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We give a local characterization of the class of functions having positive dis-
tributional derivative with respect to z̄ that are almost everywhere equal to
one of finitely many analytic functions and satisfy some mild nondegeneracy
assumptions. As a consequence, we give conditions that guarantee that any
subharmonic piecewise harmonic function coincides locally with the maxi-
mum of finitely many harmonic functions and we describe the topology of
their level curves. These results are valid in a quite general setting as they
assume no à priori conditions on the differentiable structure of the support
of the associated Riesz measures. We also discuss applications to positive
Cauchy transforms and we consider several examples and related problems.
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1. Introduction

In a frequently used construction in complex analysis and geometry, one considers
the maximum of a finite number of pairwise distinct harmonic functions. As is well
known, the result is a subharmonic function which is also piecewise harmonic. It
is quite natural to investigate the converse direction, namely to study the class
of functions generated by this basic albeit fundamental procedure. Its classical
flavor [Hayman and Kennedy 1976] and some important applications — some of
which are listed below — further motivate a deeper study of this question, on which
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surprisingly little seems to be known. In this paper we answer by giving a local
characterization of the aforementioned class of functions in generic cases, and in
the process we establish several remarkable properties for this class. In particular,
we show that any subharmonic piecewise harmonic function may essentially be
realized as the maximum of finitely many harmonic functions.

1.1. Piecewise harmonic and piecewise analytic functions. Let us first define a
fairly general notion.

Definition 1.2. Let X be a real or complex subspace of the space of smooth func-
tions in a domain (open connected set) U in R2 or C. We say that a function ϕ
is piecewise in X if one can find finitely many pairwise disjoint open sets Mi for
1≤ i ≤ r in U and pairwise distinct functions ϕi ∈ X for 1≤ i ≤ r , such that

(i) ϕ = ϕi in Mi for 1≤ i ≤ r ;

(ii) U \
⋃r

i=1 Mi is of Lebesgue measure 0.

The set of all functions that are piecewise in X is denoted by PX.

Remark 1.3. It is not difficult to see that PX is actually a (real or complex) vector
space. This as well as further properties of PX functions and related concepts are
discussed in the appendix.

Note that since PX functions are locally integrable, they define distributions,
and their derivatives are therefore defined in the distribution sense (and functions
are identified if they define the same distributions). In particular, if ϕ ∈ PX, one
can form 1ϕ ∈ D′(U ) and also ∂zϕ, ∂z̄ϕ ∈ D′(U ) if X is complex.

We now specialize Definition 1.2 to obtain the main objects of our study, namely
the spaces of piecewise harmonic and piecewise analytic functions.

Notation 1.4. Fix a domain U ⊂ C, let H = H(U ) be the real space of (real-
valued) harmonic functions in U , and let A = A(U ) be the complex space of
analytic functions in U . By Definition 1.2 the following holds:

(a) Given a piecewise harmonic function ϕ ∈ PH, there exists a finite family of
pairwise disjoint open sets {Mi }

r
i=1 in U covering U up to a set of Lebesgue

measure 0 and a corresponding family of pairwise distinct harmonic functions
{Hi (z)}ri=1 in U such that

(1-1) ϕ(z)=
r∑

i=1

Hi (z)χi (z) almost everywhere in U ,

where χi is the characteristic function of the set Mi for 1≤ i ≤ r .
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(b) Similarly, any piecewise analytic function 8 ∈ PA may be represented as

(1-2) 8(z)=
r∑

i=1

Ai (z)χi (z) almost everywhere in U ,

where Mi and χi for 1 ≤ i ≤ r are as in (a) and {Ai (z)}ri=1 is a family of
pairwise distinct analytic functions in U . Given this data and a point p ∈ U ,
we set

(1-3) Hi (z)= Re
(∫ z

p
Ai (w)dw

)
for z ∈U and 1≤ i ≤ r .

These are well-defined harmonic functions in U provided U is simply con-
nected, which we tacitly assume throughout unless otherwise stated.

We stress that in the above definitions no regularity (C1) conditions are assumed
on the negligible set U \

⋃r
i=1 Mi . Note also that Definition 1.2 and Notation 1.4

are merely a convenient way of saying that a PH function φ equals one of finitely
many harmonic functions in certain prescribed sets. Therefore PH functions need
not be continuous nor subharmonic, and one can hardly expect any interesting
statements in this kind of generality. The same philosophy applies to PA functions:
As defined above, a function 8 is PA if it is equal to one of finitely many analytic
functions in certain open sets. Thus PA functions need not be continuous and this
will not be case either in our situation.

1.5. Canonical piecewise decompositions. Conditions (i) and (ii) in Definition 1.2
remain valid if nonempty Lebesgue negligible sets are subtracted from the sets Mi ,
so it is in general impossible to say something about the boundaries of these sets.
However, the inclusions Mi ⊆U \ supp(ϕ− ϕi ) for 1 ≤ i ≤ r always hold, where
the supports are defined in the distribution sense (recall from Section 1.1 that PX
functions are locally integrable and L1

loc(U ) is viewed as a subspace of D′(U )).
Now both X = H(U ) and X = A(U ) are examples of function spaces satisfying
the unique continuation property, that is, f ≡ 0 in U if f ∈ X vanishes in some
open nonempty subset of U . In view of the above inclusions, for spaces with this
property one can reformulate Definition 1.2 in a more canonical way as follows.

Definition 1.6. Let X be a real or complex subspace of the space of smooth
functions in a domain U in R2 or C. Assume that X satisfies the unique con-
tinuation property, and let ϕ ∈ L1

loc(U ). Then ϕ ∈ PX (ϕ is piecewise in X ) if
one can find pairwise distinct elements ϕi ∈ X for 1 ≤ i ≤ r such that the set
0 :=

⋂
1≤i≤r supp(ϕ−ϕi ) is of Lebesgue measure 0.

Setting Mi = U \ supp(ϕ − ϕi ) for 1 ≤ i ≤ r in Definition 1.6, we see that
Mi is the largest open set in which ϕ − ϕi vanishes (as a distribution or almost
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everywhere). Further useful properties of the canonical piecewise decomposition
of the PX function ϕ given in Definition 1.6 are gathered in the next lemma. Hence-
forth by a “continuous function” we mean a function in L1

loc(U ) that agrees almost
everywhere with a continuous function in U .

Lemma 1.7. In the above notation the following holds:

(i)
⋃

1≤i≤r Mi =U \0.

(ii) M i ∩M j =∅ for 1≤ i 6= j ≤ r .

(iii) Mi = M i
◦

(that is, Mi is the interior of M i ) for 1≤ i ≤ r .

(iv) 0 =
⋃

1≤i< j≤r M i ∩M j .

(v) If ϕ is continuous, then 0 ⊆ g−1(0), where g :=
∏

1≤i< j≤r (ϕi −ϕ j ).

Proof. The first statement is obviously true by the (canonical) definition of the sets
Mi for 1 ≤ i ≤ r . To prove (ii) suppose that i 6= j and p ∈ M i ∩ M j . Then one
can find q ∈ Mi arbitrarily close to p with q ∈ Mi ∩M j . Since q /∈ supp(ϕ− ϕi )

and q /∈ supp(ϕ − ϕ j ), one gets q /∈ supp(ϕi − ϕ j ), and the unique continuation
property implies that ϕi = ϕ j , which contradicts the fact that ϕi 6= ϕ j .

To show (iii), assume that p ∈M i
◦
. Then there exists an (open) neighborhood N

of p that is contained in M i . Since M i ∩M j =∅ if j 6= i (see (ii)), it follows that
N ⊂ Mi ∪0. Hence ϕ = ϕi in N and N ⊂ Mi , so that in particular p ∈ Mi .

Clearly,
⋃

1≤i≤r M i =U . Therefore, if p ∈ 0, then p ∈ M i for some i , and p
must then be a boundary point of Mi . Assume that p /∈ M j whenever j 6= i . Then
there is a neighborhood N of p such that N∩M j =∅ for j 6= i . Hence N ⊂M i and
it follows from (iii) that p ∈ Mi

◦. This gives a contradiction (since p is a boundary
point of Mi ) and shows that p ∈ M i ∩M j for some j 6= i , which proves (iv).

Finally, if ϕ is continuous, then ϕ = ϕi in M i and ϕ = ϕ j in M j ; hence ϕi = ϕ j

in M i ∩M j , and thus g ≡ 0 in M i ∩M j for i 6= j , so that by (iv) g ≡ 0 in 0. �

The familiar “maximum construction” that we alluded to at the beginning of this
introduction yields natural examples of PH and PA functions. We recall briefly the
interplay between the classes of functions obtained in this case:

Example 1.8. Let {Hi (z)}ri=1 be a finite family of pairwise distinct harmonic func-
tions in a domain U ⊂ C. Then ϕ(z) := max1≤i≤r Hi (z) is a (subharmonic) PH
function. Indeed, set � := {z ∈ U | Hk(z) 6= Hl(z), 1 ≤ k 6= l ≤ r}, let Mi be the
(open) set consisting of those z ∈ � for which ϕ(z) = Hi (z), and denote by χi

the characteristic function of Mi for 1 ≤ i ≤ r . It is clear that U \� is Lebesgue
negligible, so that {Mi }

r
i=1 forms a covering of U up to a set of Lebesgue measure 0

and

ϕ(z)=
r∑

i=1

Hi (z)χi (z) almost everywhere in U .
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Moreover, the subharmonicity of ϕ implies that ν := ∂2ϕ/∂ z̄∂z ≥ 0 in the sense
of distributions. In fact, ν is a positive measure supported on the (finite) union of
level curves {z ∈U | Hi (z)− H j (z)= 0} for 1 ≤ i 6= j ≤ r . One can show that in
this case the support actually determines the measure (see Theorem 2.5).

Now the derivative of ϕ, again in the distribution sense, inherits a similar prop-
erty, only this time with respect to analytic functions. Classical results yield namely

∂ϕ(z)/∂z =
r∑

i=1

Ai (z)χi (z) almost everywhere in U ,

where Ai := ∂Hi/∂z for 1 ≤ i ≤ r are analytic functions in U (see Proposition
2.6). Hence ∂ϕ(z)/∂z is a PA function. Note that the above relation may be refor-
mulated as saying that ϕ satisfies almost everywhere in U the differential equation
P(∂ϕ(z)/∂z, z)= 0, where P(y, z) :=

∏r
i=1(y− Ai (z)) is a polynomial in y with

coefficients that are holomorphic in U .

1.9. Main problem and results. PA functions occur naturally — and this was our
original motivation — in various contexts, such as in the study of the asymptotic
behavior of polynomial solutions to ordinary differential equations [Bergkvist and
Rullgård 2002; Borcea et al. 2007; Fedoryuk 1993; Wasow 1965], the theory of
Stokes lines [Kelly 1979; Wasow 1985] and orthogonal polynomials [Deift and
Zhou 1993]. In these contexts, since PA functions are mostly constructed as lim-
its, one has no control on the differentiable structure of the resulting sets Mi .
Therefore it is important to describe the local and global structure of PA functions
both with and without additional regularity assumptions — such as the piecewise
C1-boundary conditions on the sets Mi of Section 2 — and this is the primary
objective of this paper. Another notation will help to state our main problem:

Notation 1.10. Given a domain U ⊂ C, let 6(U )= { f ∈ D′(U ) | ∂z̄ f ≥ 0}.

Clearly, ∂zϕ ∈6(U ) if ϕ is subharmonic in U , which holds for example for the
maximum of finitely many harmonic functions. For a (known) converse see the
appendix.

The main problem. Let8∈6(U ) be a PA function in a given domain U⊂C. Find
conditions that guarantee that 8 is locally (or globally) of the form ∂zϕ, where ϕ
is the maximum of a finite number of harmonic functions in U .

The necessity of assuming ∂z̄8 ≥ 0 in the main problem will soon become
quite clear and is further illustrated in Example 1.14; see also Lemma A.3 in the
appendix. We give four answers to the above problem, which may be summarized
(in terms of the mutual implications among them) as follows:

(1-4) Theorem 1.11H⇒ Corollary 4.8H⇒ Corollary 1.12H⇒ Theorem 6.2.
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We formulate here just the first (Theorem 1.11) and third (Corollary 1.12) main
results of this paper. The fourth one (Theorem 6.2) is an alternative approach to the
main problem suggested by our referee, as were several ideas used in this paper.

Theorem 1.11. Let8 ∈6(U ) be a PA function as in (1-2) and assume that p ∈U
satisfies the conditions that

(i) p ∈ M i for 1≤ i ≤ r ;

(ii) Ai (p)− Ak(p) /∈ R(A j (p)− Ak(p)) for any triple of distinct indices (i, j, k)
in {1, . . . , r};

(iii) Ai (p) 6= Ak(p) for any pair of distinct indices (i, k) in {1, . . . , r}.

There exists a neighborhood Ñ (p) of p such that 8= 2∂ϕ/∂z almost everywhere
in Ñ (p), where ϕ(z) = max1≤i≤r Hi (z) and the Hi are the harmonic functions
defined in (1-3).

A word about each of the three conditions imposed in Theorem 1.11 is in order.
Condition (i) suggests defining the index set

(1-5) I (p)= { j ∈ {1, . . . , r} | p ∈ M j } for any p ∈U

and i(p) = |I (p)|. Condition (i) then requires that i(p) = r , that is, every set Mi

is “active”. This will be tacitly assumed throughout.
Condition (ii) is the most important assumption and amounts to the require-

ment that for all distinct indices i, j, k ∈ {1, . . . , r}, the level curves Hi = Hk and
H j = Hk should meet transversally at p (that is, the critical sets 0i, j,k defined in
(3-1) below do not contain p). For an illustration of the necessity of this assumption
see Example 7.2 and Figure 1 in Section 7.

Condition (iii) means that locally the (0-)level curves of Hi − H j with i 6= j
form a foliation by 1-dimensional smooth curves of a small enough neighborhood
of p. As will (ii) above, this assumption will be used in an essential way.

Let K be the convex hull of the points Ai (p) for i ∈ I (p), and denote by ∂K its
boundary, which is clearly an i(p)-gon. From Theorem 1.11 and its proof sketched
in Section 3 and completed in Sections 4 and 5 (see, in particular, Lemma 4.3 in
Section 4.1 and Corollary 4.8 in Section 4.7) we deduce the following:

Corollary 1.12. Assume all the hypotheses of Theorem 1.11 except conditions (i)
and (ii), and set S(p)={i ∈ I (p) | Ai (p) is an extreme point of K }. If Ak(p) /∈ ∂K
for k ∈ I (p) \ S(p), then the conclusion of Theorem 1.11 holds.

Remark 1.13. In particular, Corollary 1.12 holds if S(p)= I (p), that is, all points
Ai (p) for i ∈ I (p) are extreme in K .

We emphasize that results similar to those above cannot hold for arbitrary PA
functions. Indeed, as we already noted, the requirement ∂8/∂ z̄ ≥ 0 is crucial. In
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particular, it implies that the open sets {Mi }
r
i=1 and the analytic functions {Ai (z)}ri=1

associated with 8 have to be intimately related to each other. The latter statement
is illustrated (and further reinforced) in the next example.

Example 1.14. Let r = 2, A1(z)≡ 1 and A2(z)≡ i . Then the subharmonic func-
tion ϕ defined in Theorem 1.11 becomes ϕ(x, y)=max(x,−y), that is, ϕ(x, y)= x
if x + y ≥ 0 and ϕ(x, y)=−y if x+ y≤ 0. Hence its derivative 2∂ϕ/∂z equals 1 if
x+ y ≥ 0 and i if x− y ≤ 0, respectively. Theorem 1.11 says (loosely) that among
all PA functions8 of the form 1·χM1+i ·χM2 for varying sets M1 and M2 (covering
some neighborhood of the origin up to a Lebesgue negligible set) 2∂ϕ/∂z is the
only one that has a positive z̄-derivative in the sense of distributions. To see why
this is the case, consider the following simple example: Let l be a line through the
origin with unit normal n = n1+ in2, so that C \ l consists of two half-planes. Let
M1 be the one with n as interior normal to its boundary and M2 the other half-plane.
Set 8= 1 ·χM1 + i ·χM2 . Then

∂8
∂ z̄
=

1
2(1− i)(n1+ in2)ds,

where ds is Euclidean length measure along the common boundary l to M1 and
M2 (see Corollary 2.3). Clearly, ∂8/∂ z̄≥ 0 only if n1+in2= (1+i)/

√
2, that is, if

the line l is given by x+ y= 0. In other words one must indeed have 8= 2∂ϕ/∂z,
where ϕ is the subharmonic function defined in Theorem 1.11. In this particular
example we used the fact that the boundaries of the Mi are C1 in order to explicitly
calculate the derivative of 8. Our theorems show that the corresponding result is
true in a much more general situation with no assumptions on the boundaries.

The local characterization of subharmonic functions with PA derivatives is al-
most an immediate consequence of Theorem 1.11 and shows that at generic points
such functions are indeed maxima of a finite set of harmonic functions:

Corollary 1.15. Suppose 9 is a subharmonic function such that ∂9/∂z is a PA
function with decomposition given by (1-2) and satisfying conditions (i)–(iii) of
Theorem 1.11. Then there exist a neighborhood Ñ (p) of p and harmonic func-
tions Hi for 1 ≤ i ≤ r defined in Ñ (p) such that 9(z) = max1≤i≤r Hi (z) almost
everywhere in Ñ (p).

Let 8 ∈6(U ), so that by Notation 1.10 and [Hörmander 2003, Theorem 2.1.7]
the measure ν := ∂8/∂ z̄ is positive. Let further p∈U and N (p) be a neighborhood
of p such that N (p)⊂U . Then the (positive) measure ν̃ := χ

N (p)
· ν extends to C,

and there exists some analytic function A such that8=Cν̃+A (as distributions) in
N (p), where Cν̃ is the Cauchy transform of ν̃ defined by Cν̃ := (1/(π z))∗ ν̃. The
above decomposition for 8 is a consequence of formula [op. cit., (4.4.2)], which
asserts that 8 and Cν̃ have the same derivative with respect to ∂/∂ z̄, so that by
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[Hörmander 2003, Theorem 4.4.1] they must differ by an analytic function. Hence
we also have a corollary to Theorem 1.11:

Corollary 1.16. Let8∈6(U ) be a PA function with decomposition given by (1-2),
and set ν=∂8/∂ z̄. Assume that p∈U satisfies conditions (i)–(iii) of Theorem 1.11,
and let N (p) and ν̃ be as above. Then 8 = Cν̃ + A in N (p), where A is an
analytic function and the positive measure ν̃ is supported in a union of segments
of level sets for the functions Hi − H j , where 1 ≤ i 6= j ≤ r . Moreover, ν may
be locally described by means of its support in the sense of formula (2-2) (see
Theorem 2.5(3)).

The results above hold in a surprisingly great generality since they assume no
à priori knowledge of the differentiable structure of supp ν. We will construct an
example showing that the picture is even more complex in nongeneric cases and in
particular that Corollary 1.15 is not true if p is special enough; see Example 7.2.

The special case when the Ai in Theorem 1.11 are constant functions was treated
in [Bergkvist and Rullgård 2002]. Our crucial Lemma 3.3 is mutatis mutandis
generalized from that paper. In the simpler situation of [loc. cit.], some addi-
tional global results were obtained. These show essentially that any (locally) PH
subharmonic function is globally (in U ) a maximum of finitely many harmonic
functions. Example 7.2 again shows that this is not true in general. However, it
is not difficult to get complete results in the case when only two functions are
involved; see Section 2. It would be interesting to establish when a subharmonic
function with a PA derivative is globally a maximum of finitely many harmonic
functions (see Problem 7.8).

2. Derivatives of sums

Recall the canonical piecewise decomposition of a PH function from Section 1.5
(see Definition 1.6 with X = H(U )). If 9(z) is a PH subharmonic function of
the form (1-1), then the support of the associated Riesz measure 19 is equal to
0 :=U \

⋃r
i=1 Mi . Indeed, it is clear that supp(19)⊆0. For the reverse inclusion,

note that 9 is harmonic in a neighborhood of any point p ∈0 \supp(19). If such
a point exists, one can find i 6= j so that any neighborhood of p intersects Mi

and M j , and then Hi and H j both agree with 9 in some neighborhood of p; hence
Hi = H j (by the unique continuation property), which is a contradiction.

In this section we first discuss the case of a PA function 8 with canonical
piecewise decomposition as in Definition 1.6 such that the corresponding set 0 =
U \

⋃r
i=1 Mi is a locally finite union of piecewise C1-curves. We show that if

the distribution derivative ∂8/∂ z̄ is positive, then this measure is determined in
a simple way by its support, see Theorem 2.5(3) below. Note that in view of
Lemma 1.7(v), a situation where 0 is piecewise smooth occurs if one considers a
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PA function of the form 8 =
∑

1≤i≤r (∂Hi/∂z)χi , where 9 =
∑

1≤i≤r Hiχi is a
continuous PH function (for instance, 9 could be the maximum of finitely many
harmonic functions). In this case we show the continuity assumption implies that
8 is actually the distribution derivative of 9 (without any C1-assumptions on 0).

We start with the case when only two functions are involved. Assume that 8(z)
is defined in a domain U and that there exists a smooth curve 0 ⊂ U dividing U
into two open connected components U = M1∪0∪M2 such that 8(z)= Ai (z) in
Mi for i = 1, 2, where Ai (z) is a function analytic in some neighborhood of Mi .
In particular, 8(z) is a PA function.

Lemma 2.1. If ν := ∂8(z)/∂ z̄≥ 0 in the sense of distribution theory (that is, ν is a
positive measure) then at each point z̃ of 0 the tangent line l(z̃) to 0 is orthogonal
to A1(z̃)− A2(z̃) and the measure ν at z̃ equals

1
2 |A1(z̃)− A2(z̃)|ds,

where ds denotes length measure along 0.

Lemma 2.1 is an immediate consequence of the following well-known result,
see for example [Hörmander 2003, Theorem 3.1.9].

Proposition 2.2. Let Y ⊂ X be open subsets of Rk such that Y has a C1-boundary
∂Y in X , and let u ∈ C1(X). If χY denotes the characteristic function of Y , d S the
Euclidean surface measure on ∂Y , and n the interior unit normal to ∂Y , then

∂ j (uχY )= (∂ j u)χY + un j d S,

where ∂ j and n j are the partial derivative with respect to the j-th coordinate and
the j-th component of n, respectively.

Corollary 2.3. In the notation of Proposition 2.2, one has

(2-1)

∂(uχY )
∂ z̄

=

(
∂u
∂ z̄

)
χY +

1
2 u(n1+ in2)ds,

∂(uχY )
∂z

=

(
∂u
∂z

)
χY +

1
2 u(n1− in2)ds.

Proof of Lemma 2.1. Suppose that the function 8(z) = A1(z)χ1(z)+ A2(z)χ2(z)
satisfies the conditions of Lemma 2.1, where χi is the characteristic function of Mi

for i = 1, 2. Corollary 2.3 implies in particular that ν is supported on the smooth
separation curve 0 and that with an appropriate choice of coorientation one has
ν = 1

2(A1− A2)nds, which proves the lemma. �

Proposition 2.2 remains true if the boundary of Y is assumed to be only piece-
wise C1 or just Lipschitz continuous; see [Hörmander 2003]. We may therefore
apply it to functions of the form max1≤i≤r Hi (z)=

∑r
i=1 Hi (z)χi (z) in U and get
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the description of their derivatives given in the introduction. In this case, the nor-
mal n is defined almost everywhere with respect to length measure on the boundary,
and the equality in Corollary 1.15 is interpreted in this sense.

Notation 2.4. Given a PH function 9(z)=
∑r

i=1 Hi (z)χi (z) as in (1-1), let 09 =
U \

⋃r
i=1 Mi and denote by 0d

9 the set of points where the normal to 09 is not
defined. In similar fashion, for a PA function 8(z)=

∑r
i=1 Ai (z)χi (z) as in (1-2),

we set 08 =U \
⋃r

i=1 Mi , and let 0d
8 be the set of points where the normal to 08

is not defined.

Essentially the same arguments yield this generalization of Lemma 2.1:

Theorem 2.5. Let

8(z)=
r∑

i=1

Ai (z)χi (z)

be a PA function in a simply connected domain U ⊂ C such that

(i) 08 is a locally finite union of piecewise C1-curves, and

(ii) ∂8/∂ z̄ ≥ 0.

Let Hi for 1 ≤ i ≤ r be real-valued harmonic functions as in (1-3). Then for any
z ∈ 08 \0d

8 there is a neighborhood N (z) such that

(1) N (z) \08 consists of two components N (z)i , N (z) j such that 8(z) = Ak(z)
in N (z)k for k = i, j ;

(2) N (z)∩08 is contained in a level curve of Hi − H j for some i, j ;

(3) in N (z) one has

(2-2) ∂8(z)/∂ z̄ = 1
2 |Ai (z)− A j (z)|ds.

The restriction of ∂8(z)/∂ z̄ to U \ 0d
8, determined locally by (2-2), extends

to a measure µ on U which is absolutely continuous with respect to length
measure on 08. Also ∂8(z)/∂ z̄ = µ in U. If any two level curves 0i j and
0kl with i < j , k < l, and (i, j) 6= (k, l) intersect in at most a finite number
of points, then the measure µ, hence also ∂8(z)/∂ z̄, is determined by its
support 08.

Proof. Assertions (1), (2) and identity (2-2) are direct consequences of Lemma 2.1.
Since by (i), 08 is a locally finite union of piecewise C1-curves, the set 0d

8 has
measure 0 with respect to length measure ds on 08, and thus the measure µ ex-
tending the right side of (2-2) to 08 exists. It remains to show that

(2-3) ∂8/∂ z̄ = µ.
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Note that ∂8/∂ z̄ = µ + G, where G is a sum of Dirac measures supported at
(singular) points in 0d

8. Consider now a singular point p ∈ 0d
8, a small neighbor-

hood N of p, and the Cauchy transform Cµ̃ of (the extension to C of) the measure
µ̃ := χ

N
· µ. Suppose that locally at p the measure G is given by cδp for some

c ≥ 0. Then the function 8−Cµ̃− c/(z− p) is analytic at p. On the other hand,
8 is bounded and by the classical Plemelj–Sokhotski formulas (see for example
[Berenstein and Gay 1991, Section 3.6]) the Cauchy transform Cµ̃ has at most a
logarithmic singularity at p. It follows that c= 0, which proves (2-3). For the last
statement in part (3) of the theorem, note that the assumption on the level curves
made there guarantees that each regular point of 08 belongs to a unique 0i j ; hence
in view of (2-2) the measure ∂8/∂ z̄ is locally determined by 0i j . �

In the remainder of this paper we will see that results similar to Theorem 2.5
actually hold without its local regularity assumptions as in (i).

Obviously, a PH function 9 has a PA derivative almost everywhere. However,
this is not necessarily the same as the distribution derivative of 9. The next result
shows that this is true for continuous PH functions.

Proposition 2.6. If the canonically decomposed PH function

9(z)=
r∑

i=1

Hi (z)χi (z)

is continuous in U (see Section 1.5) then

(2-4) ∂9(z)/∂z =
r∑

i=1

Ai (z)χi (z)

in the sense of distributions, where Ai := ∂Hi/∂z for 1≤ i ≤ r .

Proof. Let 09 be as in Notation 2.4. By Lemma 1.7(v), 09 is contained in the
zero set of the function g =

∏
1≤i< j≤r (Hi − H j ). Let p ∈ 09 \ 0d

9 be a regular
point of 09 and N be a small (open) neighborhood of p. Let further N± be N
intersected with the two sides of 09 . It follows that N+ ⊂ Mi and N− ⊂ M j for
some i 6= j if N is small enough, and the restriction of9 to N is a smooth function
plus f χi , where f ≡ 0 in 09 . Then ∂( f χi )/∂z is a function in N and we conclude
that ∂9/∂z =

∑r
i=1 Aiχi +G, where G is a distribution supported at the singular

points 0d
9 ⊂ 09 . Since 0d

9 is a discrete set, by choosing a continuous solution h
to ∂h/∂z =

∑r
i=1 Aiχi , we get a continuous solution 9− h to ∂(9− h)/∂z = G,

and it follows that G ≡ 0, which proves the proposition. �
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3. Local characterization in generic cases: Sketch of proof

In this section we give an equivalent formulation of Theorem 1.11 and sketch its
proof. Under some mild nondegeneracy assumptions, this provides a local de-
scription of functions with positive (distributional) z̄-derivative that is equal almost
everywhere to one of a finite number of given analytic functions.

Let us first fix notations and assumptions.

Notation 3.1. Let {Mi }
r
i=1 for r ≥ 2 be a finite family of disjoint open subsets of a

simply connected domain U ⊂C covering U up to a set of zero Lebesgue measure,
and denote by χi the characteristic function of Mi . Given a family {Ai (z)}ri=1 of
pairwise distinct analytic functions in U , define the (measurable) function

9(z)=
r∑

i=1

Ai (z)χi (z).

Fix a point p ∈U . As in (1-3) we let

Hi (z)= Re
(∫ z

p
Ai (w)dw

)
for 1≤ i ≤ r.

Each Hi is a well-defined harmonic function in U satisfying ∂Hi/∂z = 1
2 Ai (z).

If r ≥ 3 we associate to each triple (i, j, k) of distinct indices in {1, . . . , r} the
“critical set”

(3-1) 0i, j,k = {z ∈U | Ai (z), A j (z), Ak(z) are collinear}.

Alternatively, 0i, j,k consists of the set of z ∈ U such that Ai (z)− Ak(z) and
A j (z)− Ak(z) are linearly dependent over the reals. This is the set where the
gradients of Hi − Hk and H j − Hk are parallel, or equivalently, the level curves
through z to these functions are parallel. Clearly, 0i, j,k is either a real analytic curve
or there exists c ∈ R such that Ai (z)− Ak(z)= c(A j (z)− Ak(z)) for all z ∈U .

In this notation Theorem 1.11 may then be restated as follows. Suppose — using
the labeling in the theorem — that i(p)= r (see (1-5)), assume that ∂9/∂ z̄ ≥ 0 as
a distribution supported in U , and let p ∈U be such that

(i) p ∈ M i for 1≤ i ≤ r ;

(ii) there is no critical set 0i, j,k that contains p;

(iii) Ai (p) 6= A j (p) for 1≤ i 6= j ≤ r , that is, p is a nonsingular point of Hi−H j .

Then there exists a neighborhood Ñ (p) of p such that

9 = 2∂ϕ/∂z almost everywhere in Ñ (p),

where ϕ is the subharmonic function defined by ϕ(z)=max1≤i≤r Hi (z).
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Remark 3.2. Generically, the sets 0i, j,k are curves and so conditions (ii) and (iii)
above hold outside some real analytic set.

Strategy of the proof and two fundamental lemmas. The proof of Theorem 1.11
is rather technical and the main parts of the argument are contained in Lemma 3.3
and Lemma 3.5 below, which to some extent hold independently of condition (ii)
in Theorem 1.11. We will now show that Theorem 1.11 follows in fact from these
two lemmas. First, a convenient reformulation of the conclusion of Theorem 1.11
is that for 1≤ i ≤r one has χi =1 almost everywhere in the set where ϕ(z)=Hi (z),
and this is what we will actually show. Clearly, it is enough to prove this statement
for i = 1.

Assumption I. By considering the function 9 − A1 and using the fact that A1 is
analytic in U (hence ∂A1/∂ z̄ = 0), we may assume without loss of generality that

(I) A1(z)= H1(z)= 0 for z ∈U,

which we do, except when otherwise stated, throughout the remainder of this sec-
tion as well as in Sections 4 and 5.

Define now

W =W1(p) := {z ∈U | ϕ(z)= 0} ,

Wi (p) := {z ∈U | ϕ(z)= Hi (z)} if 2≤ i ≤ r.
(3-2)

We have to prove that 9 = 0 almost everywhere in N ∩W , or equivalently 9 = 0
almost everywhere in N ∩W ◦ for some small enough neighborhood N of p, where
W ◦ denotes the interior of W .

The first lemma asserts that χ1 is increasing along every path along which all
functions Hi for 2≤ i ≤ r are decreasing.

Lemma 3.3. Let p ∈ U satisfy all the assumptions of Theorem 1.11 except condi-
tion (ii). If γ is a piecewise C1-path from z1 = γ(0) to z2 = γ(1) such that each of
the functions [0, 1] 3 t 7→ Hi (γ(t)) for 2≤ i ≤ r is decreasing, then

(3-3) (χ1 ∗φ)(z1)≤ (χ1 ∗φ)(z2)

for any positive test function φ with suppφ small enough.

The second lemma guarantees that enough many points may be reached by paths
of the form given in Lemma 3.3. To make a precise statement we need the following
definition: To each z ∈U , we associate the set

V (z)= {ζ ∈U | there exists a piecewise C1-path
from z to ζ along which all Hi decrease}.
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Definition 3.4. Given p ∈U and two subsets M, X ⊂U with p ∈ M , we say that
V (z) tends to X through M as z→ p, which we denote by limM3z→p V (z)= X, if
for each α ∈ X and any sequence {zn}n∈N⊂M converging to p, one has α ∈ V (zn)

for all but finitely many indices n ∈ N.

Lemma 3.5. Let p ∈ U satisfy all the assumptions of Theorem 1.11, in particular
p /∈ 0i, j,1 for any i, j . Then there is a neighborhood N of p with

lim
U3z→p

V (z)= N ∩W ◦.

Remark 3.6. There are actually no sets 0i, j,k at all if r = 2 in Lemma 3.5.

Theorem 1.11: Outline of the proof. As noted in the paragraph before Lemma 3.3,
we have to show that there exists a sufficiently small neighborhood N of p such
that 9 = 0 almost everywhere in N ∩W ◦. This is trivially true if W has no interior
points (that is, if W ◦ has zero Lebesgue measure) and so we may assume that W ◦

has positive Lebesgue measure.
Let now {φs}s∈N be a sequence of test functions satisfying suppφs → {0} as

s→∞ and
∫
φsdλ = 1 for s ∈ N, where λ denotes Lebesgue measure. Note that

{φs ∗ χ1}s∈N converges in L1
loc to χ1. In particular, this implies that for all ε > 0

and δ > 0, there exists a sufficiently large s(ε, δ) ∈ N such that if s ∈ N satisfies
s ≥ s(ε, δ), there is a point z1 = z1(ε, δ, s) ∈U satisfying

(3-4) |z1− p|< δ and (φs ∗χ1)(z1) > 1− ε.

To see this let Nδ = {z ∈ U | |z− p| < δ}, and suppose that (φsk ∗ χ1)(z) ≤ 1− ε
for some infinite sequence {sk}k∈N and almost all z ∈ Nδ. Then∫

Nδ

∣∣(φsk ∗χ1)(z)−χ1(z)
∣∣dλ(z) > ελ(M1 ∩ Nδ),

and since by assumption λ(M1∩Nδ)> 0, this contradicts the fact that {φsk ∗χ1}s∈N

converges to χ1 in L1
loc as k→∞, so that (3-4) must hold.

From (3-3) and (3-4) it follows that (φs ∗ χ1)(z) > 1− ε for z ∈ V (z1), which
together with the identity φs ∗ 1= 1 yields

(
φs ∗

∑r
i=2 χi

)
(z) < ε and therefore

|(φs ∗9)(z)| =
∣∣∣∫ φs(z− ζ )9(ζ )dλ(ζ )

∣∣∣
≤ ε max

2≤d≤r
sup

ζ∈z−suppφs

|Ad(ζ )| =: εCs(z) for z ∈ V (z1).
(3-5)

Now we also assume that all the conditions of Theorem 1.11 and Lemma 3.5
are true. Fix ε > 0. The arguments above show that one can construct a sequence
{zn}n∈N ⊂U such that

(3-6) |zn − p|< 1/n and (φsn ∗χ1)(zn) > 1− ε
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for some strictly increasing sequence of positive integers {sn}n∈N. By Lemma 3.5
there exists a neighborhood N of p such that each z ∈ N ∩W ◦ belongs to all but
finitely many sets V (zn) for n ∈N. Combined with (3-5) this shows that for every
z ∈ N ∩W ◦ there exists nz ∈ N such that

(3-7)
∣∣(φsn ∗9)(z)

∣∣≤ Csn (z)ε for n ≥ nz.

Since Ad for 2 ≤ d ≤ r are analytic functions and suppφsn → {0} as n→∞, it
follows from (3-5) that by shrinking the neighborhood N (if necessary) one can
find C > 0 such that Csn (z)≤C for n ∈N and z ∈ N ∩W ◦. Together with (3-7) and
the fact that limn→∞ φsn ∗9 = 9 in L1

loc, this clearly implies that 9 = 0 almost
everywhere in N ∩W ◦, which proves Theorem 1.11. �

4. Proof of Lemma 3.5

To complete the proof of Theorem 1.11, it remains to show Lemmas 3.3 and 3.5.
We start with the latter, which we prove in this section.

4.1. Preliminaries. Let A(z) be an analytic function defined in a neighborhood of
some point z0 ∈ C and set H(z) := Re(

∫ z
z0

A(w)dw), so that ∂H(z)/∂z = 1
2 A(z).

The directional derivative of H with respect to a complex number v = α + βi is
given by

(4-1) DvH(z)= α∂H(z)/∂x +β∂H(z)/∂y = Re(vA(z)),

and the gradient of H(x, y) considered as a vector in C is just

(4-2) ∇H(x, y)= 2∂H(z)/∂ z̄ = A(z).

If A(z0) 6= 0, then z0 is a noncritical point for H(z) and locally the 0-level curves
of H form a foliation by 1-dimensional smooth curves of a small enough neigh-
borhood N of z0 [Spivak 1970, Theorem 5.7]. In particular, the (0-)level curve CH

of H through z0 divides N into two components

N+H = {z ∈ N | H(z) > 0} and NH = {z ∈ N | H(z) < 0}.

Correspondingly, the tangent to CH at z0 divides the plane into two opposite half-
planes

τ(z0)
+
= {v+ z0 | v · ∇H(z0)≥ 0} = {v+ z0 | Re(vA(z0))≥ 0},

τ (z0)= {v+ z0 | v · ∇H(z0)≤ 0} = {v+ z0 | Re(vA(z0))≤ 0}.

We now return to the functions Ai for 1 ≤ i ≤ r , suspending for the moment
Assumption I stating that A1 = 0. As before, we suppose that Ai (p) 6= A j (p)
if i 6= j . Consider the convex hull K of the points Ai (p) for 1≤ i ≤ r . For each i
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define the dual cone (with vertex at p) to the sector consisting of all rays from
∇Hi (p)= Ai (p) to points in the complex dual K by

(4-3)

σi (p) : =
⋂
k∈K

{
v+ p | v · (k̄−∇Hi (p))≤ 0

}
=

r⋂
j 6=i

{
v+ p | v · (∇H j (p)−∇Hi (p))≤ 0

}
=

r⋂
j 6=i

{
v+ p | Re(v(A j (p)− Ai (p)))≤ 0

}
.

Clearly, this cone is the infinitesimal analogue of the set Wi (p) defined in (3-2).
The interior of σi (p) contains the directions in which Hi grows faster (up to the
first order) than any other Hk with k 6= i .

There are several possibilities for the cone σi (p): it may have a top angle strictly
between 0 and π , in which case we say that it is a pointed cone; it consists just of
the point p; or it is either a line, a half-line or a half-plane.

The next lemma is a direct consequence of basic convex geometry.

Lemma 4.2. With the above notations and assumptions the following holds:

(i) If Ai (p) lies in the interior of K , then σi (p)= {p};

(ii) If K is not a segment, then Ai (p) is an extreme point of K if and only if σi (p)
is a pointed cone.

Now consider condition (ii) in Theorem 1.11, which is also part of the assump-
tions of Lemma 3.5. By Lemma 4.2(ii), this condition is strictly stronger than the
hypothesis in the following lemma.

Lemma 4.3. Assume that the only points Ai (p) contained in the boundary ∂K of
K are extreme points. If S(p) = {i ∈ {1, . . . , r} | Ai (p) is an extreme point of K },
then

(i) max1≤i≤r Hi (z)=maxi∈S(p) Hi (z) in a neighborhood of p;

(ii) there is a neighborhood N of p such that
⋃

i∈S(p) N ∩Wi = N.

Proof. Clearly, (ii) follows from (i). Let now j /∈ S(p), so that by Lemma 4.2 and
the assumption of Lemma 4.3 one has σ j (p) = {p}. This means that for each ray
from p in the unit vector direction v ∈ S1, there is at least one Hi with i ∈ S(p)
such that

v /∈ {u+ p | u · (∇Hi (p)−∇H j (p))≤ 0}.

Thus, for each v ∈ S1 there is a product neighborhood I (v)× J (v, p) ⊂ S1
×U

of {v}× {p} such that there exists i = i(v) ∈ S(p) so that the continuous function
u ·(∇Hi (z)−∇H j (z)) is positive if (u, z)∈ I (v)× J (v, p). By the compactness of
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S1
×{p} ⊂ S1

×U , a finite number of neighborhoods I (vl)× J (vl, p) for 1≤ l ≤ s
cover S1

× {p}. Hence the neighborhood J (p) :=
⋂

1≤l≤s J (vl, p) of p has the
property that along each ray from p with direction v ∈ S1 there is some i ∈ S(p)
such that Hi (z) > H j (z) if z ∈ J (p) \ {p}, which proves (i). �

For the rest of this section we will again assume that W =W1 and A1 = H1 = 0
(see Assumption I), and furthermore that p= 0. By condition (ii) in Theorem 1.11
(which, as we already pointed out, is also assumed in Lemma 3.5) and Lemma 4.3,
it is then enough to prove Lemma 3.5 in the case when the index 1 belongs to the
set S(p) defined above, which we now proceed to do.

4.4. Changing coordinates. To prove Lemma 3.5 in the above situation we will
further simplify the picture by making suitable coordinate changes as follows. Let
G be a C1-homeomorphism from a domain U ′ to U that takes a neighborhood
N ′⊂U ′ of p′=G−1(p) one-to-one onto N . Then W (p)∩N is the homeomorphic
image under G of the set

W ′(p)= {w ∈ N ′ | Hi (G(w))≤ 0, 2≤ i ≤ r}

(note that we do not need to assume that G is analytic since we are not concerned
with preserving subharmonicity in the present situation). Furthermore, if z ∈ U
and z′ = G−1(z), then V (z) is the homeomorphic image under G of the set

V ′(z′)= {ζ ′ ∈U ′ | there exists a piecewise C1-path
from z′ to ζ ′ along which all Hi ◦G decrease}.

Clearly, since G is one-to-one it suffices for the proof of Lemma 3.5 to show
that there exists a neighborhood N ′ of p′ such that V ′(z′) tends to W ′◦ through an
appropriate set as z′→ p′ (see Definition 3.4).

As an immediate application of this observation we may prove Lemma 3.5 in
the case when K is a line segment. Indeed, suppose that A1(0) = 0 and A2(0)
are the (only) two extreme points of K . By Lemma 4.3, the functions A1(z) ≡ 0
and A2(z) are the only active ones at p, and it suffices to show that V (z) tends to
W through W as z→ p in a suitable neighborhood. We may change coordinates
as above in order to reduce this case to the situation when H2(x, y)= y. Then just
consider the harmonic conjugate Q of H2, and note that N 3 z 7→ (Q(z), H2(z))
is a local homeomorphism for a sufficiently small neighborhood N of p = 0. It
follows that

V (z)∩N = {w ∈ N |Rew≤Re z} and W ◦∩N = {w ∈ N |Rew<Re p= 0},

so the conclusion of Lemma 3.5 is immediate in this case.
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4.5. The general case r ≥ 3. From the discussion at the beginning of this section
it follows that if W is as in (3-2) and as before W ◦ is its interior, we get that the
open set

�(p) :=
r⋂

i=2

NHi =W ◦ ∩ N

is bounded by parts of some of the (0-)level curves through p=0 of Hi for 2≤ i≤r ,
and part of the boundary of N . Furthermore, σ1(p) is a pointed cone subtending
an angle α ∈ (0, π) at its vertex (which is the origin), and it is bounded in a small
neighborhood of p by tangents to some level curves, say H2 = 0 and H3 = 0, that
meet transversally at p. Since two nonidentical real analytic curves can intersect
each other only in a discrete set, it follows that for a small enough neighborhood
N of p the boundary of �(p) will consist of at most part of two level curves (and
part of the boundary of N ).

By the inverse function theorem, the map

(x, y) 7→ R(x, y) := (H2(x, y), H3(x, y))

is a homeomorphism from a neighborhood (also called N ) of p to a neighborhood
of p. This map takes W ∩ N to an open subset of the third quadrant, and p is an
interior point in the induced topology of the third quadrant. Clearly, the homeo-
morphism G(x, y) = R−1(x, y) satisfies H3(G(x, y)) = x and H2(G(x, y)) = y,
so that by Section 4.4 we may assume without loss of generality throughout the
rest of this section that

H2(x, y)= y, H3(x, y)= x, σ1(p) is the third quadrant, and W ∩ N is
the corresponding quadrant of a disk.

The assumption on the boundary of the convex hull of the Ai (p) (see Lemma
4.3 and the discussion following it) implies that there are no other level curves
through p that are parallel to either of the level curves of H2 or H3 through p
except the latter curves themselves.

Now by viewing gradients as complex numbers for each z ∈ N , we may write

(4-4) ∇Hk(z)= |∇Hk(z)|e
√
−1θk(z), where θk(z) ∈ [0, 2π) for 2≤ k ≤ r.

Our assumptions imply that 0<θk(p)<π/2 for 2≤ k≤ r . Let us further shrink N ,
if necessary, so that

(4-5) 0< θk(z) < π/2 for k ∈ {2, . . . , r} \ {2, 3} if z ∈ N .

Claim 4.6. For any z ∈W ◦∩N there exists a neighborhood Ñz of 0 such that every
point in Ñz may be reached by a path from z along which each of the functions Hk

for 2≤ k ≤ r increases.
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Proof. Let z ∈W ◦∩N . Then clearly both coordinates x and y are increasing along
the straight segment from z to p= 0 given by {(1−t)z | t ∈ [0, 1]}. Moreover, there
is a disk Nz centered at p such that w∈ Nz implies that both x and y increase along
the path γw(t) = (1− t)z+ tw, with t ∈ [0, 1], from z to w. (Note that Nz is the
largest disk contained in N ∩{w ∈C |Rew≥Re z, Imw≥ Im z}.) Thus the func-
tions [0, 1] 3 t 7→ Hk(γw(t)) with k ∈ {2, 3} are both increasing. Let us show that
this is true as well for each of the remaining functions with k ∈ {2, . . . , r} \ {2, 3}.
By (4-5) one has ∇Hk(z) = (α(z), β(z)), where α(z), β(z) > 0 if k /∈ {2, 3}
and z ∈ N , so that the derivative

(4-6) d
dt

Hk(γw(t))= α(γw(t))Re(w− z)+β(γw(t)) Im(w− z)

is positive for w = 0, 2≤ k ≤ r , and t ∈ [0, 1]. Hence there is a neighborhood Ñz

of 0 such that the expression in (4-6) is positive for all w ∈ Ñz and t ∈ [0, 1]. This
means that each point in Ñz may be reached by a path from z along which each of
the functions Hk for 2≤ k ≤ r increases. �

The proof of Lemma 3.5 is now immediate: If {zn}n∈N is a sequence converging
to p, there is an n0 ∈N such that n ≥ n0 implies zn ∈ Ñz and by Claim 4.6 there is
a path from z to zn along which all Hk for 2 ≤ k ≤ r increase. Going in the other
direction, there is a path from zn to z along which all Hk for 2 ≤ k ≤ r decrease
and hence z ∈ V (zn) for n ≥ n0. By the above remarks this completes the proof of
Lemma 3.5.

4.7. A more precise version of Theorem 1.11. Revisiting the proof sketched in
Section 3, we see that we can actually formulate a more precise result by using the
terminology and arguments given in Sections 4.1–4.5 above.

Corollary 4.8. Assume that all hypotheses of Theorem 1.11 are satisfied except
condition (ii). Let Ai (p) be an extremal point in K and consider the part ∂Ki

of its boundary (that is, the union of the two edges of K ) connecting Ai (p) to
its two neighboring extremal points. If Ak(p) /∈ ∂Ki for k 6= i , there exists a
neighborhood N of p such that 9 = 2∂ϕ/∂z almost everywhere in Wi (p)∩ N.

5. Proof of Lemma 3.3

In this section we prove the remaining lemma, which generalizes a correspond-
ing result obtained in [Bergkvist and Rullgård 2002] in the (simpler) case when
the Ai are constant functions. Recall Notation 3.1, the renormalization argument
in Assumption I allowing A1 ≡ 0, and also the assumptions of Lemma 3.3 and
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Theorem 1.11 for our given PA function

(5-1) 9(z)=
r∑

i=1

Ai (z)χi (z)= 0 ·χ1(z)+
r∑

i=2

Ai (z)χi (z)

and for the path γ. In particular, we assume that condition (iii) in Theorem 1.11 is
fulfilled at all points on γ, that is, γ does not pass through singular points for the
differences Hi − H j with i 6= j . We may reparametrize γ by arc-length using the
parameter interval [0, L],m and so we may assume that |γ̇(t)| = 1 for t ∈ [0, L].
Note first that it is enough to prove the following modified form of Lemma 3.3:
For each t1 ∈ [0, L] there exists η > 0 such that for any positive test function φ
with supp φ small enough, one has

(5-2)
(χ1 ∗φ)(z1)≤ (χ1 ∗φ)(z2), where z1 = γ(t1)

and z2 = γ(t2), with 0< t2− t1 < η.

Indeed, the fact that (5-2) implies Lemma 3.3 follows easily by a compactness
argument: Fix t1 and let s2 be maximal such that (3-3) holds for t2 < s2. If s2 6= L ,
then (5-2) gives a contradiction to the maximality of s2. For simplicity we make a
translation so that z1 = 0. Clearly, we may also assume that γ is C1.

The idea of the proof of inequality (5-2) is to use the asymptotic properties of
the logarithm of 9. For this we need to take the logarithm of the Ai , and we must
therefore make sure that it is possible to choose a suitable branch. To this end we
first prove the following assertion.

Claim 5.1. There exists a neighborhood M of z1 = 0 such that

Ai (z) ∈ C \ {t v̄ | t ∈ (0,∞)} for z ∈ M and 1≤ i ≤ r

whenever v is a unimodular complex number satisfying v∈σ(z1), where (see (4-3))

σ(z1)=

r⋂
i=2

{u | Re(u Ai (z1))≤ 0}.

Proof. Since A1≡0 this is immediate for i =1. By condition (iii) in Theorem 1.11,
there exists c′ > 0 such that |Ai (z1)| ≥ c′ for i ∈ {2, . . . , r}, so that there is a
c ∈ (0, c′] and a neighborhood M of z1 such that |Ai (z)| ≥ c for i ∈ {2, . . . , r}
and z ∈ M . It follows that for all unit vectors v ∈ σ(z1), we may assume up to
shrinking M that Re(vAi (z)) ≤ c/2 for z ∈ M . Thus the angle ρ between Ai (z)
and v̄ satisfies ρ ∈ (π/3, 5π/3) since cos ρ = |Ai (z)|−1 Re(vAi (z)) < 1/2, which
proves the claim. �

We use this result to simplify the situation. We choose η > 0 such that γ(t)∈M
for t ∈ [0, η], where the neighborhood M of z1 = 0 is as in Claim 5.1, and we let
v= γ̇(0). Note that since by the assumption in Lemma 3.3 all functions [0, η]3 t 7→
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Hi (γ(t)) for 2≤ i ≤ r are decreasing we have v ∈ σ(z1) by (4-1). Up to replacing
9 by the function eiθ9(eiθ z), where v = eiθ , we may also assume that v = 1. In
particular, we deduce that Re(γ̇(0))= 1> 0 so that by further shrinking M and the
corresponding η > 0, we get the key property

(5-3) Re(γ̇(t)) > 0 for t ∈ [0, η].

Let 9̃ε = log(9 − ε), where ε > 0 is arbitrary and we have chosen a branch of
the logarithm that is defined in the complex plane cut along the positive real axis.
The composite distribution 9̃ε is then defined by the above rotation of the complex
plane, since v = 1 ∈ σ(z1). We now study its derivative along the path γ.

Given ζ ∈ M , define as above (see (4-3))

σ(ζ )=

r⋂
i=2

{u | Re(u Ai (ζ ))≤ 0}.

Then for any fixed ε > 0 and u ∈ σ(ζ ) with Re u > 0, one has

(5-4) Re(u(Ai (w)− ε)) < 0 for 1≤ i ≤ r,

for all w in a (sufficiently small) neighborhood of ζ . In particular, inequality (5-4)
holds for all vectors of the form u = γ̇(t) in view of (5-3) and the fact that all
functions [0, η] 3 t 7→ Hi (γ(t)) for 2 ≤ i ≤ r are decreasing (and thus u ∈ σ(ζ )
by (4-1)). It follows that if φ is a positive test function with

∫
φdλ= 1 and suppφ

is small enough, then

(5-5) Re(u(φ ∗9 − ε)) < 0

and therefore Re(ū/(φ∗9−ε))≤ 0 in a neighborhood of ζ . Since ∂(φ∗9)/∂ z̄≥ 0
we get

Re
(

ū ∂
∂ z̄

log(φ ∗9 − ε)
)
= Re

( ū
φ∗9−ε

·
∂(φ∗9)
∂ z̄

)
≤ 0.

Letting supp φ → 0 with
∫
φdλ = 1, we see that log(φ ∗9 − ε)→ 9̃ε in L1

loc
(hence as a distribution), and by passing to the limit we get

Re
(

ū ∂9̃ε
∂ z̄

)
≤ 0.

Write now 9̃ε = σε + iτε , where σε and τε are real-valued distributions. Then the
latter inequality yields

(5-6) Re
(

ū ∂σε
∂ z̄

)
≤ Im

(
ū ∂τε
∂ z̄

)
,

where (5-6) is interpreted as being valid for the restrictions of the corresponding
distributions to a neighborhood of ζ . Note that up to further shrinking M (and
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the corresponding η > 0) by our choice of the branch of the logarithm used in the
definition of 9̃ε , we have

(5-7) τε(z) ∈
( 1

2π,
3
2π
)

for z ∈ 2M = {a+ b | a, b ∈ M}.

Let us show that relations (5-6) and (5-7) produce the desired result. Recall that
for a real-valued function ω(z) one has

(5-8)
∂ω(z)
∂ z̄
=
∂ω(z)
∂z

in the sense of distributions. We consider the derivative of 9̃ε along the path γ:
If φ is a positive test function, then since σε is a real-valued distribution we deduce
from (5-8) and (5-6) that the following holds in the interval (0, η):

(5-9)

d
dt
((φ ∗ σε)(γ(t)))= 2 Re

(
γ̇(t)∂φ∗σε

∂z
(γ(t))

)
= 2 Re

(
γ̇(t)∂φ∗σε

∂ z̄
(γ(t))

)
= 2

∫
Re
(
γ̇(t)∂φ

∂ z̄
(γ(t)−w)σε(w)

)
dλ(w)

≤ 2
∫

Im
(
γ̇(t)

∂φ

∂ z̄
(γ(t)−w)τε(w)

)
dλ(w).

Now if supp φ is small enough, say supp φ ⊂ M , then from (5-7) and the fact that
|γ̇(t)| = 1 for t ∈ [0, η] (see the reparametrization argument at the beginning of
this section), we get

(5-10) 2
∣∣∣∫ Im

(
γ̇(t)∂φ

∂ z̄
(γ(t)−w)τε(w)

)
dλ(w)

∣∣∣
≤ 2 · 3π

2
·

1
2

(∥∥∥∂φ
∂x

∥∥∥
1
+

∥∥∥∂φ
∂y

∥∥∥
1

)
=: κ(φ),

where ‖ · ‖1 denotes the L1-norm. Note that the (positive) constant κ(φ) defined
above does not depend on ε. Combining (5-9) and (5-10), we obtain

(5-11) (φ ∗ σε)(z2)− (φ ∗ σε)(z1)≤ κ(φ)η.

On the other hand, by (5-1) we have

9̃ε(z)= log
(
−εχ1(z)+

r∑
i=2

(Ai (z)− ε)χi (z)
)
;

hence

σε(z)= (log ε) ·χ1(z)+ fε(z), where fε(z)=
r∑

i=2

log |Ai (z)− ε| ·χi (z),
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and therefore (φ ∗σε)(z)= (log ε) · (φ ∗χ1)(z)+ (φ ∗ fε)(z). By condition (iii) in
Theorem 1.11, there exists a c>0 such that |Ai (z)|≥ c for i ∈{2, . . . , r} and z ∈M
(see the proof of Claim 5.1). We deduce that there exists a c′ > 0 (independent
of ε and φ) such that |(φ ∗ fε)(z)| ≤ c′‖φ‖∞ for z ∈ M , where ‖ · ‖∞ denotes the
L∞-norm. It follows that

(5-12) (φ ∗ σε)(z)= (log ε) · (φ ∗χ1)(z)+ O(1).

Substituting (5-12) in (5-11) and letting ε → 0, we conclude that (5-2) holds,
which by the preliminary remarks at the beginning of this section completely settles
Lemma 3.3.

6. An alternative approach under extra conditions

In the previous sections we formulated and proved three results answering the
main problem stated in Section 1 under fairly mild assumptions, namely Theo-
rem 1.11 and its consequences Corollary 4.8 and Corollary 1.12 (see (1-4)). We
will now prove Theorem 6.2 below, which provides a fourth answer to the main
problem under some extra (yet still mild) conditions. Although this result may be
obtained directly from Corollary 1.12, the point in what follows is to present an
approach1 different from the one used in Sections 3–5, and one that does not rely
on Lemmas 3.3 and 3.5.

Notation 6.1. Let 8 ∈ PA be as in (1-2), which we assume to be the canonical
piecewise decomposition of 8 in the sense of Definition 1.6. We may write

U \
r⋃

i=1

Mi = Z ,

where Mi for 1≤ i ≤ r are pairwise disjoint open sets and Z is Lebesgue negligible.
Note that each ∂Mi is also Lebesgue negligible since ∂Mi ⊂ Z for 1 ≤ i ≤ r . As
before we let χi be the characteristic function of Mi . Recall from (1-5) the set
I (p) and its cardinality i(p) defined for any p ∈U . To simplify some discussions,
assume that U is simply connected and choose fi ∈ A(U ) such that f ′i (z)= Ai (z)
for 1 ≤ i ≤ r , where the Ai are the given (analytic) functions appearing in the
decomposition (1-2) of 8. Hence

8(z)=
r∑

i=1

f ′i (z)χi (z).

1This approach and the subsequent proofs were suggested by the referee, whom we would like to
thank for generously sharing his ideas with us.
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For arbitrarily fixed p ∈U we let

φ(z) (= φp(z))= max
j∈I (p)

Re( f j (z)− f j (p))= max
j∈I (p)

H j (z),

where the Hi are the harmonic functions defined in (1-3) (see Section 1 in the case
when i(p)=r ). Clearly, φ is a continuous subharmonic function in U that vanishes
at p. Finally, if k ∈ I (p) and i(p) > 1, set

Vk(p)=
{ ∑

j∈I (p)\{k}

θ j ( f ′k(p)− f ′j (p))
∣∣∣ θ j ≥ 0, j ∈ I (p) \ {k},

∑
j∈I (p)\{k}

θ j > 0
}
.

Recall the definition of 6(U ) from Notation 1.10.

Theorem 6.2. In the above notations assume that8∈6(U ) and that the following
conditions hold:

(i) The one-dimensional Hausdorff measure of ∂M j ∩ ∂Mk ∩ ∂Ml is 0 whenever
j < k < l.

(ii) If i(p) > 1 and k ∈ I (p), then 0 /∈ Vk(p).

Then one has 8 = 2∂zφ (= 2∂zφp) almost everywhere in a neighborhood of every
p ∈U.

Remark 6.3. Recall the assumptions used in Corollaries 1.12 and 4.8 involving the
(extremal points of the) convex hull K of the points Ai (p)= f ′i (p) for 1≤ i ≤ i(p).
Although still mild (since it is generically true), requirement (ii) in Theorem 6.2 is
actually stronger than these assumptions.

The remainder of this section is devoted to the proof of Theorem 6.2, which
uses induction on i(p).

Consider first the case i(p)= 1. By relabeling the indices we may assume that
I (p) = {1}, that is, p /∈ M j for j > 1. Hence p is either an interior point of M1

or p ∈ Z , and every neighborhood of p intersects M1. If the former occurs, then
8(z) = 2∂z Re f1(z) in an open neighborhood of p and thus 8 = 2∂φ/∂z in that
neighborhood. If p ∈ Z , then there is a small open neighborhood � of p contained
in M1 ∪ Z , and we conclude that 8(z) = 2∂z Re f1(z) almost everywhere in �;
hence equality holds in � in the distribution sense. This settles the case i(p)= 1.

Assume next that i(p)= 2 and (without loss of generality) I (p)= {1, 2}. Since
the Mi are pairwise disjoint it follows that p ∈ Z and p /∈Mk for k > 2. Therefore,
there is an open neighborhood � of p such that

8(z)= f ′1(z)χ1(z)+ f ′2(z)χ2(z) for z ∈�.

Let χ = χ2|�, f = f2− f1|�, and define

9(z)= f ′(z)χ(z)=8(z)− f ′1(z).
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Note that ∂z̄9(z)≥ 0 in �. Condition (ii) in Theorem 6.2 implies that f ′(p) 6= 0,
and we may assume (after shrinking �, if necessary) that f is a diffeomorphism
from � onto some open disk D ⊂ C. We may then write χ(z) = η( f (z)), where
η = η(w) = η(u + iv) is the characteristic function of some open subset ω of D,
and we get

0≤ ∂z̄8(z)= ∂z̄ f ′(z)η( f (z))= | f ′(z)|2(∂w̄η)( f (z)),

so that ∂w̄η ≥ 0 in D. Since η is real-valued, this means that η is an increas-
ing function of u. Hence the open set ω is defined by an inequality of the form
Rew > a, and then M2 ∩� is defined by Re( f2(z)− f1(z)) > a. Also since p
is in the closure of the set where χ = 1, we must have a = Re( f2(p)− f1(p)).
Clearly, we may assume that f1(p)= f2(p)= 0. Then 8(z)= f ′1(z) when z ∈�
and Re f1(z) >Re f2(z), while8(z)= f ′2(z) when z ∈� and Re f1(z) <Re f2(z).
This shows that 8 = 2∂φ/∂z in a neighborhood of p, which completes the proof
in the case when i(p)= 2.

The above observations also give us a result that will be used later on:

Lemma 6.4. Assume that I (p)= { j, k}, where j < k, and that γ(t) is a C1-curve
escaping from M j into Mk when t = τ in the sense that γ(t)∈M j for t <τ and that
there is a sequence {τν}∞1 with τν >τ and τν→ τ as ν→∞ such that γ(τν)∈Mk .
Then ∂t Re( f j (γ(t))− fk(γ(t)))

∣∣
t=τ ≤ 0.

Let us now pass to the case when i(p) ≥ 3. Then p ∈ Z and there is an open
neighborhood of p that does not intersect r − i(p) of the M j . By deleting these
sets from U we may assume that i(p)= r ≥ 3 (see the comments after (1-5)). We
then know that p ∈

⋂r
i=1 ∂M j . It is no restriction to further assume that the f j are

normalized so that f j (p)= 0 for every j . Then φ(z) (= φp(z))=max j Re f j (z),
and we have to prove that

(6-1) Re fk = φ in Mk ∩ N ,

where N ⊂U is a sufficiently small open neighborhood of p. Let

Nk = {z ∈ N | Re fk(z) > Re f j (z) when j 6= k}.

Suppose now that we can show that

(6-2) Nk ⊂ Mk for every k if N is sufficiently small.

Since the Re f j must be pairwise distinct harmonic functions in U (as a conse-
quence of condition (ii) in Theorem 6.2), the set where Re f j =Re fk for some j, k
with j 6= k is of Lebesgue measure 0. It follows that N is the disjoint union of the
sets Nk together with a set of measure 0. Since the M j are pairwise disjoint and
∂M j is of Lebesgue measure 0 for every j (since ∂M j ⊂ Z — see Notation 6.1)
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we deduce that (Mk ∩ N )\ Nk is Lebesgue negligible. From this we conclude that
Re fk = φ in Mk ∩ N and hence 8= 2∂zφ in N , which proves Theorem 6.2.

Thus the main issue is to show that (6-2) holds. When doing this we may assume
that k = r and consider the harmonic functions h j =Re( fr− f j ) for 1≤ j ≤ r−1.
We know that h j (p)= 0. Let q ∈ Nr , that is, q ∈ N and h j (q) > 0 for j < r . We
want to show that q ∈ Mr . For this we define

3=
⋃

j<k<l

(
∂M j ∩ ∂Mk ∩ ∂Ml

)
.

By assumption (i) in Theorem 6.2, 3 has vanishing one-dimensional Hausdorff
measure. We need this lemma:

Lemma 6.5. There is an open set N ⊂ U containing p such that the following
holds: If w ∈ N and hk(w) := Re( fr (w)− fk(w)) > 0 when k < r , then there
exist an open neighborhood M=Mw ⊂U of p and for every z ∈M a real analytic
mapping γ = γ(s, t) from a neighborhood of [0, 1]× [0, 1] into U such that

(a) the restriction of γ to any set where t < t0 < 1 is a diffeomorphism onto its
image;

(b) γ(1/2, 0)= z and γ(s, 1)= w for all s;

(c) ∂t hk(γ(s, t)) > 0 for all (s, t) when k < r .

Assertion (6-2) — and thus, as explained above, Theorem 6.2 as well — is now a
consequence of Lemma 6.5. Indeed, let N be a small neighborhood of p satisfying
its assumptions, and let w ∈ N be such that hk(w) > 0 for k < r . We need to
prove that p ∈ Mr . For this let M = Mw be as in the conclusion of Lemma 6.5.
Since p ∈ Mr we know that M contains a point z ∈ Mr . Let γ be the mapping
corresponding to z and w. By shrinking the domain in which the variable s ranges,
we may assume that γ(s, 0) ∈ Mr when s ∈ [0, 1]. Set

Aν = {(s, t) | 0≤ s ≤ 1, 0≤ t ≤ 1− ν−1
}

for each integer ν ≥ 2. Since the one-dimensional Hausdorff measure of 3 van-
ishes, this is also true for the one-dimensional Hausdorff measure of

Kν := {(s, t) ∈Aν | γ(s, t) ∈3}.

It follows that
Jν := {s ∈ [0, 1] | (s, t) ∈ Kν for some t}

is a closed set of Lebesgue measure 0. In fact, Jν is the projection of a set with
vanishing one-dimensional Hausdorff measure; see for example [Mattila 1995,
Theorem 7.5]. Therefore the set Jν is of the first category, which implies that⋃
ν Jν is also of the first category. This gives us an s ∈ [0, 1] such that γ(s, t) /∈3
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when 0≤ t < 1. From condition (c) in Lemma 6.5 and from Lemma 6.4, it follows
that the curve t 7→ γ(s, t), which starts at γ(s, 0)∈Mr , cannot leave Mr until t = 1.
Hence w ∈ Mr , which proves (6-2) and we are done.

It remains to prove Lemma 6.5. In doing so we will use the fact that the functions
h j=Re( fr− f j ) for 1≤ j≤r−1 introduced above are real-valued and real analytic,
but we will make no use of their harmonicity. Condition (ii) in Theorem 6.2 implies
that the set of all linear combinations

∑r−1
j=1 θ j dh j (p), where θ j ≥ 0 for all j and

dh denotes differential, is contained in a convex cone 0 with positive opening
angle less than π . We make an affine change of coordinates, keeping only the
affine space structure of C. This change of coordinates will allow us to replace 0
with any other cone with positive opening angle, and without loss of generality we
may further assume that p is the origin. Then we are in the situation where a set
of m = r − 1 real analytic and real-valued functions h1, . . . , hm are defined in a
neighborhood V of the origin in R2 and satisfy the conditions

(I) h j (0)= 0 and dh j (0) 6= 0 when 1≤ j ≤ m;

(II) the closed convex cone generated by the gradients ∇h j (0) for 1 ≤ j ≤ m is
contained in the cone 0 := {(x, y) ∈ R2

| |x | ≤ y}.

To complete the proof of Lemma 6.5 we need only establish this result:

Lemma 6.6. Assume conditions (I) and (II) above. Then there is an open set
0 ∈ N ⊂ V such that the following holds: If

w ∈�N := {z = (x, y) ∈ N | h j (z) > 0, 1≤ j ≤ m}

one can find an open neighborhood M = Mw of the origin and for each z ∈ M a
C1-mapping γ(s, t) from a neighborhood of [0, 1]× [0, 1] into V such that

(a) the restriction of γ to any set where t < t0 < 1 is a diffeomorphism onto its
image;

(b) γ(1/2, 0)= z and γ(s, 1)= w for all s;

(c) ∂t hk(γ(s, t)) > 0 for all (s, t) when k ≤ m.

Proof. Define �±N = �N ∩ {(x, y) ∈ R2
| ±x ≥ 0} whenever N ⊂ V . It suffices

to prove that there exist an open set 0 ∈ N = N+ ⊂ V such that the conclusion of
the lemma holds when w ∈�+N . Indeed, by replacing hk(x, y) with hk(−x, y), we
would obtain N = N−, for which the lemma’s conclusion would then be true when
w ∈�−N , and thus the lemma’s claims would follow for the open set N = N+∩N−.

It is no restriction to assume that dh j (0) is proportional to−dx+dy for some j .
By shrinking V if necessary and applying the implicit function theorem, we may
also assume that every h j is of the form

h j (x, y)= β j (x, y)(y− g j (x)),
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where β j , g j are real analytic functions and β j > 0. Then by using the real
analyticity of the functions g j we may further assume — after shrinking V and
relabeling the indices, if necessary — that V = (−b, b)×(−b, b) for some positive
real number b and that g1(x) ≤ g2(x) ≤ · · · ≤ gm(x) when 0< x < b. With these
normalizations it follows that

−1≤ g′1(0)≤ g′2(0)≤ · · · ≤ g′m(0)= 1,

and finally, after making a nonlinear change of the x-coordinate, we may also
assume that gm(x)= x .

Below we let a < b and δ be small positive numbers and we make generic use
of the letter C to denote constants that are independent of a and δ when these stay
small. Define

N (a)= {z ∈ C | |z|< a},

�+(a)= {z = (x, y) ∈ N (a) | x ≥ 0 and hk(z) > 0 for all k},

so that �+(a)= {z = (x, y) | 0≤ x < y, |z|< a}.
Now, we clearly have the estimates

(6-3) C−1
≤ β j (z) and |∇β j (z)| ≤ C for z ∈ N (a).

Let w = (u, v) ∈ �+(a) and set ρ = v− u. Then ρ is a positive real number that
depends on w, and we define

M=Mw = {z ∈ C | |z|< δρ}.

Take z∈M and let α∈R2 be linearly independent fromw−z and such that |α|≤ δρ.
Introduce the mapping

(6-4) γ(s, t)= (x(s, t), y(s, t))= z+ (s− 1/2)(1− t)α+ t (w− z)

defined for all (s, t) in a small open neighborhood of [0, 1] × [0, 1]. It is then
immediate that assertions (a) and (b) in the lemma are satisfied.

To verify (c) we compute the t-derivative of h j (γ(s, t)) as

(6-5) ∂t(h j (γ(s, t)))= (y(s, t)− g j (x(s, t)))∂t(β j (γ(s, t)))

+β j (γ(s, t))(∂t y(s, t)− g′j (x(s, t))∂t x(s, t)).

We see that

(6-6) |∂t(β j (γ(s, t)))| ≤ Ca.

Since g j (x)≤ gm(x)= x when 0< x < a we may write g j (x)= x− p j (x), where
p j (x) ≥ 0. If p j (x) 6≡ 0, then p j (x) = xµ j q j (x), where µ j is a positive integer
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and q j (0) > 0. By taking a sufficiently small, we may then assume that

(6-7) p′j (x)= µ j xµ j−1q j (x)+ xµ j q ′j (x)≥ C−1 p j (x)/x for 0< x < a.

Moreover, since x(s, t)= (1− t)x(s, 0)+ t x(s, 1) ≥ (1− t)x(s, 0) it follows that
|x(s, t)| ≤ Cδρ if x(s, t)≤ 0. Hence there is a constant C such that

(6-8)
∣∣p′j (x(s, t))− p′j (|x(s, t)|)

∣∣≤ Cδρ for 0≤ s, t ≤ 1.

Next, one has

(6-9) y(s, t)− g j (x(s, t))

= (1− t)y(s, 0)+ t y(s, 1)− x(s, t)+ p j (x(s, t))

= (1− t)y(s, 0)+ t y(s, 1)− (1− t)x(s, 0)− t x(s, 1)+ p j (x(s, t))

= (1− t)(y(s, 0)− x(s, 0))+ t (y(s, 1)− x(s, 1))+ p j (x(s, t))

= (1− t)(y(s, 0)− x(s, 0))+ tρ+ p j (x(s, t)).

Recall that w ∈�+(a), so that in particular |w|< a. Since |z|< δρ and |α| ≤ δρ,
it follows from (6-4) that |x(s, t)|< a if δ is small enough. We then deduce from
(6-8) and (6-9) that

(6-10) |y(s, t)− g j (x(s, t))| ≤ Cρ+ p j (|x(s, t)|).

Using (6-7) and (6-8) we find that

∂t y(s, t)− (∂t x(s, t))g′j (x(s, t))

= ρ− (y(s, 0)− x(s, 0))+ (∂t x(s, t))p′j (x(s, t))

= ρ− (y(s, 0)− x(s, 0))+ (x(s, 1)− x(s, 0))p′j (x(s, t))

= ρ− (y(s, 0)− x(s, 0))− x(s, 0)p′j (x(s, t))+ x(s, 1)p′j (x(s, t))

≥ (1−Cδ)ρ+ x(s, 1)p′j (x(s, t))≥ (1− 2Cδ)ρ+ x(s, 1)p′j (|x(s, t)|)

≥ (1− 2Cδ)ρ+C−1 p j (|x(s, t)|).

We now choose δ small enough so that, say, 2Cδ < 1/2. This gives the inequality

(6-11) ∂t y(s, t)− (∂t x(s, t))g′j (x(s, t))≥ C−1(ρ+ p j (|x(s, t)|)).

Combining (6-11) with (6-3), (6-5), (6-6) and (6-10), we get

∂t h j (γ(s, t))≥ β j (γ(s, t))(∂t y(s, t)− (∂t x(s, t))g′j (x(s, t)))

− |(y(s, t)− g j (x(s, t)))∂tβ j (γ(s, t))|

≥ C−2(ρ+ p j (|x(s, t)|))−C2a(ρ+ p j (|x(s, t)|))

= (C−2
−C2a)(ρ+ p j (|x(s, t)|)).
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Figure 1. A nonmaximal subharmonic PH function.

Taking a < C−4/2 we obtain a positive bound from below for the right side in the
last expression, which completes the proof of the lemma. �

7. Examples and further problems

7.1. The necessity of nondegeneracy assumptions. If one of the cones σi (p) in
(4-3) is a line, it may happen that W (p)\{p} is the union of two components W (p)l
and W (p)r , each bounded by level curves as above. In this case there might be sev-
eral different subharmonic PH functions that satisfy condition (i) in Theorem 1.11,
as shown by Example 7.2 below. Hence something like condition (ii) is indeed
necessary to obtain the conclusion of Theorem 1.11.

Example 7.2. Set H1(x, y) = 0, H2(x, y) = 4x + x2
− y2, and H3(x, y) = −x .

There are three level curves through (0, 0) to functions of the form Hi − H j

with i 6= j . These are depicted in Figure 1. Let ϕ = max{H1 ≡ 0, H2, H3}. The
functions in the figure closest to the origin in each sector are the restriction of ϕ to
that sector.

If one instead defines 9(x, y) by changing the value in the two upper sectors
from 0 to H3 and H2, respectively, then one obtains a different continuous PH
function that is again subharmonic. Clearly, every neighborhood of the origin still
has the property that 9 is equal to each of the three harmonic functions in some
subset of positive Lebesgue measure. So 9 is a maximum of harmonic functions
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along the curves and hence is trivially subharmonic away from the origin. Letting
0≤χ ∈C∞0 (R) be equal to 1 near the origin and χε(z) :=χ(z/ε), this implies that
(1−χε)19 ≥ 0 in D′. But clearly χε19→ 0 in D′ as ε→ 0 since 9 = O(|z|).
Hence 9 is subharmonic.

7.3. On global descriptions. In this paper we have only considered the problem
of locally characterizing the maximum of a finite number of harmonic functions. A
natural question is to study various situations when a subharmonic PH function is
globally the maximum of a finite number of harmonic functions. Such a situation
occurs for instance in [Bergkvist and Rullgård 2002], where the given harmonic
functions are linear. The same conclusion holds when the number of given har-
monic functions is two as well as in certain other cases. We discuss some of these
cases in the following examples, which were inspired by personal communication
with A. Melin in 2005 and 2006.

Example 7.4. Let A1 and A2 be entire functions such that A1(z) 6= A2(z) for
z ∈ C, and assume that 8 := χ1 A1+ χ2 A2 satisfies ∂8/∂ z̄ ≥ 0, where χ1 and χ2

are the characteristic functions of the sets M1 and M2, respectively (see Notation
1.4). The first assumption implies that Hi (z) = Re

∫ z
0 Ai (w)dw for i = 1, 2 are

well-defined functions in C and that there are no singular points for H1− H2. For
simplicity assume further that level curves to H1−H2 as well as the support ∂8/∂ z̄
are connected. If p ∈ M1∩M2, it follows from Theorem 1.11 (condition (ii) there
being vacuous in this case) that there exists a neighborhood N of p and constants
c1(p) and c2(p) such that

8= 2 ∂
∂z

max(H1+ c1(p), H2+ c2(p))= 2 ∂
∂z

max(H1, H2+ c2(p)− c1(p))

In particular, the common boundary of M1 and M2 in N is the level curve H1−H2=

c2(p)− c1(p), and this is also the support of ∂8/∂ z̄ in N . The local information
implies, by the connectedness assumptions, that globally c2(p)− c1(p) is a con-
stant c independent of p, and that the support actually consists of the level curve
H1− H2 = c, and finally that 8= 2 ∂

∂z max (H1, H2+ c).

Example 7.5. This is an essentially one-dimensional example. We assume that
R=

⋃r
j=1 Ī j , where the I j are open pairwise disjoint intervals. Set M j = I j ×R

for 1≤ j ≤ r , and let χ j (x) be the characteristic function of I j , which we also view
as the characteristic function of M j . Let h j (x +

√
−1y)= a j x + b j for 1≤ j ≤ r

be linear functions on C, and assume as usual that

χ :=
∂
∂ z̄

( r∑
j=1

∂h j (z)
∂z

χ j

)
=

r∑
j=1

∂h j (z)
∂z

∂χ j

∂ z̄
=

r∑
j=1

a j

2
∂χ j

∂ z̄
≥ 0.



262 JULIUS BORCEA AND RIKARD BØGVAD

Since ∂χ j/∂ z̄= 1
2∂χ j/∂x we deduce that

∑r
j=1 a jχ j is an increasing function of x

and thus h(x)=
∫ x

0
∑r

j=1 a jχ j is a convex function. Set

H(x, y)= h(y)+ h′(y+ 0)(x − y).

By convexity we have

(7-1) h(x)≥ H(x, y) for x, y ∈ R,

with equality when y = x . The functions H(x, y), viewed as linear functions of
x ∈R, are independent of y when y ∈ I j . We denote their common value for y ∈ I j

by h̃ j (x) and notice that h̃ j−h j =C j , where C j is a constant. It follows from (7-1)
that h(x)=max1≤k≤r h̃k(x) in M j , and then differentiation implies that

h′(x)= ∂
∂x

max
1≤k≤r

h̃k(x)=
∂
∂x

max
1≤k≤r

(hk(x)+Ck) .

This means that the PA function χ satisfies χ = 2 ∂
∂z max1≤ j≤r (h j (z)+C j ) and is

therefore globally the maximum of a finite number of harmonic functions.

7.6. Related questions. Let us finally discuss some interesting related problems.

Problem 7.7. At the moment we do not know, although we strongly suspect, that
locally there are in fact only a finite number of possibilities for 9 even when
conditions (i)–(iii) are weakened in Theorem 1.11. This holds for example for
the function constructed in Example 7.2. In particular, it seems likely that there
always exists a sufficiently small neighborhood of p that can be dissected into
sectors bounded by level curves to Hi − H j such that 9 is constant in each such
sector. Example 7.2 suggests that the local behavior of a PH subharmonic function
is determined by the geometry of the level curves 0i, j,k , whose study is essentially
a problem of a combinatorial and topological nature. It would be interesting to
give a description of this local behavior in terms of Morse theory (the study of
level curves was Morse’s original motivation for his theory; see [Kelly 1979]).

Problem 7.8. Another problem is to understand the global behavior of a PH sub-
harmonic function and in particular to give criteria saying precisely when ∂9/∂z
is the derivative of the maximum of a finite number of harmonic functions as in
the last two examples. This would have interesting applications to uniqueness
theorems for Cauchy transforms that are algebraic functions, as in [Bergkvist and
Rullgård 2002; Borcea et al. 2007].

Problem 7.9. There are also several connections between the questions studied
in the present paper and the theory of asymptotic solutions to differential equa-
tions. For instance, sets like those that occur as the support of the measures in
Theorem 2.5 play a remarkable role in the theory [Fedoryuk 1993; Kelly 1979;
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Wasow 1985; 1965; Sibuya 1975]. Moreover, many similar techniques are used;
for example the admissible sets in [Fedoryuk 1993; Kelly 1979] are closely related
to (though not exactly the same as) the sets V (z) in Lemma 3.3 above. These
connections are quite close in the cases studied in [Bergkvist and Rullgård 2002;
Borcea et al. 2007] (as well as other cases) and certainly deserve further investiga-
tion in view of their important applications.

Problem 7.10. Suppose U is a domain in Cn , where n ≥ 1. By analogy with
Definition 1.2 and Notation 1.4 one can define the notions of PHn and PAn func-
tions in U as natural higher-dimensional generalizations of the concepts of PH
and PA functions, respectively. It seems reasonable to conjecture that appropriate
higher-dimensional analogues of Theorem 1.11 hold for the class PAn and that as
a consequence one would get a natural extension of (say) Corollary 1.15 to the
class PHn .

Appendix. Comments on some properties and definitions

As before, χ� denotes the characteristic function of a set � ⊂ C (or R2). Let us
introduce the additional condition: An open set�⊂R2 is said to have property (*)
if ∂� is of Lebesgue measure 0 and ∂zχ� and ∂yχ� are measures.

Lemma A.1. If �1, �2 ⊂ R2 have property (*), then so does �1 ∩�2.

Proof. It is clear that ∂(�1∩�2) is Lebesgue negligible. Let K ⊂R2 be any com-
pact set, choose η∈C∞0 (R

2)with
∫∫
η(x, y)dxdy=1, define ηε= ε−2η(x/ε, y/ε)

for ε ∈ (0, 1) and set χ j,ε =χ j ∗ηε , where χ j =χ� j
for j = 1, 2. Then 0≤χ j,ε ≤ 1,

χ j,ε→χ j almost everywhere as ε→0 and ‖∂xχ j,ε‖L1(K )=‖ηε∗∂xχ j‖L1(K )≤CK ,

where CK is independent of ε. Since ∂x(χ1,εχ2,ε) = χ1,ε∂xχ2,ε + χ2,ε∂xχ1,ε , it
follows that if φ ∈ C∞0 (R

2) then∣∣∣∫∫ χ1,ε(x, y)χ2,ε(x, y)∂xφ(x, y)dxdy
∣∣∣≤∫∫

|φ(x, y)|(|∂xχ1,ε(x, y)| + |∂xχ2,ε(x, y)|)dxdy ≤ 2CK‖φ‖L∞ .

When ε→ 0 this shows that∣∣∣∫∫ χ1(x, y)χ2(x, y)∂xφ(x, y)dxdy
∣∣∣≤ 2CK‖φ‖L∞,

and thus ∂x(χ1χ2) is a distribution of order 0 (which extends to a measure). This
finishes the proof since ∂y(χ1χ2) can be dealt with in the same way. �

Lemma A.1 shows that if we define sets P∗X of functions “piecewise* in X” as
in Definition 1.2 by demanding in addition that all sets Mi have property (*), then
P∗X are again vector spaces.
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Lemma A.2. If u ∈ P∗X is continuous then ∂x u, ∂yu ∈ P∗X , where derivatives
are taken in the distribution sense.

Proof. Let us write u =
∑r

i=1 uiχi , where χi is the characteristic function of the
(open) set Mi ,

∑r
i=1 χi = 1 almost everywhere and ∂xχi and ∂yχi are measures

for 1 ≤ i ≤ r . Since u is continuous we can find uε ∈ C∞(U ) tending uniformly
to u on every compact set as ε→ 0. Now

(A-1)

∂x uε =
r∑

i=1

(∂x ui )χi +

r∑
i=1

χi∂x(uε − ui )

=

r∑
i=1

(∂x ui )χi + ∂x

( r∑
i=1

(uε − ui )χi

)
−

r∑
i=1

(uε − ui )∂xχi .

For every i one has uε−ui = uε−u in a dense subset of Mi . It follows that uε→ ui

uniformly on every compact subset of M i and hence also on every compact subset
of the support of the measure ∂xχi . Therefore (uε − ui )∂xχi → 0 in D′(R2) as
ε → 0. This is true for (uε − ui )χi as well and so by letting ε → 0 in (A-1) we
conclude that ∂x uε =

∑r
i=1(∂x ui )χi . The same argument applies to ∂yu. �

Given a domain U ⊂C, let S(U ) be the class of subharmonic functions in U . Re-
call Notation 1.10, where we already noted the (well-known) fact that ∂zφ ∈6(U )
whenever φ∈ S(U ). For completeness we give here a proof of an (also well-known)
partial converse to this statement.

Lemma A.3. If U is simply connected and f ∈ 6(U ), then f = ∂zφ for some
φ ∈ S(U ) that is uniquely determined modulo an additive constant.

Proof. Since the operator ∂z is elliptic, we may write f as f = ∂zw, where
w = u+ iv ∈ D′(U ); see for example [Hörmander 2003]. We get 1u + i1v =
1w = 4∂z̄∂zw = 4∂z̄ f ≥ 0, which implies that u ∈ S(U ) for v ∈ H(U ), and thus
f = ∂zu + g, where g = i∂zv ∈ A(U ). Let G ∈ A(U ) be such that G ′(z) = g(z),
and define φ= u+G+Ḡ. Then φ ∈ S(U ) and ∂zφ= ∂zu+∂zG= ∂zu+g= f. The
last assertion in the lemma follows from the fact that a function h in U is constant
whenever h = h̄ and ∂zh = 0. �

Acknowledgments

We would like to thank Jan-Erik Björk and Anders Melin for stimulating discus-
sions and useful comments. We are especially grateful to the anonymous referee
for his detailed reports (articles in their own right!) with numerous insightful sug-
gestions and an alternative approach for deriving results similar to Theorem 1.11
under some mild extra assumptions (see Theorem 6.2). With his kind permission
we reproduced large parts of his reports in Section 1, Section 6 and the appendix.



PIECEWISE HARMONIC FUNCTIONS AND POSITIVE CAUCHY TRANSFORMS 265

References

[Berenstein and Gay 1991] C. A. Berenstein and R. Gay, Complex variables: An introduction, Grad-
uate Texts in Mathematics 125, Springer, New York, 1991. MR 92f:30001 Zbl 0741.30001

[Bergkvist and Rullgård 2002] T. Bergkvist and H. Rullgård, “On polynomial eigenfunctions for
a class of differential operators”, Math. Res. Lett. 9:2-3 (2002), 153–171. MR 2003d:34192 Zbl
1016.34083

[Borcea et al. 2007] J. Borcea, R. Bøgvad, and B. Shapiro, “Homogenized spectral problems for
exactly solvable operators: Asymptotics of polynomial eigenfunctions”, preprint, 2007. To appear
in Publ. Res. Inst. Math. Sci. arXiv 0705.2822v2

[Deift and Zhou 1993] P. Deift and X. Zhou, “A steepest descent method for oscillatory Riemann–
Hilbert problems: Asymptotics for the MKdV equation”, Ann. of Math. (2) 137:2 (1993), 295–368.
MR 94d:35143 Zbl 0771.35042

[Fedoryuk 1993] M. V. Fedoryuk, Asymptotic analysis: Linear ordinary differential equations,
Springer, Berlin, 1993. MR 95m:34091 Zbl 0782.34001

[Hayman and Kennedy 1976] W. K. Hayman and P. B. Kennedy, Subharmonic functions, I, London
Math. Soc. Monographs 9, Academic, London, 1976.

[Hörmander 2003] L. Hörmander, The analysis of linear partial differential operators, I: Distribu-
tion theory and Fourier analysis, Springer, Berlin, 2003. MR 1996773 Zbl 1028.35001

[Kelly 1979] B. J. Kelly, “Admissible domains for higher order differential equations”, Stud. Appl.
Math. 60:3 (1979), 211–240. MR 80h:34005 Zbl 0407.34043

[Mattila 1995] P. Mattila, Geometry of sets and measures in Euclidean spaces: Fractals and rec-
tifiability, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press, 1995.
MR 96h:28006 Zbl 0819.28004

[Sibuya 1975] Y. Sibuya, Global theory of a second order linear differential equation with polyno-
mial coefficients, North-Holland, Amsterdam, 1975.

[Spivak 1970] M. Spivak, A comprehensive introduction to differential geometry, I, Brandeis Univ.,
Waltham, MA, 1970.

[Wasow 1965] W. Wasow, Asymptotic expansions for ordinary differential equations, Pure and Ap-
plied Mathematics 14, Wiley, New York, 1965. MR 34 #3041 Zbl 0133.35301

[Wasow 1985] W. Wasow, Linear turning point theory, Applied Mathematical Sciences 54, Springer,
New York, 1985. MR 86f:34114 Zbl 0558.34049

Received November 30, 2006. Revised February 3, 2009.

JULIUS BORCEA

DEPARTMENT OF MATHEMATICS

STOCKHOLM UNIVERSITY

106 91 STOCKHOLM

SWEDEN

julius@math.su.se

RIKARD BØGVAD

DEPARTMENT OF MATHEMATICS

STOCKHOLM UNIVERSITY

106 91 STOCKHOLM

SWEDEN

rikard@math.su.se

http://www.ams.org/mathscinet-getitem?mr=92f:30001
http://www.emis.de/cgi-bin/MATH-item?0741.30001
http://www.ams.org/mathscinet-getitem?mr=2003d:34192
http://www.emis.de/cgi-bin/MATH-item?1016.34083
http://www.emis.de/cgi-bin/MATH-item?1016.34083
http://arxiv.org/abs/0705.2822v2
http://dx.doi.org/10.2307/2946540
http://dx.doi.org/10.2307/2946540
http://www.ams.org/mathscinet-getitem?mr=94d:35143
http://www.emis.de/cgi-bin/MATH-item?0771.35042
http://www.ams.org/mathscinet-getitem?mr=95m:34091
http://www.emis.de/cgi-bin/MATH-item?0782.34001
http://www.ams.org/mathscinet-getitem?mr=1996773
http://www.emis.de/cgi-bin/MATH-item?1028.35001
http://www.ams.org/mathscinet-getitem?mr=80h:34005
http://www.emis.de/cgi-bin/MATH-item?0407.34043
http://www.ams.org/mathscinet-getitem?mr=96h:28006
http://www.emis.de/cgi-bin/MATH-item?0819.28004
http://www.ams.org/mathscinet-getitem?mr=34:3041
http://www.emis.de/cgi-bin/MATH-item?0133.35301
http://www.ams.org/mathscinet-getitem?mr=86f:34114
http://www.emis.de/cgi-bin/MATH-item?0558.34049
mailto:julius@math.su.se
mailto:rikard@math.su.se

	1. Introduction
	1.1. Piecewise harmonic and piecewise analytic functions
	1.5. Canonical piecewise decompositions
	1.9. Main problem and results

	2. Derivatives of sums
	3. Local characterization in generic cases: Sketch of proof
	4. Proof of 0=subsection.671=Lemma 3.5
	4.1. Preliminaries
	4.4. Changing coordinates
	4.5. The general case r3
	4.7. A more precise version of 0=subsection.271=Theorem 1.11

	5. Proof of 0=subsection.641=3.3
	6. An alternative approach under extra conditions
	7. Examples and further problems
	7.1. The necessity of nondegeneracy assumptions
	7.3. On global descriptions
	7.6. Related questions

	Appendix. Comments on some properties and definitions
	Acknowledgments
	References

