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The topology of broken Lefschetz fibrations is studied by means of han-
dle decompositions. We consider a slight generalization of round handles
and describe the handle diagrams for all that appear in dimension four.
We establish simplified handlebody and monodromy representations for a
certain subclass of broken Lefschetz fibrations and pencils, showing that
all near-symplectic closed 4-manifolds can be supported by such objects,
paralleling a result of Auroux, Donaldson and Katzarkov. Various construc-
tions of broken Lefschetz fibrations and a generalization of the symplectic
fiber sum operation to the near-symplectic setting are given. Extending the
study of Lefschetz fibrations, we detect certain constraints on the symplectic
fiber sum operation to result in a 4-manifold with nontrivial Seiberg–Witten
invariant, as well as the self-intersection numbers that sections of broken
Lefschetz fibrations can acquire.

Introduction

In the last decade, symplectic topology has been extensively used to explore the
world of smooth 4-manifolds, where Donaldson’s work providing a description
of symplectic 4-manifolds in terms of Lefschetz fibrations up to blow-ups played
a remarkable role. Auroux, Donaldson and Katzarkov [Auroux et al. 2005] ex-
tended this result, establishing a correspondence between the larger class of near-
symplectic 4-manifolds and an appropriate generalization of Lefschetz fibrations
up to blow-ups. A detailed topological study of these fibrations, called broken
Lefschetz fibrations herein, and generalization of various ideas from the study of
symplectic 4-manifolds to this broader setting are the main themes of our article.

Our goal is to give handlebody descriptions of broken Lefschetz fibrations to as-
sist with identifying the total spaces of these fibrations and with calculating smooth
invariants. Although we only refer to the Seiberg–Witten invariant in this paper,
two other invariants motivate our studies very much. One is the Heegaard–Floer
invariant of Ozsváth and Szabó which fits in a TQFT and makes use of handle
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decompositions. Recall that the Heegaard–Floer invariant of any symplectic 4-
manifold was shown to be nontrivial using a decomposition that arises from the
underlying Lefschetz pencil structure after Donaldson [2004]. The second invariant
is the recently introduced Lagrangian matching invariant of Perutz [2007; 2008],
associated to broken Lefschetz fibrations. This is generalized from the Donaldson–
Smith invariant [2003] defined in the presence of a symplectic Lefschetz pencil,
which was shown to be equivalent to the Seiberg–Witten invariant for pencils of
high degree by Usher [2004]. Perutz conjectured his invariant to be a smooth invari-
ant and its calculation to be indeed independent of the broken Lefschetz fibration
that is chosen on a fixed 4-manifold. An affirmative answer to this conjecture in
turn would require having ways of constructing broken Lefschetz fibrations, prefer-
ably as simple as possible in a sense that eases the calculations of the invariant. Our
results in this article, which we briefly present below, are planned to be groundwork
for future studies in these directions.

In Section 2 we describe a generalization of round handle attachments and show
that there are exactly two types: classical round handles and a twisted version
of them. In dimension four, this is in agreement with the corresponding near-
symplectic local models [Auroux et al. 2005; Honda 2004a]. The handlebody dia-
grams for both untwisted and twisted round 1-handles as well as round 2-handles
are given in Sections 2.1 and 2.2. We introduce a subclass of broken Lefschetz
fibrations, called simplified broken Lefschetz fibrations, that can be effectively de-
scribed in terms of handlebody diagrams and monodromy representations similar
to those of Lefschetz fibrations (see Section 2.3). The existence of simplified bro-
ken Lefschetz pencils on any 4-manifold which does not have a negative-definite
intersection form is proved in Theorem 2.6.

In Section 3 we provide several constructions of broken Lefschetz fibrations.
We give handlebody diagrams for near-symplectic broken Lefschetz fibrations and
pencils on some standard 4-manifolds, with untwisted and twisted round handles,
with connected and disconnected fibers. Also a handlebody description of a broken
Lefschetz fibration on the connected sum of the total spaces of two such fibrations
is given. Recall that there is a different generalization of Lefschetz fibrations and
pencils which are allowed to have nodal singularities and base points with non-
standard orientations and decorated with the adjective “achiral”. In Section 3.1
we give examples of 4-manifolds which do admit achiral Lefschetz fibrations or
pencils but broken fibrations. We also show how one can turn achiral fibrations
into broken ones after blowing-up the 4-manifold. From the work of Gay and
Kirby [2007] who proved the existence of broken achiral Lefschetz fibrations on
arbitrary closed smooth oriented 4-manifolds, it follows that after blow-ups any
such 4-manifold admits a broken Lefschetz fibration. Another operation we in-
troduce in this section is the broken fiber sum which generalizes the well-known
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symplectic fiber sum operation [McCarthy and Wolfson 1995; Gompf 1995] to the
near-symplectic setting (Theorem 3.6), and whose effect on the Seiberg–Witten
invariants is tractable.

In Section 4, we turn our attention to understanding how far certain facts re-
garding symplectic 4-manifolds and Lefschetz fibrations can be pushed into the
near-symplectic geometry. Here we view 4-manifolds with nontrivial Seiberg–
Witten invariants as an intermediate class that lies in between near-symplectic and
symplectic 4-manifolds. A question we address is the behavior of near-symplectic
4-manifolds with nontrivial Seiberg–Witten invariants under the symplectic fiber
sum operation. Even though symplectic fiber sum of two symplectic 4-manifolds
is again symplectic and thus has nontrivial Seiberg–Witten invariants, we show that
the symplectic fiber sum of near-symplectic 4-manifolds with nontrivial Seiberg–
Witten invariants can result in 4-manifolds with trivial or nontrivial invariants de-
pending on the choice of fibers that we sum along (Theorem 4.1). In a comparison
with symplectic Lefschetz fibrations, we determine the constraints on the self-
intersection numbers of sections of broken Lefschetz fibrations, possibly with total
spaces which have nontrivial Seiberg–Witten invariants (Theorem 4.2). Lastly,
in Proposition 4.3 we construct near-symplectic broken Lefschetz fibrations on
a family of 4-manifolds which are not symplectic but have nontrivial Seiberg–
Witten invariants, namely, on knot surgered elliptic surfaces where the knots are
nonfibered.

1. Background

1.1. Near-symplectic structures. Let ω be a closed 2-form on an oriented smooth
4-manifold X such that ω2

≥ 0, and Zω be the set of points where ω ≡ 0. Then
ω is called a near-symplectic structure on X if ω2 > 0 on X \ Zω and if it satis-
fies the following transversality condition at every point x in Zω: if we use local
coordinates on a neighborhood U of x to identify the map ω : U → 32(T ∗U ) as
a smooth map ω : R4

→ R6, then the linearization D ωx : R
4
→ R6 at x should

have rank three – which is in fact independent of the chosen charts [Auroux et al.
2005]. In particular, Z = Zω is a smoothly embedded 1-manifold in X . We then
call (X, ω) a near-symplectic 4-manifold, and Z the zero locus of ω.

One of the motivations for studying near-symplectic structures has been the
observation that any closed smooth oriented 4-manifold X with b+(X) > 0 can be
equipped with a near-symplectic form, which was known to gauge theory aficiona-
dos since early 1980s and a written proof of it was first given by Honda [2004b]
through the analysis of self-dual harmonic 2-forms (also see [Auroux et al. 2005]).
Thus the near-symplectic family is much broader than the symplectic family of
4-manifolds. For instance, connected sums of symplectic 4-manifolds can never
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be symplectic, due to the work of Taubes and the vanishing theorem for Seiberg–
Witten invariants. However these manifolds would still have b+ > 0 and therefore
are near-symplectic.

Using a generalized Moser type argument for harmonic self-dual 2-forms, Honda
showed [2004a] that there are exactly two local models around each connected
component of Zω. To make this statement precise, let us consider the following
local model: Take R4 with coordinates (t, x1, x2, x3) and consider the 2-form

�= dt ∧ d Q+∗(dt ∧ d Q),
where

Q(x1, x2, x3)= x2
1 + x2

2 − x2
3

and ∗ is the standard Hodge star operator on 32R4. Restrict � to R times the unit
3-ball. Define two orientation preserving affine automorphisms of R4 by

σ+(t, x1, x2, x3)= (t + 2π, x1, x2, x3),

σ−(t, x1, x2, x3)= (t + 2π,−x1, x2,−x3).

Since both maps preserve�, they induce near-symplectic forms ω± on the quotient
spaces N± = R × D3/σ±. Honda shows that given any near-symplectic (X, ω)
with zero locus Zω, there is a Lipschitz self-homeomorphism φ on X which is
the identity on Zω, smooth outside of Zω and supported in an arbitrarily small
neighborhood of Zω, such that around each circle in Zω, the form φ∗(ω) agrees
with one of the two local near-symplectic models (N±, ω±). For our purposes,
we can always replace the near-symplectic form ω with such a form φ∗(ω). The
zero circles which admit neighborhoods (N+, ω+) are called of even type, and the
others of odd type.

1.2. Broken Lefschetz fibrations. Let Z be an embedded smooth 1-manifold, C
be a finite set of points in X \ Z , and S be a compact orientable surface. A smooth
map f : X → S is then called a broken Lefschetz fibration if on X \ Z it has local
models of a Lefschetz fibration with C the critical set, whereas at each z ∈ Z , there
are coordinates (t, x1, x2, x3) around z with t a local coordinate on Z , in terms
of which f is given by (t, x1, x2, x3) 7→ (t, x2

1 + x2
2 − x2

3). We will call Z the
round singular locus of f , and its image f (Z) the round singular image. A broken
Lefschetz pencil is defined similarly for S = S2, by assuming that there is also a
finite set of points B in X \(Z ∪C) and the map f has local models of a Lefschetz
pencil instead with C the critical set and B the base locus.

Broken Lefschetz fibrations and pencils were introduced by Auroux, Donald-
son, and Katzarkov [2005] under the name “singular Lefschetz fibrations”, which
were shown to be to near-symplectic 4-manifolds what Lefschetz fibrations are to
symplectic 4-manifolds:



BROKEN LEFSCHETZ FIBRATIONS AND NEAR-SYMPLECTIC FOUR-MANIFOLDS 205

Theorem 1.1 [Auroux et al. 2005]. Suppose 0 is a smooth 1–dimensional sub-
manifold of a compact oriented 4–manifold X. Then the following two conditions
are equivalent:

• There is a near-symplectic form ω on X , with Zω = 0.

• There is a broken Lefschetz pencil f on X which has round singularities
along 0, with the property that there is a class h ∈ H 2(X) such that h(6) > 0
for every fiber component 6.

Moreover, the implications in each direction can be obtained in a compatible way.
That is, given a near-symplectic form ω, a corresponding broken Lefschetz pencil
(BLP) can be obtained so that all the fibers are symplectic on the complement of
the singular locus. Conversely, given a broken Lefschetz fibration (BLF) satisfying
the indicated cohomological condition, one obtains a deformation class of near-
symplectic forms which make the regular fibers symplectic.

Blowing-up the base locus of a broken Lefschetz pencil we get a broken Lef-
schetz fibration. When the BLF/BLP supports a near-symplectic structure, these
blow-ups/downs are understood to be made symplectically. If we have in hand
a BLF over a Riemann surface S that satisfies the cohomological condition in
the statement of the theorem, then we can construct compatible near-symplectic
forms with respect to which a chosen set of sections are symplectic [Auroux et al.
2005]. From now on we will refer to such a fibration f on X as a near-symplectic
broken Lefschetz fibration, and we will say that the pair (X, f ) is near-symplectic.
Implicit in this notation is that the near-symplectic form on X is chosen from the
unique deformation class of near-symplectic forms compatible with f obtained via
Theorem 1.1.

Example 1.2. Let M3 be a closed 3-manifold and f : M → S1 be a circle val-
ued Morse function with only index 1 and 2 critical points. Then the 4-manifold
X = S1

× M can be equipped with a near-symplectic structure. To see this,
first note that by a theorem of Calabi there exists a metric g on M which makes
d f harmonic. Parametrize the S1 component by t , and consider the form ω =

dt ∧ d f + ∗(dt ∧ d f ), where the Hodge star operation is defined with respect to
the product of the standard metric on S1 and g on M . Thus ω2

≥ 0 and ω vanishes
precisely on Z = S1

× Crit( f ). Finally using local charts one can see that ω
vanishes transversally at every point on Z , and also that all circles of Zω are of
even type. If we consider a 3-manifold MK obtained from S3 after a 0-surgery on
an arbitrary knot K , then it comes with a circle valued Morse function. (Note that
Z ∼= H 1(MK ;Z) ∼= [MK , S1

].) Then ω defined as above yields a symplectic form
on X = S1

×MK if and only if K is fibered so that f can be assumed to have no
critical points, that is, when Z =∅.
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Now let X = S1
×MK for some nonfibered K . For simplicity, assume that the

map f :MK→ S1 above is injective on its critical points. Then the preimage of any
regular value of f is a Seifert surface of K capped off with a disk, that is, a closed
orientable surface. While passing an index k critical point (k = 1, 2), a k-handle is
attached to get one Seifert surface from another. It follows that f : MK → S1 is a
“fibration-like” map, where the genera of fibers are increased or decreased by one
at every critical point, depending on k = 1 or k = 2, respectively. When crossed
with S1, this yields a broken fibration id× f : X→T 2. The base torus T 2

= S1
×S1

can be parameterized by (t, s) where t traces the outer circle factor and s traces
the base circle of f . The monodromy of this fibration is trivial in the t direction
and is prescribed by the knot monodromy in the s direction.

A BLF over a Riemann surface can be split into Lefschetz fibrations over sur-
faces with boundaries, and fibered cobordisms between them relating the surface
fibrations over the boundary circles. Round singularities of a BLF are contained
in these cobordisms, which herein will be called round cobordisms. The local
models around each round singular circle implies that these cobordisms are given
by fiberwise handle attachments, all with the same index (either 1 or 2). Roughly
speaking, such cobordisms with 1-handle attachments increase the genus of a fiber
component, or connect two different fiber components, whereas cobordisms with
2-handle attachments either decrease the genus or disconnect a fiber component.
We study these cobordisms more rigorously in the next section. In [Auroux et al.
2005] it was shown that for any given near-symplectic form ω on X , a compatible
broken Lefschetz fibration f : X # b CP2

→ S2, where b is the number of base
points, can be arranged in the following way: The base S2 breaks into three pieces
Dl ∪ A ∪ Dh , where A is an annular neighborhood of the equator of the base S2

which does not contain the image of any Lefschetz critical point, Dl and Dh are
disks, so that (i) on Xl = f −1(Dl) and Xh = f −1(Dh) we have genuine Lefschetz
fibrations, and (ii) the cobordism W = f −1(A) is given by only fiberwise 1-handle
attachments if one travels from the Xl side to Xh side. We call these kind of broken
Lefschetz fibrations/pencils directed, Xl the lower side and Xh the higher side.

1.3. Seiberg–Witten invariants. We now review the basics of Seiberg–Witten in-
variant. The Seiberg–Witten invariant of a smooth closed oriented 4-manifold X
is an integer valued function which is defined on the set of Spinc structures on X .
If we assume that H1(X;Z) has no 2-torsion, then there is a one-to-one corre-
spondence between the set of Spinc structures on X and the set of characteristic
elements of H 2(X;Z) as follows: To each Spinc structure s on X corresponds a
bundle of positive spinors W+s over X . Let c(s) = c1(W+s ) ∈ H 2(X;Z). Then
each c(s) is a characteristic element of H 2(X;Z), that is, c1(W+s ) reduces mod 2
to w2(X).
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In this setup we can view the Seiberg–Witten invariant as an integer valued
function

SWX : {k ∈ H2(X;Z) | PD(k)≡ w2(X) (mod 2)} −→ Z,

where PD(k) denotes the Poincaré dual of k. The Seiberg–Witten invariant SWX

is a diffeomorphism invariant when b+(X) > 1. Its overall sign depends on our
choice of an orientation of

H 0(X;R)⊗ det H 2
+
(X;R)⊗ det H 1(X;R).

If SWX (β) 6= 0, we call β (and its Poincaré dual PD(β) ∈ H 2(X;Z)) a basic class
of X . If (X, ω) is a symplectic 4-manifold, the canonical class

KX =−c1(X, ω)

of (X, ω) is a basic class when b+(X) > 1 with SWX (KX ) = 1. It can be shown
that, if β is a basic class, then so is −β with

SWX (−β)= (−1)(e(X)+σ(X))/4 SWX (β),

where e(X) is the Euler characteristic and σ(X) is the signature of X . We say that
X is of simple type if every basic class β of X satisfies

β2
= 2e(X)+ 3σ(X).

It was shown in [Taubes 1995] that symplectic 4-manifolds with b+2 > 1 are of
simple type. Let 6⊂ X be an embedded surface of genus g(6)> 0 with [6]2≥ 0.
If β is a basic class of X , we have the following adjunction inequality (see [Ozsváth
and Szabó 2000]):

(1) −χ(6)= 2g(6)− 2≥ [6]2+ |β · [6]|.

When b+(X)= 1, the Seiberg–Witten invariant SWX,H (A)∈Z is defined for every
positively oriented element H ∈ H 2

+
(X;R) and every element A ∈C(X) such that

A·H 6=0. We say that H determines a chamber. The wall-crossing formula [Li and
Liu 1995] prescribes the dependence of SWX,H (A) on the choice of the chamber
(that of H ): if H, H ′ ∈ H 2

+
(X;R) and A ∈ C(X) satisfy H · H ′ > 0, then

SWX,H ′(A)= SWX,H (A)+
{

0 if A · H and A · H ′ have the same sign,
±1 otherwise.

In the presence of a near-symplectic structure ω on X with b+(X) = 1, we will
always consider the Seiberg–Witten invariant of (X, ω) computed in the chamber
of ω.
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2. Topology of broken Lefschetz fibrations

Handlebody diagrams of Lefschetz fibrations over S2 are easy to depict and proved
to be useful in the study of smooth 4-manifolds. The reader is advised to turn to
[Gompf and Stipsicz 1999] for the details of this by now classical theory and its
several applications. In this section, we extend these techniques to the study of
broken Lefschetz fibrations. For this purpose, we first discuss round handles that
arise naturally in the context of 4-dimensional BLFs thoroughly.

In full generality, we are interested in attaching handles in a parameterized way
as we now explain: Let n ≥ 4 and regard S1

× Dn−1 as the total space of a Dn−1

bundle over S1 defined by the projection map onto the circle component. Fibers
can be thought of as (n−1)-dimensional k-handles Dk

×Dn−1−k which we would
like to attach so that globally their attachments respect the bundle structure. For
0 < k < n − 1 this requires a choice of splitting the trivial Dn−1 bundle over S1

into Dk and Dn−1−k bundles over S1, which would descend from a splitting of the
trivial Rn−1 bundle over S1 into rank k and rank n − 1− k vector bundles over
S1. The latter are classified by homotopy classes of mappings from S1 into the
Grassmannian G(n−1, k). Since π1(G(n−1, k))=Z2 for 0< k< n−1 [Steenrod
1951] and n− 1 ≥ 3, there are two possible splittings up to isotopy. These can be
realized using the two orientation preserving self-diffeomorphisms of Rk

×Rn−1−k ,
where one is the identity map, and the other one is defined by

(x1, x2, . . . , xn−2, xn−1) 7→ (−x1, x2, . . . , xn−2,−xn−1).

Restricted to Dk
×Dn−1−k each splitting specifies an (n−1)-dimensional k-handle

structure on all Dn−1 fibers of the initial bundle S1
× Dn−1

→ S1, simply by
specifying the core (and thus the cocore) on each fiber. The boundary restriction
on the first component gives an Sk−1

× Dn−1−k subbundle. The total space L of
the last bundle is a submanifold of S1

×Dn−1. Hence for 0< k < n−1, we define
an n-dimensional general round k-handle as a copy of S1

× Dn−1, attached to the
boundary of an n-dimensional manifold X by an embedding of L ↪→ ∂X .

The first comprehensive study of round handles is due to Asimov [1975], and
more on 4-dimensional round 1-handles can be found in [Gay and Kirby 2007].
However, both articles assume a restriction on the way these handles are attached:
they only deal with round k-handles attached along S1

× Sk−1
×Dn−1−k , which in

our definition corresponds to the trivial splitting of the Dn−1 bundle. We will refer
to these as classical round handles. Our second type of round handle attachment
arises from the latter model where L is a Z2 quotient of S1

× Sk−1
× Dn−1−k .

We call the round handles attached in the classical way even or untwisted round
handles, and the others odd or twisted round handles – corresponding in dimension
four to the even and odd local models around circle components of the zero loci
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of near-symplectic forms as discussed in Section 1.1. One then easily checks the
following result:

Lemma 2.1. For n≥ 4 and 0< k< n−1, a general n-dimensional round k-handle
attachment is given by a k-handle attachment followed by a (k+1)-handle attach-
ment that goes over the k-handle geometrically twice, algebraically zero times if it
is an untwisted round handle and twice if it is a twisted round handle.

The ones which interest us in this paper are 4-dimensional round 1- and 2-
handles. From the very definition of broken Lefschetz fibrations we conclude that:

Lemma 2.2. A round cobordism with a connected round locus and embedded
round image in a broken Lefschetz fibration is given either by a twisted or untwisted
round 1-handle (dually round 2-handle) attachment.

After a small perturbation of the BLF we can decompose any round cobordism
into round cobordisms with connected round loci, so this lemma indeed tells that
any round cobordism appearing in a BLF can be realized as a sequence of round
handle attachments. Conversely, if two surface fibrations are related through a
round handle attachment, the fibrations on the two ends of such a cobordism W
uniquely extend to a broken fibration on W over S1

× I , with only one round
singularity given by the centers of the cores of fiberwise attached 1-handles (or
dually by the centers of the cores of fiberwise attached 2-handles), which make up
the round handle.

We describe the attachments in the twisted case more explicitly. The attachment
of a twisted round 1-handle is made along the boundary of a D1 subbundle that
traces a Möbius band. This is topologically the D2 neighborhood of a circle in
S1
× D3 covering the base S1 twice. If we restrict our attention to the D1 bundle

(parameterized by x1) over S1, both untwisted and twisted round 1-handles are
seen to have attaching regions given by the restriction of this bundle to its bound-
ary (which gives a bi-section, or multisection of multiplicity 2, of the D1 bundle)
times the complementary D2 bundle. The twisted and untwisted cases correspond
respectively to this bi-section having one or two components. Similarly, a twisted
round 2-handle is attached along a collar neighborhood of a Klein Bottle, whereas
in the untwisted case we would be gluing along a collar neighborhood of a torus.

Remark 2.3. Recall that a fold type singularity of a map from an n-dimensional
manifold to a surface is locally modeled by

(x, t) 7→ (x2
1 + · · ·+ x2

k − x2
k+1− · · ·− x2

n−1, t)

for some 1≤ k ≤ n− 1, where (x, t) ∈ Rn−1
×R. Since an n-dimensional general

round k-handle naturally admits a map with fold singularities parameterized along
a circle, the above lemma can be generalized to maps with such fold singularities
in any dimension.
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2.1. Round 1-handles. Regarding the circle factor of an untwisted round 1-handle
S1
×D1
×D2 as the union of a 0-handle and a 1-handle, we can express an untwisted

round 1-handle as the union of a 4-dimensional 1-handle H1 and a 2-handle H2.
This handle decomposition can be seen simply by taking the product of the annulus
S1
× D1 with D2 so as to conclude that H2 goes over H1 geometrically twice

but algebraically zero times. In the same way, we can realize a twisted round
1-handle as the union of a 1-handle H1 and a 2-handle H2, too. However the
underlying splitting this time implies that H2 goes over H1 both geometrically and
algebraically twice.

We are ready to discuss the corresponding Kirby diagrams. Recall that our
aim is to study the round handle attachments to boundaries of (broken) Lefschetz
fibrations. Let F denote the 2-handle corresponding to the regular fiber. Both
in untwisted and twisted cases, the 2-handle H2 of the round 1-handle links F
geometrically and algebraically twice and can attain any framing k. Both “ends”
of the H2 are allowed to go through any one of the 1-handles of the fiber be-
fore completely wrapping around F once. In addition, these two ends might twist
around each other as in Figure 1. (Caution! The “twisting” discussed in [Auroux
et al. 2005] is not this one; what corresponds to it is the framing k.) The difference
between untwisted and twisted cases only show-up in the way H2 goes through H1

as demonstrated in the Figure 1.

2.2. Round 2-handles. The handle decomposition of round 2-handles is analo-
gous to that of round 1-handles. Regarding the circle factor of an untwisted round
2-handle S1

×D2
×D1 as the union of a 0-handle and a 1-handle, this time we can

express an untwisted round 2-handle as the union of a 4-dimensional 2-handle H ′2
and a 3-handle H ′3. For a twisted round 2-handle we get a similar decomposition.
However the splittings once again imply the difference: the 3-handle goes over

k

0

−1 −1

−4

Figure 1. An arbitrary twisted round 1-handle (left), and an un-
twisted round 1-handle attachment to a genus two Lefschetz fibra-
tion over a disk (right).
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the 2-handle geometrically twice and algebraically zero times in the untwisted
case, and both geometrically and algebraically twice in the twisted case. One can
conclude this from the previous subsection as well, since a round 2-handle turned
upside down is a round 1-handle.

We are now ready to discuss the corresponding Kirby diagrams for attaching
round 2-handles to Lefschetz fibered 4-manifolds with boundary. The round 2-
handle attachment to a surface fibration over a circle that bounds a Lefschetz
fibration is realized as a fiberwise 2-handle attachment. The attaching circle of
the 2-handle H ′2 of a round 2-handle is then a simple closed curve γ on a regular
fiber, which is preserved under the self-diffeomorphism of the fiber prescribed by
the monodromy of this fibration up to isotopy. Since this attachment comes from a
fiberwise handle attachment, H ′2 should have fiber framing zero. As usual, we do
not draw the 3-handle H ′3 of the round 2-handle, which is forced to be attached
in a way that it completes the fiberwise 2-handle attachments. The difference
between the untwisted and twisted cases is then somewhat implicit; it is distin-
guished by the two possible ways that the curve γ is mapped onto itself under a
self-diffeomorphism of the fiber determined by the monodromy. If γ is mapped
onto itself with the same orientation, then we have an untwisted round 2-handle,
and a twisted round 2-handle if the orientation of γ is reversed. The reader might
want to refer to the relevant monodromy discussion after the proof of Theorem 2.6.

The upshot of using round 2-handles is that one can depict any Lefschetz fi-
bration over a disk together with a round 2-handle attachment via Kirby diagrams
explicitly. One first draws the Lefschetz 2-handles following the monodromy data
on a regular diagram of D2

× 6g (where g is the genus of the fibration) with
fiber framings −1, then attaches H ′2 with fiber framing 0 and includes an extra
3-handle. We draw the Kirby diagram with standard 1-handles so as to match the
fiber framings with the blackboard framings, which can then carefully be changed
to the dotted notation if needed. Importantly, it suffices to study only these type
of diagrams when dealing with BLFs on near-symplectic 4-manifolds, as we will
prove in the next subsection.

To illustrate what we have stated above, let us look at the two simple exam-
ples in Figure 2. In the first example the round 2-handle is attached to a trivial
fibration, so γ is certainly mapped onto itself with the same orientation. Therefore
it is an untwisted round 2-handle. For the second one, we can express the self-
diffeomorphism of the 2-torus fiber induced by the monodromy µ by the matrix:(

−1 2
0 −1

)
and the curve γ by the matrix [1 0] T . Thus µ maps γ to −γ , and this yields a
twisted round 2-handle attachment. Both of these examples will be revisited later.
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0

0

⋃
3− h

0

0

⋃
3− h

−1
−1

Figure 2. Left: An untwisted round 2-handle attachment to D2
×

T 2. Right: A twisted round 2-handle attachment to an elliptic
Lefschetz fibration over a disk with two Lefschetz singularities.
Red handles make up the round 2-handle.

2.3. Simplified broken Lefschetz fibrations.

Definition 2.4. A simplified broken Lefschetz fibration on a closed 4-manifold X
is a broken Lefschetz fibration over S2 with only one round singularity and with all
critical points on the higher side. A simplified broken Lefschetz pencil is a broken
Lefschetz pencil that yields a simplified broken Lefschetz fibration on X̃ obtained
by blowing-up the base points of the pencil on X .

Since the total space of the fibration is connected, the “higher side” always
consists of connected fibers. The fibers on the lower side have lower genus when-
ever the fibers are connected, while in general the term refers to the direction of
the fibration. Simplified BLFs can be depicted efficiently using the handlebody
diagrams described in Section 2.2. Examples are given in the next subsection.

We will need the following lemma:

Lemma 2.5. If X admits a directed broken Lefschetz fibration over S2, then it
can be replaced by a new broken Lefschetz fibration over S2, where all Lefschetz
singularities are contained in the higher side.

Proof. To begin with, we can perturb the directed fibration so as to guarantee that
it is injective on the circles of the round locus. Thus the fibration can be split into
a Lefschetz fibration over a disk (the lower side), to which we consecutively attach
round 1-handles, and then we close the fibration by another Lefschetz fibration
over a disk (the higher side).

To simplify our discussion, for now assume that the fibers are all connected,
so there is the lower genus side Xl with regular fiber Fl , the round handle cobor-
dism W , and the higher genus side Xh with regular fiber Fh . Let the genus of the
regular fibers in the lower side be g. The standard handlebody decomposition of Xl
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consists of a 0-handle, 2g 1-handles and some 2-handles, one corresponding to the
fiber and the rest to the Lefschetz handles in Xl . By assumption, W is composed
of ordered round 1-handle cobordisms W1∪W2∪· · ·∪Wk , where k is the number
of circle components in the round locus. Let us denote the lower side boundary
of Wi by ∂−Wi and the higher side by ∂+Wi .

Consider Xl∪W1, which is obtained by adding a round 1-handle R1 composed of
a 1-handle H1 and a 2-handle H2. The ∂(Xl∪W1)=∂+W1=∂−W2 is the total space
of a genus g+1 surface bundle over a circle. We can make sure that the vanishing
cycles of the Lefschetz 2-handles in Xl sit on the fibers of the genus g fibration
on ∂Xl . Moreover, we can assume that the bi-section which is the attaching region
of R1 misses these vanishing cycles. This means that H1 and H2 do not link with
any one of the Lefschetz 2-handles in Xl but only with the 2-handle corresponding
to the fiber and possibly with some of the 1-handles corresponding to the genera
of the fiber. We can replace the handlebody prescribed by the BLF on Xl ∪W1

by another one where first H1 and H2 are attached to the standard diagram of
D2
×Fl , and the Lefschetz 2-handles are attached afterwards. Having modified the

diagram this way, now we can assume that the Lefschetz 2-handles are attached to
∂(Xl ∪W1), which can be pulled to ∂−W2 via the fiber preserving diffeomorphism
between ∂+W1 and ∂−W2. The fiber framings of these 2-handles remain the same,
and therefore they are still Lefschetz.

Inductively, one slides the Lefschetz 2-handles so as to have them attached to
∂(Xl ∪W1 ∪W2 ∪ · · · ∪Wk) = ∂(Xl ∪W ) = −∂Xh . The higher side Xh together
with these 2-handles is equipped with a new Lefschetz fibration of genus g+ k
(which is the same as the genus of Fh) over a disk. Hence we obtain a new han-
dlebody decomposition which describes a new BLF on X , with all the Lefschetz
singularities contained in the new higher side. The reader can verify that a similar
line of arguments work when Xl has disconnected fibers. �

Given a near-symplectic form on a closed 4-manifold X , Perutz [2006] and
Taubes [2006] independently showed that one can obtain a cohomologous near-
symplectic form on X with a connected round locus. The meat of the next theorem
is this observation and the Theorem 1.1.

Theorem 2.6. On any closed near-symplectic 4-manifold (X, ω), possibly after re-
placing ω with a cohomologous near-symplectic form ω′, one can find a compatible
simplified broken Lefschetz pencil.

Proof. If necessary, first replace ω by a cohomologous form ω′ with connected
vanishing locus. Theorem 1.1 shows that there is a broken Lefschetz pencil com-
patible with this near-symplectic form, so it should have only one round handle
singularity. Symplectically blow-up the base points to obtain a near-symplectic
BLF on the blow-up X̃ of X . Apply the above lemma to get a simplified Lefschetz
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fibration on X̃ , which also supports the near-symplectic structure since the fibers
are unchanged and still symplectic under the modification described in the proof
of Lemma 2.5.

The exceptional spheres appear as 2-handles linked to the higher genus fiber
component, all with framing −1, and not linking to each other or to any other han-
dle. The modification in Lemma 2.5 will not involve these handles; their linkings
and framings will remain the same. Since they represent the exceptional spheres,
we can symplectically blow them down to obtain a new Lefschetz pencil on X ,
with the desired properties. �

In fact we can slightly strengthen the choice of ω′ in the proof and make it
“near-symplectically cobordant” to the original form as in [Perutz 2006].

It is no surprise that the monodromy representations of these fibrations are also
simpler than usual. Here we include a brief digression on this topic. The reader
unfamiliar with this topic can turn to [Gompf and Stipsicz 1999] for the essentials.
Let Mapγ (Fg) be the subgroup of Map(Fg) that consists of elements which fix the
embedded curve γ , up to isotopy. Then there is a natural homomorphism φγ from
Mapγ (Fg) to Map(Fg−1) or to Map(Fg1) ×Map(Fg2) depending on whether γ
is nonseparating or separating Fg into two closed oriented surfaces of genera g1

and g2. Define Sg to be the set of pairs (µ, γ ) such that µ ∈ Mapγ (Fg) and
µ ∈ Ker (φγ ). Recall that when the fiber genus is at least two, fiber-preserving
gluing maps are determined uniquely up to isotopy. Hence, given any tuple (µ, γ )∈
S=

⋃
g≥3 Sg, we can construct a unique simplified BLF unless γ is separating and

there is a gi ≤ 1. Otherwise, one needs to include the data regarding the gluing of
the low genus pieces carrying genus 0 or genus 1 fibrations.

If the fibers are connected, the map φγ :Map(Fg)→Map(Fg−1) factors as

ψγ :Map(Fg)→Map(Fg \ N ) and ϕγ :Map(Fg \ N )→Map(Fg−1),

where N is an open tubular neighborhood of γ away from the other vanishing
cycles. (The middle group does not need to fix the boundaries.) The map ψ has
kernel isomorphic to Z – the framing of the 2-handle of a round 1-handle. When
we have a simplified BLF, the kernel of ϕ is isomorphic to the braid group on Fg−1

with 2-strands, by definition. This gives an idea about the cardinality of S, and in
turn about the cardinality of the family of BLFs over S2.

Remark 2.7. Any closed oriented 4-manifold whose intersection form is not neg-
ative-definite admits a simplified broken Lefschetz fibration after blow-ups. These
split into two pieces: a symplectic Lefschetz fibration over a disk, and a near-
symplectic broken fibration over a disk with only connected round singular lo-
cus. Let us restrict our attention to the latter piece, and assume for simplicity that



BROKEN LEFSCHETZ FIBRATIONS AND NEAR-SYMPLECTIC FOUR-MANIFOLDS 215

we have connected fibers of genus g. Relative Seiberg–Witten–Floer, Heegaard–
Floer, and Lagrangian matching invariants of the piece D2

× Fg all take values in
H∗(Symn(Fg)) for appropriate choices of the spinc structure (the degree of which
on Fg together with the genus g determines n). The round 1-handle attachment
induces a map from these groups to the Floer homology groups of the fibered
3-manifold separating the two pieces. Hence, these round handle attachments to-
gether with the monodromy of the higher genus side determines the computation
of any one of these invariants, and for instance it can tell a lot about when the
invariants vanish. We will address this problem elsewhere.

3. Constructions of broken Lefschetz fibrations

We start with several examples of simplified broken Lefschetz fibrations. The
examples are chosen to span various types of fibrations; with untwisted round
locus, twisted round locus, connected fibers, disconnected fibers, and those which
do not support any near-symplectic structure. The near-symplectic examples we
present here are used later in our paper.

Example 3.1. Figure 3 describes a near-symplectic BLF on the connected sum
S2
×6g # S1

×S3, which is composed of a trivial6g+1 fibration on the higher side,
a trivial6g fibration on the lower side, and an untwisted round 1-handle cobordism
in between. We call this fibration the step fibration for genus g. To identify the
total space, first use the 0-framed 2-handle of the round 2-handle to separate the
2-handle corresponding to the fiber. Then eliminate the obvious canceling pair, and
note that the remaining 1-handle together with the 3-handle of the round 2-handle
describes an S1

× S3 summand. As the rest of the diagram gives S2
×6g, we see

that the total space is as claimed.

0

g+ 1

0

0

⋃
2g


3− h
3− h
4− h

Figure 3. The step fibration on S2
×6g # S1

× S3.
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In several aspects, the round handle cobordism W in the step fibration is the
simplest possible cobordism. Here W is the product of S1 with a 3-dimensional
cobordism from 6g+1 to 6g given by a 2-handle attachment. We refer to these
type of cobordisms as elementary cobordisms. The round handle cobordisms in
Example 1.2 are all elementary.

0

0

k

⋃
2g

{
3− h
4− h 0 k

⋃
4− h

⋃
3− h

≈

Figure 4. A family of near-symplectic BLFs over S2 (left), and
the diagram after the handle slides and cancellations (right).

When g = 0 we obtain a more general family as in Figure 4, where the section
can now assume any self-intersection number k depending on the identification of
the lower side boundary. The fibrations we get are precisely the near-symplectic
examples of [Auroux et al. 2005]. After simple handle slides and cancellations, one
gets a diagram of the connected sum of an S2 bundle over S2 with Euler class k
and an S1

× S3. Thus we get S2
× S2 # S1

× S3 for even k and S2
×̃S2 # S1

× S3 for
odd k.

Example 3.2. In Figure 5 we describe a family of simplified BLFs composed of
an elliptic Lefschetz fibration with two critical points on the higher side, a trivial
sphere fibration on the lower side, and a twisted round singularity in between. We
claim that for even k the total space is S2

× S2 and for odd k it is CP2 # CP2. In
order to verify this we prefer to use the diagram with dotted notation on the right
of the Figure 5. Let H2 be the 2-handle of the round 2-handle, given in red and
with fiber framing 0. Using H2, first unlink all the 2-handles from the top 1-handle,
and cancel this 1-handle against H2. Then slide the (+1)-framed 2-handle over the
(−1)-framed 2-handle to obtain the third diagram in the Figure 6, and cancel the
surviving 1-handle against the (−1)-framed 2-handle. Finally cancel the remaining
unlinked 0-framed 2-handle against the 3-handle. The result follows.
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0

0

−1

−1
k⋃

2g

{
3− h
4− h

0

0

−1

+1

k

⋃
2g

{
3− h
4− h

=

Figure 5. A family of near-symplectic BLFs with twisted round
cobordism. On the right: 1-handles are replaced by dotted circles.

0

0

−1
+1

⋃
3− h

k

0 k

0 −1

0 k

⋃ {
3− h
4− h

⋃
4− h≈ ≈ ≈

Figure 6. Identifying the total space of the BLF in Figure 5.

For k = 0 this is the example in [Perutz 2007]. Moreover, when k = −1 the
blow-down of this exceptional sphere yields a near-symplectic broken Lefschetz
pencil on CP2.

All the examples we discussed so far had nonseparating round 2-handles; in
other words, in all examples all the fibers were connected. However separating
round 2-handles arise quite naturally when studying broken fibrations on connected
sums of 4-manifolds, as illustrated in the next example.

Example 3.3. Since b+(2CP2) = 2, there exists a near-symplectic form on this
nonsymplectic 4-manifold. We will construct a near-symplectic structure which
restricts to a symplectic structure on each CP2 summand away from the connected
sum region, through BLFs. Take the rational fibrations fi , i = 1, 2 on two copies
of CP2 # CP2, with (−1)-sections. Consider a fibration f = f1∪ f2 on the disjoint
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0

0

−1

−1

⋃ {
3− h
two 4− h’s

}
4− h

Figure 7. A near-symplectic BLF on 2CP2 # 2CP2. The round
2-handle separates the sphere fiber on the higher side into two
spheres on the lower side.

union of these two, by simply imagining them “on top of each other”. Now in
a regular neighborhood of a fiber of f , introduce a round 1-handle so as to con-
nect the disjoint sphere fibers. The result is a BLF f̂ : 2CP2 # 2CP2

→ S2 with
two exceptional spheres. Let h be the Poincaré dual of the sum of (−1)-sections.
Then h evaluates positively on each fiber component of this fibration, so there
exists a near-symplectic structure compatible with f̂ with respect to which the two
(−1)-sections are symplectic. Blowing-down these two sections we obtain a near-
symplectic BLF on 2CP2 with the proposed properties. A diagram of this fibration
is given in Figure 7.

Remark 3.4 (Broken fibrations on connected sums). The very same idea can be
applied to connected sums of any two near-symplectic BLFs over the same base,
say by connect summing in the higher genus sides. (This observation is due to
Perutz [2008]). Abstractly, for the diagrams of such fibrations over S2, first slide
a 2-handle F1 corresponding to a fiber component over the 2-handle F2 corre-
sponding to the other fiber component. Then regard F2 as the 2-handle of a round
2-handle, and add an extra 3-handle to the union of two fibration diagrams. This
way we obtain a connected sum model for our fibration diagrams.

Using similar techniques, we can also depict diagrams of BLFs which do not
necessarily support near-symplectic structures. The next example as well as the
family of examples discussed in the following subsection are of this sort:

Example 3.5. As discussed in [Auroux et al. 2005], a modification of the g = 0
case in Example 3.1, yields a BLF on S4. This can be realized by gluing the
round cobordism W to the higher side fibration over D2 by twisting the fibration
on ∂+W = T 3 by a loop of diffeomorphisms of the T 2 fiber corresponding to a
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0

k

0

⋃ {
3− h
4− h

Figure 8. A broken Lefschetz fibration on S4.

unit translation in the direction transverse to the vanishing cycle γ of the round 2-
handle [Auroux et al. 2005]. As a result of this, the 2-handle corresponding to the
S2 fiber of the lower side is pulled to the blue curve in Figure 8. The diagram then
can be simplified as before: Use the 2-handle of the round 2-handle to separate
the 2-handle corresponding to the fiber, and then proceed with the obvious handle
cancellations. Introducing a (−1)-framed unknot linked with the same 1-handle
that the 2-handle of the round 2-handle links in the diagram, we get an honest
broken Lefschetz fibration on CP2 (see [Gay and Kirby 2007]).

3.1. Achiral versus broken. Recall that an achiral Lefschetz fibration is defined in
the same way a Lefschetz fibration is defined, except that the given charts around
critical points are allowed to reverse orientation. An achiral Lefschetz pencil is
then defined by allowing orientation reversing charts around the base points as
well. Critical points with the nonstandard orientation are called negative critical
points.

There are 4-manifolds which do not admit achiral fibrations or pencils, but ad-
mit broken fibrations. The manifolds #n S1

× S3 do not admit achiral Lefschetz
fibrations or pencils when n ≥ 2 [Gompf and Stipsicz 1999]. Taking the product
of the Hopf fibration S3

→ S2 with S1, we get a fibration S1
× S3

→ S2 with
inessential torus fibers. Then the connected sum model discussed in the previous
example allows us to construct a broken fibration on any number of connected
sums of S1

× S3’s. In Figure 9 we give a diagram for the n = 2 case.

There is a simple local modification around the image of an isolated negative
Lefschetz critical point to obtain a new fibration on the blow-up of the 4-manifold
at this critical point, where the singularity is traded with a round singularity. It is
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0

−1 −1

0

⋃
four 3− h’s

3− h

two 4− h’s

}
4− h

Figure 9. A broken Lefschetz fibration on S1
× S3 # S1

× S3.

equivalent to performing the local operation described at the very end of [Auroux
et al. 2005] in an orientation reversing chart on the 4-manifold.1

Let X be a compact orientable 4-manifold, S be a compact orientable surface and
f : X→ S be a broken achiral Lefschetz fibration. Assume that x ∈ X is a negative
Lefschetz critical point of f . For simplicity, we first assume that there is no other
critical point on the fiber that x lies in, and the corresponding vanishing cycle γ is
a nonseparating curve. Let V be a small disk around f (x) whose intersection with
the image of the singular locus of f consist of this point only. It suffices to study
our modification in the local model in Figure 10. This is because there exists a
self-diffeomorphism of the fiber which takes γ to any nonseparating curve, and it
can be extended to a fiber orientation preserving diffeomorphism φ from ∂ f −1(V )
to the boundary of the node neighborhood we have. After the modification we glue
the new piece back via the diffeomorphism φ on the boundary which will remain
the same throughout the modification.

After blowing-up in this piece, one obtains a new diagram with no Lefschetz
singularity but with a new round handle as shown in Figure 11. We first slide
the (+1)-framed 2-handle over the (−1)-framed 2-handle so that its framing be-
comes 0. Then the two strands of the 0-framed 2-handle can be slid off the 1-handle
using the new 0-framed 2-handle, and now they go through the (−1)-framed 2-
handle as shown in the third diagram. The new 0-framed 2-handle and the 1-handle
becomes a canceling pair, which we remove from the diagram. The last step is just
an isotopy which puts the diagram in the standard form of a trivial fibration with
a fiber of one less genus, and a round 1-handle attached to it. Observe that the
framing of the 2-handle of the round 1-handle is −1, compensating for the loss
of the singular fiber on the boundary monodromy. Lastly note that if there were

1This trick was known to the author for some time, and its proof via handle diagrams given here
was contained in his thesis work. We were later informed that Tim Perutz made the same observation
in reference to a question of David Gay and Rob Kirby.
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0

+1

Figure 10. Neighborhood of a negative nodal fiber with a nonsep-
arating vanishing cycle.

other Lefschetz critical points on the same fiber then one would have additional
2-handles for them in the local model, but this would not affect the modification.

3.2. Broken fiber sum. We move on to presenting a generalization of the sym-
plectic fiber sum operation [McCarthy and Wolfson 1995; Gompf 1995] to the
near-symplectic case, which can also be set as a fibered operation.

Let (X i , fi ) be broken Lefschetz fibrations, and Fi be chosen regular fibers of
genus gi > 0, i = 1, 2. Choose regular neighborhoods Ni = f −1

i (Di ) of Fi , and
without loss of generality, assume g1− g2 = k is a nonnegative integer. Then we
can obtain a new 4-manifold X = X1\N1∪W ∪X2\N2, where W is a composition
of k elementary round 2-handle cobordisms. These cobordisms being elementary
implies that the 2-handles of the round 2-handles can all be pushed onto a regular
fiber F1. The resulting manifold is uniquely determined by an unordered tuple of
attaching circles (γ1, · · · , γk) of the round 2-handles involved in W , together with
the gluing maps φ1 : ∂X1→ ∂+W and φ2 : ∂X2→ ∂−W preserving the fibrations.
(Recall that these gluings are unique up to isotopy when the fiber genus is at least
two.) Hence we obtain a new broken Lefschetz fibration (X, f ) that extends the
fibrations (X i \ Ni , fi |X i\Ni ) by standard broken fibrations over the elementary
cobordisms. We say (X, f ) is the broken fiber sum of (X1, f1) and (X2, f2) along
F1 and F2, determined by γ1, · · · , γk and φ1, φ2.

Theorem 3.6. If (X i , fi ) are near-symplectic broken Lefschetz fibrations, then
(X, f ) is a near-symplectic broken Lefschetz fibration. Moreover, given arbi-
trarily small collar neighborhoods Ñi of ∂(Ni ) in X i , we can choose ω so that
ω|X1\Ñ1

= ω1|X1\Ñ1
and ω|X2\Ñ2

= cω2|X2\Ñ2
, where c is some positive constant.

Proof. Let k be as above. Take step fibrations on S2
×6g # S1

× S3 described in
Example 3.2 with g = g2, g2 + 1, . . . , g2 + k = g1. First, take the fiber sum of
S2
× 6g2 # S1

× S3 along a high genus fiber with S2
× 6g2+1 # S1

× S3 along a
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0
−1

+1

0

−10

0

−1

0

0

−1

0

−1

≈

≈

≈

=

Figure 11. Consecutive 2-handle slides in the blown-up neigh-
borhood of a negative node. In the last step, after an isotopy,
we obtain a Kirby diagram of a round 1-handle attachment to a
product neighborhood of a fiber with one less genus.
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low genus fiber. Then take the fiber sum of this new broken fibration along a high
genus fiber with S2

×6g2+2 # S1
× S3 along a low genus fiber, and so on, until

g = g2 + k. Denote this manifold by W̃ . Since the BLF on W̃ admits a section,
it can be equipped with a near-symplectic structure. Hence the broken fiber sum
of (X1, f1) and (X2, f2) along F1 and F2 is obtained by fiber summing the former
along F1 with W̃ along a lower side fiber, and the latter along F2 with W̃ along
a higher side fiber. We can make these fiber sums symplectically, after possibly
rescaling one of the near-symplectic forms ωi , i = 1, 2. When k = 0 this would be
the usual symplectic fiber sum. �

Remark 3.7. If (X i , fi ) for i = 1, 2 are Lefschetz fibrations over S2, then one can
depict the Kirby diagram of the broken fiber sum (X, f ) in terms of these two by
using Lemma 2.5. Since the round cobordism in the broken fiber sum consists of
elementary cobordisms, all the 2-handles of the round 2-handles and the Lefschetz
handles of the lower genus fibration can be drawn on the higher genus fiber directly.

Remark 3.8. Forgetting the fibration maps, we can describe the above construc-
tion for any two near-symplectic (X i , ωi ), containing symplectically embedded
surfaces Fi with trivial normal bundles, where i = 1, 2. It is also possible to form a
cobordism similar to W when F2

1 =−F2
2 6= 0 to handle the most general situation,

but we won’t have more to say about this here.

Topological invariants of X are easily determined. For example if X i are simply
connected and at least one of them admits a section, then using Seifert–Van Kam-
pen theorem we conclude that X is also simply connected. The Euler characteristic
and signature of X can be expressed in terms of those of X1 and X2 as:

(2) e(X)= e(X1)+ e(X2)+ 2(g1+ g2)− 4 , σ (X)= σ(X1)+ σ(X2).

where gi is the genus of Fi , for i = 1, 2. Therefore the holomorphic Euler charac-
teristic χh(X)= χh(X1)+χh(X2)− 1− (g1+ g2)/2. It follows that if X1 and X2

are almost complex manifolds, then X obtained as their broken fiber sum along F1

and F2 is almost complex if and only if k ≡ g1 + g2 ≡ 0 (mod 2). Lastly note
that the broken fiber sum operation might introduce second homology classes in X
that do not come from X i in addition to the usual Rim tori. This phenomenon
occurs for instance when some γi match with relative disks in X2 \ N2 to form
an immersed sphere Si . Then the torus Ti , which corresponds to a submanifold
αi × S1

⊂ ∂(X2 \ N2)∼= F2× S1, where αi is the dual circle to γi on F2, intersects
with Si at one point.

Example 3.9. Take the manifold X1 = S2
×T 2 # 4CP2 with the Matsumoto fibra-

tion f1 : X2→ S2, and X2= S2
×S2 with the trivial rational fibration f2 : X2→ S2.
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β1

β3

β2

β4

Figure 12. Vanishing cycles in the Matsumoto fibration.

The former is a genus two fibration and its global monodromy factorizes into right-
handed Dehn twists: (β1β2β3β4)

2
= 1, where the curves β1, β2, β3 and β4 are as

shown in Figure 12.
If we denote the standard generators of the fundamental group of the regular fiber

62 as a1, b1, a2, b2, then the curves βi are base point homotopic to: β1 = b1b2,
β2 = a1b1a1

−1b1
−1
= a2b2a2

−1b2
−1, β3 = b2a2b2

−1a1, β4 = b2a2a1b1.
Hence π1(X1)= π1(62) / 〈β1, β2, β3, β4〉 is isomorphic to

π1(X1)= 〈a1, b1, a2, b2 | b1b2 = [a1, b1] = [a2, b2] = b2a2b−1
2 a1 = 1〉.

Now take the broken fiber sum of (X1, f1) and (X2, f2) along regular fibers F1

and F2, where γ1= a1, γ2= b2. The gluing map φ1 is unique, and we take φ2 as the
identity. Thus we get a new 4-manifold X and a near-symplectic BLF f : X→ S2

with two untwisted round singular circles. Note that π1(X1 \ N (F1)) ∼= π1(X1),
and π1(X2 \ N (F2))= 1, since there are spheres orthogonal to each fiber Fi in X i .
From Seifert–Van Kampen’s theorem and from the choice of γi in the broken sum,
we see that

π1(X)= 〈a1, b1, a2, b2 | b1b2 = [a1, b1] = [a2, b2] = b2a2b−1
2 a1 = a1 = b2 = 1〉.

Thus π1(X)= 1. On the other hand, e(X)= e(X1)+ e(X2)+ 2(g1+ g2)− 4= 8,
and σ(X) = σ(X1)+ σ(X2) = −4. Hence, X is homeomorphic to CP2 # 5CP2

by Freedman’s Theorem. Moreover we obtain four distinct symplectic sections
of self-intersection −1 in (X, f ) which arise from the internal connected sum of
four parallel copies of the self-intersection zero section of S2

× S2
∪W and the

four (−1)-sections in the Matsumoto fibration in the broken fiber sum. Symplec-
tically blowing-down these sections, we get a near-symplectic structure with two
untwisted round circles on a homotopy S2

× S2, together with a broken Lefschetz
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pencil supporting it. One can indeed verify that the total space is S2
× S2 using the

Remark 3.7.

What makes the broken fiber sum operation interesting is that, a priori, gluing
formulae can be given for the invariants. For if we compute the Seiberg–Witten–
Floer invariants using the decomposition

X1 \ N1 ∪W ∪ X2 \ N2,

the work in [Donaldson 1999] shows that on W the maps between the relative
Floer invariants is standard. That is, if W consists of elementary cobordisms cor-
responding to γj by Wj , and if Poincaré–Lefschetz duals of γj on F1 are cj , then on
W , this map is given by wedging with cj under the Piunikhin–Salamon–Schwarz
isomorphism (defined for a given Spinc structure) between Floer homologies and
singular homology.

Although in many situations the broken fiber sum of near-symplectic 4-mani-
folds can result in 4-manifolds with vanishing Seiberg–Witten invariants, there are
examples when it doesn’t:

Example 3.10. Let X1 = S2
×6g+1 and X2 = S2

×6g with projections fi on
the S2 components. The broken fiber sum (X, f ) of (X1, f1) and (X2, f2) along
the fibers 6g+1 and 6g is the same as S2

×6g # S1
× S3 equipped with the step

fibration. This has nontrivial Seiberg–Witten invariants (see [Ozsváth and Szabó
2000]), calculated in the Taubes chamber of a compatible near-symplectic form.
(Since both S2

×pt and pt×62 are symplectic with respect to these near-symplectic
structures, the near-symplectic forms can be chosen so that they are homologous
to the product symplectic form. Therefore Seiberg–Witten invariants in the same
chamber are nontrivial.)

A similar argument can be used to calculate Seiberg–Witten invariants nontriv-
ially, in general for the broken fiber sum of any symplectic Lefschetz fibration
(Y, f ) of genus g and b+(Y ) > 1 with the trivial fibration on S2

×6g+1. The same
type of handle calculus shows that the resulting manifold is Y # S1

×S3. Since Y has
nontrivial Seiberg–Witten invariant, so does Y # S1

×S3 [Ozsváth and Szabó 2000].
Moreover in [Ozsváth and Szabó 2000], the authors show that the dimension of the
moduli space for such a nontrivial solution increases to one, thus Y # S1

×S3 is not
of simple type. Having the simple type conjecture for Seiberg–Witten invariants
of simply connected 4-manifolds with b+ > 1 in mind, we therefore ask:

Question 1. Are there near-symplectic 4-manifolds X1 and X2 with symplectically
embedded minimal genus surfaces F1 ↪→ X1 and F2 ↪→ X2 of different genera,
such that their broken fiber sum along F1 and F2 results in a simply connected
4-manifold X with nontrivial Seiberg–Witten invariant?
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4. Near-symplectic 4-manifolds with nontrivial Seiberg–Witten invariants

We now turn our attention to near-symplectic 4-manifolds whose Seiberg–Witten
invariants are nontrivial. Let us refer to these as nontrivial near-symplectic 4-
manifolds for short, even though we do not claim that the calculation of Seiberg–
Witten invariants makes use of the near-symplectic forms. When b+ = 1 though
we always assume that the Seiberg–Witten invariant is computed in the chamber
of the near-symplectic form. The point of view we take is to regard this as an
intermediate class which lies in between near-symplectic and symplectic classes.
In this section we will investigate how far one can push certain results regarding
symplectic 4-manifolds and Lefschetz fibrations.

One might wonder if the class of nontrivial near-symplectic 4-manifolds is
closed under the symplectic fiber sum operation, as is the case for both near-
symplectic and symplectic 4-manifolds, respectively. The next theorem not only
states that this is too much to hope for but also points out how the choice of sym-
plectic surfaces plays a significant role here:

Theorem 4.1. There are pairs of closed near-symplectic 4-manifolds with nontriv-
ial Seiberg–Witten invariants whose symplectic fiber sum along some fibers result
in 4-manifolds with vanishing Seiberg–Witten, whereas along some others they
result in 4-manifolds with nontrivial Seiberg–Witten.

Proof. As discussed in Example 3.10 and the succeeding paragraph, if Y has non-
trivial Seiberg–Witten invariant, then so does Y # S1

× S3. Take E(n) (say with
n > 1) with an elliptic fibration, and equip it with a symplectic form making the
regular torus fiber T symplectic. Also take S2

×62 with the product symplectic
form. Look at the broken fiber sum of E(n)with n≥ 2 along a regular torus fiber T
with S2

×62 along a genus two surface {pt}×62, where boundary gluings φ1 and
φ2 are chosen to be identity, and γ is chosen to be some fixed standard generator
of 62. The result is the near-symplectic 4-manifold Xn ∼= E(n) # S1

× S3, which
has nontrivial Seiberg–Witten invariant as noted in the paragraph succeeding the
Example 3.10.

We can then take the symplectic fiber sum of such Xn and Xm along the higher
side genus two fibers to get Xn,m . There are families of disks with their bound-
aries on ∂(Xn \ N (62)) and ∂(Xm \ N (62)), coming from the broken fiber sum
construction in each piece. Matching pairs of these disks give spheres Ss with
zero self-intersection, where s is parameterized by the base S1 in the gluing region
S1
×62 of the fiber sum. Denote the equator of Ss sitting on the fiber sum region

by γs , and consider a dual circle αs on the same fiber. Varying s along S1 we obtain
a Lagrangian torus T , which intersects each Ss at one point. Thus S0 is an essential
sphere in Xn,m . Since b+(Xn,m) > 1, the existence of such a sphere implies that
SWXn,m ≡ 0. An easy way to see it is as follows: Blow-up at the intersection point
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of S0 and T , and then blow-down the proper transform of S0. This way we get a
torus T ′ with [T ′]2= 1 in a 4-manifold with b+> 1. The adjunction inequality and
the blow-up formula in turn implies that Seiberg–Witten invariant of the original
manifold Xn,m should have been identically equal to zero.

However, if one takes the fiber sum along lower genus fibers, then the result is
E(n+m) # 2 S1

× S3, which has nontrivial Seiberg–Witten invariant. �

We get an infinite family of examples obtained by varying n,m> 1 in the proof.
The theorem demonstrates that the choice of the fibers in a near-symplectic fiber
sum affects the outcome drastically. A natural question that follows is:

Question 2. Let(X i , fi ) be nontrivial 4-manifolds equipped with near-symplectic
broken Lefschetz fibrations and Fi are connected fibers with minimal genus. When
do the symplectic fiber sum of X1 and X2 along F1 and F2 result in a manifold
with nontrivial Seiberg–Witten invariants?

It is known that Lefschetz fibrations over S2 do not admit sections of nonnegative
self-intersections, and the self-intersection can be zero only when the fibration is
trivial, that is, when it is the projection from S2

×6g onto the first component.
(See for instance [Stipsicz 2001].) In the case of BLFs we see that:

Theorem 4.2. There are closed simply connected 4-manifolds which admit near-
symplectic broken Lefschetz fibrations over S2 with sections of any self-intersec-
tion. More precisely, for any integer k and positive integer n, there is a near-
symplectic (Xn,k , fn,k) fibered over S2, with a section of self-intersection k and
with b+(Xn,k) = n. If f : X → S2 is a nontrivial broken Lefschetz fibration
on a nontrivial near-symplectic 4-manifold X , then any section has negative self-
intersection if b+(X) > 1, but there are examples with sections of any self-inter-
section when b+(X)= 1.

Proof. In Example 3.2 we have constructed near-symplectic BLFs over S2 which
admit sections of any self-intersection k. As the total space of these fibrations are
either S2

× S2 or CP2 # CP2, the Seiberg–Witten invariants are nontrivial. (Since
the near-symplectic forms can be chosen so that they determine the same chamber
as the usual symplectic forms, then Seiberg–Witten invariants calculated for the
near-symplectic chambers are nontrivial.) These provide examples for the very
last part of the theorem. As described in the Example 3.3, we can obtain a near-
symplectic BLF on connected sums of these fibrations. Using n such copies, we
obtain a 4-manifold with b+ = n, which proves the first statement. For the re-
maining assertion, we simply employ the adjunction inequality for Seiberg–Witten
basic classes. �

There are various examples of nonsymplectic 4-manifolds which have nontrivial
Seiberg–Witten invariants. All have b+ > 0, which means that they admit near-
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symplectic broken Lefschetz pencils but not symplectic Lefschetz fibrations or pen-
cils. This can be made explicit in the knot surgered E(n) examples of Fintushel and
Stern [1998; 2004]. Below we obtain near-symplectic BLFs on an infinite family
of pairwise nondiffeomorphic closed simply connected smooth 4-manifolds which
can not be equipped with Lefschetz fibrations or pencils.

Proposition 4.3. For any positive integer n and any knot K , E(n)K admits a near-
symplectic broken Lefschetz fibration over S2.

Proof. Think of E(n) as the branched double cover of S2
×S2 with branch set com-

posed of four disjoint parallel copies of S2
×{pt} and 2n disjoint parallel copies of

{pt}× S2, equipped with the locally holomorphic “horizontal fibration” [Fintushel
and Stern 2004]. The regular torus fiber F of the usual vertical fibration is a bi-
section with respect to this fibration. We have exactly four singular fibers each
with multiplicity two. On the other hand, if MK is obtained by a 0-surgery on a
nonfibered knot K in S3, then there is a broken fibration (no Lefschetz singularities)
from S1

×MK to T 2 as discussed in Example 1.2. One can compose this map with a
degree two branched covering map from the base T 2 to S2, such that the branching
points are not on the images of the round handle singularities. What we get is a
broken fibration with four multiple fibers of multiplicity two, which are obtained
from collapsing two components from all directions. An original torus section
T of S1

× MK → T 2 is now a bi-section of this fibration, intersecting each fiber
component at one point. Both F and T have self-intersection zero, and thus we can
take the symplectic fiber sum of E(n) and S1

×MK along them to get E(n)K . The
multiplicity two singular fibers can be matched so as to have a locally holomorphic
broken fibration with four singular fibers of multiplicity two. This fibration can be
perturbed to be Lefschetz as argued in [Fintushel and Stern 2004]. When K is
fibered, we obtain genuine Lefschetz fibrations. �
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