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We study the Dirichlet polynomial Pg(s) of the groups G = PSL(2, q),
’B,(q), and 2G,(q). For such G we show that if H is a group satisfying
Py (s) = Pg(s), then H/Frat(H) = G. We also prove that, when g is not
a prime number, Pg(s) is irreducible in the ring of Dirichlet polynomials.
Finally, we prove that the coset poset of G is noncontractible.

1. Introduction

Let G be a finite group. We define the Dirichlet polynomial associated to G by

o0

Ps(s) :Zan’;G)’ where a,(G) = Z uc(H).

n=1 H<G
|G:H|=n

Here ug : £ — Z is the Mébius function on the subgroup lattice &£ of G, defined
inductively by ug(G) =1, ug(H) = — > -y #c(K). In [Hall 1936], it was
observed that for any ¢ € N, the number Pg(¢) is the probability that r randomly
chosen elements of G generate the group G. The multiplicative inverse 1/ Pg(s)
is called the probabilistic zeta function of G [Boston 1996; Mann 1996].

More generally, let £k > 1 and let py, ..., px be prime numbers. We define the

Pépl,---,lik)(s)z Z an(G)‘

N
(n,pi)=1

Vie(l,...k)
A problem that arises naturally is to determine which properties of the group
G are encoded by the polynomial Pg(s). It is known that Pg /FraiG)(s) = Pg(s)
(see Lemma 5), so from the Dirichlet polynomial of G we can only hope to read
off properties of G/Frat(G). Further, it was noted in [Gaschiitz 1959] that Pg(s)
does not uniquely determine the isomorphism class of G/Frat(G).
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Nevertheless, certain group theoretic properties are given by the Dirichlet poly-
nomial. For instance, If G and H are groups such that Pg(s) = Py(s) and G
is soluble (or p-soluble, or perfect), then H has the same property [Damian and
Lucchini 2003; Detomi and Lucchini 2003b]. If G is simple and Pg(s) = Py (s),
then H/Frat(H) is simple [Damian and Lucchini 2007].

Conjecture [Damian et al. 2004]. If G is simple and Pg(s) = Py (s), then G is
isomorphic to H/Frat(H).

This conjecture remains open, but partial results are known. The conjecture
holds when G is isomorphic to a simple alternating group [Damian and Lucchini
2004; Damian et al. 2004], to a simple sporadic group [Damian and Lucchini 2006]
or to PSL(2, p) for p prime [Damian et al. 2004]. Similarly:

Theorem 1 [Damian and Lucchini 2006, Theorem 14]. If G| and G, are simple
groups of Lie type with the same characteristic, then Pg,(s) = Pg,(s) if and only
if Gy is isomorphic to G».

In this paper we prove the conjecture when G is one of the following groups of
Lie type: PSL(2, ¢), the Suzuki groups 2B, (q) and the Ree groups >G,(q). More
precisely:

Main Theorem. Suppose G is of the form

G(g,1):=PSL(2,q) withq=p/ >4, pprime, >0, or
(1-1) G(g,2):="*B:(q) withq =27, f>1odd, or
G(q,3):=2Ga(q) withq =3/, f>1odd.

If H is a group and Pg(s) = Py (s), then
H/Frat(H) = G.

For G = PSL(2, q), with g <9, this can be proved directly.

We outline the proof in the complementary case; see Sections 3 and 4 for details.
In view of Theorem 1, we need only show that the characteristic p of G can be
recovered from the Dirichlet polynomial Pg (s). To do this, we recall from [Damian
and Lucchini 2006, Theorem 3] that if L is a group of Lie type of characteristic p
and X € Syl (L), then |P(p) (0)| = |X|. In particular, P(’7 (s) is a power of p. We
show that if ¢ is a prime number different from p, then P( )(s) is not a power of ¢.
Indeed, if ¢ does not divide the order of G, then P ® (0) = Pg(0) = 0. Also, if ¢
divides |G|, then Propositions 8 and 12 show that P(t)(O) is not a power of . We
can now obtain the characteristic of G from the polynomial Pg(s) as the unique
prime number r such that Pg) (0) is a power of 7.

The proof does not use explicit formulas for the Dirichlet polynomials of the
groups in question. However, using the results in [Downs 1991], we have computed



THE PROBABILISTIC ZETA FUNCTION OF PSL(2, ¢), 2B2(g) AND 2G,(q) 187

explicitly the Dirichlet polynomials for PSL(2, ¢) (see Section 7), and this makes

it possible to test directly certain properties one might wonder about. For example,

we disprove the following conjecture, proposed in [Damian and Lucchini 2006]:
If G is a finite simple group, then |G| = lem{n : a,(G) # 0}.

A counterexample is provided by G = PSL(2, p) with p =+2 (mod 5) and p =1
(mod 8), for which we have lem{n : a,(G) # 0} = |G|/2, according to the list in
Section 7.

Further results. We let R denote the ring of Dirichlet polynomials:

< a
%:{ —”S’:ameZ,mzl,
m

{m:a, #0}| < oo].
m=1

We recall that R is a factorial domain [Damian et al. 2004]. Also, if G is a finite
group, Pg(s) lies in . Section 5 is devoted to the study of the irreducibility of
P (s) in . An important role in the factorization of Pg(s) is played by the normal
subgroups of G. In fact, if N is a normal subgroup of G, we define

PGJV(S):ZM’ where an(G,N): Z ,LtG(H).

n
n=1 |G:H|=n
HN=G

Then Pg (s)=Pg/n(s) Pg,n(s); see [Brown 2000] or [Detomi and Lucchini 2003a].
Now, if G is a group and Pg (s) is irreducible in R, then G /Frat(G) is simple. But
the converse is not true. For example, Ppsi(2,7)(s) is reducible. Moreover, we
know from [Damian et al. 2004, Lemma 11, Proposition 14 and 15] that Pa, (s)
is irreducible in R for any prime number p > 5, and Ppsy(2,)(s) is reducible in R
ifand only if p > 5 and p =2°—1 (a Mersenne prime) with e =3 (mod 4). (These
are the only known examples of finite simple groups whose Dirichlet polynomial
is reducible.) We will prove:

Proposition 2. If G is as in the Main Theorem and is not isomorphic to PSL(2, p)
for p=2°¢—1, e =3 (mod 4), then Pg(s) is irreducible in R.

In Section 6 we study the topological interpretation of the value Pg(—1) pro-
posed in [Brown 2000]. Given a finite group G, we define the simplicial complex
A, where the simplices of A are finite chains of the coset poset of G. If A is
contractible, its reduced Euler characteristic ¥y (A) := y(A) — 1 is zero. Brown
showed that the number y(A) is equal to —Pg(—1). Hence, if Pg(—1) # 0,
the simplicial complex associated to the group G is not contractible. Brown also
proved that Pg(—1) is nonzero for a soluble group G and conjectured that Pg(—1)
is nonzero for every finite group G. At the time of this writing, there is no known
finite group G such that Pg(—1) = 0. In Section 6 we prove:
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Proposition 3. If G is as in the Main Theorem, then Pg(—1) # 0.

2. Some lemmas

Lemma 4 [Zsigmondy 1892]. Let a,n > 2 be integers, and assume it is not the
case that

n=2a=2"—1withs>2 or n=6,a=2.

Then there exists a prime divisor q of a" — 1 such that q does not divide a* — 1 for
any i satisfying 0 <i < n. Such a divisor is called a Zsigmondy prime for {(a, n).

We will use repeatedly, often without mention, the following results on the
Mobius function of the subgroup lattice of G.

Lemma 5 [Hall 1936]. Let G be a finite group and H a subgroup of G. If ug(H)
does not vanish, H is an intersection of maximal subgroups of G.

Lemma 6 [Hawkes et al. 1989, Theorem 4.5]. Let G be a finite group and H a
subgroup of G. The index |Ng(H): H| divides ug(H)|G : HG'|.

If G is perfect, that is, if G = G’, Lemma 6 says that ug(H) |G:NG (H)| is
divisible by |G : H|.

Notation. Throughout the paper, p is a prime number, f is a positive integer, and
q = p/ is at least 4.

3. Pg ) (0) for the projective linear group G = PSL(2, ¢)
In this section, assume G = PSL(2, ¢) and define J = ged(¢—1, 2).

Theorem 7 [Huppert 1967, p. 213]. Let g > 5. If M is a maximal subgroup of
PSL(2, q), then M is isomorphic to one of the following groups:

(1) Cp x Cgmnyya;

(2) Dag-1y/6 = NG(Cag—1y/s), forq €{5,7,9,11};

(3) Dag+1y/6 = NG(Cag41)/8), for q & {7,9};

(4) PGL(2, o). for g =43, 40 #2;

(5) PSL(2, q0), for g = qy, qo # 2 where r is an odd prime;

(6) As, for p#2andq=p or p>. If g = p, then ¢ = %1 (mod 5) and if ¢ = p?,
then p = 43 (mod 5);

(7) A4, for g = p ==3 (mod 8) and g # +1 (mod 5);
8) S84, forg = p==£1 (mod 8).
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Proposition 8. Let t be a prime number dividing the order of G. If t # p, then
|Pg)(0)| is a power of t if and only if

(q,1) €{(4,5), (5,2), (7,2), (8,3), (9,2), (9,5)}.
Ift = p, then Pg)(O) =—q.

Proof. If ¢ < 11 or g+1 divides 120, the proposition holds by direct inspection;
here are the corresponding values of Pg)(O).

qg |t= 2 3 5 7 11 19 23 29 59
4 —4 6 -5 0 0 0 0 0 0
5 -4 6 =5 0 0 0 0 0 0
7 8 63 0o -7 0 0 0 0 0
8 -8 =27 0 28 0 0 0 0 0
9 16 -9 25 0 0 0 0 0 0
11 144 21 165 0 -11 0 0 0 0
19 856 171 500 0 0 -19 0 0 0
23 760 1266 0 0 253 0 -23 0 0
29 3220 204 1625 406 0 0 0 -29 0
59 29088 3423 15400 0 0 0 0 1711 =59

For the rest of the proof, assume ¢ > 11 and g+1 { 120. Let 6 be a set of
representatives of the conjugacy classes of subgroups of G. Set

(3-1) d;={K €6:(IG:K|,1) =1, ug(K) # 0}.

Pg)(s) = z

Ked,;
(1) First consider the case t = p. Let Q be a Sylow p-subgroup of G. Since
|Q| = g, Theorem 7 yields that Q is contained in a maximal subgroup M of G
isomorphic to C,}; X C(4—1)/s- Therefore, Q = C,J,C and Ng(Q) = M. Hence Q is
contained in a unique maximal subgroup of G. Therefore we have
q+1
(g+D*’

By definition, 1 (K) |G :Ng(K) |

IG:K|®

(3-2) PP (s)=1-
and hence Pép ) 0) = —q.

(2) Next consider the case where t divides (q+1)/0. Let 9; be the subset of s,
consisting of G and of the maximal subgroups of G isomorphic to Dy(;1)/s. Set
B; = A, —D;. Using the equality 1 —g(g—1)/2 = (g+1)(2—q)/2, we have

(g+1D)(2—q)

PG 0) =7

+ D uG(K)|G:Ng(K)|.
Ke®B,;
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Now let K be in &B;. By Theorem 7, K is contained in a maximal subgroup M
isomorphic to one of D>(,41y/5, As, A4, S4, PSL(2, g0), PGL(2, go) for some ¢o.

We claim that if K is the intersection of two distinct maximal subgroups M and
M isomorphic to Dy, +1)/s, then K is contained in a maximal subgroup of G not
isomorphic to D3, 1)s. Indeed, for each divisor d > 2 of (g+1)/9, there exists a
unique cyclic subgroup C, of order d in M. Hence C, is normal, so it is contained
in a unique maximal subgroup of G, i.e., M;. Thus, by the structure of the subgroup
lattice of dihedral groups, either |M; N M;| <2 or M| N M5 is a Klein four-group.
In the former case, M; N M, is not contained in %B;, since the index of M| N M,
in G is divisible by (¢+1)/0. In the latter case, the normalizer in G of the Klein
four-group M| N M, is either A4 or S4 [Huppert 1967, 8.16-8.17, Hilfssatz]. Hence
K = MNM; is contained in a maximal subgroup of G not isomorphic to D>(;41)/s.

Suppose that g is a Mersenne prime greater than or equal to 31. By its definition,
%, is empty. Therefore Pg) (0) equals (g+1)(2—q)/2, which is not a power of 2.

Suppose that g is not a Mersenne prime. We claim there exists a prime divisor
z of (¢g+1)/0, depending on ¢, such that if K lies in %&;, then z divides |G : K|.
Before proving our claim, we conclude the proof of the proposition in the current
case (2). By Lemma 6, the prime z divides Pg)(O). Hence, if z # ¢, then Pg ) (0)
is not a power of ¢. Further, if z =¢, then %, = & and so Pg)(O) =(@g+1)2—q)/2
is not a power of ¢.

It remains to prove our claim. We consider two subcases.

(a) B, contains a maximal subgroup of G isomorphic to A4, As or S4. Then
Theorem 7 implies that f is either 1 or 2, and %B; does not contain any maximal
subgroup isomorphic to PSL(2, gg). We define the prime number z as follows:

if 2% divides g+1, let z = 2;

otherwise if 3% divides g+1, let 7 = 3;

otherwise if 5% divides g+1, let z = 5;

otherwise let z be a Zsigmondy prime for (p, 2 f) distinct from 3 and 5.

This is possible. Indeed, if 2* { g+1, 3% { g+1 and 5% { g+1, then g+1 divides
23.3.5.m for some natural number m. Since we are assuming that g1 does not
divide 120, we have (m, 120) = 1. So there exists a Zsigmondy prime as required.

We claim that, if K € %B,, then z divides |G : K|. This is clear if K is contained
in maximal subgroup isomorphic to A4, As or S;. Now, suppose that 3B, contains
a subgroup M isomorphic to PGL(2, p), ¢ = p®. In this case, z is greater than 2.
Indeed, if z =2, then 2* divides g—+1, so g is not a square, a contradiction. If z > 2,
then z is a Zsigmondy prime for (p, 2 f), so z divides |G : M|.

(b) B, does not contain a maximal subgroup of G isomorphic to A4, As or Sy.
Choose z as a Zsigmondy prime for (p, 2 f). Clearly, z divides |G : K| if K € B;.
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(3) We now turn to the remaining case, namely, ¢ divides (¢q—1)/J. Let @, be the
subset of o, consisting of G and of the maximal subgroups of G isomorphic to
Cg X C(pfl)/(;. Set B; = A; — 9D,;. We have

PPO)=1—(q+)+ D uc(K)|G:No(K)| =—q+D_ uc(K)|G:Ng(K)|.
Ke%®B, Ke%®B,

By Theorem 7, if K € %;, then K does not contain a Sylow p- subgroup Qof G.

Indeed, Q is contained in a unique maximal subgroup isomorphic to C XCp-1)/s-

Hence, p divides |G : K|. By Lemma 6, p divides Pé)(O). O

4. Pg ) (0) for the Suzuki and Ree groups

In this section f is odd and greater than 1, p is either 2 or 3, and G = G(g, p) in
the notation of the Main Theorem; that is, G is either the Suzuki group 2B,(g) or
the Ree group >G»(g). The order of G is g”(¢g”+1)(qg—1).

Define aéi) = q * ,/pq + 1. Note that gcd(aéﬂ, aéf)) =1 and aéﬂaf]?) =
®7,(q), where @y4(s) = s+ 1 and Og(s) =52 — s+ 1.

Lemma 9. Let pﬁpf)1 - -p,/f" be a prime factorization of f, where p; > p, f; > 1

forie{l,...,n},and p > 0. We have

0] 0]
gcd( ZP(q),..., ZP(Q),a(i))> 1,
(DZp(Sl) (DZp(Sn)
wheres '=qforie{l,..., n}.

Proof. Since f is odd, ﬁ =0if p=2.
Letk<n,1<ij<---<ix<nands; _; = pf/(p”l'"pik). Note that

ged (D2 (si)), - -, Pop(siy)) = Poplsiy,...ip)

and

p ..........
. + _1)k+1 k+1 (_I)HI

H( H (I)( )(Sl] ..... ik)) < H( H p(_l) Sit,..., ik)

k=1 “<ij<--<ig<n 1<ii<--<ix<n

< pf T <a,

where for the second inequality we use that p; —1 > p foralli in {1, ..., n}. Now

the lemma follows from this equality, whose verification is left to the reader:
(- 1)k+l

2 (4) ©2,(@) (i)) ( &) ) —a®
¢ i150eeslk = .
(Csz (s1)" " Daplsn)’ kl:[l [T @5 6iid af

1<ij<--<ix<n D
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Theorem 10 [Suzuki 1962]. Let p = 2. Any maximal subgroup of G = >B5(q) is
isomorphic to one of the following groups:
(1) H=0 x W, where Q is a Sylow 2-subgroup of G and W is a cyclic group of
order g—1;
(2) Bo = Ng(W), a dihedral group of order 2(q—1);
(3) By = A4 x Cy4, where Ay is a cyclic group of order a‘5+) =q+29+1;
4) B_ = A_ x Cy4,where A_ is a cyclic group of order afg_) =q—+2q+1;
(5) 2By (s), where g = s" for some prime number r.
Theorem 11 [Kleidman 1988]. Let p = 3. Any maximal subgroup of G = >G,(q)
is isomorphic to one of the following groups:
(1) H=Q xCy_1,where Q is a Sylow 3-subgroup of G,
(2) B=Cg(i), where i is an involution of G. Furthermore, B = (i) x PSL(2, q);
(3) Bo=Ng({i, j)), with (i, j) = Cyx Cy. Moreover, By= (Cyx Cy X Dy41)/2) X
C3 has order 6(q+1);
(4) By = A4 x Cg, where Ay is a cyclic group of order atgﬂ =q+3q+1;
(5) B_ = A_ x Cg, where A_ is a cyclic group of order a;_) =q—4/3q+1;
(6) 2G,(s), where q = s" for some prime number r.
Proposition 12. Let t be a prime number dividing the order of G. If t # p, then
|Pg)(0)| is not a power of t. If t = p, then Pg)(O) =—q?.
Proof. Let A, be defined as in (3-1). We partition the proof into four cases.
(1) Assume that t = p. Let Q be a Sylow p-subgroup of G. Since |Q| = ¢?,

Theorems 10 and 11 show that Q is contained in a unique maximal subgroup
isomorphic to H. Hence

PPO = u6(K)|G:NG(K)| =1~ (1+47) = —4".
Kest,

(2) Assume that t|q+1 and p = 3. Let r be a Zsigmondy prime for (3, f). Note
that » # t. Let B, be the subset of o, consisting of the subgroups K of G such
that » divides |G : K|.

By Theorem 11, if K € od, —%B, and K # G, every maximal subgroup containing
K is isomorphic to B. We claim that if K € sd; — ®B; and K # G, then K is a
maximal subgroup isomorphic to B. Indeed, assume that K is contained in the
intersection of M and M,, two distinct maximal subgroups of G isomorphic to B.
Since M| =PSL(2, g) x C», the intersection M| N M is isomorphic to a subgroup
L of PSL(2, g) x Cp. Let w : PSL(2, g) x C» — PSL(2, g) be the projection on
the first factor. If 7 (L) = PSL(2, q), we have |My: M| N M| = |M: M| N M;| =



THE PROBABILISTIC ZETA FUNCTION OF PSL(2, ¢), 2B2(g) AND 2G,(q) 193

|PSL(2, g) x C2: L| <2;hence M} N M, is normalized by M| and M, a contradic-

tion. If 7 (L) < PSL(2, ¢), then there exists a maximal subgroup J of PSL(2, ¢)

containing 7 (L). By Theorem 7, since ¢ = 3/ and f > 3 is odd, [PSL(2, ¢): J| is

divisible by r or ¢. Since |L| <2|J|, the index |PSL(2, ¢): J| divides |G : M N\ M;|.

Hence |G : M| N M| is divisible by r or 7, against the assumption K € o; — %RB;.
This shows that

PO0) =1-¢%(g*—q+1) + 2 u6(K) |G: NG (K)|

=—(q—=D(¢*+g+1)=0 (modr),
o) P((;t )(O) is not a power of .

(3) Assume thatt|q—1 and t # 2. Let 9, be the subset of s, consisting of G and
of the maximal subgroups of G isomorphic to H. Set B, = o, — %,;. We have

PEO)=1-("+ D)+ 16(K)|G:N(K)|=—4"+ X 16(K)|G:Ng(K)].
Ke%B, Ke%®R,
By Theorems 10 and 11, if K € %,, then K does not contain a Sylow p-subgroup
Q of G. Indeed, Q is contained in a unique maximal subgroup isomorphic to H.
Hence, p divides |G : K|. By Lemma 6, we obtain that p divides Pg)(O).

(4) Finally, assume that t | ®,(g). Then ¢ | afli) (that is, ¢ | aéﬂ ort| a;)). Let K
be in sd;. By Theorems 10 and 11, if K # G, then K is contained in a maximal sub-
group isomorphic either to B+ or to G(s), where s = g for some prime number r.

We claim that K is not contained in the intersection of two distinct maximal
subgroups M and M, isomorphic to B. Indeed, for each divisor d # 1 of a;i)
there exists a unique subgroup L of M| of order d. Hence L is normal in M;.
Therefore M, is the unique maximal subgroup of G containing L. So L is not a
subgroup of M| N M,. Thus, d divides |G : M1 N M,|. Thence |G : M| N M>]| is
divisible by a,gi). Since ¢ divides a;i) and K lies in &{;, we obtain the claim.

Let 9, be the subset of o, consisting of G and of the maximal subgroups of G
isomorphic to By. Set B, = A, —D,;. We have

>

&F e, p-1_
qpaq:F (g? 1)+ > IuG([()|G:NG(K)|-

(1)
P/ 0)=1-—
¢ 2p K e®;

Observe that a;i) divides 1 — ql’af) (gP~'—1)/(2p). Moreover, for each K € %;,
there exists a number s (where s” = g for some prime number r) such that K is
contained in a maximal subgroup M isomorphic to G(s). Let &; be the subset of
the natural numbers consisting of all such s:

S ={seN:s" =gq, r prime, IK € B, such that K < G(s)}.
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Suppose that ¥; = {s1, ..., s} for some k > 1. Let pﬁpf' . ﬂ” be a prime
factorization of f, where p; > p, ;i > 1fori e {1,...,n}and S z 0. Note that

S C{seN:sP =¢,forsomei€{l,...,n}}.

Clearly, if s € ¥;, then s* = g for some prime u dividing f. Moreover, since f is
odd, if p=2,then u #2. If p =3, thens = 3//3 does not lie in &,. In fact, if
K < G(s), then ®g(q) divides |G : K| and so K ¢ B,. By Lemma 9, there exists a
prime divisor r of

Dy,(q) Dy,(q) (:I:))
g“‘(q)z,xsl)"“’@zp(sk)’“q '

Clearly, r and ¢ are distinct, and r divides a(gi) and |G: K| for all K € &B;. By
Lemma 6, we conclude that r divides Pg)(O).

Finally, suppose that ¥, = &, i.e., B; = &. We leave it to the reader to check
that PV (0) =1 — gPaiP (gP~' —1)/(2p) is not a power of . O

5. Irreducibility of the Dirichlet polynomial

Lemma 13 [Damian et al. 2004, Lemma 3]. Letn € N. Then 1 —n/n’ is reducible
in R if and only if n is a nontrivial power in Z.

Lemma 14. Let G =PSL(2, g) with f > 1. Then ay441)2(G) # 0.

Proof. For g <25 the result follows by direct inspection. For the remaining cases,
note that every subgroup of G of order 2(¢—1)/J is a maximal subgroup isomor-
phic to Dy, —1/s; see [Huppert 1967, p. 213]. O

Proposition 15. Let G be as in the Main Theorem, with f > 1. Then Pg(s) is
irreducible in the ring of Dirichlet polynomials R.

Proof. Let G = G(q,m), with m € {1, 2,3}. The proposition’s validity when
m =1 and g € {4, 8, 9} is checked by direct inspection. For the rest of the proof,
we exclude these three cases.

Suppose that Pg(s) = g(s)h(s) for some Dirichlet polynomials g(s) and A(s)
in Q. From (3-2) and case (1) in the proof of Proposition 12, we obtain

p/m+1
We claim that P(p ) (s) is irreducible. We argue by contradiction. By Lemma 13,
if P(p ) (s) is redumble then p/™ 41 is a nontrivial power. Hence p/” +1 = b* for
some k > 2 and b > 1, so there are no Zsigmondy primes for (b, k). By Lemma 4,
(b, k) is either equal to (2" —1, 2) for some w €N or to (2, 6). If (b, k) =(2%—1, 2),
then p = 2. Hence fm = 3, so (¢, m) = (8, 1), against assumption. Finally, if

PP (s)=1-
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(b, k) = (2,6), then p/™ + 1 = 2° has no solution. Therefore, without loss of
generality, we suppose that g”)(s) =1 — (p/™ +1)/(p/™ 4+ 1)* and hP)(s) = 1.
Let 7 be a Zsigmondy prime for (p, 2 fm). In particular, for (m, f) = (1, 2),

if 52 divides p>+1,lett =5;
otherwise, let t be a Zsigmondy prime for (p, 4) different from 5.

To see why this is possible, note that a Zsigmondy prime for (p, 2 fm) exists since,
by assumption, 2 fm > 2 and fm # 3. If (m, f) = (1,2), i.e., (g, m) = (p>, 1),
then, by assumption, p is odd. So p? 4 1 = 2a for some odd number a. Suppose
that 524 p% + 1. Since we are assuming that (g, m) & {(4, 1), (9, 1)}, we conclude
that p? 4 1 does not divide 10. Hence there exists a Zsigmondy prime for (p, 4)
different from 5.

For a prime number 7, let v, : @ — Z U {oo} be the r-adic valuation map. For a
Dirichlet polynomial f(s) € R, define the integers a,(f), n € N, by the condition

=30

s
neN

Then max{v,(l) cai(g) # 0} + max {vr(l) cay(h) # O} = max{vr(l) ca;(G) # O}.
We claim that 2®)(s) = h(s). Indeed, since a,my1(g) # 0 and o (p/m4+1) =
v:(|G]), we get
max {o;(0) : a;(g) # 0} = max{v,(!) : 4(G) # 0}.

So, if a;(h) # 0, then ¢ does not divide . In particular, 1) (s) = h(s), as claimed.
It follows that

(5-1) PP (s) =gV (s)h(s).
Finally we show that h(s) = 1.

Projective linear groups (m = 1). Let r be an odd prime divisor of g—1 (recall that
q #9 and q is not a prime). Proposition 8, case (2), yields P(t ) (s)=1. Now (5-1)
yields 1) (s) = 1. So P(r)(s) is equal to g (s). By Lemma 14, a4(4+1)2(G) #0.
Hence, since r does not divide g(g+1)/2, we get a,;+1)/2(g(s)) # 0. It follows
that
max{v, () : a;(g) # 0} =max{v,() : /(G) # 0}.
Thus h(s) = hP) (s) = 1.

Suzuki and Ree groups (m = 2, 3). In these cases, ¢ clearly divides aq ) Let r be
a prime divisor of a(jF) By Proposition 12, case (4), we have P(t ) (s) = 1. By
(5-1), we get h)(s) = 1. Now a,imy1(g(s)) # 0 yields

max {v,(0) : a;(g) # 0} = max{v,(I) : /(G) # 0}.
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Hence h(s) = h")(s) = 1. O

6. Pg(—1) does not vanish

Proposition 16. Let G = G(g, m) be as in the Main Theorem. Then Pg(—1) # 0.

Proof. Projective linear groups (m = 1). For ¢ < 11 or g = 49, the proposition
holds by direct inspection. Assume that g is greater than 11 and that g # 49.
Assume f = 1. By Proposition 8, case (1), we get

p+1 +Zak(G)-

Pe@=1=1,11y 2

plk

By Lemma 6, if p divides k, then p2 divides a;(G)k. Hence

Po(=D)=1=(p+1)>+ > ax(Gk=~2p (mod p?).
plk

Assume f > 2. Let ¢t be a Zsigmondy prime for (p, 2 f). In particular, for f =2,

if 53 divides p>+1, lett = 5;
otherwise, let ¢ be a Zsigmondy prime for (p, 4) distinct from 5.

To see why this is possible, note that a Zsigmondy prime for (p, 2 f) exists since
g #8and f >2. If f =2, then, by assumption, p is odd. So p?>+ 1 = 2a for some
odd number a. Suppose that 5%t p>+ 1. Since ¢ & {4, 9, 49} by assumption, p>+ 1
does not divide 50. Hence there exists a Zsigmondy prime for (p, 4) distinct from 5.
We observe that ¢ # 3. As in the proof of Proposition 8, case (2), we obtain:

—1)/2 ar(G
q(q—-1)/ n Z K ( )
laq=D/2F " &k
(b) If M is a maximal subgroup of G, the index |G : M| is divisible by ¢ if and only
if M is not isomorphic to Dy(,41)/s. In particular, if M is not isomorphic to

D>(441)/s, we have v, (|G : M) > v,(|G|)/2, where as before v, : Q — ZU{o0}
is the ¢-adic valuation map.

(@) Pg(s)=1-

(c) If My and M, are distinct maximal subgroups isomorphic to D;,41)/s5, then
|G : M| N M>| is divisible by |G|/2 or M| N M> is contained in a maximal
subgroup not isomorphic to Dy 1/5-

We claim that

(@+D@-2)(¢*—g +2)

n +> ka(G) £0 (mod 19D+,

tk

Pg(=1) =

In fact,

) ((q+1)(q—2)(q2—q +2)

) )=u,(q+1) — 0,(1G)).
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Moreover, suppose that a; (G) # 0 and that ¢ divides k, for some k > 1. Then v, (k) >
v:(]G])/2. Indeed, by (b) and (c), the number k is divisible by |G|/2 or k divides
the index of a maximal subgroup M such that ¢ divides |G : M| and v;(|G : M]) >
v;(|G|)/2. Finally, by Lemma 6, we have kay (G) = 0 (mod ¢*(1IGD+1),

Suzuki and Ree groups (m = 2, 3). Let t be a Zsigmondy prime for (p,2pf). In
particular, if (p, f) = (2, 7), choose t = 113. Clearly ¢ | agi).

We claim that if K is a subgroup of G and ¢ divides |G : K|, then v,(|G: K|) =
v;(]G|). By Theorem 10 and 11, every maximal subgroup of G has this property.
Moreover, if M is a maximal subgroup of G such that ¢ does not divide |G : M|,
then M is isomorphic to By. Finally, the index of the intersection of two dis-
tinct maximal subgroups isomorphic to B is a multiple of af(li); see the proof of
Proposition 12, case (4).

Now, using Lemma 6, we get that if ¢ divides k, then r?U9D divides kay(G).
Again by case (4) in Proposition 12, we have

@y, p-1_ 2
o= 1= (P S o
tlk

PP, p—1_ 2
50 PG(—I)EI—(q %9 (qu 1)) (mod r22(GDY_ Finally

F ¢, p-1_ 2
v,(l_(""“q o 1)) )=u,(a§,i>)=ut<|G|).
Hence Pg(—1) #0. 4

7. Dirichlet polynomials of PSL(2, ¢), with ¢ = p/

We list here the Dirichlet polynomial P(s) := Ppsr(2,4)(s) for all values of g.
We adopt the following conventions: u is the usual Mdbius function on positive
integers; r, = %(ph +1); 0, = %(ph 1)y r=rp;v=vr;anda =1if f = 2% for
some k > 1, a = 0 otherwise.

e Forg =35,
5 6 10 20 60 60
P)=1->_5_ 0,20, 00 00
) 56 100 ' 20° " 30°  60°
e Forg =17,
14 8 21 28 56 84
Pis)=1——_°S =L, =0 50 °&
) 7% T Tos s s
e Forg =09,
12 10 30 60 36 45 240 90 240 900 . 720
P(s)=1—=_9 _

e 10 15 30 T3¢ Tar 60 To08 T 120° T 180° T 360°
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Forg =11,

22 12 66 220 132 165 220 990 660
T 12 e T T3z Y6y 2200 330° T 660°

P(s)=1

For g = p, p =42 (mod 5), p = £3 (mod 8),
pr 2r 2pr pro/6 pro/2

Pis)=1--22 _
) (pv)*  (pr)’ (2r)s+(2pr)s (prv/6)* = (prv/2)*

2pro/3 pro 2pro

@pro/3)* ~ (pro)®  @2pro)*

For g = p, p = +2 (mod 5), p = +1 (mod 8),

Ps)=1— pv__ pr 2r n 2pr _ pro/6 pro/2 2pro/3 __prv
()’ (pr)* @) @pr)’ (pro/12)° (proj4)* - (pro/3)* (pro)*
For g = p, p = %1 (mod 5), p = £3 (mod 8),
Pls)=1— pv _ pr 2r n 2pr  pro/15 pro/6 2pro/5
(pv)*  (pr)* @r)*  @pr)"  (prv/30)° = (prv/6)* = (prv/5)°
2prov/3 pro/2 2prov/3 3pro 2pro

(pro/3)* ~ (pro/2)*  Qpro/3)*  (pro)® = (2pro)*
For g = p, p=+£1 (mod5), p = %1 (mod 8),
Ps)=1- pvs B prs _ 2rs+ 2prs . pru/lSS __prv/6 . prv/3s
(po)*  (pr)*  @2r)*  @pr)’  (pro/30)°  (prv/12)* = (pro/6)
2pro/5 pro/2 4pro/3 4pro/3 Spro 4pro

(pro/5)°  (pro/®’ " (pro/3y  @pro3Y  (pro)’ | @pro)’
Forq:Zf,f> 1,

P(s) = Z p (f)( 27" ro/(ravn) 2"y oy, 27 rojvy, 2 ro/ry

SN\ /(o 27 oo 27 rofonl” T 127 ro/n
h>1

2 ro/ry, 2/+2rp 242y
+ 2+ rv/r,)® Fuf) 2/t + [2/+2r0)% )"

Forq = p/, pe (3,5}, f > 1 odd,
f—h (rpv ) 2 fﬁhrv/z) frl)/l)
P(s) = m( P o) 2p ) N
v hzlf:ﬂ(f/ )([Pf_hrv/(rhvh)]s 2p/~"rofonl®  [pfrofonl®
h>1 _ pfru/rh I 2pfrv/vh )
(p/ro/m)* ~ 2pfrojo,)®

+u(f) _p/"2r0 5 3ro/6  3lrv2 3o 2.3/ rp
' 2p ol T\ BIr6F 302 Bl T [2:37r0F

Lo ( 5/rv/30 5/rv/2 5/rv/3 5/rv )
PS5 [5/rv/301  [57rv/215  [5/rv/3)  [5/r0]*
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e Forg=p/,p>3, f>4evenor p==+1,0(mod5), f =2

_ p!trof(rvn)  2pTrojoy
o= % ﬂ(f/h)([Pf_hrU/(rhvh)]s [2p/~ro/o,]*

f/hodd plrojuy, pfro/r, 2pfrojvy, )

Cpfrofonl  Ipfrofml® T R2pTrojosl

f=h f—h f
(2 ro/on)  pTM2ropon pIro,
+ >l )([

< pIro/@ry) P [p7rofonl T [p/ro/2oy)F

f/heven B plro/r, + 2pfrojvy, al - plro plro
[p/ro/Q2r)I* ~ [p/rofos)® [p/rv/2  [p/ro)

e Forg=p? p>5, p=42(mod5),

Pls)=1— 2r _ p2r _ pzv 4 2p2r _ 2pr 4prry 2p2rr1
@r)* (pPr)* (pPo)*  @pPr)t (pr)' Qprr)t o (pPrr)’
2p2rz)1 4p2rr1 pzrv 3p2rv pzrv/15

(p2ro))*  @p2rr)S  (P2rv/2)°  (p*ro)*  (p?ro/30)°
p*ro/3 2p%rv/5 2p%rv/3 . 4p’rv/3 4p*ro

(p*rof6)* ~ (p?rv/5)° ~ (p*rv/3)*  (2p*rv/3)° ~ (2p*rv)*

e Forg=p/,p>5,f>1o0dd,
f=h 2pf v/
Pis) — w2 tro/rwvn) - 2pi o/,
(S) ;ﬂ(f/ )([pfhru/(rhvh)]s [zpf—hrv/vh]s

B plrofo, B plro/r, 2pfro/o,
[pfrofwpl* [pfro/ml*  R2pfrofoplt )
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