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We show how to derive structure relations for general orthogonal polynomi-
als, that is, we find operators whose action on pn is a combination of pn and
pn+1 with variable coefficients. We also provide an analogue of the string
equation for general orthogonal polynomials. We explore the connection
with the Toda lattice and polynomials orthogonal with respect to general
exponential weights.

1. Introduction

By a structure relation for a sequence of orthogonal polynomials {pn(x)}, we mean
a functional recurrence relation of the form

(1-1) L pn(x)= An(x)pn−1(x)− Bn(x)pn(x),

where L is a linear operator whose domain contains all polynomials. Every ortho-
normal polynomial satisfies a three term recurrence relation of the form

(1-2) xpn(x)= an+1 pn+1(x)+αn pn(x)+ an pn−1(x).

See [Chihara 1978; Szegő 1975; Ismail 2005].
Let {pn(x)} be orthonormal with respect to the weight function

(1-3) w(x)= e−v(x),

that is,

(1-4)
∫ b

a
pm(x)pn(x)e−v(x) dx = δm,n.

It is known that in this case the pn have the structural relation

(1-5) d
dx

pn(x)= An(x)pn−1(x)− Bn(x)pn(x),

where An and Bn are given by (2-1) and (2-2).
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In view of (1-2), we can rewrite (1-1) in the form

(1-6) L pn(x)= Cn(x)pn+1(x)+ Dn(x)pn−1(x).

Koornwinder [2007] considered the case when Cn(x) and Dn(x) are constants. He
proved the following theorems.

Theorem 1.1. Let L be linear operator acting on R[x] that is skew symmetric with
respect to the inner product

(1-7) ( f, g)w :=
∫ b

a
f (x)g(x)w(x) dx .

If L xn
= cnxn+1

+ lower order terms, then

(1-8) L pn(x)= cnan+1 pn+1(x)− cn−1an pn−1(x).

Theorem 1.2. Let D be a linear operator acting on R[x] that is symmetric with
respect to the inner product (1-7). Assume further Dxn

=λnxn
+lower order terms,

with λn 6= λn−1 for all n > 0, and that {pn(x)} are eigenfunctions of D with eigen-
values {λn}, that is, Dpn(x) = λn pn(x). Then the operator L := [D, X ] is skew
symmetric with respect to the inner product (1-7), where

(1-9) (X f )(x)= x f (x).

Furthermore (1-8) holds with cn = λn+1− λn .

Bangerezako [1999] proved that the Askey–Wilson polynomials have the struc-
ture relation when L is given by L AW , defined by

(1-10) (L AW f )(z)

:=
1

z−1/z

( 4∏
j=1

(1− a j z)z−2 f (qz)−
4∏

j=1

(1− a j/z)z2 f (z/q)
)
,

where a1, a2, a3, a4 are the parameters in the Askey–Wilson polynomials; see
[Ismail 2005]. Here x = (z + 1/z)/2, and f is a Laurent polynomial assumed to
be symmetric in z and 1/z. Koornwinder also showed that L AW can be computed.

The models for Koornwinder’s results are the classical orthogonal polynomials,
in which L and D are differential, difference, q-difference, or divided difference
operators. Koornwinder applied his results to the Jacobi polynomials and the
Askey–Wilson polynomials [Askey and Wilson 1985]. In all these models the
operator D does not depend on the n in the equation Dpn = λn pn . There is also a
connection to the work [Grünbaum and Haine 1996] on the bispectral problem.

The purpose of this paper is to extend Theorem 1.1 to general orthogonal poly-
nomials, including the Freud polynomials when the weight function is e−v with
polynomial v. We have a different point of view, which we hope may shed more
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light on the subject. Theorem 1.2 requires that the orthogonal polynomials satisfy
a Sturm–Liouville-type operator equation, a property only shared by the classi-
cal polynomial of the Askey scheme; see [Koekoek and Swarttouw 1999]. Our
approach gives an alternative to the Sturm–Liouville property.

Section 2 gives the required preliminaries. Section 3 extends Koornwinder’s
results to polynomials orthogonal with respect to weight functions of the form
e−v(x) with certain smoothness conditions on v. Section 4 extends the results of
Bangerezako [1999] to the more general class of weight functions defined in (4-3).
In Section 5 we treat the polynomials orthogonal with respect to a generalized
Jacobi weight evolved under a Toda-type modification exp(−

∑m
j=1 t j x j ).

We shall follow the notations and terminology of basic hypergeometric functions
and orthogonal polynomials as in [Andrews et al. 1999; Gasper and Rahman 2004;
Rainville 1960; Ismail 2005].

2. Preliminaries

When v′ is continuous and xne−v[v′(x)− v′(y)]/(x − y) is integrable over [a, b]
for n = 0, 1, 2, . . . , then An(x) and Bn(x) of (1-1) are given by

An(x)
an
=
w(y)p2

n(y)
y− x

∣∣∣∣b
a
+

∫ b

a

v′(x)− v′(y)
x − y

p2
n(y)w(y) dy,(2-1)

Bn(x)
an
=
w(y)pn(y)pn−1(y)

y− x

∣∣∣∣b
a

(2-2)

+

∫ b

a

v′(x)− v′(y)
x − y

pn(y)pn−1(y)w(y) dy.

See [Bauldry 1990; Bonan and Clark 1990; Chen and Ismail 1997; Ismail 2005,
Chapter 3]. It is assumed that the boundary terms in (2-1) and (2-2) exist.

Under the assumptions above on v, the orthonormal polynomials satisfy the
differential equation

(2-3) p′′n(x)+ Rn(x)p′n(x)+ Sn(x)pn(x)= 0,

where

Rn(x) := −
(
v′(x)+

A′n(x)
An(x)

)
,(2-4)

Sn(x) := An(x)
( Bn(x)

An(x)

)′
− Bn(x)(v′(x)+ Bn(x))+ An(x)An−1(x)

an
an−1

.(2-5)

The differential equations (2-3) were used to determine the equilibrium position of
the particles in a Coulomb gas model; see [Ismail 2000].
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3. Differential operators and exponential weights

Let Dn denote the operator

(3-1) Dn =
1

An(x)

( d2

dx2 + Rn(x)
d

dx
+ Sn(x)

)
,

which acts on C[x].

Theorem 3.1. Let

(3-2) Hn :=
1
2 [Dn, X ]= 1

An(x)
d

dx
−

v′(x)
2An(x)

−
A′n(x)

2A2
n(x)

,

where X is the operator of multiplication by x as in (1-9). Then Hn is skew sym-
metric with respect to the inner product (1-7).

In the case of Jacobi polynomials,

(3-3) An(x)
an
=
(α+β+1+2n)

1−x2 ,

and the recursion coefficients {an} are given by

(3-4) an =
2

α+β+2n

√
n(α+n)(β+n)(α+β+n)

(α+β−1+2n)(α+β+1+2n)
.

Thus Hn is a constant multiple of

(3-5) (1− x2)
d

dx
−

1
2(α−β + x(α+β + 2)),

which is the operator identified in [Koornwinder 2007].
If v is convex and the boundary terms in (2-1) vanish, then An(x) > 0 for real x .

In general, we have

(3-6) [Hn, X ] f (x)= 1
An(x)

f (x),

that is, [Hn, X ] = An(X)−1. Equation (3-6), called the string equation, is also part
of the relations for the Zhedanov algebra; see [Granovskiı̆ et al. 1992, (3.2)].

Now we explore a different choice for the skew symmetric L when v′ is a rational
function. Let

(3-7) v′(x)= φ(x)
ψ(x)

and L1 := ψ(x)
d

dx
+

1
2(ψ

′(x)−φ(x)).

In the case of Jacobi polynomials, φ(x) = α− β + x(α+ β) and ψ(x) = 1− x2,
and L1 reduces to the operator in (3-5). In this generality it is clear that

(3-8) [L1, X ] = ψ(X).
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We shall return to this topic in Section 5 and treat the generalized Jacobi weights
under a Toda flow.

4. Askey–Wilson-type polynomials

We follow the notation in [Ismail 2005] and write

x = 1
2(z+ 1/z),(4-1)

f (x)= f̆ (z).(4-2)

Let pn(x) be orthonormal with respect to a weight function of the form

(4-3) w(x)= w̆(z)= (z
2, 1/z2

; q)∞
ρ(z)ρ(1/z)

2i
z−1/z

for − 1< x < 1.

The orthogonality is on [−1, 1], so z is on the unit circle, so we think of z as eiθ

and x as cos θ . We assume that the function ρ(z) has no zeros in q ≤ |z| ≤ 1/q.
Define the inner product 〈 · , · 〉 by

(4-4) 〈 f, g〉 = 1
2π i

∫
|z|=1

f̆ (z)ğ(z) (z
2, 1/z2

; q)∞
ρ(z)ρ(1/z)

dz
z
.

The functions f and g in (4-4) are assumed to have the properties

(4-5) h̆(z)= h̆(1/z) and h(z)= h(z),

and are such that h̆ is analytic in q ≤ |z| ≤ 1/q. Since f and g are functions
of cos θ , the inner product has the alternate form

(4-6) 〈 f, g〉 = 1
π

∫ π

0
f (cos θ)g(cos θ)

∣∣∣∣(e2iθ
; q)∞

ρ(eiθ )

∣∣∣∣2 dθ.

This inner product is a weighted version of the inner product in [Brown et al. 1996].

Theorem 4.1. The operator

(4-7) (L f )(x)= 1
z−1/z

(
ρ(z)
ρ(qz)

z−2 f̆ (qz)− ρ(1/z)
ρ(q/z)

z2 f̆ (z/q)
)

is skew symmetric with respect to the inner product (4-4).

Proof. It is clear that

〈L f, g〉 = − 1
2π i

∫
|z|=1

f̆ (qz)ğ(1/z)(qz2, 1/z2
; q)∞

z2ρ(qz)ρ(1/z)
dz

+
1

2π i

∫
|z|=1

f̆ (z/q)ğ(1/z)z2 (qz2, 1/z2
; q)∞

ρ(z)ρ(q/z)
dz.
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In the first and second integrals, let z = q∓1ζ so the integral now is on |ζ | = q±1.
Then use the analyticity of f̆ and ğ to replace the contour by |ζ | = 1. The result
is that

〈L f, g〉 = − 1
2π i

∫
|z|=1

f̆ (z)ğ(q/z)z2 (qz2, 1/z2
; q)∞

ρ(z)ρ(q/z)
dz

+
1

2π i

∫
|z|=1

f̆ (z/q)ğ(1/z)(qz2, 1/z2
; q)∞

z2ρ(qz)ρ(1/z)
dz,

which is clearly equal to −〈 f, Lg〉. �

Our next result gives a structure relation when ρ(z)/ρ(qz) is a polynomial. Let

(4-8) ρ(z)/ρ(qz)=
m∏

j=1

(1− t j z).

It is easy to see that

L Tn(x)=
m∑

j=1

(−1) jσ j (t)
(
qnU j+n−3− q−nUn− j+1

)
,

where σ j t for 1 ≤ j ≤ m are the elementary symmetric functions of t1, t2, . . . , tm
and σ j t := 1. The polynomials {Tk} and {Uk} are the Chebyshev polynomials of
the first and second kinds, respectively. Note that U−1(x)= 0 and that U−k(x) has
degree k− 1 for k > 1. Thus L maps a polynomial of degree n to a polynomial of
degree n+m− 3. Let m ≥ 3. Then Lpn must be of the form

Lpn(x)=
n+m−3∑

j=0

cn, j p j (x).

Now (4-6) implies cn, j = 〈Lpn, p j 〉 = −〈pn, Lp j 〉 = 0 if j + m − 3 < n. This
establishes the following theorem.

Theorem 4.2. When m ≥ 3, we have the structure relation

(4-9) Lpn(x)=
n+m−3∑

j=0∧(n−m+3)

cn, j p j (x).

Al-Salam and Chihara [1972] solved the problem of classifying all systems of
orthogonal polynomials satisfying

(4-10) φ(x)p′n(x)= αn pn+1(x)+βn pn(x)+ γn pn−1(x),

for all n, n = 1, 2, . . . , where φ(x) is a polynomial of degree at most 2 and
αn, βn, γn are constants. They showed the polynomials {pn(x)} must be Jacobi,
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Hermite or Laguerre polynomials or special cases of them. Askey asked how the pn

are characterized when (4-10) is replaced by

(4-11) φ(x)p′n(x)=
s∑

j=−r

cn, j pn+ j (x)

and φ(x) has degree k > 2. Maroni [1985; 1987], and Bonan, Lubinsky and
Nevai [Bonan et al. 1987] showed that only orthogonal polynomials in this class
satisfy (1-4), with v′(x) a rational function.

One can raise similar questions about the operator L . Given a real polynomial
φ(z) with φ(0) 6= 0, we associate an operator

(4-12) (Lφ f )(x)= 1
z−1/z

(
φ(z)z−2 f̆ (qz)−φ(1/z)z2 f̆ (z/q)

)
.

There is no loss of generality in assuming φ(0) = 1. We let the degree of φ be m
and write φ in the form

(4-13) φ(x)=
m∏

j=1

(1− t j z)(1− t j/z).

We shall assume that |t j |< q for all j .

Conjecture 4.3. Under the above assumptions on φ, if {pn(x)} is a system of
orthogonal polynomials that satisfies

(4-14) (Lφ f )(x)=
s∑

j=−r

cn, j pn+ j (x) for all n,

then pn(x) is orthogonal with respect to the weight function w in (4-3), with

(4-15) ρ(z)=
m∏

j=1

(t j z; q)∞.

5. The Jacobi–Toda lattice

Adler and Van Moerbeke [1995], and Van Moerbeke [1994] studied the orthogonal
polynomials arising from applying a Toda flow to Jacobi polynomials. The weight
function is

(5-1) w(x)= C(1− x)α(1+ x)β exp
(
−
∑m

j=1 t j x j
)
,
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where C is a normalization constant that makes
∫

R
w(x)dx = 1. By writing

w(x)= e−v(x), we now compute An(x) and Bn(x) of (2-1) and (2-2). In this case

v′(x)−v′(y)
x−y

=
α

(1−x)(1−y)
+

β
(1+x)(1+y)

+

m∑
j=2

j−2∑
k=0

j t j x j−2−k yk .

We set

(5-2)

ξn :=

∫
R

pn(y)
1−y

w(y)dy, ηn :=

∫
R

pn(y)
1+y

w(y)dy

xk pn(x)=
n+k∑
j=0

Ck,n, j p j (x).

Note that Ck,n, j = 0 if k+ j < n and that ξn and ηn are the values of the functions
of the second kind at x =±1. It is straightforward to see that

(5-3)
∫

R

p2
n(y)

1−y
w(y)dy = pn(1)ξn and

∫
R

p2
n(y)

1+y
w(y)dy = pn(−1)ηn.

Therefore

(5-4)

An(x)
an
= ξn

αpn(1)
1−x

+ ηn
βpn(−1)

1+x
+

m∑
j=2

j−2∑
k=0

j t j x j−2−kCk,n,n,

Bn(x)
an
= ξn

αpn−1(1)
1−x

+ ηn
βpn−1(−1)

1+x
+

m∑
j=2

j−2∑
k=0

j t j x j−2−kCk,n,n−1.

With these values for An and Bn , the structure relation (1-5) holds.
If we wish to write (1-5) in the form (4-10), then we rationalize An and Bn . The

result is

(5-5) (1− x2)p′n(x)= an(ξnαpn(1)(1+ x)+ ηnβpn(−1)(1− x))pn−1(x)

+ an(ξnαpn−1(1)(1+ x)+ ηnβpn−1(−1)(1− x))pn(x)

+ an(1− x2)

( m∑
j=2

j−2∑
k=0

j t j x j−2−kCk,n,n

)
pn−1(x)

+ an(1− x2)

( m∑
j=2

j−2∑
k=0

j t j x j−2−kCk,n,n−1

)
pn(x).

To reduce (5-5) to the form (4-10), we repeatedly use the three-term recurrence
relation (1-2). The relevant skew symmetric operator in this case is

(5-6) L := (1− x2)
d

dx
+ x(α+β + 1)+α−β.
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It is clear that [L , X ] = 1− X2.
We next consider the generalized Jacobi weights

(5-7) w(x; c)= C
m∏

j=0

|x − c j |
δ j for x ∈ (−1, 1),

where c stands for (c0, c1, . . . , cm), c0 = 1, c1 = −1, and c j ∈ R \ [−1, 1] for
1< j ≤ m. Usually we choose δ0 = α and δ1 = β. In this case,

(5-8)

An(x)
an
=

m∑
j=0

δ j pn(c j )

x−c j

∫ 1

−1

pn(y)
y−c j

w(y)dy,

Bn(x)
an
=

m∑
j=0

δ j pn−1(c j )

x−c j

∫ 1

−1

pn(y)
y−c j

w(y)dy.

In the notation of Section 3,

v′(x)=
m∑

j=0

δ j

x−c j
=
φ(x)
ψ(x)

,(5-9)

ψ(x)=
m∏

j=0

(x − c j )= (1− x2)

m∏
j=2

(x − c j ).(5-10)

Moreover [L , X ] = ψ(X).
Finally we consider the Toda-evolved generalized Jacobi weights

(5-11) w(x; c, t)= C
m∏

j=0

|x − c j |
δ j exp

(
−
∑s

k=1 tk xk
)

for x ∈ (−1, 1),

where c and t stand for (c0, c1, . . . , cm) and (t1,2 , . . . , ts). As before c0 = 1,
c1 =−1, and c j ∈ R \ [−1, 1] for 1< j ≤ m and tk ∈ R for 1≤ k ≤ s. Set

(5-12) ck, j,n =

∫ 1

−1
xk pn(x)p j (x)w(x; c, t) dx .

In this case, we have

An(x)
an
=

m∑
j=0

δ j pn(c j )

x−c j

∫ 1

−1

pn(y)
y−c j

w(y)dy+
s∑

j=2

j−2∑
k=0

j t j x j−2−kCk,n,n,

Bn(x)
an
=

m∑
j=0

δ j pn−1(c j )

x − c j

∫ 1

−1

pn(y)
y− c j

w(y)dy+
s∑

j=2

j−2∑
k=0

j t j x j−2−kCk,n,n−1.
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