Pacific Journal of Mathematics

A REMARK ON INSTABILITY OF HARMONIC MAPS BETWEEN SPHERES

TÔRU NAKAJIMA

Volume 240 No. 2

April 2009

A REMARK ON INSTABILITY OF HARMONIC MAPS BETWEEN SPHERES

Tôru Nakajima

We give a new characterization of the identity map between spheres.

1. Introduction

Let *k* be an integer greater that two, and \mathbb{S}^k be a *k*-dimensional unit Euclidean sphere. For a smooth map $u : \mathbb{S}^k \to \mathbb{S}^k$, the energy density e(u) is the function $e(u) : \mathbb{S}^k \to \mathbb{R}$ defined by $e(u)(x) = |du(x)|^2$ ($x \in \mathbb{S}^k$), where |du(x)| is the Hilbert–Schmidt norm of a linear map $du(x) \in T_x^* \mathbb{S}^k \otimes T_{u(x)} \mathbb{S}^k$. The Dirichlet energy $\mathbf{E}(u)$ of a smooth map $u : \mathbb{S}^k \to \mathbb{S}^k$ is defined by

$$\mathbf{E}(u) = \frac{1}{2} \int_{\mathbb{S}^k} e(u) \, d\mu,$$

where μ is the canonical measure induced by the Riemannian metric of \mathbb{S}^k . We often regard *u* as a map from \mathbb{S}^k to (k+1)-dimensional Euclidean space \mathbb{R}^{k+1} and denote

$$u(x) = (u_1(x), \ldots, u_{k+1}(x)).$$

A map u is called a harmonic map if it is a critical point of the functional **E**. They necessarily satisfy the Euler–Lagrange equation

$$\Delta_{\mathbb{S}^k} u + |du|^2 u = 0 \quad \text{in } \mathbb{S}^k,$$

where $\Delta_{\mathbb{S}^k}$ is the Laplacian on \mathbb{S}^k . All harmonic maps are assumed to be smooth in this paper.

Let $u^{-1}T\mathbb{S}^k$ be the pull-back bundle of $T\mathbb{S}^k$ by u and $C^{\infty}(u^{-1}T\mathbb{S}^k)$ be the vector space of smooth sections of $u^{-1}T\mathbb{S}^k$. For $\phi \in C^{\infty}(u^{-1}T\mathbb{S}^k)$, we consider a one-parameter variation

$$u_t \in C^{\infty}((-\epsilon, \epsilon), C^{\infty}(\mathbb{S}^k, \mathbb{S}^k)), \quad \epsilon > 0,$$

This work was partially supported by Grant-in-Aid for Young Scientists (B), No. 18740088.

MSC2000: primary 53C43, 58E20; secondary 35J45, 35J50. *Keywords:* harmonic maps, instability, spheres.

such that $u_0 = u$ and

$$\left. \frac{\partial u_t}{\partial t}(x) \right|_{t=0} = \phi(x).$$

The second variation $\delta_u^2 \mathbf{E}$ of \mathbf{E} at u is a functional on $C^{\infty}(u^{-1}T\mathbb{S}^k)$ defined by

$$\delta^2 \mathbf{E}_u(\phi) = \frac{d^2}{dt^2} \mathbf{E}(u_t) \bigg|_{t=0}$$

and has an expression

$$\delta_u^2 \mathbf{E}(\phi) = \int_{\mathbb{S}^k} \{ |\nabla' \phi|^2 - \langle \operatorname{Tr} R(\phi, du) du, \phi \rangle \} d\mu.$$

where ∇' is the induced connection on $C^{\infty}(u^{-1}T\mathbb{S}^k)$, *R* is a Riemannian curvature of \mathbb{S}^k and Tr is a trace. We define the number $\lambda_1(u)$ by

$$\lambda_1(u) = \inf_{\substack{\phi \in C^{\infty}(u^{-1}T \mathbb{S}^k) \\ \phi \neq 0}} \frac{\delta_u^2 \mathbf{E}(\phi)}{\|\phi\|_{L^2(\mathbb{S}^k)}^2}$$

where

$$\|\phi\|_{L^{2}(\mathbb{S}^{k})} = \left(\int_{\mathbb{S}^{k}} |\phi|^{2} d\mu\right)^{1/2}$$

By the result of Xin [1980], if *u* is not a constant harmonic map, then $\lambda_1(u) \le 2-k$. (On instability of harmonic maps, see also [Eells and Lemaire 1983], [Urakawa 1993] and [Xin 1996].) The purpose of this paper is to prove the following.

Theorem 1.1. Suppose $k \ge 3$ and $u : \mathbb{S}^k \to \mathbb{S}^k$ is a harmonic map. If $\lambda_1(u) = 2-k$, then there exists a $(k+1) \times (k+1)$ orthogonal matrix R satisfying

$$u(x) = Rx, \quad x \in \mathbb{S}^k.$$

Remark. For any nonconstant harmonic map $u : \mathbb{S}^2 \to \mathbb{S}^2$, the number $\lambda_1(u)$ equals 0, since they minimize the Dirichlet energy in their homotopy classes and the Dirichlet energy is conformal invariant in this case.

2. Proof of Theorem 1.1

We need the following lemma from [Ramanathan 1986]. (See also [Nakajima 2003].)

Theorem 2.1. Let k be an integer greater than two. Suppose that $u \in C^{\infty}(\mathbb{S}^k, \mathbb{S}^k)$ is a harmonic map. If u is a conformal diffeomorphism, then u is an isometry. That is, there exits a $(k + 1) \times (k + 1)$ orthogonal matrix R satisfying

$$u(x) = Rx, \quad x \in \mathbb{S}^k.$$

The next lemma is proved in [Xin 1996], but we include the proof here for the convenience of the reader.

Lemma 2.1. Let $u : \mathbb{S}^k \to \mathbb{S}^k$ be a harmonic map. For any smooth function $f : \mathbb{S}^k \to \mathbb{R}$, we have

$$\int_{\mathbb{S}^k} |\nabla f|^2 \, d\mu - \frac{k-2}{k} \int_{\mathbb{S}^k} |du|^2 |f(x)|^2 \, d\mu \ge \lambda_1(u) \int_{\mathbb{S}^k} |f|^2 \, d\mu$$

Proof. Let $\{\mathbf{e}_i\}_{i=1}^{k+1}$ be a canonical basis of \mathbb{R}^{k+1} . For any $1 \le i \le k+1$ we define $\mathbf{e}_i^\top \in C^\infty(u^{-1}T\mathbb{S}^k)$ by

$$\mathbf{e}_i^{\top}(x) = \mathbf{e}_i(x) - \langle \mathbf{e}_i, u(x) \rangle u(x),$$

where \langle , \rangle is a Riemannian metric of \mathbb{R}^{k+1} . For $f \in C^{\infty}(\mathbb{S}^k)$, we put

$$\phi_i(x) = f(x)\mathbf{e}_i^\top(x).$$

By the definition of $\lambda_1(u)$, we have

(2-1)
$$\sum_{i=1}^{k+1} \delta_u^2 \mathbf{E}(\phi_i) \ge \lambda_1(u) \sum_{i=1}^{k+1} \|\phi_i\|_{L^2(\mathbb{S}^k)}^2$$

Let $\{\sigma_{\alpha}\}_{\alpha=1}^{k}$ be an orthogonal basis of $T_{x}\mathbb{S}^{k}$. By a direct calculation, we have

$$\nabla_{\sigma_{\alpha}}' \mathbf{e}_{i}^{\top} = u_{i} du(\sigma_{\alpha}).$$

Therefore we have

$$\nabla_{\sigma_{\alpha}}' \phi_i = (\sigma_{\alpha} f) \mathbf{e}_i^\top + f u_i du(\sigma_{\alpha}).$$

Since $\sum_{i=1}^{k+1} \mathbf{e}_i^\top u_i = 0$, we have

$$\sum_{i=1}^{k+1} \sum_{\alpha=1}^{k} |\nabla_{\sigma_{\alpha}}' \phi_{i}|^{2} = \sum_{i=1}^{k+1} \sum_{\alpha=1}^{k} \{ |(\sigma_{\alpha} f) \mathbf{e}_{i}^{\top}|^{2} + |f u_{i} du(\sigma_{\alpha})|^{2} \} = k |\nabla f|^{2} + |du|^{2} |f|^{2}.$$

On the other hand

$$\sum_{i=1}^{k+1} |\phi_i|^2 = |f|^2 \sum_{i=1}^{k+1} (1-u_i^2) = k|f|^2,$$

and we have

$$\sum_{i=1}^{k+1} \langle \operatorname{Tr} R(\phi_i, du) du, \phi_i \rangle = \sum_{i=1}^{k+1} \sum_{\alpha=1}^k \left(|du(\sigma_\alpha)|^2 |\phi_i|^2 - \langle du(\sigma_\alpha), \phi_i \rangle^2 \right)$$
$$= k |du|^2 |f|^2 - \sum_{i=1}^{k+1} \sum_{\alpha=1}^k \langle du(\sigma_\alpha), f \mathbf{e}_i^\top \rangle^2$$
$$= (k-1) |du|^2 |f|^2.$$

Thus the left hand side of (2-1) is

$$k \int_{\mathbb{S}^k} |\nabla f|^2 \, d\mu - (k-2) \int_{\mathbb{S}^k} |du|^2 |f|^2 \, d\mu.$$

The right hand side of (2-1) is

$$k\lambda_1(u)\int_{\mathbb{S}^k}|f|^2\,d\mu$$

and we obtain the desired inequality.

Let $H^1(\mathbb{S}^k)$ be the completion of $C^{\infty}(\mathbb{S}^k)$ with respect to the norm

$$\|f\|_{H^{1}(\mathbb{S}^{k})} = \left(\int_{\mathbb{S}^{k}} |f|^{2} d\mu + \int_{\mathbb{S}^{k}} |\nabla f|^{2} d\mu\right)^{1/2}$$

We define a functional $J: H^1(\mathbb{S}^k) \to \mathbb{R}$ by

$$J(f) = \int_{\mathbb{S}^k} |\nabla f|^2 d\mu - \frac{k-2}{k} \int_{\mathbb{S}^k} |f|^2 d\mu.$$

By Lemma 2.1,

$$J(f) \ge \lambda_1(u) \|f\|_{L^2(\mathbb{S}^k)}^2 \quad \text{for any } f \in H^1(\mathbb{S}^k).$$

The next lemma was proved in [Lin and Wang 2006] and [Okayasu 1994]. See also [Nakajima 1989].

Lemma 2.2. Let $u : \mathbb{S}^k \to \mathbb{S}^k$ be a harmonic map.

$$|\nabla du|^2 \ge \frac{k}{k-1} \left| \nabla |du| \right|^2$$

Finally, we recall the Bochner formula of harmonic maps between spheres. For the proof, see [Eells and Lemaire 1983; Urakawa 1993; Xin 1996].

Lemma 2.3. Let $u : \mathbb{S}^k \to \mathbb{S}^k$ be a harmonic map. Then

$$\frac{1}{2}\Delta(|du|^2) = |\nabla du|^2 + (k-1)|du|^2 - \sum_{\alpha,\beta=1}^k (|du(\sigma_\alpha)|^2 |du(\sigma_\beta)|^2 - \langle du(\sigma_\alpha), du(\sigma_\beta) \rangle^2),$$

where $\{\sigma_{\alpha}\}_{\alpha=1}^{k}$ is an orthonormal local frame on \mathbb{S}^{k} .

Proof of Theorem 1.1. We use the method in [Nakajima 2006]. Since $\lambda_1(u) = 2-k < 0$, *u* is not a constant map. Therefore e(u) is not identically zero. For small $\epsilon > 0$, we define $e_{\epsilon}(u)$ by

$$e_{\epsilon}(u) = e(u) + \epsilon,$$

and set

$$\theta = \frac{k-2}{k-1} > 0.$$

By direct calculation, we have

(2-2)
$$\Delta(e_{\epsilon}(u)^{\theta}) = \theta(\theta - 1)e_{\epsilon}(u)^{\theta - 2}|\nabla e_{\epsilon}(u)|^{2} + \theta e_{\epsilon}(u)^{\theta - 1}\Delta e_{\epsilon}(u).$$

From Lemma 2.2 and Lemma 2.3 we have

$$(2-3) \qquad \frac{1}{2}\Delta e(u) = |\nabla du|^{2} + (k-1)|du|^{2} - |du|^{4} + \sum_{\alpha,\beta=1}^{k} \langle du(\sigma_{\alpha}), du(\sigma_{\beta}) \rangle^{2}$$
$$\geq \frac{k}{k-1} |\nabla |du||^{2} + (k-1)|du|^{2} - |du|^{4} + \sum_{\alpha=1}^{k} |du(\sigma_{\alpha})|^{4}$$
$$\geq \frac{k}{k-1} |\nabla |du||^{2} + (k-1)|du|^{2} - \frac{k-1}{k}|du|^{4}.$$

Here we used the elementary inequality

(2-4)
$$\sum_{\alpha,\beta=1}^{k} \langle du(\sigma_{\alpha}), du(\sigma_{\beta}) \rangle^{2} \ge \sum_{\alpha=1}^{k} |du(\sigma_{\alpha})|^{4} \ge \frac{1}{k} \left(\sum_{\alpha=1}^{k} |du(\sigma_{\alpha})|^{2} \right)^{2}$$

Combining (2-2) and (2-3), we have

$$\begin{split} \Delta(e_{\epsilon}(u)^{\theta}) &\geq -\frac{4(k-2)}{(k-1)^{2}} e_{\epsilon}(u)^{\theta-2} |du|^{2} |\nabla|du||^{2} \\ &+ \frac{2(k-2)}{k-1} e_{\epsilon}(u)^{\theta-1} \left(\frac{k}{k-1} |\nabla|du||^{2} + (k-1)|du|^{2} - \frac{k-1}{k} |du|^{4} \right) \\ &\geq 2\theta^{2} e_{\epsilon}(u)^{\theta-2} |du|^{2} |\nabla|du||^{2} + 2(k-2)e(u)^{\theta} - \frac{2(k-2)}{k} e_{\epsilon}(u)^{\theta} |du|^{2} \\ &= 2 \left(|\nabla(e_{\epsilon}(u)^{\theta/2})|^{2} + (k-2)e(u)^{\theta} - \frac{k-2}{k} |du|^{2} e_{\epsilon}(u)^{\theta} \right). \end{split}$$

Integrating this on \mathbb{S}^k , we obtain

$$\int_{\mathbb{S}^k} |\nabla(e_\epsilon(u)^{\theta/2})|^2 d\mu - \frac{k-2}{k} \int_{\mathbb{S}^k} |du|^2 e_\epsilon(u)^\theta d\mu \le (2-k) \int_{\mathbb{S}^k} e(u)^\theta d\mu.$$

In particular,

$$\int_{\mathbb{S}^k} |\nabla(e_\epsilon(u)^{\theta/2})|^2 d\mu \leq \frac{k-2}{k} \int_{\mathbb{S}^k} |du|^2 e_\epsilon(u)^\theta d\mu.$$

From this inequality, we have

$$\int_{\mathbb{S}^k} |\nabla(e_\epsilon(u)^{\theta/2})|^2 \, d\mu \leq C,$$

where C > 0 is a constant independent of small $\epsilon > 0$. Since $e_{\epsilon}(u)$ converges to e(u) at every point of \mathbb{S}^k , e(u) belongs to $H^1(\mathbb{S}^k)$. By Fatou's lemma, we have

$$\int_{\mathbb{S}^k} |\nabla(e(u)^{\theta/2})|^2 \, d\mu \leq \liminf_{\epsilon \searrow 0} \int_{\mathbb{S}^k} |\nabla(e_\epsilon(u)^{\theta/2})|^2 \, d\mu.$$

Thus

$$\int_{\mathbb{S}^k} |\nabla(e(u)^{\theta/2})|^2 d\mu - \frac{k-2}{k} \int_{\mathbb{S}^k} |du|^2 e(u)^\theta d\mu \le (2-k) \int_{\mathbb{S}^k} e(u)^\theta d\mu.$$

Since $\lambda_1(u) = 2-k$, this inequality must be an equality. Thus $e(u)^{\theta/2}$ is a minimizer of the functional *J*. This implies that $e(u)^{\theta/2}$ is a solution of the Euler–Lagrange equation of *J*, that is,

$$-\Delta e(u)^{\theta/2} - \frac{k-2}{k} |du|^2 e(u)^{\theta/2} = (2-k)e(u)^{\theta/2} \text{ in } \mathbb{S}^k.$$

If $e(u)^{\theta/2}$ has a zero point $p \in \mathbb{S}^k$, then for small r > 0, we have

$$\sup_{\mathbb{B}_r(p)} e(u)^{\theta/2} \le C \inf_{\mathbb{B}_r(p)} e(u)^{\theta/2} = 0$$

by the Harnack inequality, where $\mathbb{B}_r(p)$ is an open geodesic ball in \mathbb{S}^k of radius r centered at p, and C > 0 is a constant. Thus u is constant in $\mathbb{B}_r(p)$ and this implies that u is a constant map by a unique continuation theorem for harmonic maps [Sampson 1978]. This contradicts the fact that u is not a constant map, therefore $e(u)^{\theta/2}$ has no zero points. On the other hand, considering (2-4), we have

$$\begin{aligned} |du(\sigma_{\alpha})| &= |du(\sigma_{\beta})| \qquad (1 \le \alpha, \beta \le k), \\ \langle du(\sigma_{\alpha}), du(\sigma_{\beta}) \rangle &= 0 \qquad (\alpha \ne \beta). \end{aligned}$$

This implies that du(x) is a conformal isomorphism between $T_x \mathbb{S}^k$ and $T_{u(x)} \mathbb{S}^k$ for any $x \in \mathbb{S}^k$, so *u* is a covering map by the inverse function theorem. Since \mathbb{S}^k is

simply connected, *u* is a diffeomorphism of \mathbb{S}^k . Therefore *u* must be a conformal diffeomorphism of \mathbb{S}^k .

We complete the proof using Theorem 2.1.

Acknowledgment

The author thanks the referee for helpful suggestions.

References

- [Eells and Lemaire 1983] J. Eells and L. Lemaire, *Selected topics in harmonic maps*, CBMS Regional Conference Series in Mathematics **50**, Amer. Math. Soc., Providence, 1983. MR 85g:58030 Zbl 0515.58011
- [Lin and Wang 2006] F. H. Lin and C. Y. Wang, "Stable stationary harmonic maps to spheres", *Acta Math. Sin. (Engl. Ser.*) **22**:2 (2006), 319–330. MR 2006m:58022 Zbl 1121.58017
- [Nakajima 1989] H. Nakajima, "Yau's trick", *Sūgaku* **41**:3 (1989), 253–258. MR 91j:58173 Zbl 0736.53041
- [Nakajima 2003] T. Nakajima, *Stability and singularities of harmonic maps into spheres*, Tohoku Math. Publications **26**, Tohoku University Mathematical Institute, Sendai, 2003. MR 2004f:58020 Zbl 1036.53043
- [Nakajima 2006] T. Nakajima, "Singular points of harmonic maps from 4-dimensional domains into 3-spheres", *Duke Math. J.* **132**:3 (2006), 531–543. MR 2007b:58027 Zbl 1097.53044
- [Okayasu 1994] T. Okayasu, "Regularity of minimizing harmonic maps into S⁴, S⁵ and symmetric spaces", *Math. Ann.* **298**:2 (1994), 193–205. MR 94k:58036 Zbl 0788.58017
- [Ramanathan 1986] J. Ramanathan, "A remark on the energy of harmonic maps between spheres", *Rocky Mountain J. Math.* **16**:4 (1986), 783–790. MR 88e:58025 Zbl 0611.58022
- [Sampson 1978] J. H. Sampson, "Some properties and applications of harmonic mappings", Ann. Sci. École Norm. Sup. (4) **11**:2 (1978), 211–228. MR 80b:58031 Zbl 0392.31009
- [Urakawa 1993] H. Urakawa, *Calculus of variations and harmonic maps*, Translations of Mathematical Monographs **132**, American Mathematical Society, Providence, RI, 1993. MR 95c:58050 Zbl 0799.58001
- [Xin 1980] Y. L. Xin, "Some results on stable harmonic maps", *Duke Math. J.* **47**:3 (1980), 609–613. MR 81j:58041 Zbl 0513.58019
- [Xin 1996] Y. Xin, *Geometry of harmonic maps*, Progress in Nonlinear Differential Equations and their Applications, 23, Birkhäuser, Boston, 1996. MR 97h:58052 Zbl 0848.58014

Received May 8, 2008. Revised October 29, 2008.

Tôru Nakajima Department of Applied Mathematics Faculty of Engineering Shizuoka University Hamamatsu Shizuoka 432-8561 Japan

ttnakaj@ipc.shizuoka.ac.jp

369