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We show that a rescaling limit at any degenerate singularity of Ricci flow in
dimension 3 is a steady gradient soliton. In particular, we give a geometric
description of type I and type II singularities.

The study of degenerate singularities of the Ricci flow

(0.1)
d
dt

g(t)=−2 Ric g(t)

was introduced in [Hamilton 1995], where Hamilton first described nondegenerate
neck-pinching. Roughly speaking, one starts the Ricci flow on a dumbbell-shaped
3-manifold, with the neck diffeomorphic to S2

×[−1, 1]. It is expected that the neck
shrinks in the S2 direction, where the curvature is very positive, and, at the same
time, stays relatively stationary in the R direction, where the curvature is slightly
negative. After some time, the neck pinches off and forms a singularity. One step
further, Hamilton purposed the notion of degenerate neck-pinching: reduce the left
half of the dumbbell into a critical size and then start the Ricci flow. It is expected
that after some time, all of the left half of the dumbbell pinches off, and forms a
singularity like a horn growing out of the (remaining) right half of the dumbbell.
See [Hamilton 1995] for further descriptions and some very inspiring pictures.

Recall that a solution X develops a type I singularity if X goes singular at time T
and the scalar curvature R(x, t) satisfies

(0.2) lim sup
t→T−

(T − t) · sup
x∈X

R(x, t) <∞.

If this lim sup is∞, we say the singularity is of type II.
In this paper, we prove that in dimension 3, there is no noncollapsing, noncom-

pact ancient solution of positive curvature that develops a type I singularity; see
Theorem 2.4. Conjecturally, such ancient solutions cannot develop type II singu-
larities either. So this can be viewed as a first step towards Perelman’s conjecture
that the Bryant soliton, which does not develop a singularity at all, is the only
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noncollapsing, noncompact, ancient solution of positive curvature; see [Perelman
2002, lines 2–9 on page 32].

As a corollary, we prove that a rescaling limit of a degenerate singularity of
Ricci flow is a steady gradient soliton; see Theorem 3.23. The precise definition of
a degenerate singularity, given in Definition 1.7, is based on Perelman’s notion of
canonical neighborhoods. In the most interesting cases, the shape of a singularity
is either a cylinder, that is S2

× R, or a cap, which looks like a 3-dimensional
paraboloid of revolution. Roughly speaking, a degenerate singularity happens if
there is a sequence of points (pi , ti ) with ti → T− and R(pi , ti ) → ∞, and a
neighborhood of (pi , ti ) is cap-like. Our definition is a geometric one that reflects
Hamilton’s original picture [1995]. On the other hand, as we will see later in this
paper, this geometric definition is equivalent to the singularity being of type II.

We start by reviewing some of Perelman’s results [2002; 2003]; for more de-
tails, see [Cao and Zhu 2006; Kleiner and Lott 2006; Morgan and Tian 2007].
In Section 2 we estimate Perelman’s l functional and the reduced volume Ṽ on
ancient solutions, and prove Theorem 2.4. It follows that a rescaling limit of
a degenerate singularity is either an eternal solution or an ancient solution that
develops a type II singularity. In both cases, we need to take a further rescaling
limit in forward time; we treat certain issues related to this in Section 3. We also
show that under the assumption of degenerate singularity, at least one cap-like
region will become singular at time T : it is not possible that all cap regions remain
nonsingular at T . Finally we use a theorem of Hamilton [1993a] to conclude that
the final rescaling limit is a steady soliton. Our arguments are similar to Perelman’s
compactness/convergence methods that were used extensively in his papers [2002;
2003].

For previous works on neck-pinching, see [Angenent and Knopf 2004; 2007]
and the books [Chow et al. 2006; 2007]. In [Chow and Knopf 2004] there is a
detailed treatment of nondegenerate neck-pinching in Chapter 2, and a discussion
of degenerate neck pinching in pages 62–66. Very recently Gu and Zhu [2007]
constructed an example of type II singularity in the radial symmetric case. See
also [Garfinkle and Isenberg 2008].

1. Notation and definitions

All manifolds we consider in this paper are of dimension 3. We write R(x, t) for
the scalar curvature at (x, t); Rm is the full curvature tensor. The Hamilton–Ivey
pinching inequality [Hamilton 1999] says that, if in the beginning the curvature is
bounded from below by −1, we have

Rm≥−φ(|R|),
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where φ is a nonnegative function such that limr→∞ φ(r)/r = 0. In particular,
when R is large, the full curvature Rm is dominated by the scalar curvature R.

We follow some notation of Perelman [2002; 2003]. Assume g(t) is a family of
metrics on a manifold M that evolve under the Ricci flow. B(x, t, r) denotes the
metric ball centered at x of radius r with respect to the metric g(t). One defines
the parabolic neighborhood

(1.1) P(x, t, r,−1t)= B(x, t, r)×[t−1t, t].

When we say two sets (U1, p1, t1) and (U2, p2, t2) are ε-close, we first rescale U1

and U2 so that R(p1, t1) = R(p2, t2) = 1. Then ε-close means these rescaled sets
are ε-close in the C6 topology. There is a similar notion of ε-closeness between
parabolic neighborhoods.

Since we deal only with finite time singularities, all solutions are noncollapsing,
by [Perelman 2002, 7.3]. In particular, if a sequence of parabolic neighborhoods
admits a uniform curvature bound, we can take a pointed limit over a subsequence.

An ancient solution is a solution that exists on the time interval (−∞, T ) for
some T ∈ R. The cylinder S2

×R, with the S2 direction evolving under the Ricci
flow, is an important example. A set (Z , z) evolving under the Ricci flow over
time [−t, 0] is called a strong ε-neck if, after rescaling the metrics by R(z, 0),
Z is ε-close to an evolving cylinder of length ε−1 from time −ε−1 to 0.

Definition 1.2. The caliber of a cylinder Y = S2
×R is R−1, where R is the scalar

curvature of Y .

Clearly the caliber of a cylinder Y is just half of the square of its radius. The
caliber equals to the time the cylinder takes to go singular (that is, to shrink into
the real line R).

Proposition 1.3 (Perelman). Let ε > 0. Assume M is compact, and the initial
metric g(0) satisfies the curvature bound |Rm g(0)| ≤ 1, and, for all p ∈ M ,
Volg(0) B1(p)≥ 10−1.

Then there exists r0 > 0 such that, whenever R(x1, t1) > r−2
0 , the neighborhood

P(x1, t1, R(x, t)1/2ε−1,−ε−1 R(x, t)) under the rescaled metric R(x1, t1)g(t) is
ε-close to a parabolic neighborhood in an ancient solution; precisely, one of the
following:

i) a space form with positive curvature evolving under the Ricci flow,

ii) the cylinder S2
×R (or S2

×R/Z2) evolving under the Ricci flow,

iii) a compact ancient solution with strictly positive, nonconstant (at each time
slice) curvature that is diffeomorphic to S3 or RP3,

iv) a noncompact ancient solution to the Ricci flow with strictly positive curva-
ture.
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Moreover, on P(x1, t1, R(x, t)1/2ε−1,−ε−1 R(x, t)) there is a uniform gradient
estimate

(1.4) |∇R(x, t)| ≤ C1 R3/2, |∂t R|(x, t)≤ C2 R2.

For a proof, see Theorem 12.1 of [Perelman 2002], together with Section 1 of
[Perelman 2003]. The possibilities above give a rough classification of noncol-
lapsing ancient solutions of nonnegative curvature in dimension 3. The parabolic
neighborhood P is called a canonical neighborhood.

Both types of ancient solutions — (iii), in sufficiently ancient time, and (iv), in
all time — contain a piece of an evolving cylinder. See [Perelman 2002, Sections
11 and 12] and especially [Perelman 2003, 1.4].

The following result allows us to make a convention so that options (i)–(iv)
appear in a mutually exclusive way:

Proposition 1.5 (Perelman). Let X be an ancient, noncollapsing 3-dimensional
ancient solution with bounded nonnegative curvature, nonconstant at each time
slice. Then, at each time (say t = 0), X can be decomposed into a “cap part”
XC and a “tube part” XT , either of which may be empty. XT is connected. XC

contains no ε-neck as a subset, has at most two connect components and is con-
nected when M is noncompact. The boundary components (if any) of XC and XT

are diffeomorphic to S2.
Each connected component of XC is compact. For all p, q in the same connected

component of XC , we have

(1.6) R(p, 0)≤ A(ε)R(q, 0), Diam XC ≤ D(ε)R(p, 0)−1/2.

Every point in the second part, XT , is the center of a strong ε-neck.
When XC is connected, it is diffeomorphic to either S3, RP3, or the ball D3.

When XC is not connected and therefore has two components, one component of
XC is diffeomorphic to D3 and the other is diffeomorphic to either D3 or RP3

−D3.

Most of this is proved in Section 11, especially 11.8, of [Perelman 2002]. The
last part concerning the topology of XC can be found in Section 1 of [Perelman
2003]; See also [Morgan and Tian 2007, Chapter 9; Kleiner and Lott 2006; Cao
and Zhu 2006]. We see that if X is noncompact, then either X = S2

×R, or X is
an approximate tube being connected, through one S2 boundary, to a cap that is
diffeomorphic to D3 or RP3

− D3. In the later case X is isometric to S2
×R/Z2.

We make the convention that, if the canonical neighborhood is close to the XT

part of a noncompact ancient solution, we classify it into case (ii), instead of (iv), of
Proposition 1.3. Therefore, if we classify a canonical neighborhood to be case (iv),
the neighborhood contains (and is quasi-isometric to) XC . We will not consider
cases (i) and (iii) of Proposition 1.3, because if we have to classify a canonical
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XTXC

Figure 1. Case (iv) in Proposition 1.3.

neighborhood into these two cases, by taking further compactness arguments, we
see the solution will have positive curvature after a very short time. Then the
whole solution will become singular and at the same time get rounder and rounder
by Hamilton’s theorem [1982]; these are all of type I and should not be classified
as a degenerate singularities.

With this information, we give a definition of a degenerate singularity of Ricci
flow in dimension 3:

Definition 1.7. Assume M is compact and g(t) is a solution to the Ricci flow as in
Proposition 1.3 that exists on the time interval [0, T ) with T <∞. Assume there
is a sequence of points (xi , ti ) so that limi→∞ ti = T and limi→∞ R(xi , ti ) =∞;
moreover the canonical neighborhood of (xi , ti ) is of case (iv) in Proposition 1.3.
Then we say a degenerate singularity happens at time T .

A glance at the picture in [Hamilton 1995] suggests that one might also include
case (ii) in Proposition 1.3, when the canonical neighborhood is S2

× R/Z2; we
will discuss this possibility in the end of this paper.

It is possible that the solution goes singular everywhere, that is, the scalar curva-
ture goes to infinity everywhere as t → T−. Perelman’s standard solution [2003,
Section 2] is a noncompact example of this. At this moment, we don’t know a
compact example that becomes extinct everywhere while developing a degenerate
singularity. If a compact solution becomes extinct everywhere at T , the topology
of M is quite simple; see [Perelman 2003, Sections 3 and 4].

Proposition 1.8 (Perelman). Given any ε, there exists a small constant η > 0 such
that the following is true:

Assume X is a noncollapsing, noncompact, ancient solution of nonnegative,
bounded curvature defined for time t ∈ (−∞, 0]. Assume γ is a minimal geodesic
segment at time 0, with two end points p1 and p2, and p is a point on γ. Assume

(1.9) R(p1, 0) > η−1, R(p, 0)= 1, R(p2, 0) < η.

Then d(p1, p) > ε−1, d(p, p2) > ε
−1, and B(p, 0, ε−1) is ε-close to a subset in a

cylinder of caliber 1.

This follows from Perelman’s compactness theorem [Perelman 2002, 11.7];
roughly, if this is not true, take a limit of counterexamples. By Perelman’s curvature
bound [Perelman 2002, last three lines in page 30], we see the distance from p to
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p1, p2 goes to ∞. Therefore the limit contains a line and splits; it must be the
cylinder and that is a contradiction. See [Cao and Zhu 2006; Kleiner and Lott
2006; Morgan and Tian 2007] for details.

Finally, with nonnegative curvature, a singularity must happen everywhere:

Proposition 1.10 (Perelman). Assume X is a noncollapsing ancient solution of
strictly positive curvature. If X develops a singularity at time T , then for all x ∈ X ,

(1.11) lim
t→T−

R(x, t)=∞.

See Claim 2 in the proof of Theorem 12.1 in [Perelman 2002].

2. A theorem on ancient solutions

Definition 2.1. Assume X is a noncollapsing, noncompact ancient solution of
strictly positive, bounded curvature, defined for time (−∞, 0]. The caliber of
X at time 0 is

(2.2) lim
x→∞

1
R(x, 0)

.

This limit exists; in fact, the solution is close to a cylinder with the above caliber
when x→∞. See Proposition 1.5 and the volume comparison argument in Lemma
2.5.

Since (X, g(0)) has bounded curvature, by Shi’s theorem [1989a] we can extend
the solution for a short time beyond t =0. Moreover, over each closed time interval
on which the solution exists, the curvature is bounded and positive; see [Shi 1989b,
Theorem 4.14]. See also [Morgan and Tian 2007, 12.1] for an alternative argument.

We can give a partial order to the set of all Ricci flow solutions with initial data
(X, g(0)) having bounded curvature over each closed time interval in which the
solution exists: g1 ≤ g2 if g2 is an extension (in time) of g1. Extensions may or
may not be unique. We now consider maximal solutions according to this order:

Lemma 2.3. Assume g(t) is a maximal solution with initial data (X, g(0)) having
bounded curvature in each time slice. Then g(t) exists on [0,C), where C is the
caliber of (X, g(0)). If C <∞, then limt→C− R(x, t)=∞ for all x ∈ X.

Proof. The proof is exactly the same as Perelman’s argument in Claim 4 of [2003,
Section 2], where he proved the life of the standard solution is its caliber at initial
time. See [Cao and Zhu 2006; Kleiner and Lott 2006; Morgan and Tian 2007] for
details. �

Our main theorem is this:

Theorem 2.4. There exists no noncollapsing, noncompact ancient solution with
strictly positive curvature having a type I singularity.
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We argue by contradiction. Assume there is such a solution X . Since we as-
sumed positive curvature, X is diffeomorphic to R3. Its structure is described in
Proposition 1.5; see Figure 1.

First, in the next two lemmas, under the assumption that X as above exists, we
construct an ancient solution with a global curvature bound similar to (0.2).

Lemma 2.5. We have

(2.6) lim inf
t→T−

(T − t) · inf
x

R(x, t) > 0.

In particular, there exists C, c > 0 so that for all t close to T and all x ,

(2.7) c ≤ (T − t)R(x, t)≤ C.

Proof. By Lemma 2.3, at time t the caliber of (X, g(t)) is T − t . Therefore

(2.8) lim
x→∞

R(x, t)=
1

T − t
.

We claim there is a universal constant c so that for all y ∈ X ,

(2.9) R(y, t)≥ c lim
x→∞

R(x, t)=
c

T − t
.

As in many occasions in Perelman’s papers, for example, the last paragraph in
11.7 of [Perelman 2002], this follows from Yau’s volume comparison argument
with base point at infinity. For the reader’s convenience, we give a sketch:

By rescaling, we can assume T−t=1. Take a ray γ with γ(0)= y. If the distance
s1 is sufficiently large, a neighborhood of γ(s1) is close to a (piece of) cylinder with
caliber T − t . Take s2� s1, let p = γ(s2), and define the one-direction annulus

(2.10) A(p, δ1, δ2)=
{

x ∈ X | δ1≤d(x, p)≤ δ2, lim inf
s→∞

d(γ(s), x)−(s−s2)≥0
}
.

A volume comparison based at p implies that

(2.11)
Vol A(p, s2− D, s2+ D)

Vol A(p, s2− s1− D, s2− s1+ D)
≤

∫ s2+D
s2−D r2dr∫ s2−s1+D

s2−s1−D r2dr
≈ 1,

where D�
√

T − t while D� s1� s2. Since A(p, s2−s1−D, s2−s1+D), which
contains γ(s1), is approximately a cylinder of length 2D and caliber T − t , we see
that

(2.12) Vol A(p, s2−s1−D, s2−s1+D)∼ 2D(T−t)� D3.

By Perelman’s compactness theorem for ancient solutions (see the proof of 11.7
of [Perelman 2002]), there is a constant N such that on any ancient solution,

R(b)≤ N whenever R(a)= 1 and d(a, b)≤ 1.
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Therefore if R(y, t) is very small, say R(y, t)≤ c ≤ D−2 N−1, we have R ≤ D−2

on B(y, t, D). So by the noncollapsing assumption we have

(2.13) Vol A(p, s2−D, s2+D)≥ Vol B(y, t, D)≥ τD3.

This, together with (2.12), contradicts (2.11). �

Lemma 2.14. If X is of type I, there exists a noncompact, noncollapsing ancient
solution X ′ of positive curvature that goes singular at time 0, and for all x ∈ X ′

and t ≤ 0 we have

(2.15) c ≤ |t | · R(x, t)≤ C.

Proof. Let ti → T−. Pick a sequence of points (xi , ti ) ∈ X in the cap region, that
is, at the XC region; see Proposition 1.5. Rescale R(xi , ti ) to 1 and get a pointed
limit X ′. Observe that X ′ is noncompact, does not split, and has positive curvature.
We then translate the singular time of X ′ to 0, and the conclusion follows from the
previous lemma. �

We can then assume X satisfies (2.15) and reduce Theorem 2.4 to the following:

Theorem 2.16. There is no noncollapsing, noncompact, ancient solution, with
bounded positive curvature on each time interval (−∞, t] with t < 0, satisfying
the following:

(1) The solution goes singular at time T = 0.

(2) For all (x, t) we have c ≤ |t | · R(x, t)≤ C.

We break the proof into a sequence of lemmas. In view of Proposition 1.5, at
time t when x ∈ XC , we say x is on the cap at time t . When x ∈ XT , we say x is
the center of a tube at time t ; see Figure 1. When the curvature is strictly positive,
XC is diffeomorphic to the solid ball D3. A point x may be on the cap at one time
and be the center of a tube at another time.

Remember Perelman’s l functional: fix a base point (p, t), for (q, t ′) with t ′< t ,
write τ = t − t ′. Then define

l(q, τ )= inf
γ

1
2
√
τ

∫ τ

0

√
s
(
R(γ(s), s)+ |γ′(s)|2

)
ds.

The infimum is taken among all paths γ : [0, τ ]→M such that γ(0)= p, γ(τ)= q.

Lemma 2.17. Let (pi , ti ) be a sequence of points with ti →−∞ that are on the
cap. Fix a time, say −1. The points (pi ,−1) goes to space infinity when i→∞.

Proof. If this is not true, assume (pi ,−1)→ (p,−1). Take a fixed ε > 0 and
let (p,−1+ ε) be the base point. Take the constant curve pi from inverse time
τ = (−1− ti )+ ε to ε, and connect with a path from (pi ,−1) to (p,−1+ ε). We
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get a piecewise smooth curve γi . Computing Perelman’s l integral on γi , we get,
for all τ � 0,

(2.18) l(pi , τ )=
c(ε)
2
√
τ
+

1
2
√
τ

∫ τ

ε

√
s R ds ≤ c′(ε)+

1
2
√
τ

∫ τ

0

√
s

C
s+ c

ds ≤ C.

Here we used the assumption (2) in Theorem 2.16.
Thus by Perelman’s asymptotic soliton theorem [2002, Proposition 11.2] (see

also [Kleiner and Lott 2006; Morgan and Tian 2007; Chow et al. 2009]), if we
take a rescaled limit at (pi , ti ), we get a nonflat shrinking soliton. The limit soliton
cannot be compact, and since every (pi , ti ) is on the cap, the limit does not split,
that is, the limit soliton is of positive curvature. By [Perelman 2003, Section 1],
shrinking solitons are either space forms, or S2

×R, or S2
×R/Z2, none of which

contains a cap diffeomorphic to the disc D3. This is a contradiction. �

Recall Perelman’s reduced volume, defined by

Ṽ (τ )= τ−n/2
∫

M
e−l(x,τ ) dx .

Lemma 2.19. Given any C > 0, there exists ε with the following property. Let
τ > 2 and let (M, p) be an ancient solution with sup R ≤ C at time −1; assume
also that

(2.20) Ṽ (τ )≤ Ṽ (2τ)+ ε

and l(q, τ )≤C , with the base point of l and Ṽ taken at (p,−1). Then, after rescal-
ing by R(q, τ ), a neighborhood of (q, τ ) is close to a large subset in a shrinking
soliton. Here τ =−1− t is the inverse time.

Proof. This follows exactly the proof of [Perelman 2002, Proposition 11.2], where,
once there is a bound l(q, τ )≤ n/2, one can rescale down by τ and take the limit.
(See [Ye 2008] for more details, especially about the bounds in l.) We can adapt
this argument using the bound l(q, τ )≤ C .

Perelman then uses the fact that Ṽ is decreasing in τ , so when taking the scale-
down limit, Ṽ converges to a constant function (independent of time). Then the
differential inequalities (7.13)–(7.14) in [Perelman 2002] become equalities, thus
the limit is a shrinking soliton. In our situation, we make a similar argument by
contradiction. Take εi→0 and a sequence of ancient solutions Mi and times τi such
that (2.20) holds for τ = τi . After passing to a subsequence, we get a limit space,
and Ṽ converges to a constant since εi → 0. Then we use [Perelman 2002, (7.13),
(7.14)] to conclude that the limit is a shrinking soliton and get a contradiction. �

Lemma 2.21. Assume there is an ancient solution X as in Theorem 2.16. For any
ε > 0, there exists N > 0 such that for any point (p,−1) that is sufficiently far into
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space infinity, we have

(2.22) 2
e
(4π)3/2 < Ṽ (τ )≤ Ṽ (2τ)+ ε

2
<

2
e
(4π)3/2+ ε,

for all τ > N. Here we take (p,−1) as the base point for computing l and Ṽ .

Proof. At time t , at space infinity the solution looks like a tube of caliber |t |. No
matter where the base point (p, t) ∈ X for l is located, we claim that

(2.23) ṼX (∞)= lim
τ→∞

ṼX (τ )=
2
e
(4π)3/2.

In fact, pick any base point (p, t), translate the time t to 0; then we have the inverse
time τ . Applying [Perelman 2002, Proposition 11.2], we scale down this solution
and take a limit; the limit Z is a shrinking soliton, called the asymptotic soliton.
Z is noncompact, so it must be Z = S2

×R (S2
×R/Z2 does not happen because

the curvature is positive). Therefore Z is an evolving cylinder that goes singular
at rescaled inverse time τ̃ = 0. Let Ṽcylinder be the limit of ṼX on Z . By [Perelman
2002], the limit

Ṽcylinder(τ̃ )= Ṽcylinder(∞)

does not depend on τ̃ . The precise value of Ṽcylinder(τ̃ ) is easy to compute; see
for example [Cao et al. 2004; Kleiner and Lott 2006; Morgan and Tian 2007].
Briefly, notice that Ric+Hessl = g/(2τ̃ ) on the cylinder, and pick τ̃ = 1. At this
time we have R = 1. First taking the trace along the S2 factor, we see that l is
constant on each S2 slice. Then taking the trace on Z , we see that l is a quadratic
polynomial along the R direction. Choosing a suitable origin and noticing that
the differential inequality (7.14) of [Perelman 2002] becomes an equality, we can
completely determine l:

(2.24) lcylinder = 1+ x2/4,

where x is the coordinate in the R direction. Integrating we have

(2.25) Ṽcylinder(∞)= Ṽcylinder(1)

=

∫
cylinder

e−l
= Vol S2

·

∫
∞

−∞

e−1−x2/4 dx =
2
e
(4π)3/2.

(Here Vol S2
= 8π since R = 1). By Perelman’s growth estimate for l [Ye 2008,

Lemma 3.2], one can bound the contribution to Ṽ outside any given distance.
Moreover the scale-down limit of l is just lcylinder. Hence

(2.26) ṼX (∞)= Ṽcylinder(∞)= 2e−1(4π)3/2.

Picking any (z,−1) in an evolving cylinder Z as the base point for computing l,
we get the same limit value ṼZ (∞)= 2e−1(4π)3/2. Although both ṼZ and Ṽcylinder
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are computed on the evolving cylinder, they are different in that Ṽcylinder is defined
as the limit of reduced volumes over rescaled manifolds, which essentially used
the singularity as base point; ṼZ uses an ordinary point (z,−1) as the base point.
Therefore Ṽcylinder(τ ) does not depend on τ , while ṼZ (τ ) does.

There exists N such that

(2.27) ṼZ (N )≤
2
e
(4π)3/2+ ε

8
.

Moreover, there is a radius D�
√

N such that, on Z ,

(2.28) ṼZ (N )−
ε
8
≤

∫
B(z,−1−N ,D)

N−n/2e−l
≤ ṼZ (N )≤

2
e
(4π)3/2+ ε

8
.

Observe that on cylinders, all l-geodesics connecting the base point (z,−1) to
points in B(z,−1−N , 2D) stay entirely in B(z,−1−N , 2D).

If we take pointed limit with base points (pi ,−1)∈ X going to space infinity, we
get an approximate cylinder of caliber 1. Therefore if we go sufficiently far into the
space infinity, we see the ball B centered at (p,−1) with radius 2D satisfies that
B×[−1−N ,−1] is close to the corresponding part in space-time of the evolving
cylinder Z . By the Schwartz inequality, we see that all l geodesics to points in
B(p,−1−N , D) stay entirely in B(p,−1−N , 3D/2) for sufficiently large i .

By Perelman’s growth estimate on l [2008, Lemma 3.2], the contribution to Ṽ
of points outside B×[−1−N ,−1] can be nicely controlled:

(2.29) ṼX (N )−
ε
8
≤

∫
B(p,−N−1,D)

N−n/2e−lX < ṼX (N ).

But recall from [Perelman 2002, (7.12), (7.13)] that Ṽ is a decreasing function in
τ , so ṼX (N ) ≥ ṼX (∞). Since the neighborhood B×[−1−N ,−1] is C6-close to
an evolving cylinder, we have

(2.30)
∣∣∣∣ ∫

B(p,−N−1,D)
N−n/2e−lX−

∫
B(z,−N−1,D)

N−n/2e−lZ

∣∣∣∣≤ ε8 .
Both these above integrals are close to ṼX (∞). Combining (2.23), (2.27) and
(2.28) with the fact that Ṽ is a decreasing function, we get the conclusion (2.22)
for all τ > N . �

Proof of Theorem 2.16. Take a sequence of points (pi , ti ) on the cap, with ti →
−∞. By Lemma 2.17, for sufficiently large i , and |ti | > N + 1, where N is
the number in Lemma 2.21, we see that (pi ,−1) is so far into space infinity that
Lemma 2.21 applies. Using (pi ,−1) as the base point for l, we conclude that

(2.31) Ṽ (τ )≤ Ṽ (2τ)+ ε
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for all τ > N . In particular we take (pi ,−1) as the base point and use τ =−1− ti .
The type I assumption implies a bound of l at (pi , ti ), evaluated on the constant
curve pi ; see the computation (2.18). Therefore by Lemma 2.19, after rescaling
by R(pi , ti ) we see that a big neighborhood of (pi , ti ) is close to a set in a shrink-
ing soliton — either a space form or a cylinder (or its Z2 quotient). But this is
impossible because (xi , ti ) is in a cap region XC that is diffeomorphic to the unit
ball D3. �

3. Forward limit and eternal solutions

To get more concrete information, especially for taking forward limits, we need the
following lemma, which could be used as an alternative definition of a degenerate
singularity. This is very similar to [2003, Lemma 4.3]; see also [Cao and Zhu
2006; Kleiner and Lott 2006; Morgan and Tian 2007].

Lemma 3.1. Assume a degenerate singularity happens at time T and the solution
does not become extinct everywhere at T . There exists a positive real number ε > 0
(depending on the solution) and a compact set B ⊂ M diffeomorphic to a solid 3-
ball, such that some neighborhood of ∂B is 10−2-close to a cylinder of scalar
curvature 1 and length 100, after rescaling the metric by R(p, t) for any p ∈ ∂B
and for all t ∈ [T−ε, T ). We also have

(3.2) lim sup
t→T−

sup
p∈∂B

R(p, t) <∞.

Moreover, let p(t) ∈ B be a point such that

(3.3) dg(t)(p(t), ∂B)= sup
p∈B

dg(t)(p, ∂B).

Then

(3.4) lim
t→T−

R(p(t), t)=∞.

Proof. Let (xi , ti ) be a sequence of points as in Definition 1.7. Since M is compact
and the metric expands in a controlled way, we can assume xi → x∞. Then

(3.5) lim
t→T−

R(x∞, t)=∞.

In fact, if this is not true, then for some C > 0, there exists t such that T − t is arbi-
trarily small while R(x∞, t) < C ; we pick such a time t∗ that is sufficiently close
to T . By the gradient estimate (1.4) in the space direction, some neighborhood N

of (x∞, t∗) has bounded curvature. Because we have chosen t∗ sufficiently close
to T , by the time-direction gradient estimate in (1.4), N has a uniform curvature
bound on the time interval (t∗, T ). So on N, the metrics from time t∗ to T are
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uniformly equivalent. In particular, for sufficiently large i we have xi ∈ N; this
contradicts to the fact R(xi , ti )→∞.

It was assumed that the solution does not become extinct everywhere at time T .
As we have seen above, by the gradient estimate (1.4), near time T , the curvature
cannot increase or decrease suddenly. So there is a point y such that

(3.6) lim sup
t→T−

R(y, t)= C <∞.

Pick a time t∗ that is sufficiently close to T and such that

(3.7) R(x∞, t∗) > η−8
·max{r−2

0 ,C};

here r0 is the canonical neighborhood parameter in Proposition 1.3 and η is the
(small) constant in Perelman’s splitting argument (Proposition 1.8). Take a minimal
g(t∗)-geodesic γ from y to x∞, parametrized by s. Choose r1 so that r−2

1 = η
−2
·

max{r−2
0 ,C}, and let

(3.8) s0 = sup{s | R(γ(s), t∗)= r−2
1 }, s1 = sup{s | R(γ(s), t∗)= η−6r−2

1 }.

Since t∗ is sufficiently close to T , by applying the gradient estimate (1.4), we can
assume that

(3.9) R(γ(s0), t)≤ 2r−2
1

on the time interval (t∗, T ). By Proposition 1.8, the canonical neighborhood of
γ(s0) at time t∗ is a tube, with radius r1

√
2. Now remove a center sphere S2 in

this tube at γ(s0) from the manifold (M, g(t∗)) to get an incomplete Riemannian
manifold, possibly with two components. Pick the component that contains x∞
and take its closure M∗. So

γ([s0, d(y, x∞)])⊂ M∗.

The boundary ∂M∗ is either connected or has two components, each diffeomorphic
to S2. Write S = ∂M∗ when ∂M∗ is connected; when ∂M∗ has two components,
let S be the component of ∂M∗ closer to γ(s0+ δ), where δ = R(γ(s0), t∗)−1/2. In
other words, S is the departure point of the part of γ that runs towards x∞.

The Ricci flow still runs on this manifold (it runs on the original manifold M ,
and we just removed a sphere). For all t ∈ [t∗, T ), pick a point q(t) furthest from S:

(3.10) dt(q(t), S)=max{d(x, S) | x ∈ M∗}.

Let α be a minimum g(t)-geodesic from S to q(t). As we will see, α is close to γ.
At time t∗, S is the start of a piece of tube, and γ passes through S. From S

to γ(s1), which is |s1− s0| away from S, the scalar curvature changes from r−2
1 to

η−2r−2
1 . By Proposition 1.8, this part of γ is close to γ. There are two cases:
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Case I. For all s with s ≥ |s1− s0|, we have

(3.11) R(α(s), t∗) > 1
2η
−2r−2

1 .

In this case, if ∂M∗ has another component S′, the canonical neighborhoods of
α(s) do not intersect S′. In fact a neighborhood of S′ is very close to a long tube
with scalar curvature r−2

1 — the curvature (3.11) is too big: remember if we glue
back the broken neck, S′ will be identified with S.

On the other hand, (3.11) implies that every point of α has a canonical neigh-
borhood. By the classification of canonical neighborhoods and Proposition 1.8,
away from q(t∗) (the end of α), α is covered by tubes; near q(t∗), the canonical
neighborhoods of α(s) are diffeomorphic to a cap or to R P3

−D3. Therefore M∗ is
diffeomorphic to a solid ball D3 or R P3

−D3; in particular, ∂M∗= S is connected.
Now x∞ ∈ M∗, and the curvature at ∂M∗ = S remains bounded when t → T

because t∗ is very close to T , we conclude that xi ∈ M∗ for i sufficiently large. So
the possibility M∗= RP3

−D3 is ruled out, because M∗ contains a cap diffeomor-
phic to D3 and this cap contains the point q(t∗) maximizing the distance function
dM∗( · , S). Therefore, we can just take p(t)= q(t) and B = M∗.

Case II. There is a minimal s ′ such that s ′ > |s0− s1| and

(3.12) R(α(s ′), t∗)= 1
2η
−2r−2

1 .

We will prove that this is impossible. Roughly speaking, x∞ is trapped between
γ(s1) and α(s ′), so by Perelman’s splitting argument (Proposition 1.8), the neigh-
borhood near x∞ will not be “cap-like”:

S

γ(s0)
γ(s1)

α(s2)

R ≈ η−6r−2
1 R ≈ r−2

1R ≈ η−4r−2
1

γ(s1)

More precisly, choose a minimal s2 such that s2 > |s0− s1| and

(3.13) R(α(s2), t∗)= η−4r−2
1 .

Since we chose t∗ very close to T , by the gradient estimate (1.4), a neighborhood
N2 of α(s2) has a curvature bound

(3.14) R ≤ 10η−4r−2
1

for all time t ∈ [t∗, T ). Again by Proposition 1.8, the canonical neighborhood N2

is a cylinder. Now cut M∗ at a center sphere at α(s2) and take the component C

that contains γ(s1). This C is just a piece of a cylinder; see again Proposition 1.8.
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In particular, by the choice of γ(s1), we have x∞ ∈ C. By (3.14), have uniform
curvature bounds on the two ends of this cylinder on the time interval [t∗, T ). So
for sufficiently large i , we have xi ∈ C.

On the other hand, also by (1.4), there is actually a lower bound

(3.15) 1
10r−2

1 ≤ R(x, t)

for all x ∈ C and t ∈ [t∗, T ). This means for all time t ∈ [t∗, T ), any x ∈ C has a
canonical neighborhood.

We already know that near the two ends, the canonical neighborhoods are both
cylinders. Let αt be a minimal g(t)-geodesic that connects the two ends of C. For
all x ∈ αt , the canonical neighborhood is a cylinder because a cap cannot contain a
geodesic segment extending very far in both direction. Thus the union of all these
cylinder neighborhoods is exactly C. This contradicts the fact that the canonical
neighborhood of (xi , ti ), which lies in C, is a cap. �

Assume a degenerate singularity happens at time T . By taking a rescaling limit
at the point (p(t), t) in Lemma 3.1, with t → T−, we get an ancient solution X .
Since the canonical neighborhoods of p(t) are of case (iv) in Proposition 1.3, the
limit X is necessarily of strictly positive curvature, otherwise the solution is S2

×R

or its Z2 quotient, by the strong maximum principle. By a translation in time, X
exists on (−∞, 0].

Let T1>0 be the maximal time such that there is an extension of X up to time T1

and for all t < T1, the curvature of g(t) is positive and bounded. (Such an extension
need not be unique.) Then T1 is the caliber of (X, g(0)); see Lemma 2.3. A priori,
when 0< T ′ < T1 we do not know if the solution (X, g(t)), with −∞< t ≤ T ′, is
a rescaling limit of the original Ricci flow on M .

Lemma 3.16. There exists an extension (X, g(t)) with −∞< t < T1, where T1 is
the caliber of (X, g(0)), such that for all T ′ > 0 with T ′ < T1, the ancient solution
X over time (−∞, T ′] is a rescaling limit of the original solution on M.

Proof. Let T0 be the supremum of the set of times T such that there is an extension
of X to time T and the ancient solution X over time (−∞, T ) is a rescaling limit
of the original solution on M .

We have T0 > 0. In fact, a rescaling of M is close to (X, g(0)) in the pointed C3

topology. We can assume the rescaling is taken at p(t) in Lemma 3.1, (remember
that the original solution does not go singular unless R(p(t), t) goes to infinity).
Now the corresponding neighborhood N(t) of p(t) contains a cap part NC and a
tube part NT , corresponding to the XC , XT decomposition of X .

From the definition of p(t) in (3.3), as long as the Ricci flow is running (at
least for a short time when the metric geometry of N does not change too much),
the global maximum point p(t +1t) of the distance function must remain in N.
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The gradient estimate (1.4) implies that the curvature on N cannot go to infinity
immediately, so R(p(t+1t), t+1t) does not go to infinity immediately. During
this time period the solution cannot go singular. Therefore we can take a definite
short-time forward limit at p(t). This limit extends X , so T0 > 0.

We can repeat this argument (that is, view T0 as time 0) as long as X does not
go singular; therefore we must have T0 = T1, the caliber of (X, g(0)). �

We would like to have T1 =∞, so that X is an eternal solution by Lemma 2.3.
Assume this is not the case. Then the solution must develop a singularity at time
T1. By Theorem 2.4, this singularity is of type II as defined in [Hamilton 1995],
that is,

(3.17) lim sup
t→T−

(T1− t) · sup
x

R(x, t)=∞.

In all cases, by taking a further limit we will get an eternal solution in which the
scalar curvature reaches maximum. This point-picking procedure is well known
[Perelman 2002; 2003; Kleiner and Lott 2006; Chow et al. 2006]. We give a quick
account here.

We will find a sequence of points (pn, tn) such that when we rescale the solution
by R(xn, tn) (that is, first make R(xn, tn)= 1), and then translate the time tn into 0
(that is, our base point is now (pn, 0) with R(pn, 0) = 1), then the solution exists
on the interval (−∞, n] and

(3.18) 1= R(pn, 0)≥
(

1− 1
n+1

)
sup{R(x, t) | x ∈ X, t ≤ n}.

In fact, start with (p, 0)= (p(0), t (0)) so that R(p, 0) is maximal at time 0, and

(3.19) (T1− t (0))R(p(0), t (0)) > (n+ 1)2

if X is not eternal. Assume there is a point p(1) and a time t (1) such that

(3.20) R(p(1), t (1)) >
(

1+ 1
n

)
R(p(0), t (0)), t (1)− t (0) ≤ n R(p(0), t (0))−1.

Without loss of generality we assume that R(p(1), t (1)) is almost maximal at the
time slice t = t (1). If (p(1), t (1)) does not satisfy our requirement, we continue to
find (p(2), t (2)), . . . In general,

R(p(k), t (k)) >
(

1+ 1
n

)k
R(p(0), t (0)),(3.21)

t (k)− t (0) ≤ n
k−1∑
i=0

(
1+ 1

n

)−i
R(p(0), t (0))−1 < n(n+ 1)R(p(0), t (0))−1.(3.22)

This procedure must stop at some finite k, since the solution X exists up to time
(n + 1)2 R(p(0), t (0))−1. Hence there is a curvature bound at the time slice t =



DEGENERATE SINGULARITIES IN THREE DIMENSIONAL RICCI FLOW 305

n(n+1)R(p(0), t (0))−1 (see also Theorem 11.4 in [Perelman 2002]); by Hamilton’s
Harnack inequality [Hamilton 1993b], this scalar curvature bound actually holds
for all t ≤ n(n+ 1)R(p(0), t (0))−1.

Taking a pointed limit Z of (X, (pn, tn), R(pn, tn)g), we get an eternal solution
on which the maximal of scalar curvature is reached. Therefore we can apply
Hamilton’s theorem on eternal solutions [1993a] to conclude that the limit Z is a
steady gradient soliton. By Lemma 3.16 we finally have:

Theorem 3.23. Assume g(t) develops a degenerate singularity at time T . Then a
rescaling limit of g(t) towards time T is a steady gradient soliton.

Proof. We have already proved this when the solution does not become extinct
everywhere at time T .

The other case, that M becomes extinct everywhere at time T , is actually easier.
In fact the solution does not become extinct unless the everywhere the curvature
goes to infinity; so there is no difficulty in obtaining a forward time limit — one
can take the limit as long as the local curvature remain finite, and in this case no
singularities occur at far away.

On the other hand, when we take the limit as before and get an ancient solu-
tion X with nonnegative curvature, X is noncompact. For otherwise, X would be
diffeomorphic to S3 or P R3. By taking a forward limit we see that the original
solution must be of strictly positive curvature near time T ; in particular it will get
rounder and rounder and cannot be a degenerated singularity. So the proof goes
like the first case. �

Corollary 3.24. Our Definition 1.7 of a degenerate singularity is equivalent to the
definition of a type II singularity.

Perelman [2003, Section 2] constructed a “standard solution”. It is not an ancient
solution.

Corollary 3.25. The rescaling limit of Perelman’s standard solution [2003] is the
Bryant soliton.

Proof. Perelman’s standard solution X goes singular at time 1. This singularity
must be of type II, otherwise by taking a rescaled limit we get an ancient solution
satisfying the conditions in Theorem 2.16, and such solutions do not exist.

It is known that Perelman’s standard solution X is unique; see [Perelman 2003;
Morgan and Tian 2007, Chapter 12]. Hence X is radially symmetric, in particular,
X is the union of SO(3) orbits. One can write the metric of X as

(3.26) dr2
+ f (r)2 d S2,

where f is a warping function such that f (0) = 0, f ′(r) > 0, and f ′′(r) < 0 for
r > 0.
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Now as in Theorem 3.23, there is a sequence xi ∈ X such that after rescaling
by R(xi , ti ), we can take a pointed limit for (X, xi , ti ) and get a steady gradient
soliton (Z , z0) of positive curvature such that R(z0) = 1. It is clear that Z is not
compact.

After rescaling X by R(xi , ti ), the radius of the SO(3) orbit passing through
(xi , ti ) remains uniformly bounded. Otherwise (taking into account that R is con-
stant on any SO(3) orbit), in the limit we would have for Z

(3.27) lim sup
z→∞

R(z)≥ R(z0)= 1,

which is not possible when Z is a steady soliton of positive curvature — see Lemma
2.3 and also [Hamilton 1995; Perelman 2002].

Let x∗ be the (time-independent) center of X . We claim that

R(xi , ti )d(x∗, xi , ti )2

remains bounded. Assume this is not true. Perelman’s compactness theorem [2002,
11.7] implies that there is a uniform curvature growth estimate for all ancient so-
lutions of positive curvature. In particular,

(3.28) R(z0)9(R(z0)d(z, z0)
2)≤ R(z)≤ R(z0)8(R(z0)d(z, z0)

2),

where9,8 are universal positive functions. Since the warping function f is mono-
tonic and concave, by computing the curvature of X in term of f we see that, within
finite distance, there are uniform upper and lower bounds for the diameters of the
SO(3) orbits. In particular, Z is diffeomorphic to S2

× R, but this is impossible
since Z is of positive curvature.

Therefore we can take the rescaled limit using the base point (x∗, ti ) instead. In
particular, the steady soliton Z is radially symmetric. By the discussion in [Chow
et al. 2006], Z must be the Bryant soliton. �

Finally we mention that a result analogous to Lemma 3.1 for RP3
−D3 caps also

holds. It is easy to prove that locally the singularity is of type I and a rescaling limit
is S2
×R/Z2. One can get an example of such a singularity by taking Z2 quotients of

the examples of nondegenerate singularities in [Chow and Knopf 2004, Chapter 2];
this is also a singularity like a horn growing out of S3, but the tip of the horn is
actually RP3

− B3. We do not call this case degenerate.
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