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LI MA AND BAIYU LIU

We study the convexity of the first eigenfunction of the drifting Laplacian
operator with zero Dirichlet boundary value provided a suitable assumption
to the drifting term is added. We firstly generalize some results of N. Ko-
revaar and S.-T. Yau to gain a Hessian estimate of the first eigenfunction.
As an application, we use this Hessian estimate to get a lower bound of the
difference of the first and second eigenvalues of the drifting Laplacian. At
the end we also find a lower bound when the Hessian estimate does not hold.

1. Introduction

It is a significant problem in mathematical physics and differential geometry to
study the eigenvalue estimates of self-adjoint operators in Hilbert spaces [Li and
Yau 1986; Schoen and Yau 1994; Li and Wang 2005; Ma and Zhu 2007]. Given
a smooth convex bounded domain � ⊂ Rn , we consider the Dirichlet eigenvalue
problem

(1)
{
−1h f + V f = λ f, in �
f = 0, on ∂�,

where 1h = 1−∇h ·∇ and h, V are two given smooth functions on the closure
of �. In the h = 0 case, 10 is the standard Laplacian operator in Rn such that
1u = u′′ when n = 1. See [Da Prato and Lunardi 2004] for interesting results
with the drifting Laplacian operator. There are very few results on the eigenvalue
estimates for the problem (1) — see [González and Negrin 1999] — and we only
find some related interesting results in [Kawohl 1985; Ni 2004; Setti 1993].

Throughout this paper, we shall use the following basic properties of the operator
−1h + V :

Property 1. The first and second eigenvalues λ1 and λ2 of the operator −1h + V
satisfy 0< λ1 < λ2.
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Property 2. The first and second eigenfunctions f1 and f2 are both smooth on �.
Moreover, f1 > 0.

Our overall plan is first to investigate the convexity of the first eigenfunction
of problem (1), by enhancing some results of N. Korevaar [1983]. Then we use
the convexity properties to extend results of S.-T. Yau [2003] (where h = 0) to the
problem (1).

In the case when h = 0, one of these results is that for a convex domain �
with a potential V , if the Hessian of V has a positive lower bound, then the first
eigenfunction of the operator−1+V is Log concave. In our case when the drifting
term is added, we will show that if the Hessian of

ψ := V − 1
21h+ 1

4 |∇h|2

has a positive lower bound, then the first eigenfunction of the operator −1h + V
is Log concave compared with the drifting term h. To be precise:

Theorem 1. Let � be a smooth convex bounded domain in Rn . Suppose

Hess(ψ)− cI ≥ 0

with some constant c > 0. Then we have

Hess
(h

2
+ϕ

)
−

√
c
2

I ≥ 0,

where ϕ =− log f1.

Remark. When V =0, the functionψ=−1
21h+ 1

4 |∇h|2 has a geometric meaning;
see [Ma and Liu 2008].

After applying Theorem 1, we deduce the following corollary by using Theo-
rem 1.1 in [Yau 2003].

Corollary 2. Let � be a smooth convex bounded domain in Rn . Suppose

Hess(ψ)− cI ≥ 0

with some constant c > 0. Then

(2) λ2− λ1 ≥
θ2(β)

diam(�)2
+β
√

c,

where θ(β)= arcsin
(
1/
√

1+β/(
√

2−β)
)

and 0< β <
√

2.

Even when ψ is not convex, we can find an estimate of the fundamental gap of
−1h+V by using the following gradient estimate for function u= f2/ f1, where f1

and f2 are the first and second eigenfunctions of−1h+V . Actually, we follow the
methods of S.-T. Yau [2003]. Since our results are more general than his results,
we shall give complete proofs.
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Theorem 3. Let� be a smooth convex bounded domain in Rn . Let κi (x) (1≤ i≤n)
be the eigenvalues of Hess(h/2+ϕ) at x , and let λ= λ2− λ1. For any ε > 0, let

α = 2λ(1+ ε−1)− 4 min
1≤i≤n

inf
x∈�

κi .

Assume that
min

1≤i≤n
inf
x∈�

κi (x)≤ 0.

Then we have the following estimate for the gradient of u = f2/ f1:

(3)
|∇u|
c− u

≤
√
α
(

log c− log (c− u)
)1/2

,

where c = (1+ ε) supx∈� u.

After using this gradient estimate, we can derive a lower bound for the difference
of eigenvalues λ.

Corollary 4. Let � be a smooth convex bounded domain in Rn . Suppose

min
1≤i≤n

inf
x
κi ≥−a, a ≥ 0.

Then the fundamental gap of the operator −1h + V satisfies

(4) λ2− λ1 ≥ 2(diam�)−2 exp (−a(diam�)2− 1).

We point out that the constant e−1 in [Yau 2003, (3.15)] is missing.

Remark. Because a convex domain can be approximated by strictly convex do-
mains, we shall prove the results only for strictly convex domains. In the following
we assume that � is a smooth strictly convex bounded domain in Rn .

2. Preliminary results

By Property 2, f1 is a positive function. Then u = f2/ f1 is a well-defined smooth
function in�. We firstly try to find the equation it satisfies. Recall that λ=λ2−λ1.

Lemma 5. 1hu =−λu− 2∇u ·∇ log f1.

Proof. By direct computation, we have

1u

=
1 f2

f1
−2
∇ f1 ·∇ f2

f 2
1
−

f2

f 2
1
1 f1+2

f2

f 3
1

|∇ f1|
2

=
1
f 2
1
(−λ2 f1 f2+λ1 f1 f2)+

1
f 2
1
( f1∇h ·∇ f2− f2∇h ·∇ f1)−2

∇ f1 ·∇ f2

f 2
1
+2 f2

|∇ f1|
2

f 3
1

=−λu+
∇h ·∇ f2

f1
−

f2

f 2
1
∇h ·∇ f1−2

∇ f1 ·∇ f2

f 2
1
+2 f2

|∇ f1|
2

f 3
1

.
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Now, taking into account the relations

∇u ·∇ log f1 =
∇ f1 ·∇ f2

f 2
1
− f2
|∇ f1|

2

f 3
1

, ∇h ·∇u =
∇h ·∇ f2

f1
−

f2

f 2
1
∇h ·∇ f1,

we obtain

(5) 1u =−λu+∇h ·∇u− 2∇u · ∇ log f1,

which proves the lemma. �

We now consider the smoothness of the function u up to the boundary. This is
a standard matter, but for the sake of completeness we include it here.

Lemma 6. Let�⊂Rn be a smooth bounded domain. Then u= f2/ f1 is smooth up
to the boundary ∂�. Moreover, it satisfies the Neumann condition on the boundary.

Proof. For all p ∈ ∂�, let us choose local coordinates {x1, x2, . . . , xn} on a suffi-
ciently small neighborhood U such that p ∈U ∩ ∂�=U ∩ {x1 = 0}.

Since

(6)
{

f1 = 0 on ∂�,
f1 > 0 in �,

by the Hopf lemma we have ∂ f1/∂x1 6= 0 on ∂�. Furthermore, f1 is smooth up
to the boundary, thus one can consider f1 as a smooth function which is defined
on U restricted to U ∩�. Using the Malgrange preparation theorem [Schoen and
Yau 1994], we have locally

f1 = g1 · x1, x ∈�∩U,

where g1 satisfies g1 6= 0 and is smooth on �∩U . Moreover, f2 is identically zero
on ∂�. Applying the Malgrange preparation theorem again, we can write locally

f2 = g2 · x1,

where g2 is also a smooth function on �∩U . It is an immediate consequence that

u =
f2

f1
=

g2

g1

must be smooth on �∩U . Therefore, u is smooth up to the boundary ∂�.
By using Equation (5), we have

2∇u · ∇ log f1 =−1u− λu+∇h ·∇u.
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Since h is smooth up to the boundary, as we have assumed, 1u, ∇h ·∇u and u are
all smooth up to the boundary and thus attain finite values on ∂�. Therefore,

(7) ∇u ·∇ log f1 =
1
f1

u1( f1)1+
1
f1

n∑
i=2

ui ( f1)i

achieves finite value on ∂� as well. Multiply both sides of Equation (7) by f1. A
simple computation shows

(8) f1(∇u ·∇ log f1)−

n∑
i=2

ui ( f1)i = u1( f1)1

From the fact that f1 = 0 on ∂� , we have ( f1)i = 0 on ∂� for i ∈ {2, 3, . . . , n}.
Thus we see that the left-hand side of (8) tends to 0 as x tends to p∈∂�. Therefore,

lim
x→p

u1( f1)1 = 0.

Nevertheless, since ( f1)1 6= 0 on ∂�, we get the important observation:

u1(p)= 0, p ∈ ∂�.

Thus we get ∂u/∂ν = 0 on ∂�, where ν is the outward normal vector to ∂�. That
is to say u satisfies the Neumann condition on the boundary ∂�. �

Let us compare (5) with (9) carefully. If h/2− log f1 is strictly convex, then
we can gain a lower bounded of λ = λ2 − λ1 by applying the following lemma,
obtained by S.-T. Yau [2003].

Lemma 7. Suppose the Ricci curvature of � is nonnegative and ∂� is convex. Let
the function u be a solution of the problem

(9)

{
1u =−(λ2− λ1)u+ 2W ·∇u,
∂u
∂ν
= 0,

where W is a vector field such that Wi,i ≥
√

c/2> 0. Then

λ2− λ1 ≥
θ2(β)

(diam�)2
+β
√

c,

where β is any number in (0,
√

2) and θ(β)= arcsin
(

1+
β

√
2−β

)−1/2

.

Proof. This is Theorem 1.1 in [Yau 2003]. �

To find the condition under which h/2− log f1 can be strictly convex, we will
introduce the concavity function C and after that we will introduce two maximum
principles for it.
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Definition 8. Suppose u is defined on the closure of a bounded domain �. The
function

C(y1, y3, µ)= u(y2)−µu(y3)− (1−µ)u(y1),

defined for y1, y3 ∈� such that y2 =µy3+ (1−µ)y2 ∈�, 0≤µ≤ 1, is called the
concavity function of u.

This function was introduced in [Korevaar 1983]. It is used to measure how
much a function u fails to be convex. We can see that the function u is convex if
and only if C≤ 0 for all y1, y2, y3 as above.

Notice that C is defined on a closed subset of�×�×[0, 1]. We slightly change
our notation as follows.

Definition 9. We say that the triple (y1, y2, µ) is in the interior, provided each of
y1, y2, y3 is in �. It is on the boundary if at least one of y1, y2, y3 is in ∂�.

For a function u ∈ C(�), C defined on a closed subset of �×�× [0, 1], is
continuous on its domain. Hence C does attain its maximum value somewhere. The
following lemma is a concavity maximum principle giving a sufficient condition
for the positive maximum not to be attainable at interior points.

Lemma 10. Let�⊂Rn be a smooth bounded domain. Suppose u ∈C2(�)∩C(�)
satisfies the elliptic equation

1u = b(x, u,∇u) in �,

where b satisfies ∂b/∂u ≥ 0, b jointly concave with respect to (x, u). Then if C is
anywhere positive, it attains its positive maximum on the boundary (Definition 9).

Proof. This is a special case of Theorem 1.3 in [Korevaar 1983]. �

On the other hand, another concavity maximum principle gives a sufficient con-
dition to that the positive maximum does be attained at the interior points.

Lemma 11. Let � be smooth, strictly convex and bounded. Let u be such that its
graph Su has tangent planes πx , for all x ∈ ∂�. If each of these boundary planes
lies beneath Su (contacting it only at (x, u(x)) ), then C does not attain any positive
maximum on the boundary (Definition 9).

Proof. This is Lemma 2.1 in [Korevaar 1983]. �

A combination immediately yields that if a function u satisfies both Lemma 10
and Lemma 11, then u is convex (not strictly convex). One can get more results
about the convexity of a function. (See [Korevaar 1983] for more information.)
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3. Proofs of Theorem 1 and Corollary 2

In our particular situation (5), we have to show strict convexity for h/2− log f1.
Firstly we investigate the equation it satisfies. Recall that we use the notation
ϕ =− log f1 and ψ = V −1h/2+ |∇h(x)|2/4.

Lemma 12. We have the following equation for h/2+ϕ:

(10) 1
(h

2
+ϕ

)
=

∣∣∣∇(h
2
+ϕ

)∣∣∣2−ψ + λ1.

Proof. A direct calculation shows

(11) 1ϕ =−
1 f1

f1
+
|∇ f1|

2

f 2
1
=∇h ·∇ϕ− V + λ1+ |∇ϕ|

2.

Notice that ∣∣∣∇(h
2
+ϕ

)∣∣∣2 = |∇h|2

4
+ |∇ϕ|2+∇h ·∇ϕ

and thus

(12) |∇ϕ|2+∇h ·∇ϕ =
∣∣∣∇(h

2
+ϕ

)∣∣∣2− |∇h|2

4
.

Substituting (12) into (11), we conclude

1
(h

2
+ϕ

)
=
1h
2
− V + λ1+

∣∣∣∇(h
2
+ϕ

)∣∣∣2− |∇h|2

4
,

which implies the conclusion. �

Remark. Though we can try to apply Lemma 10 and Lemma 11 to the function
h/2+ϕ, we can only get convexity (not strict convexity) of it. However, we need
the strict convexity. Let

9
(

x,∇
(h

2
+ϕ

))
=

∣∣∣∇(h
2
+ϕ

)∣∣∣2−ψ(x)+ λ1.

Equation (10) becomes

1
(h

2
+ϕ

)
=9

(
x,∇

(h
2
+ϕ

))
.

Compared with Lemma 10, 9(x,∇(h/2+ϕ)) does not depend on h/2+ϕ itself.
Luckily, in this case we can obtain strict convexity, provided 9(x,∇(h/2+ ϕ))
is strictly convex with respect to x . We derive the following lemma to make this
precise.

Lemma 13. Let � ⊂ Rn be a smooth strictly convex bounded domain. Let u ∈
C2(�)∩C(�) satisfy

(13) 1u = |∇u|2−8(x) for all x ∈�,



350 LI MA AND BAIYU LIU

where 8 is a smooth function in �. Let ξ(x)= u(x)− 1
2
√

c/2
∑n

i=1 x2
i , where c is

a nonnegative constant. Assume that

(A1) for all x ∈∂�, the tangent plane πx at x lies beneath the graph Sξ , contacting
it only at (x, ξ(x)), and

(A2) for all x ∈� we have Hessx(8)− cI ≥ 0.

Then
Hessx u−

√
c
2

I ≥ 0 for all x ∈�.

Proof. We can see that the conclusion equals to that the function ξ is convex. We
will show this by applying Lemma 10 and Lemma 11 to function ξ .

By direct computation, we have

|∇u|2 = |∇ξ |2+ c
2

n∑
i=1

x2
i + 2

√
c
2
∇ξ · x and 1u =1ξ +

√
c
2

n.

From these two equations and (13), we obtain

1ξ = |∇ξ |2+ 2
√

c
2
∇ξ · x −

(
8(x)−

c
2

n∑
i=1

x2
i

)
−

√
c
2

n = B(x,∇ξ).(14)

Since B does not depend on ξ itself, ∂B/∂ξ = 0. All we have to check is
Hessx B ≥ 0. A direct computation shows that

∂B
∂xi
= 2

√
c
2
ξi −

(
∂8

∂xi
− cxi

)
and

∂2 B
∂x j∂xi

=−

(
∂28

∂x j∂xi
− cδi j

)
,

which implies Hessx B = −(Hessx(8)− cI ). Using our assumption Hessx(8)−

cI ≥ 0, we conclude that B is concave with respect to x .
In view of Lemma 10, we know that if the concavity function C of ξ is anywhere

positive, it attains its positive maximum on the boundary (Definition 9). On the
other hand, Lemma 11 tells us that C does not attain any positive maximum on the
boundary (Definition 9). So the concavity function C of ξ is nonpositive, which
implies that ξ is convex. �

Remark. Noticing that h/2 − log f1 has no definition on ∂�, we only can use
Lemma 13 on a subset of �. Fortunately, if we can show that h/2 − log f1 is
uniformly and strictly convex on any subset of �, then it is strictly convex on �.
In order to show this we have to find a positive constant b such that

h
2
− log f1− b

n∑
i=1

xi

satisfies assumption (A1) in Lemma 13 near the boundary ∂�. More generally, we
will show it holds for a wide class of smooth transformations:
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Theorem 14. Let � be a smooth bounded strictly convex domain in Rn . Let u ∈
C2(�) satisfy

(15) u = 0 on ∂�, u > 0 in �, Du · ν > 0 on ∂�,

where ν is the interior normal to ∂�. Let a transformation function F be

F(x, t)= g(x)+ f (t), x ∈�, t ∈ R+.

Assume g ∈ C2(�) and assume f (t) ∈ C2(R+) satisfies

(16) f ′ < 0, lim
t→0+

f ′ =−∞, f ′′ > 0, lim
t→0+

f ′

f ′′
= 0, lim

t→0+

f
f ′
= 0.

Then, for δ > 0 small enough, the function w(x) = F(x, u(x)) is such that πx lies
beneath Sw (contacting only at (x, w(x))), for all x ∈ ∂�δ, where

�δ := {x ∈� | d(x, ∂�) > δ}.

Remark. This theorem is a generalization of a result in [Korevaar 1983], which
deals with the case of a homogeneous transformation function F . However, in
studying the convexity of the first eigenfunction of problem (1), we have to deal
with nonhomogeneous F .

Proof. The conclusion equals to that if δ is small enough, then

Aδx := {y ∈�δ | Sw(y) lies beneath πx(y) or Sw(y)= πx(y)}

is an empty set, for all x ∈ ∂�δ. We will prove this by the following two facts.
Fact 1 says when x is near to ∂�, Aδx is also near ∂�. While Fact 2 tells us that we
do find a narrow strip between ∂� and Aδx , no matter how small δ is. Obviously,
these two facts are totally incompatible, unless Aδx is empty.

Fact 1. Given ε > 0, the exists δ0 > 0 such that Aδx ∩�ε = ∅ for all 0 < δ < δ0

and all x ∈ ∂�δ.

Proof. We show this by comparing the height of graph Sw with the height of the
tangent plane πx directly.

Let y = (y1, y2, . . . , yn) ∈ � and let x = (x1, x2, . . . , xn) ∈ ∂�δ. Then the
coordinate of the graph of function w(y)= F(y, u(y))= g(y)+ f (u(y)) is

Sw(y)=
(
y1, y2, . . . , yn, Sn+1

w (y)
)
,

where Sn+1
w (y)= g(y)+ f (u(y)). The coordinate of the tangent plane at x is

πx(y)=
(
y1, y2, . . . , yn, π

n+1
x (y)

)
.

One of the normal directions of πx is

µ=
(
Dx F(x, u(x)),−1

)
=
(
Dx g+ f ′(u(x))Dx u(x),−1

)
.
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From the definition of a normal vector, we know

0=
(
y− x, πn+1

x (y)− Sn+1
w (x)

)
·µ,

which implies

πn+1
x (y)= (y− x) ·

(
Dx g+ f ′(u(x))Dx u(x)

)
+ Sn+1

w (x).
Hence,

Sn+1
w (y)−πn+1

x (y)

= Sn+1
w (y)− (y− x) ·

(
Dx g+ f ′(u(x))Dx u(x)

)
− Sn+1

w (x)

= g(y)+ f (u(y))− g(x)− f (u(x))− (y− x) ·Dx g− f ′(u(x))(y− x) ·Dx u(x)

= f ′(u(x))
(

Q(x, y)
f ′(u(x))

−
f (u(x))
f ′(u(x))

− (y− x) ·Dx u(x)
)
,

where
Q(x, y) := g(y)+ f (u(y))− g(x)− (y− x) · Dx g.

Notice that Q(x, y) is bounded on �×�ε, since g ∈C1(�), f ∈C2(R+) and � is
bounded by assumption. That is to say, we can choose a positive constant C1 > 0
such that

(17) |Q(x, y)|< C1 for all (x, y) ∈�×�ε.

Extending the normal vector field ν smoothly in a neighborhood of ∂�, we can
talk about normal directions in the entire neighborhood. Since ∂� is a level set
of u by (15), Du(x) is a positive multiple of the interior normal ν(x), for x ∈ ∂�.
So when δ is small enough, Du(x) is close to ν(x) for x ∈ ∂�δ. Hence, we can
choose δ1 > 0 small enough and a positive constant C2 such that

(18) (y− x) · Du(x) > C2 > 0 for all y ∈�ε and x ∈�\�δ1 .

We have used the strict convexity of � and the compactness of ∂� to gain esti-
mate (18).

From (17) and the assumptions limt→0+ f ′ = −∞ and limt→0+ f/ f ′ = 0 in
(16), we can choose a positive δ2 < δ1 such that

(19)
∣∣∣∣ f (u(x))

f ′(u(x))

∣∣∣∣< 1
4C2 and

∣∣∣∣ Q(x, y)
f ′(u(x))

∣∣∣∣< 1
4C2 for all y ∈�ε and x ∈�\�δ2 .

From (18) (19) and the assumption f ′ < 0, we have

Sn+1
w (y)−πn+1

x (y) >−
C1

2
f ′(u(x)) > 0 for all y ∈�ε for all x ∈�\�δ2,

which implies Aδx ∩�ε =∅, for all x ∈ ∂�δ, 0< δ < δ2. �

We now show that w is convex in a boundary strip about ∂�.
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Fact 2. There exists ε > 0 such that Hess(w(x)) > 0 for all x ∈�\�ε.

Proof. To show this, we study the terms comprising

Hess(w)= Hess(g)+ f ′′(u)(Dx u)(Dx u)t + f ′(u)Hess(u).

As in the proof of Fact 1, we extend the normal vector field ν(x) smoothly into a
strip about ∂� and then we can continue to talk about tangential directions (ν(x) ·
η = 0) and nontangential ones.

Let η(x) = (η1(x), η2(x), . . . , ηn(x)) be a vector at point x . The conclusion
equals to η(x)Hess(w(x))ηt(x) > 0, for all η(x) 6= 0, for all x ∈�\�ε. Actually,
we only have to show this for a set of orthonormal basis. When ε is sufficiently
small, we can choose a set of smooth vector field {e1(x), e2(x), . . . , en(x)}, such
that {e1(x), e2(x), . . . , en(x)} is an orthonormal basis at x ∈�\�ε, e1(x) is close
to ν(x) and each ei (x) (i 6= 1) is close to some tangential direction. Moreover,
since the boundary ∂� is compact and Du(x) is a positive multiple of the interior
normal ν when x ∈ ∂�, we can assume that for any 1

2 > a > 0 there exists ε1 > 0
such that

(20)

|ei (x) · Du(x)|< a for all x ∈�\�ε1 and i 6= 1,

e1(x) · Du(x) > 1− a for all x ∈�\�ε1 .

For η = e1, which is close to the normal direction, we have

(21) ηHess(w)ηt
= ηHess(g)ηt

+ f ′′(u)η(Dx u)(Dx u)tηt
+ f ′(u)ηHess(u)ηt

= f ′′(u)
(
P(x)+ η(Dx u)(Dx u)tηt),

where

P(x) :=
ηHess(g)ηt

f ′′(u)
+

f ′(u)
f ′′(u)

ηHess(u)ηt .

From the assumptions f ′′ > 0, limt→0+ f ′ =−∞ and limt→0+ f ′/ f ′′ = 0 in (16),
we have

(22) lim
t→0+

f ′′(t)=+∞.

By the continuity of ui j and g on �, combined with (22) and the assumption that
limt→0+ f ′/ f ′′ = 0, there exists a positive ε2 < ε1 such that

|P(x)|< 1
2(1− a)2 for all x ∈�\�ε2 .

Therefore, using (20) and assumption that f ′′ > 0, we have

ηHess(w)ηt > f ′′(u)(− 1
2(1− a)2+ (1− a)2) > 0 for all x ∈�\�ε2 .
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As to η = ei (i 6= 1), which is close to the tangential direction,

(23) ηHess(w)ηt
= ηHess(g)ηt

+ f ′′(u)η(Dx u)(Dx u)tηt
+ f ′(u)ηHess(u)ηt

≥ ηHess(g)ηt
+ f ′(u)ηHess(u)ηt .

We have used the positivity of f ′′ and positive semidefiniteness of the matrix
(Dx u)(Dx u)t to gain (23).

If x ∈ ∂�, the matrix Hess u(x) is negative definite in all tangential directions,
that is, there exists a positive constant k > 0 such that ηHess(u)η <−k|η|2 =−k
for any tangential direction η. From the compactness of ∂� and the assumption
u ∈ C2(�), there exists a positive ε3 < ε2 such that

(24) η(x)Hess u(x)ηt(x) <−k, for all x ∈�\�ε3.

From the continuity of gi j on � and the assumption that lim t→0+ f ′ = −∞, we
can choose a positive ε4 < ε3 such that

(25)
ηHess(g)ηt

− f ′(u)
>−

1
2

k > η(x)Hess u(x)ηt(x), for all x ∈�\�ε4.

Combining (23) (24) and (25), we have for all x ∈�\�ε4

ηHess(w)ηt
≥− f ′(u)

(
ηHess(g)ηt

− f ′(u)
− ηHess(u)ηt

)
>− 1

2 k f ′(u) > 0.

In conclusion, if ε < ε4, then ηt(x)Hess(w)(x)η(x) > 0 for all x ∈ �\�ε4 and
for all η(x) 6= 0, which implies Fact 2. �

Theorem 14 now follows from Fact 1 and Fact 2 together: Pick ε > 0 such that
Hess(w)(x) > 0 for x ∈ �\�ε. For this ε > 0, pick δ0 so that for 0 < δ < δ0

and x ∈ ∂�δ, we have Ax ∩�ε = ∅. Because Hess(w)(x) > 0 in �\�ε, we also
have Ax ∩ (�δ\�ε)=∅. Hence for 0< δ < δ0, Ax =∅, which implies for small
enough δ, tangent planes πx lies beneath Sw for all x ∈ ∂�δ. �

Proof of Theorem 1. Recall that in Lemma 12 we have shown

1
(h

2
+ϕ

)
=

∣∣∣∇(h
2
+ϕ

)∣∣∣2−ψ(x)+ λ1,

where ϕ =− log f1 and ψ = V − 1
21h+ 1

4 |∇h|2.
First we will show for small enough δ >0, ξ = 1

2 h+ϕ− 1
2
√

c/2
∑n

i=1 xi satisfies
assumption (A1) in Lemma 13: for all x ∈ ∂�, πx lies beneath Sξ , contacting it
only at (x, ξ(x)).

Choosing the transformation function F(x, t)= g(x)+ f (t), where

g(x)= h(x)
2
−

1
2

√
c
2

n∑
i=1

xi and f (t)=−log t,
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we can write

ξ =
h
2
+ϕ−

1
2

√
c
2

n∑
i=1

xi = F(x, f1(x)).

Thus, using Theorem 14 we see that πx lies beneath Sξ for all x ∈ ∂�δ with δ > 0
small enough.

Let 8 = ψ − λ1. Since Hessx ψ − cI ≥ 0 for all x ∈ �, we have Hessx 8 =

Hessx ψ ≥ cI for all x ∈ �. Therefore, for δ > 0 small enough, h/2+ ϕ satisfies
Lemma 13 in the domain �δ. Since � is strictly convex, we can still assume �δ
is strictly convex. By using Lemma 13 on �δ, we get

(26) Hessx

(h
2
+ϕ

)
−

√
c
2

I ≥ 0 in �δ.

Since δ can be any sufficiently small positive constant, (26) is also valid in �. �

Proof of Corollary 2. Recall from Equation (5) that

1u =−λu+ 2∇u ·∇
(h

2
− log f1

)
.

We already know that h/2+ ϕ is strictly convex and that u satisfies the Neumann
boundary condition ∂u/∂ν = 0 (Lemma 6). Combining Lemma 7 and Theorem 1,
we obtain the estimate (2). �

4. Proofs of Theorem 3 and Corollary 4

Equation (5) will satisfies the hypothesis of Lemma 7 if

Hessx

(h
2
+ϕ

)
−

√
c
2

I ≥ 0,

otherwise we can still obtain the following estimate.

Lemma 15. Let�⊂Rn be a smooth and bounded domain. Let τi (x) (i=1, . . . , n)
be the eigenvalues of Hessx ϕ at the point x and let κi (x) (i = 1, . . . , n) be the
eigenvalues of Hessx(h/2+ϕ) at x. Then

min
1≤i≤n

inf
x∈�

τi (x) >−∞;

equivalently, there exists a constant a ≥ 0 such that

min
1≤i≤n

inf
x∈�

τi (x)≥−a.

Since h is smooth, the same holds for min1≤i≤n infx∈� κi (x).

Proof. The conclusion is equivalent to the existence of a constant a ≥ 0 such that
Hessϕ(x)+ aI ≥ 0 for all x ∈�. We find the constant by computing the Hessian
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of ϕ directly. Since ϕ is smooth in �, we only need to study what happens when
x is near to the boundary.

For any p ∈ ∂�, we choose the same local coordinates {x1, x2, . . . , xn} and the
neighborhood U as in Lemma 6. Similar as in there we can write locally f1= x1 ·g.
Recall that g is a smooth function and g 6= 0 in �∩U .

Then locally we have

ϕi =−
( f1)i

f1
=−

(x1g)i
x1g

.

When i = 1, we have

ϕ11 =−
( f1)11

f1
+
( f1)

2
1

f 2
1
,

from which we can see that

(27) f 2
1 ϕ11 =−( f1)11 f1+ ( f1)

2
1.

Since f1 is smooth up to the boundary and f1 = 0 on ∂�. The Hopf lemma shows
that ∂ f1/∂x1 6= 0 on ∂�. So the right-hand side of (27) tends to a finite positive
number as x→ p ∈ ∂�. Therefore

(28) lim
x→p

ϕ11 =+∞.

For 2≤ i ≤ n, we have
ϕi =−

gi

g
.

For 1≤ j ≤ n, we have

(29) ϕi j =−
gi j

g
+

gi g j

g2 ,

which tends to finite value as x→ p∈ ∂�. In conclusion, ϕ11→+∞ as x→ p and
ϕi j (i 6=1 or j 6=1) tend to finite numbers as x→ p. So for any small neighborhood
V of p, we can choose a sufficiently large a such that

Hessϕ(x)+ aI ≥ 0 for all x ∈ V .

Since � is a bounded domain and ϕ is smooth in �, there exists an uniform num-
ber a such that

Hessϕ(x)+ aI ≥ 0 for all x ∈�.

Thus, we obtain the conclusion. �

In view of Lemma 15, we will assume

min
1≤i≤n

inf
x
κi ≥−a,

where a is a nonnegative constant.
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Proof of Theorem 3. Following [Yau 2003], we consider the function

F(x)=
|∇u(x)|2

(c− u(x))2
+α log (c− u(x)),

for c> supx u and α>0 as selected below. Actually, we try to find those constants α
and c such that |∇u| = 0 at the maximum points of F .

By some computations, we have

Fi = 2
n∑

j=1

u j u j i (c− u)−2
+ 2|∇u|2(c− u)−3ui −α(c− u)−1ui ,(30)

1F = 2|D2u|2(c− u)−2
+ 2(∇u ·∇1u)(c− u)−2

+ 6(c− u)−4
|∇u|4(31)

+ 2(c− u)−3(1u)|∇u|2+ 8
n∑

i, j=1

u j u j i ui (c− u)−3

−α|∇u|2(c− u)−2
−α(c− u)−11u.

Case 1. Suppose F attains its maximum on ∂� at a point x0. We can choose an
orthonormal frame {l1, l2, . . . , ln} around x0 such that ln is perpendicular to ∂� and
pointing outward. We also use the notation ∂/∂xn to denote the restriction of ln

on ∂�.
A computation shows that, at the maximum point x0 ∈ ∂�,

0≤
∂F
∂xn

(x0)= 2
n−1∑
j=1

u j u jn(c− u)−2
+ 2|∇u|2(c− u)−3un −α(c− u)−1un

= 2
n−1∑
j=1

u j u jn(c− u)−2.

We have used that (∂u/∂xn)(x)= 0 for x ∈ ∂� (see Lemma 6). From the definition
of the second fundamental form of a hypersurface in Rn , we have

u jn =−

n−1∑
k=1

hjkuk for all 1≤ j ≤ n− 1,

where hjk is the second fundamental form of ∂�. Therefore we obtain

0≤
∂F
∂xn
=−2

n−1∑
j,k=1

u j hjkuk(c− u)−2
≤ 0.

We have used the positivity of hjk , arising from the assumption that ∂� is strictly
convex. Therefore, |∇u| = 0 at x0.
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Thus for all x ∈�, we have

(32) F(x)≤ F(x0)= α log (c− u(x0))≤ α log c.

Case 2. Suppose that F attains its maximum in an interior point x0 of � and that
∇u(x0)= 0. In this case, we still can get (32).

Case 3. Suppose that F attains its maximum in an interior point x0 of � and that
∇u(x0) 6= 0.

In this case, we can choose a coordinate so that

(33) u1(x0) 6= 0, ui (x0)= 0, 2≤ i ≤ n.

Using (33) we can rewrite (30) as

Fi (x0)= 2u1u1i (c− u)−2
+ 2u2

1(c− u)−3ui −α(c− u)−1ui .

Since F1(x0)= 0, we get

(34) u11(c− u)−1
+ u2

1(c− u)−2
=
α
2
,

from which we can see that

u11 =

(
α
2
− u2

1(c− u)−2
)
(c− u).

Thus, we have

2|D2u|2(c− u)−2
≥ 2u11(c− u)−2

=
α2

2
− 2αu2

1(c− u)−2
+ 2u4

1(c− u)−4.

We can estimate the second term in the right-hand side of Equation (31) as follows:

2∇u ·∇(1u)(c− u)−2
= 2∇u ·∇(−λu+ 2∇

(h
2
+ϕ

)
·∇u)(c− u)−2

=−2λ|∇u|2(c− u)−2
+ 4ui

(h
2
+ϕ

)
j i

u j (c− u)−2

+ 4ui

(h
2
+ϕ

)
i
ui j (c− u)−2

≥ −2λ|∇u|2(c− u)−2
+ 4ui

(h
2
+ϕ

)
i
ui j (c− u)−2(35)

+ 4|∇u|2 min
i

inf
x
κi (x)(c− u)−2.

By computation, we obtain

(36) 2|∇u|2(1u)(c− u)−3

= 2|∇u|2
(
− λu+ 2∇

(h
2
+ϕ

)
·∇u

)
(c− u)−3

=−2λu|∇u|2(c− u)−3
+ 4|∇u|2

(
∇

(h
2
+ϕ

)
· ∇u

)
(c− u)−3.
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At the maximum point x0, we have

(37) 0=∇F ·∇
(h

2
+ϕ

)
= 2u j u j i

(h
2
+ϕ

)
i
(c−u)−2

+2|∇u|2(c−u)−3
∇

(h
2
+ϕ

)
·∇u

−α(c−u)−1
∇

(h
2
+ϕ

)
·∇u.

We substitute (35), (36) and (37) into (31) and obtain

1F(x0)≥
α2

2
− 2αu2

1(c− u)−2
+ 2u4

1(c− u)−4

− 2λ|∇u|2(c− u)−2
+ 4|∇u|2 mini infx κi (c− u)−2

+ 6u4
1(c− u)−4

− 2λu|∇u|2(c− u)−3

+ 8u j u j i ui (c− u)−3
−α|∇u|2(c− u)−2

+α(c− u)−1λu.

By using (34), we can compute that

8|∇u|4(c− u)−4
+ 8u j u j i ui (c− u)−3

= 8u4
1(c− u)−4

+ 8u1u11u1(c− u)−3

= 8(c− u)−2u2
1
(
(c− u)−2u2

1+ u11u−1
1

)
= 4α(c− u)−2

|∇u|2.
Therefore,

0≥1F(x0)

≥
1
2α

2
+α(c− u)−2

|∇u|2− 2λ|∇u|2(c− u)−2

− 2λu|∇u|2(c− u)−3
+αλ(c− u)−1u+ 4|∇u|2 mini infx κi (x)(c− u)−2

≥
1
2α

2
+ (c− u)−2

|∇u|2
(
α− 2λ− 2λu(c− u)−1

+ 4 mini infx κi (x)
)

≥
1
2α

2
+ (c− u)−2

|∇u|2
(
α− 2λ− 2λ supx u(c− supx u)−1

+ 4 mini infx κi (x)
)
.

Choosing c = (1+ ε) supx u and α = 2λ(1+ ε−1)− 4 mini infx∈� κi (x), we get
1F(x0) > 0, which is a contradiction. Therefore, ∇u(x0) = 0, which means (32)
is valid in this case as well.

Our argument above shows that (32) is valid in all cases. A simple computation
shows (3). �

At last we shall derive our lower bound

2(diam�)−2 exp (−a(diam�)2− 1)≤ λ2− λ1.

Proof of Corollary 4. From (3) we have, for all ε > 0,

(38)
∣∣∣∣∇√log c

c−u

∣∣∣∣≤ 1
2

√
α,

where c = (1+ ε) supx u and α = 2λ(1+ ε−1)− 4 mini infx∈�(h/2+ϕ)i i .
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Let q1, q2 be two points of � such that u(q1) = supx u, u(q2) = 0 and γ is
the line segment joining them. Since � is convex by assumption, γ lies in �. By
integrating both sides of inequality (38) along γ from q1 to q2, we have∫ 0

supx u

∣∣∣∣d
(

log(c/(c− u))
)1/2

du
du
∣∣∣∣≤ ∫ q2

q1

1
2

√
α ds ≤ 1

2

√
α (diam�).

By elementary calculus, we have(
log

c
c− supx u

)1/2
≤

1
2

√
α (diam�),

which implies

(39) α ≥ 4 (diam�)−2 log (1+ 1/ε).

Putting α= 2λ(1+ε−1)−4 mini infx∈� κi (x) into (39), and defining ε′ = 1+1/ε,
we obtain

λ2− λ1 ≥ ε
′−1(2(diam�)−2 log ε′+ 2 mini infx κi (x)

)
= 2(diam�)−2ε′−1 log

(
ε′ exp((diam�)2 mini infx κi (x))

)
.

Since ε can be any positive number and the right-hand side of the preceding equa-
tion is at most 2(diam�)−2 exp(mini infx κi (x)(diam�)2− 1), we obtain

λ2− λ1 ≥ 2(diam�)−2 exp
(
mini infx κi (x)(diam�)2− 1

)
.

Therefore, if mini infx κi (x)≥−a, then

λ2− λ1 ≥ 2(diam�)−2 exp (−a(diam�)2− 1). �
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