∞(∂M), h ∈ C∞(M) and f̄ a real constant. Then u ∈ C∞(M).
Let ul ∈ H∂/∂n be a sequence of weak solutions to

P4
g ul = hl in M and P3

g ul + fl = f̄le3ul on ∂M.

with fl → f0 in Ck(∂M), f̄l → f̄0 in Ck(∂M) and hl → h0 in Ck(M) for some
fixed k ∈ N∗. Assuming sup∂M ul ≤ C we have that ‖ul‖Ck+3+α(M) ≤ C for any
α ∈ (0, 1).
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Now we present a proposition giving a trace Moser–Trudinger-type inequality
when the operator P4,3

g is nonnegative (that is, when k = 0) with trivial kernel.

Proposition 2.4. Assume P4,3
g is a nonnegative operator with ker P4,3

g ' R. Then
for all α < 12π2, there exists a constant C = C(M, g, α) such that

(2-4)
∫
∂M

exp
(

α(u−u∂M)
2

〈P4,3
g u, u〉L2(M,g)

)
d Sg ≤ C,

for all u ∈ H∂/∂n . Hence

(2-5) log
∫
∂M

e3(u−u)d Sg ≤ C + 9
4α 〈P

4,3
g u, u〉L2(M,g) for all u ∈ H∂/∂n.

Proof. Without loss of generality we can assume u∂M = 0. Following the same
argument as in [Chang and Qing 1997b, Lemma 2.2], we get that for all β < 16π2,
there exists a C = C(β,M) such that∫

M
exp

(
βv2∫

M |1gv|2 dVg

)
dVg ≤ C for all v ∈ H∂/∂n with v∂M = 0.

From this, using the same reasoning as in [Ndiaye 2007a, Proposition 2.7], we
derive

(2-6)
∫

M
exp

(
βv2

〈P4,3
g v, v〉L2(M)

)
dVg ≤ C for all v ∈ H∂/∂n with v∂M = 0.

Now let X be a vector field extending the outward normal at the boundary ∂M .
Using the divergence theorem we obtain

(2-7)

∫
∂M

eαu2
d Sg =

∫
M

divg(Xeαu2
)dVg

=

∫
M
(divg X + 2uα∇gu∇g X)eαu2

dVg,

where we have used in the second line the formula for the divergence of the product
of a vector field and a function. Now we suppose 〈P4,3

g u, u〉L2(M) ≤ 1, then since
the vector field X is smooth we have

(2-8)
∣∣∣∫

M
divg(Xeαu2

)dVg

∣∣∣≤ C

by (2-6). Next let us show that∣∣∣∫
M

2αu∇gu∇g Xeαu2
dVg

∣∣∣≤ C.

To do so, let ε be small and positive, and set p1= 4/(3−ε), p2= 4 and p3= 4/ε.
It is easy to check that (p1)

−1
+ (p2)

−1
+ (p3)

−1
= 1. Using Young’s inequality
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we obtain∣∣∣∫
M

2αu∇gu∇g Xeαu2
dVg

∣∣∣≤ C‖u‖L4/ε‖∇gu‖L4

(∫
M

eαu24/(3−ε)dVg

)(3−ε)/4
.

On the other hand, [Ndiaye 2007a, Lemma 2.8] and the Sobolev embedding theo-
rem imply ‖u‖

L
4
ε
≤C and ‖∇gu‖L4≤C . Furthermore, from the fact that α<12π2,

by taking ε sufficiently small and using (2-4), we obtain(∫
M

eαu24/(3−ε)dVg

)(3−ε)/4
≤ C.

Thus we arrive at

(2-9)
∣∣∣∫

M
2αu∇gu∇g Xeαu2

dVg

∣∣∣≤ C.

Hence (2-7), (2-8) and (2-9) imply
∫
∂M eαu2

d Sg ≤ C , as desired. So the first part
of the lemma is proved.

Now, using the algebraic inequality 3ab ≤ 3γ2a2
+ 3b2/4γ2, the second part

follows directly from the first one, and we are done. �

3. Proof of Theorem 1.8

Here we use a strategy related to those in [Ndiaye 2007b; 2007a]. Hence we will
only sketch many steps, referring to the corresponding arguments there for details.
However, in contrast to the situation in [Ndiaye 2007a], due to Remark 1.7, we
need only take care of the behavior of the restriction of the sequence ul to the
boundary ∂M of M .

First we recall a particular case of a result of X. Xu.

Theorem 3.1 [Xu 2005, Theorem 1.2]. There exists a dimensional constant σ3> 0
such that if u ∈ C1(R3) is a solution to the integral equation

u(x)=
∫

R3
σ3 log

(
|y|
|x−y|

)
e3u(y)dy+ c0,

where c0 is a real number, then eu
∈ L3(R3) implies that there exists λ > 0 and

x0 ∈ R3 such that u(x)= log(2λ/(λ2
+ |x − x0|

2)).

Now, if σ3 is as in Theorem 3.1, we set k3 = 2π2σ3 and γ3 = 2(k3)
3.

We divide the proof into five claims as in [Ndiaye 2007b; 2007a].

Claim 1. For some N ∈ N∗, there exist N converging points (xi,l) ⊂ ∂M and N
sequences (µi,l) of positive real numbers converging to 0 (both sets are indexed by
i = 1, . . . , N ) such that the following hold:
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(a) dg(xi,l, x j,l)/µi,l→+∞ for i, j = 1, . . . , N with i 6= j and

T l(xi,l)µ
3
i,le

3ul (xi,l ) = 1.

(b) For every i ,

vi,l(x)= ul(expxi,l
(µi,l x))− ul(xi,l)−

1
3 log(k3)→ V0(x) in C1

loc(R
4
+
),

where V0(x) := log(4γ3/(4γ2
3+ |x |

2)) for x ∈ ∂R4
+

, and

lim
R→+∞

lim
l→+∞

∫
B+xi,l (Rµi,l )∩∂M

T l(y)e3ul (y)dsg(y)= 4π2.

(c) There exists a C > 0 such that infi=1,...,N dg(xi,l, x)3e3ul (x)≤C for all x ∈ ∂M
and for all l ∈ N.

Proof. First let xl ∈ ∂M be such that ul(xl) = maxx∈∂M ul(x). Then the fact that
ul blows up implies ul(xl)→ +∞. Now since ∂M is compact, we can assume
without loss of generality that xl→ x ∈ ∂M .

Next let µl > 0 be such that T l(xl)µ
3
l e3ul (xl ) = 1. Since T l → T 0 in C1(∂M),

T 0 > 0 and ul(xl)→+∞, we have µl→ 0.
Let B0

+
(δµ−1

l ) be the Euclidean half-ball of center 0 and radius δµ−1
l for some

positive, fixed, and small δ. For x ∈ B0
+
(δµ−1

l ), we set

vl(x)= ul(expxl
(µl x))− ul(xl)−

1
3 log(k3);(3-1)

Q̃l(x)= Ql(expxl
(µl x));(3-2)

˜Ql(x)= Ql(expxl
(µl x));(3-3)

gl(x)= (exp∗xl
g)(µl x).(3-4)

Now from the Green representation formula we have

(3-5) ul(x)− u∂M,l =

∫
M

G(x, y)P4
g ul(y)dVg(y)

+ 2
∫
∂M

G(x, y′)P3
g ul(y′)d Sg(y′) for all x ∈ M,

where G is the Green function of (P4
g , P3

g ) (see Lemma 2.2).
Next using Equation (1-9) and differentiating (3-5) with respect to x , we obtain

for k = 1, 2 that

|∇
kul |g(x)≤

∫
∂M
|∇

k G(x, y)|gT l(y)e3ul (y)dVg + O(1),

since Tl→ T0 in C1(∂M) and Ql→ Q0 in C1(M).
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Now let yl ∈ B+xl
(Rµl) for some fixed positive R. By the same argument as in

[Ndiaye 2007b, formula 43, page 11], we get

(3-6)
∫
∂M
|∇

k G(yl, y)|ge3ul (y)dVg(y)= O(µ−k
l ).

Hence we have

(3-7) |∇
kvl |g(x)≤ C.

Furthermore from the definition of vl (see (3-1)), we obtain

(3-8) vl(x)≤ vl(0)=− 1
3 log(k3) for all x ∈ R4

+
.

Thus we infer that (vl)l is uniformly bounded in C2(K ) for all compact subsets K
of R4

+
. Hence by the Arzelà–Ascoli theorem we derive that

(3-9) vl→ V0 in C1
loc(R

4
+
),

On the other hand, (3-8) and (3-9) imply that

(3-10) V0(x)≤ V0(0)=− 1
3 log(k3) for all x ∈ R4

+
.

Moreover from (3-7) and (3-9) we have that V0 is Lipschitz.
Now, using again the Green’s representation formula for (P4

g , P3
g ), we obtain

for x ∈ R4
+

fixed and for R big enough such that x ∈ B0
+
(R) that

(3-11) ul(expxl
(µl x))− u∂M,l =

∫
M

G(expxl
(µl x), y)P4

g ul(y)dVg(y)

+ 2
∫
∂M

G(expxl
(µl x), y′)P3

g ul(y′)d Sg(y′).

Next let us set

Il(x)= 2
∫

B+xl (Rµl )∩∂M

(
G(expxl

(µl x), y′)−G(expxl
(0), y′)

)
T l(y′)e3ul (y′)d Sg(y′),

IIl(x)= 2
∫

∂M\(B+xl (Rµl )

(
G(expxl

(µl x), y′)−G(expxl
(0), y′)

)
T l(y′)e3ul (y′)d Sg(y′),

IIIl(x)= 2
∫
∂M

(
G(expxl

(µl x), y′)−G(expxl
(0), y′)

)
Tl(y′)d Sg(y′),

IIIIl(x)= 2
∫

M

(
G(expxl

(µl x), y)−G(expxl
(0), y)

)
Ql(y)dVg(y).

Using arguments of [Ndiaye 2007b, formulas (45)–(51)], we get

(3-12) vl(x)= Il(x)+ IIl(x)− IIIl(x)− IIIIl(x)− 1
4 log(3).
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By following the methods of [Ndiaye 2007b, formulas (53)–(62)], we get

(3-13)
lim

l
Il(x)=

∫
B0
+(R)∩∂R4

+

σ3 log
(
|z|
|x−z|

)
e3V0(z)dz,

lim sup
l

IIl(x)= oR(1), IIIl(x)= ol(1), IIIIl(x)= ol(1).

Hence from (3-9), (3-12), and (3-13) we may let l and R tend to infinity to obtain
that V0|R3 (for simplicity we will still write this as V0) satisfies the conformally
invariant integral equation

(3-14) V0(x)=
∫

R3
σ3 log

(
|z|
|x−z|

)
e3V0(z)dz− 1

3 log(k3)

on R3. Now since V0 is Lipschitz, the theory of singular integral operators gives
that V0 ∈ C1(R3).

On the other hand, by using the change of variable y = expxl
(µl x), one can

check that

(3-15) lim
l→+∞

∫
B+xl (Rµl )∩∂M

T le3ul dVg = k3

∫
B+0 (R)∩∂R4

+

e3V0dx .

Hence (1-12) implies that eV0 ∈ L3(R3).
Furthermore by a classification result by X. Xu (see Theorem 3.1 for the solu-

tions of (3-14)), we derive that

(3-16) V0(x)= log
( 2λ
λ2+|x−x0|2

)
for some λ > 0 and x0 ∈ R3.

Moreover from V0(x) ≤ V0(0) = −1
3 log(k3) for all x ∈ R3, we have λ = 2k3

and x0 = 0, so that V0(x) = log(4γ3/(4γ2
3 + |x |

2)). On the other hand, by letting
R tend to infinity in (3-15), we obtain

(3-17) lim
R→+∞

lim
l→+∞

∫
B+xl (Rµl )∩∂R4

+

T l(y)e3ul (y)d Sg(y)= k3

∫
R3

e3V0dx .

By a generalized Pohozaev type identity of X. Xu [2005, Theorem 1.1], we get
σ3
∫

R3 e3V0(y)dy = 2; hence using (3-17), we derive that

lim
R→+∞

lim
l→+∞

∫
B+xl (Rµl )∩∂M

T l(y)e3ul (y)d Sg(y)= 4π2.

Now for k ≥ 1 we say that (Hk) holds if there exist k converging sequences of
points (xi,l)l ⊂ ∂M and k sequences (µi,l) of positive real numbers converging to 0
(both of which are indexed by i = 1, . . . , k) such that
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(A1
k) dĝ(xi,l, x j,l)/µi,l→+∞ for i, j = 1, . . . , k with i 6= j and

T l(xi,l)µ
3
i,le

3ul (xi,l ) = 1;

(A2
k) for every i ∈ {1, . . . , k},

vi,l(x)= ul(expxi,l
(µi,l x))− ul(xi,l)−

1
3 log(k3)→ V0(x) in C1

loc(R
4
+
),

where V0|∂R4
+
:= log(4γ3/(4γ2

3+ |x |
2)) and

lim
R→+∞

lim
l→+∞

∫
B+xi,l (Rµi,l )∩∂M

T l(y)e3ul (y) = 4π2.

Clearly (H1) holds by the arguments above. We let now k ≥ 1 and assume that
(Hk) holds. We also assume that

(3-18) sup
∂M

Rk,l(x)3e3ul (x)→+∞ as l→+∞,

where Rk,l(x)=mini=1,...,k dg(xi,l, x). Now, by using the arguments of [Druet and
Robert 2006; Ndiaye 2007b], one can easily see that (Hk+1) also holds. Hence,
since (A1

k) and (A2
k) of (Hk) imply that∫

∂M
T l(y)e3ul (y)d Sg(y)≥ k4π2

+ ol(1),

if follows from (1-12) that there exists a maximal k with

1≤ k ≤ 1
4π2

(∫
M

Q0(y)dVg(y)+
∫
∂M

T0(y′)d Sg(y′)
)

such that (Hk) holds. Upon arriving at this maximal k, we conclude that (3-18)
cannot hold. Hence setting N = k, the proof of Claim 1 is completed. �

Claim 2. There exists a constant C > 0 such that

(3-19) Rl(x)|∇gul |g(x)≤ C for all x ∈ ∂M and l ∈ N ,

where Rl(x)=mini=1,..,N dg(xi,l, x), and the xi,l are as in Claim 1.

Proof. First, using the Green representation formula for (P4
g , P3

g ) (see Lemma 2.2),
we obtain

ul(x)− u∂M,l =

∫
M

G(x, y)P4
g ul(y)dVg(y)+ 2

∫
∂M

G(x, y′)P3
g ul(y′)d Sg(y′)

=−2
∫

M
G(x, y)Ql dVg(y)− 2

∫
∂M

G(x, y′)Tl(y′)ul(y′)d Sg(y′)

+ 2
∫
∂M

G(x, y)T l(y′)e3ul (y′)d Sg(y′),
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where the second equality was obtained using the BVP (1-8). Thus differentiating
this equation with respect to x and using the facts that Ql → Q0, Ql → Q0 and
Tl→ T0 in C2, we have for xl ∈ ∂M

|∇gul(xl)|g = O
(∫

∂M

1
dg(xl, y)

e3ul (y)d Sg(y)
)
+ O(1).

By following the arguments of the proof of [Ndiaye 2007b, Theorem 1.3, Step 2],
we obtain ∫

∂M

1
(dg(xl, y))

e3ul (y)dVg(y)= O
( 1

Rl(xl)

)
.

Since xl is arbitrary, the proof of Claim 2 is finished. �

Claim 3. Set Ri,l =mini 6= j dg(xi,l, x j,l).

(a) There exists a constant C > 0 such that for all r ∈ (0, Ri,l] and s ∈ ( r
4 , r ]

(3-20)
∣∣ul(expxi,l

(r x))− ul(expxi,l
(sy))

∣∣≤ C

for all x, y ∈ ∂R4
+

such that |x |, |y| ≤ 3/2.

(b) If di,l is such that 0< di,l ≤ Ri,l/2 and di,l/µi,l→+∞, then provided

(3-21)
∫

B+xi,l (di,l )∩∂M
T l(y)e3ul (y)d Sg(y)= 4π2

+ ol(1),

we have ∫
B+xi,l (2di,l )∩∂M

T l(y)e3ul (y)dsg(y)= 4π2
+ ol(1).

(c) Suppose, for R large and fixed, that di,l >0 satisfies di,l→0, di,l/µi,l→+∞,
and di,l < Ri,l/(4R). Also suppose∫

B+xi,l (di,l/(2R))∩∂M
Ql(y)e3ul (y)d Sg(y)= 4π2

+ ol(1).

Set ũl(x)= ul(expxi,l
(di,l x)) for x ∈ A+2R := (B

0
+
(2R) \ B0

+
(1/(2R)))∩ ∂R4

+
.

Then
‖d3

i,le
3ũl‖Cα(A+R )

→ 0 as l→+∞

for some α ∈ (0, 1), where A+R = (B
0
+
(R) \ B0

+
(1/R))∩ ∂R4

+
.

Proof. Part (a) follows immediately from Claim 2 and the definition of Ri,l . In fact
we can join r x to sy by a curve whose length is bounded by a constant proportional
to r .

We turn to part (b). By di,l/µi,l→+∞, Claim 1(c) and (3-21), we have

(3-22)
∫

B+xi,l (di,l )∩∂M\B+xi,l (di,l/2)∩∂M
e3ul (y)d Sg(y)= ol(1).
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Thus, using (3-20) with s = r/2 and r = 2di,l , we get∫
B+xi,l (2di,l )∩∂M\B+xi,l (di,l )∩∂M

e3ul (y)d Sg(y)≤ C
∫

B+xi,l (di,l )∩∂M\B+xi,l (di,l/2)∩∂M

e3ul (y)d Sg(y).

Hence ∫
B+xi,l (2di,l )∩∂M\B+xi,l (di,l )∩∂M

e3ul (y)d Sg(y)= ol(1).

This proves part (b). One proves the last part (c) by following straightforwardly
the proof of [Ndiaye 2007b, point 3 in Step 3 of Theorem 1.3]. �

Claim 4. There exists a positive constant C independent of l and i such that∫
B+xi,l (Ri,l/C)∩∂M

T l(y)e3ul (y)d Sg(y)= 4π2
+ ol(1).

Proof. The proof is an adaptation of the arguments proving [Ndiaye 2007b, Step 4],
but for convenience we provide full details.

First fix 1/3< ν < 2/3, and for i = 1, . . . , N , set

ui,l(r)= volg(∂B+xi,l
(r)∩ ∂M)−1

∫
∂B+xi,l (r)∩∂M

ul(x)dσĝ(x),

ϕi,l(r)= r3ν exp(ui,l(r))

for all 0≤ r <min{injg(M), injĝ(∂M)}. By Claim 1(b), there exists Rν such that,
for all R ≥ Rν ,

(3-23) ϕ′i,l(Rµi,l) < 0 for all l sufficiently large (depending on R).

Now we define ri,l by

(3-24) ri,l = sup{Rνµi,l ≤ r ≤ Ri,l/2 | ϕ′i,l(r) < 0 for r ∈ [Rν, r)}.

Hence (3-23) implies that

(3-25) ri,l/µi,l→+∞ as l→+∞.

Now to prove the claim it suffices to show that Ri,l/ri,l 6→ +∞ as l→+∞.
Indeed if Ri,l/ri,l 6→ +∞, there exists a positive constant C independent of l

and i such that

(3-26) Ri,l/C ≤ ri,l .

On the other hand, from the Harnack-type inequality (3-20), Claim 1(b), and (3-24)
there exists for any η > 0 an Rη > 0 such that for any R > Rη,

(3-27) dg(x, xi,l)
4νe4ul ≤ ηµ

4(ν−1)
i,l for all x ∈ (B+xi,l

(ri,l) \ B+xi,l
(Rµi,l))∩ ∂M.
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Since ri,l/µi,l →+∞ by (3-25) and Ri,l/2 ≥ ri,l by (3-24), Ri,l/Cµi,l→+∞;
hence Claim 1(b), (3-27) and (3-26) imply that∫

B+xi,l (Ri,l/C)∩∂M
T le3ul = 4π2

+ ol(1).

By continuity and by the definition of ri,l , it follows that ϕ′i,l(ri,l) = 0. Let us
assume by contradiction that Ri,l/ri,l→+∞. We will show next that ϕ′i,l(ri,l) < 0
for large l, thus contradicting the previous equality. To do so we will study the
function ui,l .

First let us remark that since M is compact Ri,l/ri,l→+∞ implies that ri,l→ 0.
From Green’s representation formula for ul , we have

ul(x)=
∫

M
G(x, y)P4

g ul(y)dVg(y)+ u∂M,l + 2
∫

M
G(x, y, )P3

g ul(y′)d Sg(y′)

= 2
∫
∂M

G(x, y)T l(y)e3ul (y)d Sg(y)

− 2
∫

M
G(x, y)Ql(y)dVg(y)− 2

∫
∂M

G(x, y′)Tl(y′)d Sg(y′)+ u∂M,l .

Hence

ui,l(r)= 2(volg(∂B+xi,l
(r)∩ ∂M))−1

∫∫
∂M

G(x, y)T l(y)e3ul (y)dV Sg(y)dσg(x)

− 2(volg(∂B+xi,l
(r)∩ ∂M))−1

∫∫
M

G(x, y)Ql(y)dVg(y)dσg(x)

− 2(volg(∂B+xi,l
(r)∩ ∂M))−1

∫∫
∂M

G(x, y)Tl(y)d Sg(y)dσg(x)+ u∂M,l,

where here and below the first integration is over ∂B+xi,l
(r)∩ ∂M . Setting

Fi,l(r)= 2(volg(∂B+xi,l
(r)∩ ∂M))−1

∫∫
M

G(x, y)Ql(y)dVg(y)dσg(x)

+ 2(volg(∂B+xi,l
(r)∩ ∂M))−1

∫∫
∂M

G(x, y)Tl(y)d Sg(y)dσg(x),

we obtain

ui,l = 2(volg(∂B+xi,l
(r)∩ ∂M)−1

∫∫
∂M

G(x, y)T l(y)e3ul (y)d Sg(y)dσg(x)

+ u∂M,l − Fi,l(r).

Since Ql→Q0 in C1(M) and Tl→T0 in C1(∂M), it follows that Fi,l is of class C1

for all i, l. Also

(3-28) |F ′i,l(r)| ≤ C for all r ∈ (0,min{injg(M)/4, injĝ(∂M)/4}).
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Now fix A such that

min{ 14 injg(M),
1
4 injĝ(∂M)}< A <min{ 12 injg(M),

1
2 injĝ(∂M)}.

We have∫
∂M

G(x, y)T l(y)e3ul (y)d Sg(y)=
∫

B+xi,l (A)∩∂M
G(x, y)T le3ul (y)d Sg(y)

+

∫
∂M\B+xi,l (A)

G(x, y)T le3ul (y)d Sg(y).

So

ui,l(r)= 2 volg(∂B+xi,l
(r)∩ ∂M)−1

×∫
∂B+xi,l (r)∩∂M

∫
B+xi,l (A)∩∂M

(G(x, y)− K (x, y)) T l(y)e3ul (y)d Sg(y)dσg(x)

+ u∂M,l − Fi,l(r)+ Hi,l(r);

with

Hi,l(r)= 2 volg(∂B+xi,l
(r)∩ ∂M)−1

×(∫
∂B+xi,l (r)∩∂M

∫
∂M\B+xi,l (A)

G(x, y)Tl(y)e3ul (y)d Sg(y)dσg(x)

+

∫
∂B+xi,l (r)∩∂M

∫
B+xi,l (A)∩∂M

K (x, y)T l(y)e3ul (y)d Sg(y)dσg(x)
)
.

Since G is smooth outside of diag(M), it follows that

Hi,l ∈ C1 (0,min{ 12 injg(M),
1
2 injĝ(∂M)}

)
for all i, l,

and

(3-29) |H ′i,l(r)| ≤ C for all r ∈
(
0,min{ 12 injg(M),

1
2 injĝ(∂M)}

)
.

Now using the change of variable x = rθ and y = sθ̃ , we obtain

ui,l = u∂M − Fi,l(r)+ Hi,l(r)+

1
vol(S2)

∫
S2

∫
S2

A∫
0

f (r, θ)(G(rθ, sθ̃ )− K (rθ, sθ̃ ))T (sθ̃ )e3ul (sθ̃ )s2 f (s, θ̃ )dsd θ̃dθ.
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So differentiating with respect to r , we have

u′i,l(r)= (vol(S2))−1
×∫

S2

∫
S2

∫ A

0

∂
∂r
(

f (r, θ)(G(rθ, sθ̃ )− K (rθ, sθ̃ ))
)
T (sθ̃ )e3ul (sθ̃ )s2 f (s, θ̃ )dsd θ̃dθ

− F ′i,l(r)+ H ′i,l(r).

From the asymptotics of G (see Lemma 2.2) and the fact that f is bounded in C2,
it follows that

1
vol(S2)

∫
S2

∫
S2

(
G(rθ, sθ̃ )− K (rθ, sθ̃ )

)
d θ̃dθ = f̂ (r, s) log

( 1
|r−s|

)
+ H(r, s),

with H of class Cα and f̂ of class C2. Hence setting

G̃(r, s)= 1
vol(S2)

∫
S2

∫
S2

∂
∂r
(

f (r, θ)(G(rθ, sθ̃ )− K (rθ, sθ̃ ))
)
T (sθ̃ ) f (s, θ̃ )d θ̃dθ.

we obtain

(3-30) G̃(r, s)= f̂ (r, s) 1
r−s
+ H̃(r, s),

where H̃(r, · ) is integrable for every fixed r .
On the other hand, using the Harnack-type inequality (see (3-20)), we have

ul(sθ̃ )≤ ui,l(s)+C uniformly in θ̃ .

Hence, we obtain

ui,l(r)≤ C
∫ A

0
s2G̃(r, s)e3ui,l (s)ds− F ′i,l(r)+ H ′i,l(r).

Now let us study
∫ A

0 s2G̃(r, s)e3ui,l (s)ds. Let R be so large that ri,l ≤ Ri,l/(4R)
(this is possible because of the assumption of contradiction). Now let us split the
integral as∫ A

0
s2G̃(r, s)e3ui,l (s)ds =

∫ ri,l/R

0
s2G̃(r, s)e3ui,l (s)ds+

∫ ri,l R

ri,l/R
s2G̃(r, s)e3ui,l (s)ds

+

∫ Ri,l/C

ri,l R
s2G̃(r, s)e3ui,l (s)ds+

∫ A

Ri,l/C
s2G̃(r, s)e3ui,l (s)ds.

Using the fact that we are at the scale ri,l/R, Claim 1(b) implies the estimates∫ ri,l/R

0
s2G̃(ri,l, s)e3ui,l (s)ds =− 2

ri,l
+ ol(1)

1
ri,l
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for the first term of the equality above, with r = ri,l . On the other hand using
Claim 1(c) we obtain the estimate∫ Ri,l/C

ri,l R
s2G̃(ri,l, s)e3ui,l (s)ds = ol(1)

1
ri,l
.

for the third term, with r = ri,l . Using Claim 1(c) and the fact that Ri,l/ri,l→+∞,
we have the estimate∫ A

Ri,l/C
s2G̃(ri,l, s)e3ui,l (s)ds = ol(1)

1
ri,l
.

for the fourth term, with r = ri,l , Now let us estimate the second term, using
Claim 3(c). First we recall that ri,l and R satisfy the its assumptions. Hence

(3-31) ‖r3
i,le

3ũl‖Cα(A+R )
= ol(1).

For the definition of A+R and ũl , see Claim 3(c), with di,l replaced by ri,l . Now,
performing a change of variable, say ri,l y = s, we obtain the equality

(3-32)
∫ ri,l R

ri,l/R
s2G̃(r, s)e3ui,l (s)ds =

∫ R

1/R
y2Ĝi,l(y)r3

i,le
3ûi,l (y)dy,

where
ûi,l(y)= ui,l(ri,l y) and Ĝi,l(y)= G̃(ri,l, ri,l y).

From the asymptotics of G̃ (see (3-30)), we deduce for Ĝi,l that

(3-33) Ĝi,l(y)= f̂i,l(y)
1

ri,l(1−y)
+ Ĥi,l(y),

where Ĥi,l is integrable and f̂i,l of class C2.
Hence, using (3-32) and (3-33), we get the equation

(3-34)
ri,l R∫

ri,l/R

s2G̃(ri,l, s)e3ui,l (s)ds = 1
ri,l

R∫
1/R

y3
(

f̂i,l(y)
(1− y)

+ ri,l Ĥi,l(y)
)

r3
i,le

3ûi,l (y)dy.

Moreover, using the Harnack-type inequality for ul (see (3-20)) and (3-31), we
have

(3-35) ‖r3
i,le

3ûi,l‖Cα(]1/R,R[) = ol(1).

So using techniques of the theory of singular integral operators as in [Gilbarg and
Trudinger 1983, Lemma 4.4] to obtain Holder estimates, we find∫ R

1/R
y3
(

f̂i,l(y)
(1− y)

+ ri,l Ĥi,l(y)
)

r3
i,le

3ûi,l (y)dy = ol(1).
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So, with (3-32), we deduce that∫ ri,l R

ri,l/R
s3G̃(r, s)e3ui,l (s)ds = ol(1/ri,l).

Hence, we arrive to

(3-36) u′i,l(ri,l)≤−2C 1
ri,l
+ ol(1)

1
ri,l
− F ′i,l(ri,l)+ H ′i,l(r).

Next let compute ϕ′i,l(ri,l). From straightforward computations, we have

ϕ′i,l(ri,l)= (ri,l)
3ν−1 exp(ui,l(ri,l))

(
3ν+ ri,lu′i,l(ri,l)

)
.

Thus, using (3-36), we get the inequality

ϕ′i,l(ri,l)≤ (ri,l)
3ν−1 exp(ui,l(ri,l)

(
3ν− 2C + ol(1)− ri,l F ′i,l(ri,l)+ ri,l H ′i,l(ri,l)

)
.

So, since ν < 2/3, we have 3ν− 2C + ol(1) < 0 for l sufficiently large.
Now, because F ′i,l and H ′i,l are bounded in (0,min{ 14 injg(M),

1
4 injĝ(∂M)}) uni-

formly in l, and because ri,l → 0, we have ϕ′i,l(ri,l) < 0 for l big enough, This is
the contradiction that proves Claim 4. �

Conclusion of the proof of Theorem 1.8. Following the arguments of [Ndiaye
2007b, Step 5], we have∫

∂M\(
⋃i=N

i=1 B+xi,l (Ri,l/C)∩∂M)
e3ul (y)d Sg(y)= ol(1).

So, since B+xi,l
(Ri,l/C)∩ ∂M are disjoint, Claim 4 implies∫

∂M
T l(y)e3ul (y)d Sg(y)= 4Nπ2

+ ol(1),

Thus from (1-12) we derive∫
M

Q0(y)dVg(y)+
∫
∂M

T0(y′)d Sg(y′)= 4Nπ2. �

4. Proof of Theorem 1.2

This section has four subsections. The first concerns an improvement of the trace
Moser–Trudinger-type inequality (see Proposition 2.4) and its corollaries. The
second is about the existence of a nontrivial global projection from some negative
sublevels of II onto ∂Mk (for the definition see (2-1)). The third deals with the
construction of a map from ∂Mk into suitable negative sublevels of II. The last
describes the min-max scheme.
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4.1. Improved trace Moser–Trudinger-type inequality. Here we give an improve-
ment of the trace Moser–Trudinger-type inequality; see Proposition 2.4. Then we
state a lemma that gives some sufficient conditions for the improvement to hold;
see (4-1). By these results, we derive that, if u ∈ H∂/∂n with

∫
∂M e3u d Sg = 1,

then that II(u) attains large negative values implies e3u can concentrate at most at
k points of ∂M ; see Lemma 4.3. Finally from these results, we derive a corollary
that gives the distance of e3u (for some functions u ∈ H∂/∂n with

∫
∂M e3u d Sg = 1)

from ∂Mk .
The aforementioned improvement of the trace Moser–Trudinger-type inequality

(Proposition 2.4) is proved by a trivial adaptation of the arguments of [Djadli and
Malchiodi 2006, Lemma 2.2].

Lemma 4.1. For a fixed l ∈ N, suppose S1, . . . , Sl+1 are subsets of ∂M satisfying
dist(Si , S j )≥ δ0 for i 6= j . Let γ0 ∈ (0, 1/(l + l)).

Then, for any ε > 0, there exists a constant C = C(ε, δ0, γ0, l,M) such that

log
∫
∂M

e3(u−u∂M ) ≤ C + 3
16π2

( 1
l+1−ε

)
〈P4,3

g u, u〉L2(M)

for all the functions u ∈ H∂/∂n satisfying

(4-1)

∫
Si

e3u d Sg∫
∂M e3u d Sg

≥ γ0 for i ∈ {1, . . . , l + 1}.

In the next lemma we show a criterion which implies that condition (4-1) holds.
Its proof is the same as that of [Djadli and Malchiodi 2006, Lemma 2.3].

Lemma 4.2. Suppose l is a given positive integer, and ε and r are positive num-
bers. Suppose for a nonnegative function f ∈ L1(∂M) with ‖ f ‖L1(∂M) = 1 that∫

⋃`
i=1 B∂M

r (pi )

f d Sg < 1− ε for all `-tuples p1, . . . , p` ∈ ∂M.

Then there exist positive numbers ε and r depending only on ε, r, ` and ∂M (but
not on f ), and `+1 points p1, . . . , p`+1 ∈ ∂M (which do depend on f ) satisfying∫

B∂M
r (pi )

f d Sg > ε for i = 1, . . . , `+ 1,

B∂M
2r (pi )∩ B∂M

2r (p j )=∅ for i 6= j.

The following interesting consequence of Lemma 4.1 characterizes some func-
tions in H∂/∂n for which the value of II is large and negative.

Lemma 4.3. Under the assumptions of Theorem 1.2, and for k ≥ 1 as in Case 1.5,
the following property holds. For any ε > 0 and any r > 0 there exists a large
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positive real number L = L(ε, r) such that for any u ∈ H∂/∂n with II(u)≤−L and∫
∂M e3u d Sg = 1, there exist k points p1,u, . . . , pk,u ∈ ∂M such that

(4-2)
∫
∂M\

⋃k
i=1 B∂M

pi,u
(r)

e3u d Sg < ε.

Proof. Suppose the statement is not true. Then there exist ε > 0, r > 0, and a
sequence (un) ∈ H∂n such that

∫
∂M e3un d Sg = 1 and II(un)→−∞ as n→+∞

and such that

(4-3)
∫
⋃k

i=1 B∂M
pi,u
(r)

e3u d Sg < 1− ε

for any k tuples of points p1, . . . , pk ∈ ∂M . Now by applying Lemma 4.2 with
f = e3un , and by using Lemma 4.1 with δ0 = 2r , Si = B∂M

pi
(r), and γ0 = ε, where

ε, r and pi are given as in Lemma 4.2, we find that for every ε̃ > 0 there exists a
postive real number C depending on ε, r and ε̃ (and not on n) such that

II(un)≥ 〈P4,3
g un, un〉+ 4

∫
M

Qgun dVg + 4
∫
∂M

Tgun d Sg

−
4
3κ(P4,P3)

3
16π2(k+1−ε̃)

〈P4,3
g un, un〉−Cκ(P4,P3)− 4κ(P4,P3)un∂M .

Using elementary simplifications, the above inequality becomes

II(un)≥ 〈P4,3
g un, un〉+ 4

∫
M

Qgun dVg + 4
∫
∂M

Tgun d Sg

−
κ(P4,P3)

4π2(k+1−ε̃)
〈P4,3

g un, un〉−Cκ(P4,P3)− 4κ(P4,P3)un∂M .

So, since κP4,P3 < (k+ 1)4π2, we get by choosing ε̃ small enough that

II(un)≥ β〈P4,3
g un, un〉− 4C〈P4,3

g un, un〉
1/2
−CκP4,P3,

where have used the Hölder inequality, Sobolev embedding, trace Sobolev embed-
ding and the fact that ker P4,3

g 'R (where β = 1−κ(P4,P3)/(4π2(k+1− ε̃)) > 0).
Thus we arrive at II(un)≥−C , a contradiction. �

The next lemma, a direct consequence of the previous one, gives the distance
of e3u from ∂Mk for some functions u belonging to very negative sublevels of II
such that

∫
∂M e3u d Sg = 1. Its proof is the same as that of the corollary in [Djadli

and Malchiodi 2006].

Corollary 4.4. Let ε be a (small) arbitrary positive number, and let k be as in
Case 1.5. Then there exists an L > 0 such that, if II(u)≤−L and

∫
∂M e3u d Sg = 1,

then d(e3u, ∂Mk)≤ ε.
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4.2. Mapping very negative sublevels of II into ∂ Mk. In this short subsection,
we show that one can nontrivially map some appropriate low energy sublevels of
the Euler–Lagrange functional II into ∂Mk .

Arguing as in [Djadli and Malchiodi 2006, Proposition 3.1], we have this lemma:

Lemma 4.5. Let m be a positive integer, and for ε > 0 let Dε,m be as in (2-3).
Then there exists an εm > 0, depending on m and ∂M , such that for all ε ≤ εm

there exists a continuous map 5m : Dε,m→ ∂Mm .

Using this lemma, we have the following nontrivial continuous global projection
from low energy sublevels of II into ∂Mk .

Proposition 4.6. For k ≥ 1 as in Case 1.5, there is a large positive real num-
ber L and a continuous and topologically nontrivial map 9 from the sublevel
{u : II(u) <−L ,

∫
∂M e3u d Sg = 1} into ∂Mk .

By the noncontractibility of ∂Mk , the nontriviality of 9 will be apparent from
Proposition 4.10(a) below.

Proof. We fix εk so small that Lemma 4.5 applies with m = k. Then we apply
Corollary 4.4 with ε=εk . We let L be the corresponding large positive real number,
so that if II(u) ≤−L and

∫
∂M e3u d Sg = 1, then d(e3u, ∂Mk) < εk . Thus for these

ranges of u, that the map u 7→ e3u is continuous from H∂/∂n into L1(∂M) implies
that the projection5k from H∂/∂n onto ∂Mk is well defined and continuous. Hence
setting 9(u)=5k(e3u) finishes the proof. �

4.3. Mapping ∂ Mk into very negative sublevels of II. In this subsection, we de-
fine some test functions depending on a real parameter λ and estimate the quadratic
part of the functional II on those functions as λ tends to infinity. As a corollary,
we define a continuous map from ∂Mk into large negative sublevels of II.

For δ > 0 small, consider a smooth nondecreasing cutoff function χδ : R+→ R

with the properties that (see [Djadli and Malchiodi 2006])

χδ(t)= t if t ∈ [0, δ],

χδ(t)= 2δ if t ≥ 2δ,

χδ(t) ∈ [δ, 2δ] if t ∈ [δ, 2δ].

Then, given ∂Mk 3 σ =
∑k

i=1 tiδxi and λ > 0, we define ϕλ,σ : M→ R by

(4-4) ϕλ,σ (y)= 1
3 log

( k∑
i=1

ti

(
2λ

1+λ2χ2
δ (di (y))

)3 )
;

where we have set di (y)= dg(y, xi ) for xi ∈ ∂M and y ∈ M , with dg denoting the
Riemannian distance on M .
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Now, we state a lemma giving an estimate (uniform in σ ∈ ∂Mk) of the quadratic
part 〈P4,3

g ϕλ,σ , ϕλ,σ 〉 of the Euler–Lagrange functional II as λ→+∞. Its proof is
a straightforward adaptation of the arguments in [Ndiaye 2007b, Lemma 4.5].

Lemma 4.7. Suppose ϕλ,σ as in (4-4), and let ε be sufficiently small and positive.
Then

(4-5) 〈P4,3
g ϕλ,σ , ϕλ,σ 〉 ≤ (16π2k+ ε+ oδ(1)) log λ+Cε,δ as λ→+∞.

The next lemma estimates the remainder of the functional II along ϕσ,λ. The
proof is the same as that of [Djadli and Malchiodi 2006, Lemma 4.3, formulas
(40) and (41)].

Lemma 4.8. Suppose ϕσ,λ is as in (4-4). Then as λ→+∞, we have∫
M

Qgϕσ,λdVg =−κP4
g

log λ+ O(δ4 log λ)+ O(log δ)+ O(1),∫
∂M

Tgϕσ,λdVg =−κP3
g

log λ+ O(δ3 log λ)+ O(log δ)+ O(1),

log
∫
∂M

e3ϕσ,λ = O(1).

Now for λ > 0 we define the map 8λ : ∂Mk → H∂/∂n, σ 7→ ϕσ,λ. This map
appears in the following lemma, a trivial application of Lemmas 4.7 and 4.8.

Lemma 4.9. For k ≥ 1 as in Case 1.5 and for any positive L large enough, there
exists a small δ and a large positive real number λ such that II(8λ(σ )) ≤ −L for
every σ ∈ ∂Mk .

The next proposition shows the existence of a projection from ∂Mk onto large
negative sublevels of II, and the nontriviality of the map 9 of Proposition 4.6.

Proposition 4.10. Let 9 be the map defined in Proposition 4.6. For k ≥ 1 as in
Case 1.5 and for every positive L large enough that Proposition 4.6 applies, there
exists a map 8λ : ∂Mk→ H∂/∂n such that

(a) II(8λ(z))≤−L for any z ∈ ∂Mk and

(b) 9 ◦8λ is homotopic to the identity on ∂Mk .

Proof. The statement (a) follows from Lemma 4.9. To prove (b) it is sufficient to
consider the family of maps Tλ : ∂Mk→ ∂Mk, σ 7→9(8λ(σ )). We recall that this
composition is well defined if λ is sufficiently large. On the other hand, one can
check easily that e3ϕσ,λ/

∫
∂M e3ϕσ,λ d Sg ⇀σ in the weak distributional sense. Thus,

letting λ→+∞, we obtain a homotopy between 9 ◦8 and Id∂Mk . �
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4.4. Min-max scheme for existence of solutions. Here we describe the min-max
scheme based on the set ∂Mk , which we will need to prove Theorem 1.2. As
anticipated in the introduction, we define a modified functional IIρ for which we
can prove existence of solutions for almost every ρ in a neighborhood of 1. Fol-
lowing an idea of Struwe [1988], this is done by proving the almost everywhere
differentiability of the map ρ → IIρ,λ, where IIρ,λ is the min-max value for the
perturbed functional IIρ .

We now introduce the min-max scheme that supplies the existence of solutions
of (1-8) . Let ∂̂Mk denote the (contractible) cone over ∂Mk , which can be repre-
sented as ∂̂Mk = (∂Mk ×[0, 1]) with ∂Mk × 0 collapsed to a single point. Now,
let L be so large that Proposition 4.6 applies with L/4, and then let λ be so large
that Proposition 4.10 applies for this value of L . Fixing λ, we define the class

(4-6) IIλ =
{
π : ∂̂Mk→ H∂/∂n : π is continuous and π( · × 1)=8λ( · )

}
.

Lemma. The set IIλ is nonempty, and

IIλ = inf
π∈IIλ

sup
m∈∂̂Mk

II(π(m)) satisfies IIλ >−L/2.

Proof. The proof is the same as that of [Djadli and Malchiodi 2006, Lemma 5.1],
but we repeat it for convenience.

To prove that IIλ is nonempty, we just notice that the map π( · , t) = t8λ( · )
belongs to IIλ. Now suppose by contradiction that IIλ ≤ −L/2. Then there exists
a map π ∈ IIλ such that supm∈∂̂Mk

II(π(m)) ≤ −3L/8. Writing m = (z, t) with
z ∈ ∂Mk . Then, since Proposition 4.6 applies with L/4, the map t 7→ 9 ◦π( · , t)
is a homotopy in ∂Mk between 9 ◦8λ and a constant map. But this is impossible
since ∂Mk is noncontractible and 9 ◦8λ is homotopic to the identity map on ∂Mk

by Proposition 4.10. �

Next, we introduce a variant of the above min-max scheme following [Djadli
and Malchiodi 2006; Struwe 1988; Ndiaye 2007b]. For ρ in a small neighborhood
[1− ρ0, 1+ ρ0], we define the modified functional IIρ : H∂/∂n→ R by

(4-7) u 7→ 〈P4,3
g u, u〉+ 4ρ

∫
M

Qgu dVg + 4ρ
∫
∂M

Tgu d Sg

−
4
3ρκ(P4,P3) log

∫
∂M

e3u d Sg.

Following the estimates of Section 3, one easily checks that the above min-max
scheme applies uniformly for ρ ∈ [1−ρ0, 1+ρ0] and for λ sufficiently large. More
precisely, given any large number L > 0, there exists λ sufficiently large and ρ0
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sufficiently small so that

(4-8)

sup
π∈IIλ

sup
m∈∂̂Mk

II(π(m)) <−2L ,

IIρ,λ = inf
π∈IIλ

sup
m∈∂̂Mk

IIρ(π(m)) >−L/2 for ρ ∈ [1− ρ0, 1+ ρ0],

where IIλ is defined as in (4-6). Moreover, using for example the test maps obtained
by modifying the standard bubbles, one shows that for ρ0 sufficiently small, there
exists a large positive constant L such that

(4-9) IIρ,λ ≤ L for every ρ ∈ [1− ρ0, 1+ ρ0].

We have the following result regarding the dependence in ρ of the min-max
value IIρ,λ.

Lemma 4.11. Let λ and ρ0 be such that (4-8) holds. Then the function

ρ 7→ IIρ,λ/ρ is nonincreasing in [1− ρ0, 1+ 1− ρ0].

Proof. For ρ ≥ ρ ′, we have

IIρ(u)
ρ
−

IIρ′(u)
ρ ′
=

( 1
ρ
−

1
ρ ′

)
〈P4,3

g u, u〉.

Therefore it follows easily that IIρ,λ/ρ− IIρ′,λ/ρ
′
≤ 0. �

From this lemma, it follows that the function ρ→ IIρ,λ/ρ is almost everywhere
differentiable in [1− ρ0, 1+ ρ0].

Corollary 4.12. Let λ and ρ0 be as in Lemma 4.11, and let3⊂ [1−ρ0, 1+ρ0] be
the (dense) set of ρ for which the function IIρ,λ/ρ is differentiable. Then for ρ ∈3
the functional IIρ has a bounded Palais–Smale sequence (ul)l at level IIρ,λ.

Proof. The existence of Palais–Smale sequence (ul)l at level IIρ,λ follows from
(4-8); the boundedness is proved exactly as in [Ding et al. 1999, Lemma 3.2]. �

Next, we state a proposition saying that bounded Palais–Smale sequence of IIρ
converges weakly (up to a subsequence) to a solution of the perturbed problem.
The proof is the same as that of [Djadli and Malchiodi 2006, Proposition 5.5].

Proposition 4.13. Suppose (ul)l ⊂ H∂/∂n is a sequence for which

IIρ(ul)→ c ∈ R, II′ρ[ul] → 0,
∫
∂M

e3ul d Sg = 1, ‖ul‖H2(M) ≤ C.
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Then (ul) has a weak limit u (up to a subsequence) satisfying the BVP

P4
g u+ 2ρQg = 0 in M,

P3
g u+ ρTg = ρκ(P4,P3)e

3u on ∂M,

∂u/∂ng = 0 on ∂M.

Proof of Theorem 1.2. By Corollary 4.12 and Proposition 4.13, there exists a se-
quence ρl→ 1 and ul such that

P4
g ul + 2ρl Qg = 0 in M,

P3
g ul + ρl Tg = ρκ(P4,P3)e

3ul on ∂M,

∂ul/∂ng = 0 on ∂M.

Now since κ(P4,P3) =
∫

M Qg dVg +
∫
∂M Tg d Sg 6= 4π2k for k = 1, 2, 3, . . . and by

applying Corollary 1.9(c), we have that ul is bounded in C4+α for every α ∈ (0, 1).
Hence up to a subsequence it converges in C1(M) to a solution of (1-8). �

Remark 4.1. As said in the introduction, we now discuss how to settle the gen-
eral case. For clarity of exposition, we divide the discussion in three parts, each
corresponding to a remaining case.

Case (k = 0 and κ(P4,P3) < 4π2). This case was proved in [Ndiaye 2007c] us-
ing geometric flows. However, using direct methods in the calculus of varia-
tions, it can be obtained thanks to the trace Moser–Trudinger-type inequality (see
Proposition 2.4). Indeed by the latter inequality, the functional is coercive and
weakly lower-semicontinuous. Hence, from the Weierstrass theorem in the calculus
of variations, one infers that the functional admits a minimizer.

Case (k 6= 0 and κ(P4,P3) < 4π2). In this case, P4,3
g has some negative eigenval-

ues. We proceed as in [Djadli and Malchiodi 2006], but change the arguments
as follows. To obtain the trace Moser–Trudinger-type inequality, we impose the
additional condition ‖û‖ ≤ C , where û is the component of u in the direct sum
of the negative eigenspaces. Thus the functional goes negative infinity only if ‖û‖
tends to infinity. Hence to run the min-max scheme we substitute ∂Mk with Sk−1,
the boundary of the unit ball in the k-dimensional Euclidean space. Another mod-
ification for the min-max scheme is in the monotonicity formula, which now says
that ρ 7→ IIρ/ρ−Cρ is nonincreasing in [1−ρ0, 1+ρ0] for a fixed constant C > 0.

Case (k 6= 0 and κ(P4,P3) ∈ (4π2k, 4(k + 1)π2) for k ≥ 1). In this case we mix
ideas from the case that k = 0 and κ(P4,P3) ∈ (4π2k, 4(k + 1)π2) and from the
case that k 6= 0 and κ(P4,P3) < 4π2. Precisely, to obtain the trace Moser–Trudinger
inequality and its improvement, we impose the additional condition ‖û‖≤C , where
û is the component of u in the direct sum of the negative eigenspaces. Another
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issue that must be considered is that not only e3u can concentrate but also ‖û‖ can
also tend to infinity. To deal with this, we must substitute the set ∂Mk with an other
one, Ak,k , which is defined in terms of the integer k and the number k of negative
eigenvalues of P4,3

g . This was done in [Djadli and Malchiodi 2006]. Also required
is suitable adaptation of the min-max scheme and of the monotonicity formula,
which in general says that ρ 7→ IIρ/ρ−Cρ is nonincreasing in [1−ρ0, 1+ρ0] for
a fixed constant C > 0.
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