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EXISTENCE AND EXPLICIT CONSTRUCTIONS OF HCMU
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QING CHEN AND YINGYI WU

We prove the existence of HCMU metrics on S2 and T 2 with explicit con-
structions and the solution of appropriate ODEs.

1. Introduction

The classical uniformization theorem says that on a compact Riemannian surface
without boundary there is a constant curvature metric in any conformal class of
metrics. There have been many attempts to generalize this theory to surfaces with
boundary. The main focus, started by the independent work of Troyanov [1991]
and McOwen [1988], has been to study the existence or nonexistence of constant
curvature metrics on surfaces with conical singularities. But in general one should
not expect to get a clear-cut statement about the existence (or nonexistence) of
solutions, since the constant curvature equation is overdetermined in this case.
Therefore we consider a wider class of metrics, namely extremal metrics, as the
generalization of constant curvature metrics on Riemannian surfaces with conical
singularities.

Let M be any compact, oriented smooth Riemannian surface without boundary
and let P := {p1, p2, . . . , pn} be a finite set of points on M . Let g0 be a smooth
metric on M \ P for which, in a neighborhood of each pi , there exists a local
complex coordinate chart (U, z) with z(pi )= 0 such that

(1) g0|U = h(z, z̄) 1
|z|2−2αi

|dz|2,

where h :U→R is a continuous positive function that is smooth on U \{0}, that is,
g0 has a conical singularity at pi with the angle 2παi (with αi > 0). Then denote
the K-surface associated to M by M{α1,α2,...,αn}.
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Next we consider the conformal class of g0, defined by

S(g0)=
{

g = e2ϕg0, ϕ ∈ H 2,2
0 (M \ P)

∣∣∣ ∫
M\P

e2ϕdg0 =

∫
M\P

dg0

}
,

which is the conformal class of g0 such that each of S(g0) has the same area as g0

and coincides with g0 on a neighborhood of singularities. Define the Calabi energy
functional in S(g0) by E(g)=

∫
M\P K 2dg, where K is the Gaussian curvature of

the metric g. The Euler–Lagrange equation of E(g) is [Chen 2000]

(2) 1g K + K 2
= C,

where C is a constant; equivalently, on a local complex coordinate chart of a regular
point, it is

(3) ∂
∂ z̄

K,zz = 0,

where K,zz is the second order (0, 2) covariant derivative of K .
A metric that satisfies (2) or (3) is called an extremal metric. Equation (3) has

two special cases; one is

(4) K ≡ const,

and another is

(5) K,zz = 0 with K 6= const.

A metric that satisfies (5) is called an HCMU metric (from “the Hessian of the
curvature of the metric is umbilical”; see [Chen 2000]). Throughout this paper, we
assume that an HCMU metric is of finite area and finite Calabi energy.

For p ∈ M \ P we assume that (U, z) is a complex coordinate chart around
p(z(p)= 0). Then g can be written as

(6) g = e2ϕ(z,z̄)
|dz|2 with K =−4ϕ/e2ϕ ,

and the HCMU metric of Equation (5) can be written as

(7) K,zz =
∂2K
∂z2 − 2∂K

∂z
∂ϕ
∂z
= 0.

Since the gradient vector field ∇K is

(8) ∇K =
√
−1K ′z ∂

∂z
=
√
−1e−2ϕ ∂K

∂ z̄
∂
∂z
,

Equation (7) implies that ∇K is holomorphic, or equivalently, its real part

(9)
→
V = 1

2

(√
−1K ′z ∂

∂z
−
√
−1K ′z̄ ∂

∂ z̄

)
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is a Killing vector field and the integral curve of
→
V is the level set of the function K .

In [2000], X.X. Chen studied the flow of the Killing field
→
V and obtained the

following obstruction theorem.

Theorem 1.1. Let g be an HCMU metric on a K-surface M{α1,α2,...,αn}. Then the
Euler character of the underlying surface should be determined by

(10) χ(M)=
j∑

i=1

(1−αi )+ (n− j)+ s,

where s is the number of critical points of the curvature K (excluding the sin-
gular points of g). Here we assume that α1, α2, . . . , αk for 0 ≤ k ≤ n are the
only integers in the set of prescribed angles α1, α2, . . . , αn; we also assume that
p j+1, p j+2, . . . , pk are the only local extremal points of K in the set of singular
points {p j : 0≤ j ≤ k}.

Indeed, the curvature K of an HCMU metric can be continuously extended to
singular points, and the corresponding vector field

→
V has only finite singularities.

On the other hand, each singular point p j for 1≤ j ≤ n is either an extremal point
of K or a saddle point of K . In the latter case the corresponding singular angle α j

is always an integer, and the index of
→
V at the point is 1−α j . See [Chen 2000].

Remark 1.1. By (10), if there is no saddle point of K on M , the genus of the
underlying surface must be zero. In this case an HCMU metric is rotationally
symmetric, and the surface is called a football (see [Chen et al. 2005; Chen 2000]).
Therefore we will henceforth assume that the number of the saddle points of K is
greater than zero.

Further, in [Chen et al. 2005], X.X. Chen and the authors of this paper studied
the global structure of HCMU metrics and obtained a decomposition theorem:

Theorem 1.2. Let g be an HCMU metric on a K-surface of M. Then there are a
finite number of geodesics that connect the extremal points and the saddle points of
the curvature K together. In fact, M can be divided into a finite number of pieces
by cutting along these geodesics, and each piece is locally isometric to a football.

In [2002], C.S. Lin and X.H. Zhu studied ∇K and constructed a class of so-
called exceptional HCMU metrics on S2. These metrics have finite conical singular
angles of the form 2πn, with n an integer, and have singularities exclusively at the
saddle points of K .

Theorem 1.3. Let p1=∞ and pi = zi for i=2, . . . , n be n points on S2
=C∪{∞},

and let α1 ≥ 2, . . . , αn ≥ 2 be n positive integers. Let

α = α1+

n∑
i=2

(αi − 1).
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Then g= e2ϕ
| dz |2 is an exceptional HCMU metric with the conical singular angle

2παi at pi on S2 if and only if there are a positive integer k, a complex number
B 6= 0, and a degree (α+ 1) polynomial f (z) on C with distinct roots γl , with the
properties that 3k ≤ α+ 1 and that the γl satisfy

k∑
l=1

−2a
z−γl

+

α+1∑
l ′=k+1

2
z−γl ′

=
B
∏n

i=2(z− zi )
αi−1∏α+1

l=1 (z− γl)
,

where a = (α+ 1− k)/k. Furthermore, K and ϕ are given by

1(
K+ (a−2)β

2a−1

)a (β − K )
(

K + β(a+1)
2a−1

)a−1
= A

k∏
l=1

|z− γl |
−2a

α+1∏
l ′=k+1

|z− γl ′ |
2,

and
ϕ = 1

2 ln((1/|F(z)|2)(−1
3 K 3
+ cK + c′)),

where A > 0 is some constant and

β =
√

c(2a− 1)/
√

a2− a+ 1,

c′ = (a+1)(a−2)β3

3(2a−1)2
,

F(z)= (z− z2)
−(a2−1)

· · · (z− zn)
−(αn−1) f (z),

f (z)= B−1−3a(a−1)β2

(2a−1)2

α+1∏
l=1

(z− γl).

In this paper we generalize Theorem 1.3 to nonexceptional metrics, and get
existence theorems for HCMU metrics on S2 and T 2.

Theorem 1.4. Let S2
= C ∪ {∞} with p1 = ∞, p2 = z2, . . . , pn = zn . Suppose

α1, . . . , αn are positive real numbers and α1, . . . , α j for j > 0 are integers with
αi ′ ≥ 2 for i ′ = 1, . . . , j . Then the statements that

• there exists an HCMU metric on S2 such that p1, p2, . . . , pn are the only
singularities of the metric, with corresponding singular angles 2πα1, 2πα2,
. . . , 2παn , and

• p1, p2, . . . , p j are the only saddle points of K

are equivalent to the statements that

• s = 2+
∑ j

i ′=1 αi ′ − n ≥ 0, and

• there are a permutation δ of j + 1, . . . , n, an integer l with 0 ≤ l ≤ n− j , an
integer t with 0≤ t ≤ s, and {β1, . . . , βs} ⊂ C \ {z2, . . . , zn} such that

αδ(1)+αδ(2)+ · · ·+αδ(l)+ t > αδ(l+1)+ · · ·+αδ(n− j)+ s− t
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and

(11)
l∑

k=1

αδ(k)
z−zδ(k)

+

n− j∑
k′=l+1

(a−1)αδ(k′)
z−zδ(k′)

+

t∑
m=1

1
z−βm

+

s∑
m′=t+1

a−1
z−βm′

=

B
∏ j

i ′=2(z− zi ′)
αi ′−1∏n

k= j+1(z− zk)
∏s

m=1(z−βm)
,

where B is a constant and a− 1=−αmax/αmin. Here, we let

(12)
αmax = αδ(1)+αδ(2)+ · · ·+αδ(l)+ t,

αmin = αδ(l+1)+ · · ·+αδ(n− j)+ s− t.

When the underlying Riemannian surface M is a torus T 2, we have an existence
theorem similar to Theorem 1.4, but there are some differences due to the repre-
sentations of elliptic functions. The complex structure of T 2 is determined up to
transformations in SL(2,Z) by a pair (w1, w2)withw1, w2∈C andw1/w2 /∈R. Let
0 :=Zw1+Zw2 be the lattice spanned byw1 andw2. Then T 2

=C/0. We callw1

andw2 elementary periods, and Pz={z+xw1+yw2 | z ∈C, x ∈ [0, 1), y ∈ [0, 1)}
an elementary parallelogram with base point z. A meromorphic function on T 2,
or equivalently a meromorphic function with double periods on C, is an elliptic
function. Any elliptic function can be expressed by Weierstrass σ functions or
Weierstrass ζ functions [Lang 1987], where

ζ(z) := 1
z
+

∑
w∈0,
w 6=0

( 1
z−w

+w+
z
w2

)
, σ (z) := z

∏
w∈0,
w 6=0

(
1− z

w

)
ez/w+ 1

2 z2/w2
.

Theorem 1.5. Let T 2
= C/0 and Po be the elementary parallelogram with base

point the origin, and let p1 = z1, . . . , pn = zn on Po. Suppose α1, . . . , αn are
positive real numbers and α1, . . . , α j are integers with αi ′ ≥ 2 for i ′ = 1, . . . , j .
Then the statements that

(1) there exists an HCMU metric on T 2 such that p1, . . . , pn are the only sin-
gularities of the metric, with corresponding singular angles 2πα1, . . . , 2παn ,
and

(2) p1, . . . , p j are the only saddle points of K

are equivalent to the statements that

(1) s =
∑ j

i ′=1 αi ′ − n ≥ 0, and

(2) there are a permutation δ of j+1, . . . , n, an integer l, 0≤ l≤ n− j , an integer
t with 0≤ t ≤ s and a set {β1, . . . , βs} ⊂ Po \ {z1, . . . , zn} such that

αδ(1)+αδ(2)+ · · ·+αδ(l)+ t > αδ(l+1)+ · · ·+αδ(n− j)+ s− t
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and
• there exist n1, n2 ∈ Z such that

j∑
i ′=1

(αi ′ − 1)zi ′ −

n∑
k= j+1

zk −

s∑
m=1

βm = n1w1+ n2w2,(13)

λ+

l∑
k=1

αδ(k)ζ(z− zδ(k))+
n− j∑

k′=l+1

(a− 1)αδ(k′)ζ(z− zδ(k′))(14)

+

t∑
m=1

ζ(z−βm)+

s∑
m′=t+1

(a− 1)ζ(z−βm′)

=
B
∏ j

i ′=1 σ(z− zi ′)
αi ′−1∏n

k= j+1 σ(z− zk)
∏s−1

m=1 σ(z−βm)σ (z−βs − n1w1− n2w2)
,

where B is a constant, a − 1 = −αmax/αmin, (with αmax and αmin as in (12))
and

λ=
1

w1w2−w2w1
(Re[η1ρ]w2−Re[η2ρ]w1)

with η1 = 2ζ(w1/2), η2 = 2ζ(w2/2), and

ρ = 2
( l∑

k=1

αδ(k)zδ(k)+
n− j∑

k′=l+1

(a− 1)αδ(k′)zδ(k′)+
t∑

m=1

βm +

s∑
m′=t+1

(a− 1)βm′
)
.

2. Local behavior of an HCMU metric

Let g = e2ϕ
|dz|2 be an HCMU metric on a domain (�, z) of M , let K be the

Gaussian curvature, and let
→
V be the real part of ∇K . When � does not contain

the singularities of
→
V , we let F(z) = e−2ϕK z̄ . Then F is a holomorphic function

that does not vanish on �. By (2) on � we have

(15) Kzz̄ = (C − K 2)e2ϕ
=

(C K− 1
3 K 3

F

)
z̄
.

Then

Kz =
−

1
3 K 3
+C K+C ′

F
,(16)

e2ϕ
=
−

1
3 K 3
+C K+C ′

|F |2
,(17)

where C ′∈R. If p is a singular point of
→
V and (�p, z) is a local complex coordinate

chart around p with z(p)= 0, then (15), (16) and (17) hold on �p \ {0}, and F is
a meromorphic function on �p.
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Proposition 2.1 [Lin and Zhu 2002]. Let g = e2ϕ
|dz|2 be an HCMU metric on

�p \ {0} with a singular angle 2πα at the origin. Then near the origin, F(z) has
the expansion

(18) F(z)=
{

zg(z) if α is not an integer,
z−(α−1)(c+ g(z)) or zg(z) if α is an integer,

where c 6= 0 a constant and g(z) is some holomorphic function on �p.

We refine Proposition 2.1 as the following:

Proposition 2.2. Let g= e2ϕ
|dz|2 be an HCMU metric on�p \{0} with a singular

angle 2πα at the origin. Then near the origin, F(z) has the expansion

(19) F(z)=
{

zg(z) if z = 0 is a local extremal point of K ,
z−(α−1)g(z) if z = 0 is a saddle point of K ,

where g(z) is a holomorphic function on �p with g(0) 6= 0.

Proof. If p is a local extremal point of K , we may assume without loss of generality
that p is the local maximum point of K . Since

→
V is a Killing vector field and

the integral curves of
→
V in a neighborhood of p are all circles centered at p (see

[Chen 2000]), near p we have

(20) g = du2
+ f (u)2dθ2 for 0≤ u ≤ ε, 0≤ θ ≤ 2π,

with f (u) > 0 for u > 0, f (0)= 0, f ′(0)= α, and ε a small real number. That g
is an HCMU metric implies that d K/du = c f , where c is a negative constant.
Let v =−

∫ ε
u ds/ f . Then g = f 2(dv2

+ dθ2) and limu→0 v = −∞. Thus if we
let z′ = v +

√
−1θ and w = ez′ , then w is a local complex chart around p with

w(p)= 0. It follows that g= ( f 2/|w|2)|dw|2 and Kw̄=
1
2 c f 2/w, so F(w)= 1

2 cw.
This proves the first part of the proposition.

To prove the remaining case, we first show that if locally a vector field is given
by zk g(z) ∂∂z with g(0) 6= 0 and k ∈ Z, then the index of its real part at 0 is k. Let
z = r exp(

√
−1θ), g(z) = g1+

√
−1g2 and ∂

∂z =
1
2(

∂
∂x −
√
−1 ∂

∂y ). Then the real
part of this vector field is

(21) 1
2r k((g1 cos kθ − g2 sin kθ) ∂∂x + (g2 cos kθ + g1 sin kθ) ∂∂y

)
.

Thus a direct calculation shows that

(22) Indexp = k+ 1
2π

∫ 2π

0

g1
∂g2
∂θ − g2

∂g1
∂θ

g2
1 + g2

2
dθ.

Since g(0) 6= 0, we assume without loss of generality that g2(0) 6= 0. Then the
second term on the right side of (22) is (2π)−1

∫ 2π
0 d arctan(g1/g2)= 0.
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Now if p is a saddle point of K with a singular angle 2πα, then α is an integer
and the index of

→
V at p is 1−α. By Proposition 2.1, F(z)= z−(α−1)g(z). Therefore

by what we have proved above, the index of
→
V at p is at least 1−α, so g(0) 6= 0.

This proves the second part of Proposition 2.2. �

Corollary 2.1. K is smooth at any saddle point of K .

Proof. We still use the notations of Proposition 2.2. By Proposition 2.2 on�p\{0},
1/F(z)= z(α−1)/g(z), so by (17) e2ϕ is a continuous function on �p. By (16) the
first weak derivatives of K exist on �p. Hence by (15) 1K ∈ Lq(�p), where
q is big enough. Then by the Calderon–Zygmund inequality K ∈ W 2,q(�′p) for
�′p ⊂⊂�p, and by the Sobolev embedding theorem K ∈ C1(�′p). Again by (16)
and using a bootstrap technique, we have K ∈ C∞(�′p). �

3. Proof of Theorem 1.4

3.1. Proof of necessity. Let g = e2ϕ
|dz|2 be an HCMU metric on S2

= C∪ {∞}

with singular points p1 =∞, p2 = z2, . . . , pn = zn . If p1, p2, . . . , p j are the only
saddle points of K , then by Proposition 2.2 F(z) = e−2ϕK z̄ is a rational function
on C with poles∞, z2, . . . , z j and zeros the local extremal points of K . Therefore

(23) F(z)=
T
∏n

k= j+1(z− zk)
∏s

m=1(z−βm)∏ j
i=2(z− zi )αi−1

,

where T is a complex number and the smooth extremal points of K are denoted
β1, β2, . . . , βs , where s =

∑ j
i ′=1(αi ′ − 1)+ 2− (n− j). By (23) the order of each

zero of F(z) is one; thus, there are constants c j+1, . . . , cn and c′1, . . . , c′s such that

(24) 1
F(z)

=

n∑
k= j+1

ck
z−zk

+

s∑
m=1

c′m
z−βm

=
1
T

∏ j
i ′=2(z− zi ′)

αi ′−1∏n
k= j+1(z− zk)

∏s
m=1(z−βm)

.

Since {z j+1, . . . , zn, β1, . . . , βs} is the set of all extremal points of K , there are
an integer l with 0 ≤ l ≤ n − j and a permutation δ of j + 1, . . . , n such that
zδ(1), . . . , zδ(l) are the local maximum points of K and zδ(l+1), . . . , zδ(n− j) are the
local minimum points of K ; meanwhile we suppose that there are t smooth local
maximum points β1, . . . , βt of K with 0≤ t ≤ s, and s− t smooth local minimum
points βt+1, . . . , βs of K .

On C \ {z2, . . . , zn, β1, . . . , βs}, we have since (16) holds this result:

Proposition 3.1. In (16),

−
1
3 K 3
+C K +C ′ =− 1

3(K − K1)(K − K2)(K + K1+ K2),

where K1 = Kmax and K2 = Kmin.
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Proof. If z0 is a global maximum point of K , then z0∈{zδ(1), . . . , zδ(l), β1, . . . , βt }.
If z0= zk for some k ∈ {δ(1), . . . , δ(l)}, then g can be written in a neighborhood

of zk in the form

g = h
|z−zk |

2−2αk
|dz|2, with h(zk) > 0.

By (17) and (23), there is a continuous function H on the neighborhood of zk such
that

(25) −
1
3 K 3
+C K +C ′ = H |z− zk |

2αk , with H(zk) 6= 0.

Let z→ zk . Then − 1
3 K 3

1 +C K1+C ′ = 0, which means K1 is one of the roots of
−

1
3 K 3
+C K +C ′ = 0.

On the other hand, if z0 = βm for some m ∈ {1, . . . , t}, then g = e2ϕ
|dz|2

and e2ϕ is a smooth function on a neighborhood of βm . By (17) and (23), in the
neighborhood of βm , there also exists a continuous function H̃ such that

(26) −
1
3 K 3
+C K +C ′ = H̃ |z−βm |

2, with H̃(βm) 6= 0.

Let z→ βm . Then − 1
3 K 3

1 +C K1+C ′ = 0.
Similarly, K2 is also one of the roots of −1

3 K 3
+C K +C ′ = 0. �

In fact we have the following finer conclusion about K1, K2, −(K1+ K2) and
the values of K at the local extremal points.

Proposition 3.2 [Chen et al. 2005]. We have K1 > 0 and K1 > K2 >−(K1+K2).
The local maxima of K are the same, as are the local minima of K .

Now we sketch the proof of necessity in Theorem 1.4, which requires that we
determine the values of ck and c′m in (24). To do this we need to solve the equation
of K , that is, (16). Then by its solution, the continuity of K , and Equation (1), we
can determine ck and c′m in (24).

We first solve (16). By Proposition 3.2, every root of −1
3 K 3
+C K +C ′ = 0 is

a simple root. Then we directly suppose

(27) 1
−

1
3 K 3+C K+C ′

=
a1

K−K1
+

a2
K−K2

+
a3

K+K1+K2
,

by (16) and (24),

(28)
( a1

K−K1
+

a2
K−K2

+
a3

K+K1+K2

)
Kzdz

=

( n∑
k= j+1

ck
z−zk

+

s∑
m=1

c′m
z−βm

)
dz.
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Dividing (28) by a1, we have

(29)
( 1

K−K1
+

a−1
K−K2

+
−a

K+K1+K2

)
Kzdz =( n∑

k= j+1

bk
z−zk

+

s∑
m=1

b′m
z−βm

)
dz.

We can rewrite (29) as

(30)
( 1

K−K1
+

a−1
K−K2

+
−a

K+K1+K2

)
d K

=d
( n∑

k= j+1

(bk log(z−zk)+bk log(z− zk))+

s∑
m=1

(b′m log(z−βm)+b′m log(z−βm))
)

on C \ ({some rays} ∪ {z2, . . . , zn, β1, . . . , βs}). Let bk = dk +
√
−1ek and b′m =

d ′m +
√
−1e′m , and integrate (30). Then

(K1− K )(K − K2)
a−1(K + K1+ K2)

−a

= A
n∏

k= j+1

|z− zk |
2dk

n∏
k= j+1

e−2ek arg(z−zk)
s∏

m=1

|z−βm |
2d ′m

s∏
m=1

e−2e′m arg(z−βm)

on the same set as before, where A is a constant. By the continuity of K , we have
ek = 0 for k = j + 1, . . . , n and e′m = 0 for m = 1, 2, . . . , s. Therefore

(31) (K1−K )(K−K2)
a−1(K+K1+K2)

−a
= A

n∏
k= j+1

|z−zk |
2dk

s∏
m=1

|z−βm |
2d ′m

or

(32) ln(K1− K )+ (a− 1) ln(K − K2)+ (−a) ln(K + K1+ K2)

= a′+ 2
n∑

k= j+1

dk ln|z− zk | + 2
s∑

m=1

d ′m ln|z−βm |

on C \ {z2, . . . , zn, β1, . . . , βs}.
By (28) and (29), a− 1=−(2K1+ K2)/(K1+ 2K2). In [Chen et al. 2005] we

obtained

(33) K1 =
π

A(g)
(2αmax−αmin) and K2 =

π
A(g)

(2αmin−αmax),

where A(g) is the area of the HCMU metric, αmax=αδ(1)+· · ·+αδ(l)+t is the sum
of the angles of the maximum points of K , and αmin=αδ(l+1)+· · ·+αδ(n− j)+s−t
is the sum of the angles of the minimum points of K . Since K1 > K2, by (33) we
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have αmax > αmin and

a− 1=− αδ(1)+· · ·+αδ(l)+t
αδ(l+1)+· · ·+αδ(n− j)+s−t

=−
αmax
αmin

.

Next we compute dk and d ′m . We take a small neighborhood Uk of zk for
k ∈ {δ(1), . . . , δ(l)}. Then e2ϕ

= h/|z− zk |
2−2αk on Uk \ {zk}, and by (24) we

have 1/|F |2 = ĥ(z)/|z− zk |
2, where ĥ(z) is a continuous function on Uk with

ĥ(zk) 6= 0. Since (17) holds on C \ {z2, . . . , zn, β1, . . . , βs}, we substitute

e2ϕ
= h/|z− zk |

2−2αk ,

1/|F |2 = ĥ(z)/|z− zk |
2,

−
1
3 K 3
+C K +C ′ =− 1

3(K − K1)(K − K2)(K + K1+ K2)

into (17) to get

h|z− zk |
2αk/|z− zk |

2
=−

1
3(K − K1)(K − K2)(K + K1+ K2)ĥ(z)/|z− zk |

2.

Thus
K − K1

|z− zk |
2αk
=
−3h

ĥ
1

(K−K2)(K+K1+K2)
on Uk \ {zk}.

Now if we let z→ zk here, there is a nonzero constant Tk ∈ R such that

(34) lim
z→zk

K − K1

|z− zk |
2αk
= Tk .

On the other hand, (31) implies that

(K1− K )(K − K2)
a−1(K + K1+ K2)

−a
= |z− zk |

2dk l(z) on Uk \ {zk},

where l(z) is a continuous function on Uk with l(zk) 6= 0. Then

(35) K1−K
|z−zk |

2dk
= l(z)(K − K2)

1−a(K + K1+ K2)
a on Uk \ {zk}.

Again let z→ zk here. Then there is also a nonzero constant Ak ∈ R such that

(36) lim
z→zk

K1−K
|z−zk |

2dk
= Ak .

Comparing (34) with (36) we know dk = αk for k = δ(1), . . . , δ(l). Similarly
dk′ = (a − 1)αk′, k ′ = δ(l + 1), . . . , δ(n − j) and d ′m = 1, 1 ≤ m ≤ t , d ′m′ =
a−1, t+1≤m′ ≤ s. Finally by (24), (28) and (29) we obtain (11). Thus we have
proved the necessity part of Theorem 1.4. �
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3.2. Proof of sufficiency. If (11) holds, we choose two real numbers K1 and K2

such that K1 > 0 and

K2/K1 = (2αmin−αmax)/(2αmax−αmin).

Let

(37)

1
σ F
=

l∑
k=1

αδ(k)
z−zδ(k)

+

n− j∑
k′=l+1

(a−1)αδ(k′)
z−zδ(k′)

+

t∑
m=1

1
z−βm

+

s∑
m′=t+1

a−1
z−βm′

=
B
∏ j

i ′=2(z− zi ′)
αi ′−1∏n

k= j+1(z− zk)
∏s

m=1(z−βm)
,

where 1/σ = (2K1+ K2)(K2− K1)/3.

Lemma 3.1. There is a unique real solution of the system

(38)

{
Kz =−

1
3(K − K1)(K − K2)(K + K1+ K2)/F,

K (z0)= K0 for z0 ∈ C \ {β1, . . . , βs, z j+1, . . . , zn}, K2 < K0 < K1.

Proof. We can directly integrate (38) in (K2, K1)×(C\{β1, . . . , βs, z j+1, . . . , zn})

and get

(39) ln(K1− K )+ (a− 1) ln(K − K2)+ (−a) ln(K + K1+ K2)

= a′+ 2
l∑

k=1

αδ(k) ln|z− zδ(k)| + 2
n∑

k′=l+1

(a− 1)αδ(k′) ln|z− zδ(k′)|

+ 2
t∑

m=1

ln|z−βm | + 2
s∑

m′=t+1

(a− 1) ln|z−βm′ |.

For simplicity we write this equation in the form G(K , z, z̄) = a′, which makes
it clear that the equation uniquely determines a surface in the set (K2, K1) ×

(C \ {β1, . . . , βs, z j+1, . . . , zn}). However, ∂G/∂K 6= 0 in this set, so we get a
graph K = K (z, z̄) on C \ {β1, . . . , βs, z j+1, . . . , zn}. Clearly it satisfies (38). �

Since K satisfies (38), it is smooth on its domain and satisfies (31). Then

lim
z→zδ(k)

K = K1 for k = 1, . . . , l, lim
z→zδ(k′)

K = K2 for k ′ = l + 1, . . . , n− j,

lim
z→βm

K = K1 for m = 1, . . . , t, lim
z→βm′

K = K2, for m′ = t + 1, . . . , s;

and there exists a real number K∞ with K2<K∞<K1 such that limz→∞ K =K∞.
Therefore K is a continuous function on S2.

Now define

(40) e2ϕ
=
−

1
3(K−K1)(K−K2)(K+K1+K2)

|F |2
on C\{β1, . . . , βs, z2, . . . , zn}
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and g = e2ϕ
|dz|2. Then e2ϕ > 0 and is smooth on C\ {β1, . . . , βs, z2, . . . , zn}. Let

−
1
3(K − K1)(K − K2)(K + K1+ K2)=−

1
3 K 3
+C K +C ′.

Then a direct calculation shows

1K = (−K 2
+C)e2ϕ,(41)

−1ϕ = K e2ϕ,(42)

F = K z̄e−2ϕ.(43)

These imply that g is an HCMU metric on C \ {β1, . . . , βs, z2, . . . , zn}.
Next we prove e2ϕ is actually smooth at βm for m = 1, . . . , s. For a fixed m

with m = 1, 2, . . . , t , let �m be a neighborhood of βm . Then by (40) we have on
�m \ {βm} that

e2ϕ
=

K1−K
|z−βm |

2 (K − K2)(K + K1+ K2)G1(z)

and by (31)

K1−K
|z−βm |

2 = (K − K2)
1−a(K + K1+ K2)

aG2(z),

so

(44) e2ϕ
= (K − K2)

2−a(K + K1+ K2)
1+aG3(z),

where G1(z), G2(z) and G3(z) are smooth nonvanishing functions on �m . Then
e2ϕ is a continuous function and e2ϕ>0 on�m . However, (43) holds on�m \ {βm},
which implies that the first weak derivatives of K exist on �m . Furthermore,
by (41), we have 1K ∈ Lq(�m), where q is big enough. Then by the Calderon–
Zygmund inequality, K ∈ W 2,q(Um) for Um ⊂⊂ �m , and K ∈ C1(Um) by the
Sobolev embedding theorem. Again by (43) we get using a bootstrap technique
that K ∈ C∞(Um). Thus, e2ϕ is smooth at βm by (44). Similarly e2ϕ is smooth at
βm′ for m′ = t + 1, . . . , s. Consequently on C \ {z2, . . . , zn}, the function e2ϕ is
smooth, positive and satisfies (41), (42) and (43).

Furthermore, by (31) and (40) one can check that g satisfies the angle condition
at zi for i = 2, . . . , n. In a neighborhood of p1 =∞, let w = 1/z. Then g can be
written as (h̃/|w|2−2α1)|dw|2, where h̃ > 0 is a continuous function that is smooth
except at the origin.

Now we prove that the area and the energy of the metric are both finite. Since
K is bounded, we only need prove the area is finite. Because

(45) A(g)=
√
−1
2

∫
C\{z2,...,zn,β1,...,βs}

e2ϕdz ∧ dz̄
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by (43), we have

(46) A(g)=
√
−1
2

∫
K z̄
F

dz ∧ dz̄

=
σ
√
−1

2

∫
K z̄

( l∑
k=1

αδ(k)
z−zδ(k)

+

n− j∑
k′=l+1

(a−1)αδ(k′)
z−zδ(k′)

+

t∑
m=1

1
z−βm

+

s∑
m′=t+1

a−1
z−βm′

)
dz ∧ dz̄,

where both integrals are over C \ {z2, . . . , zn, β1, . . . , βs}. Let z = zδ(k)+ re
√
−1θ .

Then we may compute k-summand in the first term of the right side of (46) by

(47)
√
−1
2

∫
K z̄

z−zδ(k)
dz ∧ dz̄

=
1
2

∫
∞

0

∫ 2π

0

(
∂K
∂r
+
√
−11

r
∂K
∂θ

)
dr dθ = π(K (∞)− K1).

The other terms can be computed similarly. Therefore

(48) A(g)= σπ
( l∑

k=1

αδ(k)(K (∞)− K1)+ (a− 1)
n− j∑

k′=l+1

αδ(k′)(K (∞)− K2)

+

t∑
m=1

(K (∞)− K1)+ (a− 1)
s∑

m′=t+1

(K (∞)− K2)
)

=
π(2αmax−αmin)

K1
.

Thus we see that g is an HCMU metric on S2 with finite area and energy. The points
z1, . . . , z j , the points zδ(1), . . . , zδ(l), β1, . . . , βt and the points zδ(l+1), . . . , zδ(n− j),
βt+1, . . . , βs are respectively the saddle, maximum, and minimum points of K .
This completes the proof of sufficiency. �

As an application of Theorem 1.4, we obtain the following nonexistence result.

Example 3.1. Let S2
= C∪ {∞} with p1 =∞, p2 = 0, p3 = 1 and p4 = 2. Then

there is no HCMU metric on S2 with the angle 2π ·3 at p1, the angle 2π · 1
2 at p2,

the angle 2π · 1
2 at p3, and the angle 2π · 1

2 at p4.

Proof. Suppose there is an HCMU metric on S2 satisfying the condition above.
Then by (10) there exist saddle points of K . Since the angles at the saddle points
of K must be integers, p1=∞ is the unique saddle point of K . Also s= 1 by (10);
that is, there is only one smooth critical point of K . Thus there are eight cases for
the points p2, p3, p4 depending on whether these points are maxima or minima
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for K . Of course, all three cannot be minima; otherwise the smooth critical point
of K must be the maximum point of K , which implies αmax = 1 and αmin =

3
2 , so

αmax < αmin, an impossibility. To exclude other cases we need to prove in each of
them there is no solution of the Equation (11). For instance, we will consider the
case that p2, p3 and p4 are respectively maximum, minimum and minimum points
of K . In this case, the smooth critical point β of K must be the maximum point
of K , and a− 1=−( 1

2 + 1)/( 1
2 +

1
2)=−

3
2 . Hence by (11) we have

(49)
1
2

z
+

1
2(−

3
2)

z− 1
+

1
2(−

3
2)

z− 2
+

1
z−β

=
B
· · ·
.

Because (49) is an identity we get the two equations

1
2(−1− 2−β)− 3

4(−2−β)− 3
4(−1−β)− 1− 2= 0,

1
2(2+β + 2β)− 3

4 2β − 3
4β + 2= 0.

From the first equation we get β = 9
4 , but from the second we get β = 4, a contra-

diction. Therefore there is no solution of (11) in this case. All other possibilities
may be handled similarly. �

From the proof of the necessity of Theorem 1.4 we get an explicit construction
of an HCMU metric on S2:

Theorem 3.1. Let S2
= C ∪ {∞} with p1 = ∞ and p2 = z2, . . . , pn = zn . Then

α1, . . . , αn are positive real numbers, and α1, . . . , α j for j > 0 are integers with
αi ′ ≥ 2 for i ′ = 1, . . . , j . If there exists an HCMU metric on S2 such that 1, . . . , z j

are the saddle points of K , and z j+1, . . . , z j+l and z j+l+1, . . . , zn are respectively
the maximum and minimum points of K , then the HCMU metric can be written in
the form

g = e2ϕ
|dz|2 on C \ {z2, . . . , zn}

with

(50) e2ϕ
=−

1
3(K − K1)(K − K2)(K + K1+ K2)/|F |2

and K is determined by the equation

(51) (K1− K )(K − K2)
a−1(K + K1+ K2)

−a
=

A
j+l∏

k= j+1

|z− zk |
2αk

n∏
k′= j+l+1

|z− zk′ |
2(a−1)αk′

t∏
m=1

|z−βm |
2

s∏
m′=t+1

|z−βm′ |
2(a−1).
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Meanwhile 1/F has the expression

(52) 1
F
=

B
∏ j

i ′=2(z− zi ′)
αi ′−1∏n

k= j+1(z− zk)
∏s

m=1(z−βm)

= σ
( j+l∑

k= j+1

αk
z−zk

+

n∑
k′= j+l+1

(a−1)αk′

z−zk′
+

t∑
m=1

1
z−βm

+

s∑
m′=t+1

a−1
z−βm′

)
.

Here K1 is the maximum of K that is positive, K2 is the minimum of K and

K2
K1
=

2αmin−αmax
2αmax−αmin

,

where αmax = α j+1 + · · · + α j+l + t , αmin = α j+l+1 + · · · + αn + s − t and
a−1=−αmax/αmin. Also A and B are constants, 1/σ = (K2−K1)(2K1+K2)/3;
s = 2 +

∑ j
i ′=1 αi ′ − n is the number of the smooth extremal points of K ; and

β1, . . . , βt and βt+1, . . . , βs are respectively the smooth maximum and minimum
points of K .

4. Proof of Theorem 1.5

4.1. Proof of necessity. Let π :C−→C/0 be the canonical map. In one elemen-
tary parallelogram Po,

∇K =
√
−1F(z) ∂∂z .

One can check that F(z) can be extended to a meromorphic function F̃ on T 2. Then
F̃ ◦ π is an elliptic function on C. On Po we assume pi = zi for i = 1, 2, . . . , n
and β1, . . . , βs are the smooth extremal points of K . Then by Proposition 2.2,
z1, . . . , z j are the poles of F̃ and z j+1, . . . , zn, β1, . . . , βs are the zeros of F̃ . By
the properties of elliptic functions [Lang 1987], there exist n1, n2 ∈ Z such that∑ j

i ′=1(αi ′ − 1)zi ′ −
∑n

k= j+1 zk −
∑s

m=1 βm = n1w1 + n2w2, which is (13). Also
there exist B, c0 , c j+1, . . . , cn and c′1, . . . , c′s ∈ C such that

(53) 1
F̃◦π

=
B
∏ j

i ′=1 σ(z− zi ′)
(αi ′−1)∏n

k= j+1 σ(z− zk)
∏s−1

m=1 σ(z−βm)σ (z−βs − n1w1− n2w2)

or

(54) 1
F̃◦π

= c0+

n∑
k= j+1

ckζ(z− zk)+

s∑
m=1

c′mζ(z−βm),

where
∑n

k= j+1 ck +
∑s

m=1 c′m = 0. Proceeding like the S2 case, we also suppose
there are a permutation δ of j + 1, . . . , n, an integer l with 0≤ l ≤ n− j , and an
integer t in 0≤ t ≤ s, such that zδ(1), . . . , zδ(l), β1, . . . , βt and zδ(l+1), . . . , zδ(n− j),
βt+1, . . . , βs are respectively the maximum points and minimum points of K .
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On the other hand, we define K̃ = K ◦ π . Then K̃ (z + w) = K̃ (z), where
w = nw1+mw2 for n,m ∈ Z. Also, by (16)

(55) K̃z =
−

1
3 K̃ 3
+C K̃ +C ′

F̃ ◦π
on C \ [z1, z2, . . . , zn, β1, . . . , βs],

where [z1, . . . , zn, β1, . . . , βs] =
⋃
w({z1, . . . , zn, β1, . . . , βs} + w). Then, like

the S2 case, we have

(56) −
1
3 K̃ 3
+C K̃ +C ′ =− 1

3(K̃ − K1)(K̃ − K2)(K̃ + K1+ K2),

where K1 = Kmax and K2 = Kmin. Then we have

(57)
( 1

K̃−K1
+

a−1
K̃−K2

+
−a

K̃+K1+K2

)
K̃z =

λ+

n∑
k= j+1

dkζ(z− zk)+

s∑
m=1

d ′mζ(z−βm).

Lemma 4.1. Both dk and d ′m are real numbers.

Proof. Pick an elementary parallelogram Pz such that there are neither zeros
nor poles of F̃ ◦ π on ∂Pz . We denote the poles of 1/(F̃ ◦ π) in Pz by qb for
b = 1, 2, . . . , n− j + s. For simplicity we denote σ(z− qb) by fb.

Since σ ′(0) 6= 0, for a given b there is a disk Db 3 qb such that fb is biholomor-
phic on Db. Let L b̃ = {t fb(qb̃) | t ≥ 0} for any b̃ 6= b. Then

⋂
b̃ 6=b f −1

b (L b̃)
c
∩Db is

nonempty (if it were empty, then fb(Db)⊂
⋃

b̃ 6=b L b̃, which contradicts the fact that
fb(Db) is open). Now take a Zb in this intersection, and let Sb = {t fb(Zb) | t ≥ 0}.
Then qb̃ ∈ f −1

b (Sb)
c for all b̃ 6= b.

Now we fix a b ∈ {1, 2, . . . , n− j + s}. For any b̃ 6= b there is a Z b̃ ∈ Db̃ given
as above. Then qb ∈

⋂
b̃ 6=b f −1

b̃ (Sb̃)
c. Since f −1

b̃ (Sb̃)
c is open, there exists a disk

D′b ⊂
⋂

b̃ 6=b f −1
b̃ (Sb̃)

c
∩ Db such that qb ∈ D′b.

By the formula ζ(z)= σ ′(z)/σ (z), we may rewrite (57) as

(58)
( 1

K̃−K1
+

a−1
K̃−K2

+
−a

K̃+K1+K2

)
K̃z = λ+ db f ′b/ fb+

∑
b̃ 6=b

db̃ f ′
b̃
/ f

b̃

on Pz \{q1, . . . , qn− j+s}. For any b̃ 6= b, regard C\Sb̃ as the simple-valued domain
of the logarithm defined in the image space of fb̃. Then f ′b̃/ fb̃ = (log fb̃)

′ on
f −1
b̃ (Sb̃)

c. It follows that f ′b̃/ fb̃ = (log fb̃)
′ on D′b for all b̃ 6= b. Since fb is

biholomorphic on Db, there is a domain Vb with qb ∈ Vb ⊂ D′b such that fb(Vb)

is a disk D̃ centered at the origin. We denote the inverse map of fb restricted
to Vb by gb. Suppose t0 fb(Zb) ∈ ∂ D̃. Then gb maps the domain D̃ \ Sb onto
Ṽb := Vb \ {gb(t fb(Zb)) for 0 ≤ t < t0}. So Ṽb ⊂ f −1

b (Sb)
c. Regard C \ Sb as
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the simple-valued domain of the logarithm defined in the image space of fb. Then
f ′b/ fb = (log fb)

′ on Ṽb since Ṽb ⊂ f −1
b (Sb)

c. We integrate (58) and obtain

(59) d(ln(K1− K̃ )+ (a− 1) ln(K̃ − K2)+ (−a) ln(K̃ + K1+ K2))

= d(λz+ λ̄z̄)+ d(db log fb+ db log fb)+
∑

b̃ 6=b d(db̃ log fb̃+ db̃ log fb̃)

on Ṽb. Let db = d1b+
√
−1d2b and db̃ = d1b̃+

√
−1d2b̃ for b̃ 6= b. Then (59) can

be written in the form

(60) (K1− K̃ )(K̃ − K2)
a−1(K̃ + K1+ K2)

−a

= Aeλz+λ̄z̄
| fb|

2d1b e−2d2b arg fb
∏

b̃ 6=b| fb̃|
2d1b̃ e−2d2b̃ arg fb̃ .

In D̃ we take {xn} and {yn} to be two sequences on opposite sides of Sb, and let
xn→ x0 and yn→ x0, where x0 ∈ D̃ ∩ Sb. See the figure above.

Now we substitute {gb(xn)} and {gb(yn)} into (60) and take limits. Since Vb ⊂

f −1
b̃ (Sb̃)

c for all b̃ 6= b, arg fb̃ is continuous on Vb. Then if we substitute {gb(xn)}

and {gb(yn)} into any term in (60) except for e−2d2b arg fb and take limits, the limits
are the same. However, if we substitute {gb(xn)} and {gb(yn)} into e−2d2b arg fb and
take limits, there is a difference of e−2d2b2π between the limits. Thus d2b = 0,
completing the proof of the lemma. �

Now there exists an A ∈ R on Po \ {z1, z2, . . . , zn, β1, . . . , βs} such that

(61) ln(K1− K̃ )+ (a− 1) ln(K̃ − K2)− a ln(K̃ + K1+ K2)=

A+ λz+ λ̄z̄+ 2
n∑

k= j+1

dk ln|σ(z− zk)| + 2
s∑

m=1

d ′m ln |σ(z−βm)|.

By the periodicity of K̃ we get

(62) λw1+ λ̄w1 = 2
n∑

k= j+1

dk(ln|σ(z0− zk)| − ln|σ(z0+w1− zk)|)

+ 2
s∑

m=1

d ′m(ln|σ(z0−βm)| − ln|σ(z0+w1−βm)|),
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where z0 ∈ ∂Po \ {z1, . . . , zn, β1, . . . , βs}. Since σ(z +w1) = −σ(z)eη1(z+w1/2),
where η1 = 2ζ(w1/2), Equation (62) becomes

λw1+λ̄w1 =−2
n∑

k= j+1

dk Re(η1(z0−zk+
1
2w1))−2

s∑
m=1

d ′m Re(η1(z0−βm+
1
2w1))

= Re
(
η12

( n∑
k= j+1

dkzk+

s∑
m=1

d ′mβm

))
= Re(η1ρ),

where ρ = 2(
∑n

k= j+1 dkzk +
∑s

m=1 d ′mβm) . Similarly λw2 + λ̄w2 = Re(η2ρ),
where η2 = 2ζ(w2/2). Then we obtain

(63) λ=
1

w1w2−w2w1
(Re(η1ρ)w2−Re(η2ρ)w1).

Furthermore, K̃ satisfies (61) on C \ [z1, . . . , zn, β1, . . . , βs]. By an argument
similar to the one in the S2 case,

(64)

dk =

{
αk for k = δ(1), . . . , δ(l),
(a− 1)αk for k = δ(l + 1), . . . , δ(n− j),

d ′m =
{

1 for 1≤ m ≤ t,
a− 1 for t + 1≤ m ≤ s,

a− 1=− αδ(1)+· · ·+αδ(l)+t
αδ(l+1)+· · ·+αδ(n− j)+s−t

.

Then by (53), (54), (55) and (57) we get (14). This completes the proof of necessity.
�

4.2. Proof of sufficiency. In fact one can follow the proof of the sufficiency for
Theorem 1.4 to prove the sufficiency for Theorem 1.5. The only thing left is to
calculate the area of an HCMU metric on T 2. Take an elementary parallelogram P
and suppose on ∂P there is no singular point of the meromorphic function

(65) 1
σ F
= λ+

n∑
k= j+1

dkζ(z− zk)+

s∑
m=1

d ′mζ(z−βm),

where we use the notations of (64) to denote dk and d ′m . The area is

(66) A(g)= lim
ε→0

√
−1
2

∫
P\(

⋃
k Dε(zk)∪

⋃
m Dε(βm))

K z̄
F

dz ∧ dz̄,
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where Dε(z) is a round disk centered at z with the radius ε. By Stokes’s theorem,
√
−1
2

∫
P\(∪k Dε(zk)∪

⋃
m Dε(βm))

K z̄
F

dz ∧ dz̄ =

−

√
−1
2

(∫
∂P

K
F

dz−
∑

k

∫
∂Dε(zk)

K
F

dz−
∑

m

∫
∂Dε(βm)

K
F

dz
)
.

By the periodicities of K and F ,
∫
∂P K/Fdz = 0. On a neighborhood of zk ,

1/F = σdk/(z− zk)+ gk(z), where gk(z) is a function holomorphic on that neigh-
borhood. Thus∫

∂Dε(zk)

K
F

dz = σdk

∫
∂Dε(zk)

K
z−zk

dz+
∫
∂Dε(zk)

K gk(z)dz.

Since

lim
ε→0

∫
∂Dε(zk)

K gk(z)dz=0 and lim
ε→0

σdk

∫
∂Dε(zk)

K
z−zk

dz=σdk2π
√
−1K (zk),

we have

lim
ε→0

∫
∂Dε(zk)

K
F

dz = σdk2π
√
−1K (zk).

Similarly

lim
ε→0

∫
∂Dε(βm)

K
F

dz = σd ′m2π
√
−1K (βm).

Therefore,

(67)
A(g)=−πσ

(∑
k dk K (zk)+

∑
m d ′m K (βk)

)
=−πσαmax(K1− K2)= π(2αmax−αmin)/K1.

This finishes the proof of Theorem 1.5. �
The proof of the necessity component of Theorem 1.5 provides a blueprint for

the explicit construction of an HCMU metric on T 2.

Theorem 4.1. Let T 2
= C/0 and Po be the elementary parallelogram with base

point the origin, with p1 = z1, . . . , pn = zn in Po. The real numbers α1, . . . , αn

are positive, and α1, . . . , α j are integers with αi ≥ 2 for i = 1, . . . , j . If there
exists an HCMU metric on T 2 such that z1, . . . , z j are the saddle points of K ,
and z j+1, . . . , z j+l and z j+l+1, . . . , zn are respectively the maximum and minimum
points of K , then the HCMU metric can be written in the form

g = e2ϕ
|dz|2 on Po \ {z1, . . . , zn},
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with e2ϕ
=−

1
3(K − K1)(K − K2)(K + K1+ K2)/|F |2, where K is determined by

the equation

(K1− K )(K − K2)
a−1(K + K1+ K2)

−a

= Aeλz+λ̄z̄
j+l∏

k= j+1

|σ(z− zk)|
2αk

n∏
k′= j+l+1

|σ(z− zk′)|
2(a−1)αk′

×

t∏
m=1

|σ(z−βm)|
2

s∏
m′=t+1

|σ(z−βm′)|
2(a−1)

on Po, and, on Po \ {z j+1, . . . , zn, β1, . . . , βs},

1
F
= σ

(
λ+

j+l∑
k= j+1

αkζ(z− zk)+ (a− 1)
n∑

k′= j+l+1

αk′ζ(z− zk′)

+

t∑
m=1

ζ(z−βm)+

s∑
m′=t+1

(a− 1)ζ(z−βm′)
)

=
B
∏ j

i ′=1 σ(z− zi ′)
(αi ′−1)∏n

k= j+1 σ(z− zk)
∏s−1

m=1 σ(z−βm)σ (z−βs − n1w1− n2w2)
.

Here K1 is the maximum of K that is positive, K2 is the minimum of K and
K2/K1 = (2αmin − αmax)/(2αmax − αmin), where αmax = α j+1 + · · · + α j+l + t ,
αmin = α j+l+1 + · · · + αn + s − t , and a − 1 = −αmax/αmin. Also A and B
are constants, s =

∑ j
i ′=1 αi ′ − n is the number of smooth extremal points of K ,

and β1, . . . , βt and βt+1, . . . , βs are respectively the smooth maximum and min-
imum points of K . Also λ = 1/(w1w2 − w2w1)(Re(η1ρ)w2 − Re(η2ρ)w1) with
η1 = 2ζ(w1/2) and η2 = 2ζ(w2/2). Finally

ρ = 2
( j+l∑

k= j+1

αkzk +

n∑
k′= j+l+1

(a− 1)αk′zk′ +

t∑
m=1

βm +

s∑
m′=t+1

(a− 1)βm′
)
,

σ =
3

(K2−K1)(2K1+K2)
,

and
∑ j

i ′=1(αi ′ − 1)zi ′ −
∑n

k= j+1 zk −
∑s

m=1 βm = n1w1+ n2w2.

Remark 4.1. By (48) and (67), the area formulas of HCMU metrics on S2 and T 2

are the same. In fact in [Wu 2005] it has been proved that for any HCMU metric
the area formula and the energy formula are the same:

A(g)=
π(2αmax−αmin)

K1
and E(g)=

π(α2
max+α

2
min−αmaxαmin)K1

2αmax−αmin
.
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Finally, we raise a question: The formulas (11) and (14) share a formal similarity
under the identifications of 1/(z − zk) with ζ(z − zk) and z − zi with σ(z − zi ).
This leads us to speculate whether there exists a formula corresponding to (11) for
a compact Riemannian surface of genus greater than one.
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