Pacific Journal of Mathematics

THE PROBABILISTIC ZETA FUNCTION OF PSL(2, *q*), OF THE SUZUKI GROUPS ${}^{2}B_{2}(q)$ AND OF THE REE GROUPS ${}^{2}G_{2}(q)$

MASSIMILIANO PATASSINI

Volume 240 No. 1 March 2009

THE PROBABILISTIC ZETA FUNCTION OF PSL(2, *q*), OF THE SUZUKI GROUPS ${}^{2}B_{2}(q)$ AND OF THE REE GROUPS ${}^{2}G_{2}(q)$

MASSIMILIANO PATASSINI

We study the Dirichlet polynomial $P_G(s)$ of the groups $G = PSL(2, q)$, ${}^{2}B_{2}(q)$, and ${}^{2}G_{2}(q)$. For such *G* we show that if *H* is a group satisfying $P_H(s) = P_G(s)$, then *H*/Frat(*H*) \cong *G*. We also prove that, when *q* is not a prime number, $P_G(s)$ is irreducible in the ring of Dirichlet polynomials. Finally, we prove that the coset poset of *G* is noncontractible.

1. Introduction

Let *G* be a finite group. We define the D[irichlet poly](#page-16-0)nomial associated to *G* by

$$
P_G(s) = \sum_{n=1}^{\infty} \frac{a_n(G)}{n^s}, \quad \text{where} \quad a_n(G) = \sum_{\substack{H \leq G \\ |G: \overline{H}| = n}} \mu_G(H).
$$

Here $\mu_G : \mathcal{L} \to \mathbb{Z}$ is the Möbius function on the subgroup lattice \mathcal{L} of *G*, defined inductively by $\mu_G(G) = 1$, $\mu_G(H) = -\sum_{K > H} \mu_G(K)$. In [Hall 1936], it was observed that for any $t \in \mathbb{N}$, the number $P_G(t)$ is the probability that *t* randomly chosen elements of *G* generate the group *G*. The multiplicative inverse $1/P_G(s)$ is called the probabilistic zeta function of *G* [Boston 1996; Mann 1996].

More generally, let $k \ge 1$ and let p_1, \ldots, p_k be prime numbers. We define the Dirichlet polynomial $P_G^{(p_1,...,p_k)}$ $G^{(p_1,...,p_k)}(s)$ by

$$
P_G^{(p_1,\ldots,p_k)}(s) = \sum_{\substack{(n,p_i)=1\\ \forall i \in \{1,\ldots,k\}}} \frac{a_n(G)}{n^s}.
$$

A problem that arises naturally is to determine which properties of the group *G* are encoded by the polynomial $P_G(s)$. It is known that $P_{G/Frat(G)}(s) = P_G(s)$ (see Lemma 5), so from the Dirichlet polynomial of *G* we can only hope to read off properties of $G/\text{Frat}(G)$. Further, it was noted in [Gaschütz 1959] that $P_G(s)$ does not uniquely determine the isomorphism class of *G*/Frat(*G*).

MSC2000: primary 20D30; secondary 20P05, 11M41, 20D06, 20D60, 20E28.

Keywords: probabilistic zeta function, simple Lie groups, Suzuki groups, Ree groups, simple linear groups, coset poset.

[Neverthe](#page-16-3)less, certain group theoretic properties are given by the Dirichlet polynomial. For instance, If *G* and *H* are groups such that $P_G(s) = P_H(s)$ and *G* is soluble (or *p*-soluble, or perfect), then *H* has the same property [Damian and Lucchini 2003; Detomi and Lucchini 2003b]. If *G* is simple and $P_G(s) = P_H(s)$, [then](#page-16-3) $H/\text{Frat}(H)$ is simple [Da[mian an](#page-15-3)[d Lucchini 2007\].](#page-15-2)

Conjecture [\[Damian et al.](#page-16-3) 2004]. *If G is simple and* $P_G(s) = P_H(s)$, *then G is isomorphic to* $H/\text{Frat}(H)$ *.*

This conjecture remains open, but partial results are known. The conjecture holds when *G* is isomorphic to a simple alternating group [Damian and Lucchini 2004; Damian et al. 2004], to a simple sporadic group [Damian and Lucchini 2006] or to PSL(2, *p*) for *p* prime [Damian et al. 2004]. Similarly:

Theorem 1 [Damian and Lucchini 2006, Theorem 14]. *If G*¹ *and G*² *are simple groups of Lie type with the same characteristic, then* $P_{G_1}(s) = P_{G_2}(s)$ *if and only if* G_1 *is isomorphic to* G_2 *.*

In this paper we prove the conjecture when *G* is one of the following groups of Lie type: PSL(2, *q*), the Suzuki groups ${}^{2}B_{2}(q)$ and the Ree groups ${}^{2}G_{2}(q)$. More precisely:

Main Theorem. *Suppose G is of the form*

(1-1)
\n
$$
\begin{cases}\nG(q, 1) := PSL(2, q) & with \ q = p^f \ge 4, \ p \ prime, \ f > 0, \ or \\
G(q, 2) := {}^2B_2(q) & with \ q = 2^f, \ f > 1 \ odd, \ \ or \\
G(q, 3) := {}^2G_2(q) & with \ q = 3^f, \ f > 1 \ odd.\n\end{cases}
$$

[If](#page-2-0) H is a group and $P_G(s) = P_H(s)$, then

$$
H/\text{Frat}(H) \cong G.
$$

For $G = \text{PSL}(2, q)$, with $q \leq 9$, this can be proved directly.

We outline the proof in the complementary case; see Sections 3 and 4 for details. In view of Theorem 1, we need only show that the characteristic *p* of *G* can be recovere[d f](#page-5-0)rom [the](#page-8-0) Dirichlet polynomial $P_G(s)$. To do this, we recall from [Damian] and Lucchini 2006, Theorem 3] that *if L is a group of Lie type of characteristic p and* $X \in \mathrm{Syl}_p(L)$ *, then* $|P_L^{(p)}|$ $|L^{(p)}(0)| = |X|$. In particular, $P_G^{(p)}(0)$ $G_G^{(p)}(s)$ is a power of p. We show that if t is a prime number different from p, then $P_G^{(t)}$ $G^{(t)}(s)$ is not a power of *t*. Indeed, if *t* does not divid[e the order of](#page-16-4) *G*, then $P_G^{(t)}$ $G_G^{(t)}(0) = P_G(0) = 0$. Also, if *t* divides $|G|$, then Propositions 8 and 12 show that $P_G^{(t)}$ $G^{(t)}(0)$ is not a power of *t*. We can now obtain the characteristic of *G* from the polynomial $P_G(s)$ as the unique prime number *r* such that $P_G^{(r)}$ $G^{(r)}(0)$ is a power of *r*.

The proof does not use explicit formulas for the Dirichlet polynomials of the groups in question. However, using the results in [Downs 1991], we have computed

explicitly the Dirichlet polynomials for $PSL(2, q)$ (see Section 7), and this makes it possible to test directly certain properties one might wonder about. For example, we disprove the following conjecture, proposed in [Damian and Lucchini 2006]:

If G is a finite simple group, then $|G| = \text{lcm}\{n : a_n(G) \neq 0\}.$

A counterexample is provided by $G = \text{PSL}(2, p)$ with $p \equiv \pm 2 \pmod{5}$ and $p \equiv 1$ (mod 8), for which we have $\text{lcm}\lbrace n : a_n(G) \neq 0 \rbrace = |G|/2$, according to the list in Section 7.

F[urther resu](#page-10-0)lts. We let \Re denote the ring of Dirichlet polynomials:

$$
\mathcal{R} = \left\{ \sum_{m=1}^{\infty} \frac{a_m}{m^s} : a_m \in \mathbb{Z}, m \ge 1, \, \left| \{m : a_m \neq 0\} \right| < \infty \right\}.
$$

We recall that \Re is a factorial domain [Damian et al. 2004]. Also, if *G* is a finite group, $P_G(s)$ lies in \Re . Section 5 is devoted to the study of the irreducibility of $P_G(s)$ in \Re . An important role in the factorization of $P_G(s)$ is played by the normal subgroups of G [. In fact, if](#page-15-4) N i[s a normal subgroup of](#page-16-5) G , we define

$$
P_{G,N}(s) = \sum_{n=1}^{\infty} \frac{a_n(G, N)}{n^s}, \text{ where } a_n(G, N) = \sum_{\substack{|G:H|=n\\H N = G}} \mu_G(H).
$$

Then $P_G(s) = P_{G/N}(s) P_{G,N}(s)$; see [Brown 2000] or [Detomi and Lucchini 2003a]. Now, if *G* is a group and $P_G(s)$ is irreducible in \Re , then $G/Frat(G)$ is simple. But the converse is not true. For example, $P_{PSL(2,7)}(s)$ is reducible. Moreover, we know fro[m \[Damian et al](#page-2-1). 2004, Lemma 11, Proposition 14 and 15] that $P_{\text{Alt}_p}(s)$ *is irreducible in* \Re *for any prime number* $p \geq 5$ *, and P*_{PSL(2,*p*)(*s*) *is reducible in* \Re} *if and only if p* \geq 5 *and p* = 2^e − 1 (a Mersenne prime) *with e* \equiv 3 (mod 4). (These are the only known examples of finite simple groups whose Dirichlet polynomial [is](#page-15-4) reducible.) We will prove:

Proposition 2. *If G is as in the Main Theorem and is not isomorphic to* PSL(2, *p*) *for* $p = 2^e - 1$, $e \equiv 3 \pmod{4}$, *then* $P_G(s)$ *is irreducible in* \Re .

In Section 6 we study the topological interpretation of the value $P_G(-1)$ proposed in [Brown 2000]. Given a finite group *G*, we define the simplicial complex Δ , where the simplices of Δ are finite chains of the coset poset of *G*. If Δ is contractible, its re[duced Eule](#page-12-0)r characteristic $\tilde{\chi}(\Delta) := \chi(\Delta) - 1$ is zero. Brown showed that the number $\tilde{\chi}(\Delta)$ is equal to $-P_G(-1)$. Hence, if $P_G(-1) \neq 0$, the simplicial complex associated to the group G is not contractible. Brown also proved that $P_G(-1)$ is nonzero for a soluble group *G* and conjectured that $P_G(-1)$ is nonzero for every finite group *G*. At the time of this writing, there is no known finite group *G* such that $P_G(-1) = 0$. In Section 6 we prove:

Proposition 3. *If G is as in the Main Theorem, then* $P_G(-1) \neq 0$ *.*

2. Some lemmas

Lemma 4 [Zsigmondy 1892]. Let $a, n \geq 2$ be integers, and assume it is not the *case that*

 $n = 2, a = 2^s - 1$ *with* $s \ge 2$ *or* $n = 6, a = 2$.

[T](#page-16-0)hen there exists a prime divisor q of $a^n - 1$ *such that q does not divide* $a^i - 1$ *for any i satisfying* $0 < i < n$. Such a divisor is called a **Zsigmondy prime for** $\langle a, n \rangle$.

[We wil](#page-16-7)l use repeatedly, often without mention, the following results on the Möbius function of the subgroup lattice of G.

Lemma 5 [Hall [1936\].](#page-4-1) Let G be a finite group and H a subgroup of G. If μ ^G(*H*) *does not vanish*, *H is an intersection of maximal subgroups of G.*

Lemma 6 [Hawkes et al. 1989, Theorem 4.5]. *Let G be a finite group and H a* subgroup of G. The index $|N_G(H): H|$ divides $\mu_G(H)|G:H|$.

If *G* is perfect, that is, if $G = G'$, Lemma 6 says that $\mu_G(H) |G : N_G(H)|$ is divisible by $|G:H|$.

Notation. *Throughout the paper*, *p is a prime number*, *f is a positive integer*, *and* $q := p^f$ $q := p^f$ $q := p^f$ *is at least* 4*.*

3. $P_G^{(t)}$ $G^{(t)}(0)$ for the projective linear group $G = \text{PSL}(2, q)$

In this section, assume $G = \text{PSL}(2, q)$ and define $\delta = \text{gcd}(q-1, 2)$.

Theorem 7 [Huppert 1967, p. 213]. Let $q \geq 5$. If M is a maximal subgroup of PSL(2, *q*), *then M is isomorphic to one of the following groups*:

- (1) $C_p^f \rtimes C_{(q-1)/\delta};$
- (2) $D_{2(q-1)/\delta} = N_G(C_{2(q-1)/\delta})$, *for q* $\notin \{5, 7, 9, 11\};$
- (3) $D_{2(q+1)/\delta} = N_G(C_{2(q+1)/\delta})$, for $q \notin \{7, 9\};$
- (4) PGL(2, q_0), *for* $q = q_0^2$, $q_0 \neq 2$;
- (5) PSL(2, q_0), *for* $q = q_0^r$, $q_0 \neq 2$ *where r is an odd prime*;
- (6) A_5 , for $p \neq 2$ and $q = p$ or p^2 . If $q = p$, then $q \equiv \pm 1 \pmod{5}$ and if $q = p^2$, *then* $p \equiv \pm 3 \pmod{5}$;
- (7) *A*₄, *for* $q = p \equiv \pm 3 \pmod{8}$ *and* $q \not\equiv \pm 1 \pmod{5}$;
- (8) *S*₄, *for* $q = p \equiv \pm 1 \pmod{8}$.

Proposition 8. Let t be a prime number dividing the order of G. If $t \neq p$, then $|P_G^{(t)}|$ $G^{(t)}(0)$ *is a power of t if and only if*

$$
(q, t) \in \{(4, 5), (5, 2), (7, 2), (8, 3), (9, 2), (9, 5)\}.
$$

If $t = p$, *then* $P_G^{(t)}(0) = -q$.

Proof. If $q \leq 11$ or $q+1$ divides 120, the proposition holds by direct inspection; here are the corresponding values of $P_G^{(t)}$ $G^{(l)}(0).$

\boldsymbol{q}	$\overline{2}$ $t =$	3	5	7	11	19	23	29	59
4	-4	6	-5	θ	θ	θ	θ	0	0
5	-4	6	-5	θ	θ	θ	0	0	Ω
7	8	63	$\boldsymbol{0}$	-7	θ	Ω	0	0	Ω
8	-8	-27	θ	28	θ	Ω	θ	0	
9	16	-9	25	θ	$\boldsymbol{0}$		0	0	
11	144	-21	165	Ω	-11	Ω	0	0	
19	856	171	500	θ	$\boldsymbol{0}$	-19	0	0	Ω
23	760	1266	$\overline{0}$	$\boldsymbol{0}$	253	θ	-23	0	0
29	3220	204	1625	406	θ	Ω	θ	-29	
59	29088	3423	15400	$\boldsymbol{0}$	$\boldsymbol{0}$	0	Ω	1711	-59

For the rest of the proof, assume $q > 11$ and $q+1 \nmid 120$. Let ℓ be a set of representatives of the conjugacy classes of subgroups of *G*. Set

(3-1)
$$
\mathcal{A}_t = \{K \in \mathcal{C} : (|G:K|, t) = 1, \mu_G(K) \neq 0\}.
$$

By definition,

$$
P_G^{(t)}(s) = \sum_{K \in \mathcal{A}_t} \frac{\mu_G(K) |G:N_G(K)|}{|G:K|^s}.
$$

(1) *First consider the case* $t = p$ *. Let Q be a Sylow p-subgroup of G. Since* $|Q| = q$, Theorem 7 yields that *Q* is contained in a maximal subgroup *M* of *G* isomorphic to $C_p^f \rtimes C_{(q-1)/\delta}$. Therefore, $Q \cong C_p^f$ and $N_G(Q) = M$. Hence *Q* is contained in a unique maximal subgroup of *G*. Therefore we have

(3-2)
$$
P_G^{(p)}(s) = 1 - \frac{q+1}{(q+1)^s},
$$

and hence $P_G^{(p)}$ $G^{(p)}(0) = -q.$

(2) *Next consider the case where t divides* $(q+1)/\delta$ *.* Let \mathcal{D}_t be the subset of \mathcal{A}_t consisting of *G* and of the maximal subgroups of *G* isomorphic to $D_{2(q+1)/\delta}$. Set $\mathcal{B}_t = \mathcal{A}_t - \mathcal{D}_t$. Using the equality $1 - q(q-1)/2 = (q+1)(2-q)/2$, we have

$$
P_G^{(t)}(0) = \frac{(q+1)(2-q)}{2} + \sum_{K \in \mathcal{B}_t} \mu_G(K) |G:N_G(K)|.
$$

Now let *K* be in \mathcal{B}_t . By Theorem 7, *K* is contained in a maximal subgroup *M* isomorphic to one of $D_{2(q+1)/\delta}$, A_5 , A_4 , S_4 , $PSL(2, q_0)$, $PGL(2, q_0)$ for some q_0 .

We claim that if K is the intersection of two distinct maximal subgroups M_1 and *M*₂ isomorphic to $D_{2(q+1)/\delta}$, then *K* is contained in a maximal subgroup of *G* not isomorphic to $D_{2(q+1)/\delta}$. Indeed, for each divisor $d > 2$ of $(q+1)/\delta$, there exists a unique cyclic su[bgroup](#page-16-8) C_d of order *d* in M_1 . Hence C_d is normal, so it is contained in a unique maximal subgroup of G , i.e., M_1 . Thus, by the structure of the subgroup lattice of dihedral groups, either $|M_1 \cap M_2|$ ≤ 2 or $M_1 \cap M_2$ is a Klein four-group. In the former case, $M_1 \cap M_2$ is not contained in \mathcal{B}_t , since the index of $M_1 \cap M_2$ in *G* is divisible by $(q+1)/\delta$. In the latter case, the normalizer in *G* of the Klein four-group *M*1∩*M*² is either *A*⁴ or *S*⁴ [Huppert 1967, 8.16–8.17, Hilfssatz]. Hence $K = M_1 \cap M_2$ is contained in a maximal subgroup of *G* not isomorphic to $D_{2(q+1)/\delta}$.

Suppose that q is a Mersenne prime greater than or equal to 31. By its definition, \mathcal{B}_t is empty. Therefore $P_G^{(2)}$ $G_G^{(2)}(0)$ equals $(q+1)(2-q)/2$, which is not a power of 2.

Suppose that *q* is not a Mersenne prime. We claim there exists a prime divisor *z* of $(q+1)/\delta$, depending on *t*, such that if *K* lies in \mathcal{B}_t , then *z* divides $|G:K|$. Before proving our claim, we conclude the proof of the proposition in the current case (2). By Lemma 6, the prime *z* divides $P_G^{(t)}$ $P_G^{(t)}(0)$. Hence, if $z \neq t$, then $P_G^{(t)}$ $G^{(I)}(0)$ is not a power of *t*. Further, if $z = t$, then $\mathcal{B}_t = \emptyset$ and so $P_G^{(t)}$ $G^{(t)}(0) = (q+1)(2-q)/2$ is not a power of *t*.

It remains to prove our claim. We consider two subcases.

(a) \mathcal{B}_t *contains a maximal subgroup of G isomorphic to A₄, A₅ or S₄. Then* Theorem 7 implies that f is either 1 or 2, and \mathcal{B}_t does not contain any maximal subgroup isomorphic to $PSL(2, q_0)$. We define the prime number *z* as follows:

if 2^4 divides $q+1$, let $z = 2$; otherwise if 3^2 divides $q+1$, let $z = 3$; otherwise if 5^2 divides $q+1$, let $z = 5$; otherwise let *z* be a Zsigmondy prime for $\langle p, 2f \rangle$ distinct from 3 and 5.

This is possible. Indeed, if $2^4 \nmid q+1$, $3^2 \nmid q+1$ and $5^2 \nmid q+1$, then $q+1$ divides $2^3 \cdot 3 \cdot 5 \cdot m$ for some natural number *m*. Since we are assuming that $q+1$ does not divide 120, we have $(m, 120) = 1$. So there exists a Zsigmondy prime as required.

We claim that, if $K \in \mathcal{B}_t$, then *z* divides $|G:K|$. This is clear if *K* is contained in maximal subgroup isomorphic to A_4 , A_5 or S_4 . Now, suppose that \mathcal{B}_t contains a subgroup *M* isomorphic to PGL(2, *p*), $q = p^2$. In this case, *z* is greater than 2. Indeed, if $z = 2$, then $2⁴$ divides $q+1$, so q is not a square, a contradiction. If $z > 2$, then *z* is a Zsigmondy prime for $\langle p, 2f \rangle$, so *z* divides $|G : M|$.

(b) \mathcal{B}_t *does not contain a maximal subgroup of G isomorphic to A₄, A₅ or S₄.* Choose *z* as a Zsigmondy prime for $\langle p, 2f \rangle$. Clearly, *z* divides $|G : K|$ if $K \in \mathcal{B}_t$.

(3) We now turn to the remaining case, namely, *t divides* $(q-1)/\delta$. Let \mathcal{D}_t be the subset of A_t consisting of *G* and of the maximal subgroups of *G* isomorphic to $C_p^f \rtimes C_{(p-1)/\delta}$ [. Se](#page-4-1)t $\mathcal{B}_t = \mathcal{A}_t - \mathcal{D}_t$. We have

$$
P_G^{(t)}(0) = 1 - (q+1) + \sum_{K \in \mathcal{B}_t} \mu_G(K) |G:N_G(K)| = -q + \sum_{K \in \mathcal{B}_t} \mu_G(K) |G:N_G(K)|.
$$

By Theorem 7, if $K \in \mathcal{B}_t$, then *K* does not contain a Sylow *p*-subgroup *Q* of *G*. [Indeed,](#page-2-1) Q is contained in a unique maximal subgroup isomorphic to $C_p^f \rtimes C_{(p-1)/\delta}$. Hence, *p* divides $|G:K|$. By Lemma 6, *p* divides $P_G^{(t)}$ $G^{(t)}(0).$

4. $P_G^{(t)}$ $G^{(U)}(0)$ for the Suzuki and Ree groups

In this section *f* is odd and greater than 1, *p* is either 2 or 3, and $G = G(q, p)$ in the notation of the Main Theorem; that is, *G* is either the Suzuki group ${}^{2}B_{2}(q)$ or the Ree group ² $G_2(q)$. The order of *G* is $q^p(q^p+1)(q-1)$.

Define $\alpha_q^{(\pm)} = q \pm \sqrt{pq} + 1$. Note that $gcd(\alpha_q^{(\pm)}, \alpha_q^{(-)}) = 1$ and $\alpha_q^{(\pm)} \alpha_q^{(-)} =$ $\Phi_{2p}(q)$, where $\Phi_4(s) = s^2 + 1$ and $\Phi_6(s) = s^2 - s + 1$.

Lemma 9. *Let* $p^{\beta}p_1^{\beta_1}$ $p_1^{\beta_1} \cdots p_n^{\beta_n}$ *be a prime factorization of f*, *where p_i* > *p*, $\beta_i \ge 1$ *for* $i \in \{1, \ldots, n\}$, *and* $\beta \geq 0$ *. We have*

$$
\gcd\left(\frac{\Phi_{2p}(q)}{\Phi_{2p}(s_1)},\ldots,\frac{\Phi_{2p}(q)}{\Phi_{2p}(s_n)},\alpha_q^{(\pm)}\right)>1,
$$

where $s_i^{p_i} = q$ *for* $i \in \{1, ..., n\}$ *.*

Proof. Since *f* is odd, $\beta = 0$ if $p = 2$.

Let $k \le n, 1 \le i_1 < \cdots < i_k \le n$ and $s_{i_1, ..., i_k} = p^{f/(p_{i_1}...p_{i_k})}$. Note that

$$
\gcd(\Phi_{2p}(s_{i_1}),\ldots,\Phi_{2p}(s_{i_k}))=\Phi_{2p}(s_{i_1,\ldots,i_k})
$$

and

$$
\Phi_{2p}^{(\pm)}(s_{i_1,\dots,i_k}) = \gcd(\Phi_{2p}(s_{i_1,\dots,i_k}),\alpha_q^{(\pm)}) \in \big\{\alpha_{s_{i_1,\dots,i_k}}^{(+)},\alpha_{s_{i_1,\dots,i_k}}^{(-)}\big\}.
$$

Observe also that $\frac{s_{i_1,...,i_k}}{p} < \Phi_{2p}^{(\pm)}(s_{i_1,...,i_k}) < p s_{i_1,...,i_k}$. So we have

$$
\prod_{k=1}^{n} \left(\prod_{1 \le i_1 < \dots < i_k \le n} \Phi_{2p}^{(\pm)}(s_{i_1, \dots, i_k}) \right)^{(-1)^{k+1}} < \prod_{k=1}^{n} \left(\prod_{1 \le i_1 < \dots < i_k \le n} p^{(-1)^{k+1}} s_{i_1, \dots, i_k} \right)^{(-1)^{k+1}}
$$
\n
$$
\le p^{f-1} < \alpha_q^{(\pm)},
$$

where for the second inequality we use that $p_i - 1 \geq p$ for all *i* in $\{1, \ldots, n\}$. Now the lemma follows from this equality, whose verification is left to the reader:

$$
\gcd\left(\frac{\Phi_{2p}(q)}{\Phi_{2p}(s_1)},\ldots,\frac{\Phi_{2p}(q)}{\Phi_{2p}(s_n)},\alpha_q^{(\pm)}\right)\prod_{k=1}^n\left(\prod_{1\leq i_1<\cdots
$$

Theorem 10 [Suzuki 1962]. Let $p = 2$. Any maximal subgroup of $G = {}^2B_2(q)$ is *isomorphic to one of the following groups*:

- (1) $H = Q \rtimes W$, where Q is a Sylow 2-subgroup of G and W is a cyclic group of *order q*−1;
- [\(2\)](#page-16-9) $B_0 = N_G(W)$, *a dihedral group of order* 2(*q*−1);
- (3) $B_+ = A_+ \rtimes C_4$, *where* A_+ *is a cyclic group of order* $\alpha_q^{(+)} = q +$ √ $\overline{2q} + 1;$
- (4) $B_-=A_-\rtimes C_4$, *where* $A_-\textit{ is a cyclic group of order } a_q^{(-)}=q-1$ √ $\overline{2q} + 1;$
- (5) ${}^{2}B_{2}(s)$, *where q = s^r for some prime number r*.

Theorem 11 [Kleidman 1988]. Let $p = 3$. Any maximal subgroup of $G = {}^{2}G_{2}(q)$ *is isomorphic to one of the following groups*:

- (1) $H = Q \rtimes C_{q-1}$, *where Q is a Sylow 3-subgroup of G*;
- (2) $B = C_G(i)$, where *i* is an involution of G. Furthermore, $B \cong \langle i \rangle \times \text{PSL}(2, q)$;
- (3) $B_0 = N_G(\langle i, j \rangle)$, with $\langle i, j \rangle \cong C_2 \times C_2$. Moreover, $B_0 \cong (C_2 \times C_2 \times D_{(q+1)/2}) \rtimes$ C_3 *has order* 6(*q*+1); √
- (4) $B_+ = A_+ \rtimes C_6$, *where* A_+ *is a cyclic group of order* $a_q^{(+)} = q + q$ $\frac{3q}{+1}$;
- (5) $B_ = A_ \rtimes C_6$ $B_ = A_ \rtimes C_6$ $B_ = A_ \rtimes C_6$, *where* $A_ -$ *is a cyclic group of order* $\alpha_q^{(-)} = q -$ √ $\frac{3q}{+1}$;
- (6) ${}^{2}G_{2}(s)$, *where* $q = s^{r}$ *for some prime number r.*

[P](#page-8-1)roposition 12. Let t be a prime number dividing the order of G. If $t \neq p$, then $|P_G^{(t)}|$ $G_G^{(t)}(0)$ *is not a power of t. If t* = *p*, *then* $P_G^{(t)}(0) = -q^p$.

Proof. Let A_t be defined as in $(3-1)$. We partition the proof into four cases.

(1) Assume that $t = p$. Let Q be a Sylow p-subgroup of G. Since $|Q| = q^p$, Theorems 10 and 11 show that *Q* is contained in a unique maximal subgroup isomorphic to *H*. Hence

$$
P_G^{(p)}(0) = \sum_{K \in \mathcal{A}_p} \mu_G(K) |G : N_G(K)| = 1 - (1 + q^p) = -q^p.
$$

(2) Assume that $t | q+1$ and $p = 3$. Let r be a Zsigmondy prime for $\langle 3, f \rangle$. Note that $r \neq t$. Let \mathcal{B}_t be the subset of \mathcal{A}_t consisting of the subgroups *K* of *G* such that *r* divides $|G:K|$.

By Theorem 11, if $K \in \mathcal{A}_t - \mathcal{B}_t$ and $K \neq G$, every maximal subgroup containing *K* is isomorphic to *B*. We claim that if $K \in \mathcal{A}_t - \mathcal{B}_t$ and $K \neq G$, then *K* is a maximal subgroup isomorphic to *B*. Indeed, assume that *K* is contained in the intersection of M_1 and M_2 , two distinct maximal subgroups of G isomorphic to B . Since $M_1 \cong \text{PSL}(2, q) \times C_2$, the intersection $M_1 \cap M_2$ is isomorphic to a subgroup *L* of PSL(2, *q*) \times *C*₂. Let π : PSL(2, *q*) \times *C*₂ \rightarrow PSL(2, *q*) be the projection on the first factor. If $\pi(L) = \text{PSL}(2, q)$, we have $|M_2: M_1 \cap M_2| = |M_1: M_1 \cap M_2|$

 $|PSL(2, q) \times C_2 : L| \leq 2$; hence $M_1 \cap M_2$ is normalized by M_1 and M_2 , a contradiction. If $\pi(L) < PSL(2, q)$, then there exists a maximal subgroup *J* of $PSL(2, q)$ containing $\pi(L)$. By Theorem 7, since $q = 3^f$ and $f \ge 3$ is odd, $|PSL(2, q): J|$ is divisible by *r* or *t*. Since $|L| < 2|J|$, the index $|PSL(2, q): J|$ divides $|G: M_1 \cap M_2|$. Hence $|G : M_1 \cap M_2|$ is divisible by *r* or *t*, against the assumption $K \in \mathcal{A}_t - \mathcal{B}_t$.

This shows that

$$
P_G^{(t)}(0) = 1 - q^2(q^2 - q + 1) + \sum_{K \in \mathcal{B}_t} \mu_G(K) |G : N_G(K)|
$$

$$
\equiv -(q - 1)(q^3 + q + 1) \equiv 0 \pmod{r},
$$

so $P_G^{(t)}$ $G^{(t)}(0)$ is not a power of *t*.

([3\)](#page-8-1) *Assume that t* |*q*−1 *and t* \neq 2. Let \mathcal{D}_t be the subset of \mathcal{A}_t consisting of *G* and of the [maximal su](#page-4-1)bgroups of *G* isomorphic to *H*. Set $\mathcal{B}_t = \mathcal{A}_t - \mathcal{D}_t$. We have

$$
P_G^{(t)}(0) = 1 - (q^p + 1) + \sum_{K \in \mathcal{B}_t} \mu_G(K) |G:N_G(K)| = -q^p + \sum_{K \in \mathcal{B}_t} \mu_G(K) |G:N_G(K)|.
$$

[By](#page-7-1) T[heor](#page-8-1)ems 10 and 11, if $K \in \mathcal{B}_t$, then *K* does not contain a Sylow *p*-subgroup *Q* of *G*. Indeed, *Q* is contained in a unique maximal subgroup isomorphic to *H*. Hence, *p* divides $|G:K|$. By Lemma 6, we obtain that *p* divides $P_G^{(t)}$ $G^{(l)}(0).$

(4) *Finally, assume that t* $|\Phi_{2p}(q)|$. Then $t | \alpha_q^{(\pm)}$ (that is, $t | \alpha_q^{(+)}$ or $t | \alpha_q^{(-)}$). Let *K* be in \mathcal{A}_t . By Theorems 10 and 11, if $K \neq G$, then *K* is contained in a maximal subgroup isomorphic either to B_{\pm} or to $G(s)$, where $s^r = q$ for some prime number *r*.

We claim that K is not contained in the intersection of two distinct maximal subgroups M_1 and M_2 isomorphic to B_{\pm} . Indeed, for each divisor $d \neq 1$ of $\alpha_q^{(\pm)}$, there exists a unique subgroup *L* of M_1 of order *d*. Hence *L* is normal in M_1 . Therefore M_1 is the unique maximal subgroup of G containing L . So L is not a subgroup of $M_1 \cap M_2$. Thus, *d* divides $|G : M_1 \cap M_2|$. Thence $|G : M_1 \cap M_2|$ is divisible by $\alpha_q^{(\pm)}$. Since *t* divides $\alpha_q^{(\pm)}$ and *K* lies in A_t , we obtain the claim.

Let \mathcal{D}_t be the subset of \mathcal{A}_t consisting of *G* and of the maximal subgroups of *G* isomorphic to B_{\pm} . Set $\mathcal{B}_t = \mathcal{A}_t - \mathcal{D}_t$. We have

$$
P_G^{(t)}(0) = 1 - \frac{q^p \alpha_q^{(\mp)} (q^{p-1} - 1)}{2p} + \sum_{K \in \mathcal{B}_t} \mu_G(K) |G:N_G(K)|.
$$

Observe that $\alpha_q^{(\pm)}$ divides $1-q^p \alpha_q^{(\mp)} (q^{p-1}-1)/(2p)$. Moreover, for each $K \in \mathcal{B}_t$, there exists a number *s* (where $s^r = q$ for some prime number *r*) such that *K* is contained in a maximal subgroup *M* isomorphic to $G(s)$. Let \mathcal{F}_t be the subset of the natural numbers consisting of all such *s*:

$$
\mathcal{G}_t = \{ s \in \mathbb{N} : s^r = q, r \text{ prime}, \exists K \in \mathcal{B}_t \text{ such that } K \leq G(s) \}.
$$

Suppose that $\mathcal{G}_t = \{s_1, \ldots, s_k\}$ for some $k \geq 1$. Let $p^{\beta} p_1^{\beta_1}$ $p_1^{\beta_1} \cdots p_n^{\beta_n}$ be a prime factorization of *f*, where $p_i > p$, $\beta_i \ge 1$ for $i \in \{1, ..., n\}$ and $\beta \ge 0$. Note that

 $\mathcal{G}_t \subseteq \{ s \in \mathbb{N} : s^{p_i} = q, \text{ for some } i \in \{1, \dots, n\} \}.$

Clearly, if $s \in \mathcal{G}_t$, then $s^u = q$ for some prime *u* dividing *f*. Moreover, since *f* is odd, if $p = 2$, then $u \neq 2$. If $p = 3$, then $s = 3^{f/3}$ does not lie in \mathcal{S}_t . In fact, if $K \leq G(s)$, then $\Phi_6(q)$ divides $|G:K|$ and so $K \notin \mathcal{B}_t$. By Lemma 9, there exists a prime divisor *r* of

$$
\gcd\bigg(\frac{\Phi_{2p}(q)}{\Phi_{2p}(s_1)},\ldots,\frac{\Phi_{2p}(q)}{\Phi_{2p}(s_k)},\alpha_q^{(\pm)}\bigg).
$$

Clearly, *r* and *t* are distinct, and *r* divides $\alpha_q^{(\pm)}$ and $|G:K|$ for all $K \in \mathcal{B}_t$. By [Lemma 6,](#page-16-3) we conclude that *r* divides $P_G^{(t)}$ $G^{(I)}(0).$

Finally, suppose that $\mathcal{G}_t = \emptyset$, i.e., $\mathcal{B}_t = \emptyset$. We leave it to the reader to check that $P_G^{(t)}$ $G_G^{(t)}(0) = 1 - q^p \alpha_q^{(\mp)} (q^{p-1} - 1)/(2p)$ is not a power of *t*. □

5. Irreducibility of the Dirichlet polynomial

Lemma 13 [Damian et al. 2004, Lemma 3]. *Let* $n \in \mathbb{N}$. *Then* $1 - n/n^s$ *is reducible in* \Re *[if and only](#page-16-8) if n is a nontrivial power in* \mathbb{Z} *.*

Lemma 14. Let $G = PSL(2, q)$ $G = PSL(2, q)$ $G = PSL(2, q)$ with $f > 1$. Then $a_{q(q+1)/2}(G) \neq 0$.

Proof. For $q < 25$ the result follows by direct inspection. For the remaining cases, note that every subgroup of *G* of order $2(q-1)/\delta$ is a maximal subgroup isomorphic to *D*_{2(*q*−1)/ δ ; see [Huppert 1967, p. 213].}

Proposition 15. Let G be as in the Main Theorem, with $f > 1$. Then $P_G(s)$ is *irred[ucib](#page-8-2)le in the ring [of Dirichlet poly](#page-8-0)nomials* R*.*

Proof. Let $G = G(q, m)$, with $m \in \{1, 2, 3\}$. The proposition's validity when $m = 1$ and $q \in \{4, 8, 9\}$ is checked by direct inspection. For the rest of the proof, we exclude these three cases.

Suppose that $P_G(s) = g(s)h(s)$ for some Dir[ichlet polyn](#page-10-1)omials $g(s)$ and $h(s)$ in \Re . From (3-2) and case (1) in the proof of Pro[position 12](#page-4-2), we obtain

$$
P_G^{(p)}(s) = 1 - \frac{p^{fm} + 1}{(p^{fm} + 1)^s}.
$$

We claim that $P_G^{(p)}$ $G_G^{(p)}(s)$ is irreducible. We argue by contradiction. By Lemma 13, if $P_G^{(p)}$ $G_G^{(p)}(s)$ is reducible, then $p^{fm} + 1$ is a nontrivial power. Hence $p^{fm} + 1 = b^k$ for some $k \ge 2$ and $b \ge 1$, so there are no Zsigmondy primes for $\langle b, k \rangle$. By Lemma 4, (b, k) is either equal to $(2^w - 1, 2)$ for some $w ∈ ℕ$ or to $(2, 6)$. If $(b, k) = (2^w - 1, 2)$, then $p = 2$. Hence $fm = 3$, so $(q, m) = (8, 1)$, against assumption. Finally, if $(b, k) = (2, 6)$, then $p^{fm} + 1 = 2^6$ has no solution. Therefore, without loss of generality, we suppose that $g^{(p)}(s) = 1 - (p^{fm} + 1)/(p^{fm} + 1)^s$ and $h^{(p)}(s) = 1$. Let *t* be a Zsigmondy prime for $\langle p, 2 f m \rangle$. In particular, for $(m, f) = (1, 2)$,

if 5^2 divides $p^2 + 1$, let $t = 5$;

otherwise, let *t* be a Zsigmondy prime for $\langle p, 4 \rangle$ different from 5.

To see why this is possible, note that a Zsigmondy prime for $\langle p, 2 f m \rangle$ exists since, by assumption, $2fm > 2$ and $fm \neq 3$. If $(m, f) = (1, 2)$, i.e., $(q, m) = (p^2, 1)$, then, by assumption, *p* is odd. So $p^2 + 1 = 2a$ for some odd number *a*. Suppose that $5^2 \nmid p^2 + 1$. Since we are assuming that $(q, m) \notin \{(4, 1), (9, 1)\}$, we conclude that $p^2 + 1$ does not divide 10. Hence there exists a Zsigmondy prime for $\langle p, 4 \rangle$ different from 5.

For a prime number *r*, let $v_r : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ be the *r*-adic valuation map. For a Dirichlet polynomial $f(s) \in \mathcal{R}$, define the integers $a_n(f)$, $n \in \mathbb{N}$, by the condition

$$
f(s) = \sum_{n \in \mathbb{N}} \frac{a_n(f)}{n^s}.
$$

Then $\max\{v_r(l): a_l(g) \neq 0\} + \max\{v_r(l): a_l(h) \neq 0\} = \max\{v_r(l): a_l(G) \neq 0\}.$

We claim that $h^{(t)}(s) = h(s)$. Indeed, since $a_{p^{f^m}+1}(g) \neq 0$ and $v_t(p^{f^m}+1) =$ $v_t(|G|)$, we get

$$
\max\{v_t(l): a_l(g) \neq 0\} = \max\{v_t(l): a_l(G) \neq 0\}.
$$

So, if $a_l(h) \neq 0$, then *t* does not divide *l*. In particular, $h^{(t)}(s) = h(s)$, as claimed. It f[ollows that](#page-5-0)

(5-1)
$$
P_G^{(t)}(s) = g^{(t)}(s)h(s).
$$

Finally we show that $h(s) = 1$.

Projective linear groups (*m* = 1)*.* Let *r* be an odd prime divisor of *q*−1 (recall that $q \neq 9$ and *q* is not a prime). Proposition 8, case (2), yields $P_G^{(t,r)}$ $G^{(t,r)}(s) = 1$. Now (5-1) yields $h^{(r)}(s) = 1$. So $P_G^{(r)}$ $G_G^{(r)}(s)$ is equal to $g^{(r)}(s)$. By Lemma 14, $a_{q(q+1)/2}(G) \neq 0$. Hence, since *r* [does no](#page-8-0)t div[ide](#page-9-0) $q(q+1)/2$, we get $a_{q(q+1)/2}(g(s)) \neq 0$. It follows that

$$
\max\{v_p(l) : a_l(g) \neq 0\} = \max\{v_p(l) : a_l(G) \neq 0\}.
$$

Thus $h(s) = h^{(p)}(s) = 1$.

Suzuki and Ree groups ($m = 2, 3$). In these cases, *t* clearly divides $\alpha_q^{(\pm)}$. Let *r* be a prime divisor of $\alpha_q^{(\mp)}$. By Proposition 12, case (4), we have $P_G^{(t,r)}$ $G^{(t,r)}(s) = 1$. By $(5-1)$, we get $h^{(r)}(s) = 1$. Now $a_{p^{f^m+1}}(g(s)) \neq 0$ yields

$$
\max\{v_r(l): a_l(g) \neq 0\} = \max\{v_r(l): a_l(G) \neq 0\}.
$$

Hence $h(s) = h^{(r)}(s) = 1$.

6. $P_G(-1)$ does not vanish

Proposition 16. *Let* $G = G(q, m)$ *be as in the Main Theorem. Then* $P_G(-1) \neq 0$ *. Proof. Projective linear groups* ($m = 1$). For $q \le 11$ or $q = 49$, the proposition holds by direct inspection. Assume that *q* is greater than 11 and that $q \neq 49$.

Assume $f = 1$. By Proposition 8, case (1), we get

$$
P_G(s) = 1 - \frac{p+1}{(p+1)^s} + \sum_{p|k} \frac{a_k(G)}{k^s}.
$$

By Lemma 6, if *p* divides *k*, then p^2 divides $a_k(G)$ *k*. Hence

$$
P_G(-1) = 1 - (p+1)^2 + \sum_{p|k} a_k(G)k \equiv -2p \pmod{p^2}.
$$

Assume $f \ge 2$. Let *t* be a Zsigmondy prime for $\langle p, 2f \rangle$. In particular, for $f = 2$,

if 5^3 divides $p^2 + 1$, let $t = 5$;

otherwise, let *t* [be a Zsigmon](#page-5-0)dy p[rime](#page-5-2) for $\langle p, 4 \rangle$ distinct from 5.

To see why this is possible, note that a Zsigmondy prime for $\langle p, 2f \rangle$ exists since $q \neq 8$ and $f \geq 2$. If $f = 2$, then, by assumption, *p* is odd. So $p^2 + 1 = 2a$ for some odd number *a*. Suppose that $5^3 \nmid p^2 + 1$. Since $q \notin \{4, 9, 49\}$ by assumption, $p^2 + 1$ does not divide 50. Hence there exists a Zsigmondy prime for $\langle p, 4 \rangle$ distinct from 5.

We observe that $t \neq 3$. As in the proof of Proposition 8, case (2), we obtain:

(a)
$$
P_G(s) = 1 - \frac{q(q-1)/2}{[q(q-1)/2]^s} + \sum_{t|k} \frac{a_k(G)}{k^s}.
$$

- (b) If *M* is a maximal subgroup of *G*, the index $|G:M|$ is divisible by *t* if and only if *M* is not isomorphic to $D_{2(q+1)/\delta}$. In particular, if *M* is not isomorphic to $D_{2(q+1)/\delta}$, we have $v_t(|G:M|) > v_t(|G|)/2$, where as before $v_t : \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ is the *t*-adic valuation map.
- (c) If M_1 and M_2 are distinct maximal subgroups isomorphic to $D_{2(q+1)/\delta}$, then $|G : M_1 ∩ M_2|$ is divisible by $|G|/2$ or $M_1 ∩ M_2$ is contained in a maximal subgroup not isomorphic to $D_{2(q+1)/\delta}$.

We claim that

$$
P_G(-1) = -\frac{(q+1)(q-2)(q^2-q+2)}{4} + \sum_{t|k} ka_k(G) \neq 0 \pmod{t^{v_t(|G|)+1}}.
$$

In fact,

$$
v_t\left(\frac{(q+1)(q-2)(q^2-q+2)}{4}\right) = v_t(q+1) = v_t(|G|).
$$

Moreover, suppose that $a_k(G) \neq 0$ and that *t* divides *k*, for some $k > 1$. Then $v_t(k) > 0$ $v_t(|G|)/2$. Indeed, by (b) and (c), the number k is divisible by $|G|/2$ or k divides [the](#page-7-1) ind[ex o](#page-8-1)f a maximal subgroup *M* such that *t* divides $|G:M|$ and $v_t(|G:M|)$ $v_t(|G|)/2$. Finally, by Lemma 6, we have $ka_k(G) \equiv 0 \pmod{t^{v_t(|G|)+1}}$.

Suzuki and Ree groups ($m = 2, 3$). Let *t* be a Zsigmondy prime for $\langle p, 2pf \rangle$. In particular, if $(p, f) = (2, 7)$, choose $t = 113$. Clearly $t | \alpha_q^{(\pm)}$.

We claim that if *K* is a subgroup of *G* and *t* divides $|G:K|$, then $v_t(|G:K|)$ = $v_t(|G|)$ $v_t(|G|)$. By Theorem 10 and 11, every maximal subgroup of *G* has this property. [Moreover, if](#page-8-0) *M* is a maximal subgroup of *G* such that *t* does not divide $|G : M|$, then *M* is isomorphic to B_{\pm} . Finally, the index of the intersection of two distinct maximal subgroups isomorphic to B_{\pm} is a multiple of $\alpha_q^{(\pm)}$; see the proof of Proposition 12, case (4).

Now, using Lemma 6, we get that if *t* divides *k*, then $t^{2v_t(|G|)}$ divides $ka_k(G)$. Again by case (4) in Proposition 12, we have

$$
P_G(-1) = 1 - \left(\frac{q^p a_q^{(\mp)} (q^{p-1} - 1)}{2p}\right)^2 + \sum_{t|k} k a_k(G),
$$

so
$$
P_G(-1) \equiv 1 - \left(\frac{q^p \alpha_q^{(\mp)}(q^{p-1}-1)}{2p}\right)^2 \pmod{t^{2v_t(|G|)}}
$$
. Finally
\n
$$
v_t \left(1 - \left(\frac{q^p \alpha_q^{(\mp)}(q^{p-1}-1)}{2p}\right)^2\right) = v_t(\alpha_q^{(\pm)}) = v_t(|G|).
$$
\nHence $P_G(-1) \neq 0$.

7. Dirichlet polynomials of $PSL(2, q)$, with $q = p^f$

We list here the Dirichlet polynomial $P(s) := P_{PSL(2,q)}(s)$ for all values of q. We adopt the following conventions: μ is the usual Möbius function on positive integers; $r_h = \frac{1}{2}$ $\frac{1}{2}(p^h+1); v_h = \frac{1}{2}$ $\frac{1}{2}(p^h - 1); r = r_f; v = v_f; \text{ and } \alpha = 1 \text{ if } f = 2^k \text{ for }$ some $k > 1$, $\alpha = 0$ otherwise.

• For $q = 5$,

$$
P(s) = 1 - \frac{5}{5^s} - \frac{6}{6^s} - \frac{10}{10^s} + \frac{20}{20^s} + \frac{60}{30^s} - \frac{60}{60^s}.
$$
\n• For $q = 7$,
\n
$$
P(s) = 1 - \frac{14}{7^s} - \frac{8}{8^s} + \frac{21}{21^s} + \frac{28}{28^s} + \frac{56}{56^s} - \frac{84}{84^s}.
$$
\n• For $q = 9$,
\n12, 10, 30, 60, 36, 45, 240, 90, 240, 900, 77

 $P(s) = 1 - \frac{12}{6s}$ $\frac{12}{6^s} - \frac{10}{10^s} - \frac{30}{15^s} + \frac{60}{30^s} + \frac{36}{36^s} + \frac{45}{45^s} + \frac{240}{60^s} + \frac{90}{90^s} - \frac{240}{120^s} - \frac{900}{180^s} + \frac{720}{360^s}$ $\frac{120}{360^s}$. • For $q = 11$,

$$
P(s) = 1 - \frac{22}{11^s} - \frac{12}{12^s} + \frac{66}{66^s} + \frac{220}{110^s} + \frac{132}{132^s} + \frac{165}{165^s} - \frac{220}{220^s} - \frac{990}{330^s} + \frac{660}{660^s}.
$$

• For $q = p$, $p \equiv \pm 2 \pmod{5}$, $p \equiv \pm 3 \pmod{8}$,

$$
P(s) = 1 - \frac{pv}{(pv)^s} - \frac{pr}{(pr)^s} - \frac{2r}{(2r)^s} + \frac{2pr}{(2pr)^s} - \frac{prv/6}{(prv/6)^s} + \frac{prv/2}{(prv/2)^s} + \frac{2prv/3}{(2prv/3)^s} + \frac{prv}{(prv)^s} - \frac{2prv}{(2prv)^s}.
$$

• For $q = p$, $p \equiv \pm 2 \pmod{5}$, $p \equiv \pm 1 \pmod{8}$,

$$
P(s) = 1 - \frac{pv}{(pv)^s} - \frac{pr}{(pr)^s} - \frac{2r}{(2r)^s} + \frac{2pr}{(2pr)^s} - \frac{prv/6}{(prv/12)^s} + \frac{prv/2}{(prv/4)^s} + \frac{2prv/3}{(prv/3)^s} - \frac{prv}{(prv)^s}.
$$

• For $q = p$, $p \equiv \pm 1 \pmod{5}$, $p \equiv \pm 3 \pmod{8}$,

$$
P(s) = 1 - \frac{pv}{(pv)^s} - \frac{pr}{(pr)^s} - \frac{2r}{(2r)^s} + \frac{2pr}{(2pr)^s} - \frac{prv/15}{(prv/30)^s} + \frac{prv/6}{(prv/6)^s} + \frac{2prv/5}{(prv/5)^s} + \frac{2prv/3}{(prv/3)^s} + \frac{prv/2}{(prv/2)^s} - \frac{2prv/3}{(2prv/3)^s} - \frac{3prv}{(prv)^s} + \frac{2prv}{(2prv)^s}.
$$

• For $q = p$, $p \equiv \pm 1 \pmod{5}$, $p \equiv \pm 1 \pmod{8}$,

$$
P(s) = 1 - \frac{pv}{(pv)^s} - \frac{pr}{(pr)^s} - \frac{2r}{(2r)^s} + \frac{2pr}{(2pr)^s} - \frac{prv/15}{(prv/30)^s} - \frac{prv/6}{(prv/12)^s} + \frac{prv/3}{(prv/6)^s} + \frac{2prv/5}{(prv/5)^s} + \frac{prv/2}{(prv/4)^s} + \frac{4prv/3}{(prv/3)^s} - \frac{4prv/3}{(2prv/3)^s} - \frac{5prv}{(prv)^s} + \frac{4prv}{(2prv)^s}.
$$

• For $q = 2^f, f > 1$,

$$
P(s) = \sum_{\substack{h|f\\h>1}} \mu\left(\frac{f}{h}\right) \left(\frac{2^{f-h}rv/(r_h v_h)}{[2^{f-h}rv/(r_h v_h)]^s} - \frac{2^{f-h+1}rv/v_h}{[2^{f-h+1}rv/v_h]^s} - \frac{2^frv/v_h}{[2^frv/v_h]^s} - \frac{2^frv/v_h}{[2^frv/v_h]^s} + \frac{2^{f+1}rv/r_h}{[2^{f+1}rv/r_h]^s} + \mu(f) \left(-\frac{2^{f+2}rv}{[2^{f+1}rv]^s} + \frac{2^{f+2}rv}{[2^{f+2}rv]^s}\right).
$$

• For $q = p^f$, $p \in \{3, 5\}$, $f > 1$ odd,

$$
P(s) = \sum_{h|f \atop h>1} \mu(f/h) \left(\frac{p^{f-h}rv/(r_h v_h)}{[p^{f-h}rv/(r_h v_h)]^s} - \frac{2p^{f-h}rv/v_h}{[2p^{f-h}rv/v_h]^s} - \frac{p^frv/v_h}{[p^frv/v_h]^s} \right) - \frac{p^frv/r_h}{[p^frv/r_h]^s} + \frac{2p^frv/v_h}{[2p^frv/v_h]^s} \right) + \mu(f) \left(-\frac{p^{f-1}2rv}{[2p^{f-1}rv]^s} + \delta_{p,3} \left(\frac{3^frv/6}{[3^frv/6]^s} - \frac{3^frv/2}{[3^frv/2]^s} - \frac{3^frv}{[3^frv]^s} + \frac{2 \cdot 3^frv}{[2 \cdot 3^frv]^s} \right) + \delta_{p,5} \left(\frac{5^frv/30}{[5^frv/30]^s} - \frac{5^frv/2}{[5^frv/2]^s} - \frac{5^frv/3}{[5^frv/3]^s} + \frac{5^frv}{[5^frv]^s} \right)
$$

• For $q = p^f$, $p \ge 3$, $f \ge 4$ even or $p \equiv \pm 1$, 0 (mod 5), $f = 2$

$$
P(s) = \sum_{\substack{h|f\\f/h \text{ odd}}} \mu(f/h) \left(\frac{p^{f-h}rv/(r_h v_h)}{[p^{f-h}rv/(r_h v_h)]^s} - \frac{2p^{f-h}rv/v_h}{[2p^{f-h}rv/v_h]^s} \right) - \frac{p^frv/v_h}{[p^frv/v_h]^s} - \frac{p^frv/r_h}{[p^frv/r_h]^s} + \frac{2p^frv/v_h}{[2p^frv/v_h]^s} \right) + \sum_{\substack{h|f\\f/h \text{ even}}} \mu(f/h) \left(\frac{p^{f-h}rv/(r_h v_h)}{[p^{f-h}rv/(2r_h v_h)]^s} - \frac{p^{f-h}2rv/v_h}{[p^{f-h}rv/v_h]^s} - \frac{p^frv/v_h}{[p^frv/(2v_h)]^s} \right) - \frac{p^frv/r_h}{[p^frv/(2r_h)]^s} + \frac{2p^frv/v_h}{[p^frv/v_h]^s} \right) + \alpha \left(-\frac{p^frv}{[p^frv/2]^s} + \frac{p^frv}{[p^frv]^s} \right)
$$

• For
$$
q = p^2
$$
, $p > 5$, $p \equiv \pm 2 \pmod{5}$,

$$
P(s) = 1 - \frac{2r}{(2r)^s} - \frac{p^2r}{(p^2r)^s} - \frac{p^2v}{(p^2v)^s} + \frac{2p^2r}{(2p^2r)^s} - \frac{2pr}{(pr)^s} + \frac{4prr_1}{(2prr_1)^s} + \frac{2p^2rr_1}{(p^2rr_1)^s} + \frac{2p^2rv_1}{(p^2rv_1)^s} - \frac{4p^2rr_1}{(2p^2rr_1)^s} - \frac{p^2rv}{(p^2rv/2)^s} - \frac{3p^2rv}{(p^2rv)^s} - \frac{p^2rv/15}{(p^2rv/30)^s} + \frac{p^2rv/3}{(p^2rv/6)^s} + \frac{2p^2rv/5}{(p^2rv/5)^s} + \frac{2p^2rv/3}{(p^2rv/3)^s} - \frac{4p^2rv/3}{(2p^2rv)^3} + \frac{4p^2rv}{(2p^2rv)^s}.
$$

• For
$$
q = p^f
$$
, $p > 5$, $f > 1$ odd,

$$
P(s) = \sum_{h|f} \mu(f/h) \left(\frac{p^{f-h}rv/(r_h v_h)}{[p^{f-h}rv/(r_h v_h)]^s} - \frac{2p^{f-h}rv/v_h}{[2p^{f-h}rv/v_h]^s} - \frac{p^frv/v_h}{[p^frv/v_h]^s} - \frac{p^frv/r_h}{[p^frv/v_h]^s} + \frac{2p^frv/v_h}{[2p^frv/v_h]^s} \right).
$$

[References](http://dx.doi.org/10.1006/jabr.1999.8221)

- [Boston 1996] N. Boston, "A probabilistic generalization of the Riemann zeta function", pp. 155– 162 in *Analytic number theory: proceedings of a conference in honor of Heini Halberstam* (Allerton [Park, IL, 1995](http://www.ams.org/mathscinet-getitem?mr=2005c:20036)[\), vol. 1, edited b](http://www.emis.de/cgi-bin/MATH-item?1070.20025)y B. C. Berndt et al., Progr. Math. 138, Birkhäuser, Boston, 1996. MR 97e:11106 Zbl 0853.11075
- [\[Brown 2000\]](http://dx.doi.org/10.1017/S0017089504002010) K. S. Brown, "The [coset poset and pro](http://dx.doi.org/10.1017/S0017089504002010)[babilistic zeta func](http://www.ams.org/mathscinet-getitem?mr=2005f:20113)tion of a finite group", *J. Algebra* 225:2 (2000), 989–1012. MR 2000k:20082 Zbl 0973.20016
- [Damian and Lucchini 2003] E. Damian and A. Lucchini, "The Dirichlet polynomial of a finite group and the subgroups of prime power ind[ex", pp. 209–221 i](http://www.ams.org/mathscinet-getitem?mr=2008b:20017)n *Advances in group theory 2002*, Aracne, Rome, 2003. MR 2005c:20036 [Zbl 1070.20025](http://dx.doi.org/10.1016/j.jalgebra.2007.02.055)
- [Damian and Lucchini 2004] [E. Damian a](http://www.ams.org/mathscinet-getitem?mr=2008k:20041)[nd A. Lucchini,](http://www.emis.de/cgi-bin/MATH-item?1127.20052) "Recognizing the alternating groups from their probabilistic zeta function", *Glasg. Math. J.* 46:3 (2004), 595–599. MR 2005f:20113 Zbl 1071.20060
- [Damian and Lucchini 2006] E. Damian and A. Lucchini, "On the Dirichlet polynomial of finite groups of Lie type", *Rend. Sem. Mat. Univ. Padova* 115 (2006), 51–69. MR 2008b:20017
- [Damian and Lucchini 2007] E. Damian and A. Lucchini, "The probabilistic zeta function of finite simple groups", *J. Algebra* 313:2 (2007), 957–971. MR 2008k:20041 Zbl 1127.20052
- [Damian et al. 2004] E. Damian[, A. Lucchini, and F. Morini, "Some prop](http://dx.doi.org/10.1112/S0024609303002297)erties of the probabilistic [zet](http://dx.doi.org/10.1112/S0024609303002297)a function on finite simple groups", *Pacific J. Math.* 215[:1 \(2004\),](http://www.ams.org/mathscinet-getitem?mr=2005a:20101) 3–14. MR 2005b:20042 Zbl 1113.20063
- [\[Detomi and Lucchini 2003a\]](http://dx.doi.org/10.1112/jlms/s2-43.1.61) E. Detomi and A. Lucchini, "Crowns and factorization of the prob[abilistic ze](http://dx.doi.org/10.1112/jlms/s2-43.1.61)ta function of a finite group", *J. Algebra* 265[:2 \(2003\), 651](http://www.ams.org/mathscinet-getitem?mr=92d:20071)–668. MR 2004e:20119 Zbl 1072.20031
- [Detomi and Lucchini 2003b] E. Detomi and A. Lucchini, "Recognizing soluble groups from their [probabilistic z](http://www.ams.org/mathscinet-getitem?mr=21:6393)[eta functions",](http://www.emis.de/cgi-bin/MATH-item?0093.25002) *Bull. London Math. Soc.* 35:5 (2003), 659–664. MR 2005a:20101 Zbl 1045.20054
- [\[Downs 1](http://www.emis.de/cgi-bin/JFM-item?62.0082.02)991] M. Downs, "The Möbius function of $PSL₂(q)$, with application to the maximal normal subgroups of the modular group", *J. London Math. Soc.* (2) 43:1 (1991), 61–75. MR 92d:20071 Zbl 0743.20016
- [Gaschütz 1959] W. Gaschütz, "[Die Eulersche Fu](http://www.ams.org/mathscinet-getitem?mr=90k:20046)[nktion endlicher](http://www.emis.de/cgi-bin/MATH-item?0708.20005) auflösbarer Gruppen", *Illinois J. [M](http://www.ams.org/mathscinet-getitem?mr=37:302)ath.* 3 [\(1959\), 46](http://www.emis.de/cgi-bin/MATH-item?0217.07201)9–476. MR 21 #6393 Zbl 0093.25002
- [Hall 1936] [P. Hall, "The Eulerian Functions of a group",](http://dx.doi.org/10.1016/0021-8693(88)90239-6) *Quart. J. Math.* 7 (1936), 134–151. Zbl 0014.10402 [JFM 62.0082.02](http://dx.doi.org/10.1016/0021-8693(88)90239-6)
- [\[Hawke](http://www.emis.de/cgi-bin/MATH-item?0651.20020)s et al. 1989] T. Hawkes, I. M. Isaacs, and M. Özaydin, "On the Möbius function of a finite group", *Rocky Mountain J. Math.* 19:4 (1989), 1003–1034. MR 90k:20046 Zbl 0708.20005
- [\[Huppe](http://www.emis.de/cgi-bin/MATH-item?0852.20019)rt 1967] B. Huppert, *Endliche Gruppen*, vol. I, Grundlehren der Math. Wiss. 134, Springer, Berlin, 1967. MR 37 #302 [Zbl 0217.072](http://dx.doi.org/10.2307/1970423)01
- [\[Kleidman 1988](http://www.emis.de/cgi-bin/MATH-item?0106.24702)] P. B. Kleidman, "The maximal subgroups of the Chevalley groups $G_2(q)$ with *q* odd, t[he Ree groups](http://dx.doi.org/10.1007/BF01692444) ${}^{2}G_{2}(q)$, and their automorphism groups", *J. Algebra* 117:1 (1988), 30–71. [MR 89j:20055](http://www.emis.de/cgi-bin/MATH-item?24.0176.02) Zbl 0651.20020
- [Mann 1996] A. Mann, "Positively finitely generated groups", *Forum Math.* 8:4 (1996), 429–459. MR 97j:20029 Zbl 0852.20019
- [Suzuki 1962] M. Suzuki, "On a class of doubly transitive groups", *Ann. of Math.* (2) 75 (1962), 105–145. MR 25 #112 Zbl 0106.24702
- [Zsigmondy 1892] K. Zsigmondy, "Zur Theorie der Potenzreste", *Monatsh. Math. Phys.* 3:1 (1892), 265–284. MR 1546236 Zbl 24.0176.02

Received February 26, 2008. Revised July 31, 2008.

MASSIMILIANO PATASSINI UNIVERSITÀ DI PADOVA DIPARTIMENTO DI MATEMATICA PURA ED APPLICATA VIA TRIESTE, 63 PADOVA, 35121 ITALY mpatassi@math.unipd.it