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Let X
π
→ X ′

f
→ Y be a covering of smooth, projective complex curves such

that π is a degree 2 étale covering and f is a degree d covering, with
monodromy group Sd , branched in n + 1 points one of which is a spe-
cial point whose local monodromy has cycle type given by the partition
e = (e1, . . . , er) of d. We study such coverings whose monodromy group is
either W(Bd) or wN(W(Bd))(G1)w

−1 for some w ∈ W(Bd), where W(Bd)

is the Weyl group of type Bd , G1 is the subgroup of W(Bd) generated by
reflections with respect to the long roots εi − ε j and N(W(Bd))(G1) is the
normalizer of G1. We prove that in both cases the corresponding Hurwitz
spaces are not connected and hence are not irreducible. In fact, we show
that if n+ |e| ≥ 2d, where |e| =

∑r
i=1(ei − 1), they have 22g − 1 connected

components.

Introduction

In this paper, we study Hurwitz spaces that parametrize coverings of curves with
one special fiber and with monodromy group contained in a Weyl group of type Bd .
We investigate the irreducibility of these spaces and determine their connected
components. Coverings whose monodromy group is a Weyl group are interesting
because, for example, they appear in the study of spectral curves and of Prym–
Tyurin varieties; see [Donagi 1993; Kanev 1989; 1995; Kanev and Lange 2007].
A natural approach to the study of modular varieties parameterizing Abelian vari-
eties might to build Prym maps from Hurwitz spaces of coverings of curves with
monodromy group contained in a Weyl group to such modular varieties. The first
question one has to answer here is whether the Hurwitz spaces are irreducible.

We list some previous connectedness results for Hurwitz spaces.
Let Y be a smooth, connected, projective complex curve of genus ≥ 0, and

let Hd,n(Y ) be the Hurwitz space that parameterizes degree d coverings of Y that
are simply branched at n points. Using combinatorial calculations of Clebsch and
Lüroth, Hurwitz [1891] showed that Hd,n(P

1) is irreducible. The spaces H o
d,n(Y ),
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which parameterize coverings of curves Y of genus ≥ 1 with full monodromy
group Sd , were studied by Berstein and Edmonds [1984]. They proved the irre-
ducibility of these spaces under the hypothesis n > d/2.

Let Hd,n,e(Y ) be the Hurwitz space that parameterizes degree d coverings of Y
that are simply branched at n points and have one special point whose local mon-
odromy has cycle type given by the partition e = (e1, . . . , er ) of d . Natanzon
[1993] and Kluitmann [1988] independently proved the irreducibility of the spaces
Hd,n,e(P

1), while Kanev [2004] and Vetro [2006] proved the irreducibility of the
spaces H o

d,n,e(Y ), which parameterize coverings of curves of genus ≥ 1 having full
monodromy group Sd . The best estimate is established in [Vetro 2006], where the
irreducibility of H o

d,n,e(Y ) is proved under the hypothesis

(1) n+ |e| ≥ 2d, where |e| =
∑r

i=1(ei − 1).

Coverings whose monodromy group is a Weyl group and the corresponding
Hurwitz spaces were studied in [Biggers and Fried 1986; Kanev 2006; Vetro 2007;
2008a; Vetro 2008b]. Biggers and Fried proved the irreducibility of Hurwitz spaces
of coverings of P1 whose monodromy group is a Weyl group of type Dd , which
have simple branching in the sense that each local monodromy is a reflection.
Kanev generalized the result to Hurwitz spaces parameterizing Galois coverings
of P1 whose Galois group is an arbitrary Weyl group. The author studied Hurwitz
spaces parameterizing coverings with one special fiber and monodromy group con-
tained in a Weyl group of type Bd .

In [Vetro 2007; 2008a; Vetro 2008b], the author studied coverings that can be
decomposed as X π

−→X ′ f
−→Y , where π is a degree 2 covering and f is a degree d

covering, with monodromy group Sd , having n simply branched points and one
special point whose local monodromy has cycle type e.

The case where π : X → X ′ is branched was studied in [Vetro 2007; 2008a].
When π is branched, the local monodromy at a point of simple branching can
be both a reflection with respect to a long root and a reflection with respect to a
short root. The Hurwitz spaces that parameterize coverings X π

−→ X ′ f
−→ Y with

π branched are irreducible when Y ' P1. In the case in which among the local
monodromies there are both reflections with respect to long roots and reflections
with respect to short roots, the result generalizes to curves of genus ≥ 1 under
condition (1). In the case of one special fiber and all other local monodromies
being reflections with respect to long roots, and under condition (1), there are two
possibilities for the monodromy group G: either G = W (Bd) or G = W (Dd),
where W (Bd) and W (Dd) are the Weyl groups of type Bd and Dd , respectively.
When G =W (Dd), the corresponding Hurwitz spaces are irreducible, while when
G=W (Bd) the corresponding Hurwitz spaces have 22g

−1 connected components,
where g = g(Y ).
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The case where π : X→ X ′ is unramified was partially studied in [Vetro 2008b].
It is shown in [Kanev and Lange 2007, Proposition 2.7] that when π : X → X ′ is
unramified and the genus of Y is positive, there are three possible monodromy
groups: W (Dd), W (Bd), or wN (W (Bd))(G1)w

−1 for some w ∈ W (Bd), where
G1 is the subgroup of W (Bd) generated by reflections with respect to the long
roots of type εi − ε j and N (W (Bd))(G1) is the normalizer of G1. The case of
W (Dd) was studied in [Vetro 2008b]. The author proved the irreducibility of the
corresponding Hurwitz spaces when Y 'P1 as well as when, under condition (1),
g(Y )≥ 1.

This paper completes the study of the problem of irreducibility of Hurwitz
spaces of coverings with monodromy group contained in W (Bd), with at most
one special fiber, and with a large number of branch points. As discussed above,
the remaining cases are those of coverings X π

−→ X ′ f
−→Y , where π : X→ X ′ is

étale and the monodromy group G is either W (Bd) or conjugate to N (W (Bd))(G1).
We prove that in both cases the corresponding Hurwitz spaces are not connected
and hence are not irreducible. In fact, we prove under condition (1) that they have
22g
− 1 connected components, where g = g(Y ). Moreover we determine these

connected components.

Notation. Here the natural action of Sd on {1, . . . , d} is on the right, and we denote
the action of t ∈ Sd on i by i t . We use H o

d,n,e (Y ) to denote the Hurwitz space that
parameterizes the equivalence classes of degree d coverings of Y with monodromy
group Sd and with branches at n + 1 points, n > 0 of which are points of simple
branching and one of which is a special point whose local monodromy has cycle
type e.

1. Preliminaries: Weyl groups of type Bd and braid moves

1.1. In this subsection, we recall some facts on Weyl groups of type Bd . The
references for this material are [Bourbaki 1968] and [Carter 1972]. Let d be an
integer. Consider a real vector space Rd and let {ε1, . . . , εd} be the standard base
of Rd . Denote by R the root system {±εi , ±εi±ε j : 1≤ i, j ≤ d}. The Weyl group
of type Bd , denoted W (Bd), is the group generated by the reflections with respect
to the short roots εi for i = 1, . . . , d, and with respect to the long roots εi − ε j

for 1 ≤ i < j ≤ d . We will usually denote by W (Dd) the subgroup of W (Bd)

generated by the reflections with respect to the long roots εi − ε j and εi + ε j for
1 ≤ i < j ≤ d; we denote by G1 the subgroup generated by the reflections with
respect to the long roots εi−ε j for 1≤ i < j ≤d. We will write N (W (Bd))(G1) for
the normalizer of G1 in W (Bd). It is shown in [Kanev and Lange 2007, Lemma
2.5] that the normalizer of G1 in W (Bd) is equal to G1 ∪ G1 · (sε1sε2 · · · sεd );
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furthermore, if d ≥ 3, the only reflections that belong to N (W (Bd))(G1) are the
sεi−ε j with 1≤ i < j ≤ d .

The elements of W (Bd) act on {±ε1, . . . , ±εd} by permutation, and thus every
element induces a permutation on {{ε1, − ε1}, . . . , {εd , − εd}}. The reflection sεi
exchanges εi with−εi , while leaving fixed those εh with h 6= i . The reflection sεi−ε j

exchanges εi and−εi with ε j and−ε j , while fixing εh for each h 6= i, j . The action
of W (Bd) on { ± ε1, . . . , ± εd} allows us to define an injective homomorphism
from W (Bd) into S2d for which sεi−ε j 7→ (i j)(−i − j), sεi 7→ (i −i) and sεi+ε j =

sεi sε j sεi−ε j 7→ (i − j)(−i j).
Let (Z2)

d be the set of the functions from {1, . . . , d} into Z2 equipped with the
sum operation. Let z ∈ Z2. We will use zi1... ie to denote the function of (Z2)

d

defined as
zi1... ie(ih)= z for each h = 1, . . . , e, and
zi1... ie( j)= 0̄ for each j /∈ {i1, . . . , ie}.

Let8 be the homomorphism from Sd in Aut((Z2)
d) that assigns8(t)∈Aut((Z2)

d)

to t ∈ Sd , where [8(t)z′]( j) := z′( j t) for each z′ ∈ (Z2)
d . Let (Z2)

d
×

s Sd be
the semidirect product of (Z2)

d and Sd through the homomorphism 8. Given
(z′; t1), (z′′; t2) ∈ (Z2)

d
×

s Sd , we let

(z′; t1)(z′′; t2) := (z′+8(t1)z′′; t1t2).

One easily checks that the homomorphism 9 :W (Bd)→ (Z2)
d
×

s Sd for which
sεi−ε j 7→ (0; (i j)), sεi 7→ (1̄i ; id) and sεi+ε j 7→ (1̄i j ; (i j)) is an isomorphism.

Let (v; η) be an element of W (Bd), where η is an e-cycle of Sd and v is a
function of (Z2)

d that sends to 0̄ all the indexes fixed by η.

Definition 1. We call such an element (v; η) in W (Bd) a positive e-cycle if v is
either zero or a function that sends to 1̄ an even number of indexes, and call it
negative if it is not positive.

Note that two cycles (v; η) and (v′; η′) in W (Bd) are disjoint if η and η′ are
disjoint. Every element w of W (Bd) can be expressed as a product of disjoint
positive and negative cycles. The lengths of these disjoint cycles together with their
signs determine the signed cycle type of w. It is well known that two elements of
W (Bd) are conjugate if and only if they have the same signed cycle type.

Let e = (e1, . . . , er ) be a partition of d in which e1 ≥ · · · ≥ er ≥ 1. From now
on, we will denote by Ce the conjugate class of (Z2)

d
×

s Sd containing elements
that are the product of r disjoint positive cycles whose lengths are given by the
elements of the partition e. When e = (2, 1, . . . , 1), we will write C for Ce.

1.2. From now on we will denote by n a positive integer. Let H be a group and let
λk, µk , with k = 1, . . . , g, be elements of H . We will write [λ,µ] for the product
[λ1, µ1] · · · [λg, µg] of commutators.
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Definition 2. An Hurwitz system with values in H is a (2g+n)-tuple

(t1, . . . , tn; λ1, µ1, . . . , λg, µg)= (t; λ,µ)∈ H 2g+n satisfying t1 · · · tn = [λ,µ].

Its entries generate the monodromy group of the system. For h ∈ H , we declare
that (t; λ,µ) and h(t; λ,µ)h−1 belong to the same equivalence class, which we
denote by [t; λ,µ].

Note that an n-tuple (t1, . . . , tn) = t is a Hurwitz system with values in H if
t1 · · · tn = id. We denote the equivalence class of t by [t].

We complete this section by recalling some notions on braid moves. The braid
groups of a smooth, projective complex curve Y of genus g ≥ 1 were studied by
Birman [1969], Fadell [1962], and Scott [1970]. Let Y (n) be the n-fold symmetric
product of Y , and let1 be the codimension 1 locus of Y (n) consisting of nonsimple
divisors. The generators of the braid group π1(Y (n) −1, D) are the elementary
braids σ j with j = 1, . . . , n − 1 and the braids ρik and τik with 1 ≤ i ≤ n and
1≤ k ≤ g. The generators of π1(Y (n)−1, D) act on Hurwitz systems. The action
of the elementary braids σ j on Hurwitz systems was studied by Hurwitz [1891],
and this was extended to braids ρik and τik by Graber, Harris and Starr [2002] and
by Kanev [2004]. Here we use results of Hurwitz and Kanev. We associate some
generators to a pair of braid moves:

σ j to σ ′j , σ
′′

j = (σ
′

j )
−1
; ρik to ρ ′ik, ρ

′′

ik= (ρ
′

ik)
−1
; τik to τ ′ik, τ

′′

ik = (τ
′

ik)
−1.

We call the moves σ ′j and σ ′′j elementary moves.
The moves σ ′j and σ ′′j fix all the λs , all the µs , and all the th with h 6= j, j + 1.

They transform (t j , t j+1) to (t j t j+1t−1
j , t j ) and (t j+1, t−1

j+1t j t j+1), respectively.
The braid moves ρ ′ik and ρ ′′ik fix all the λs , all the th with h 6= i and all the µs with

s 6= k. They modify ti and µk . Analogously the braid moves τ ′ik and τ ′′ik modify
ti and λk , leaving unchanged all the µs , all the λs with s 6= k, and all the th with
h 6= i . Moreover both ρ ′ik and ρ ′′ik replace µk by an element of type w · µk , and
both τ ′ik and τ ′′ik replace λk by an element of the form w′ · λk , where w and w′ are
elements belonging to the same conjugate class of ti . In particular, when

λ1 = · · · = λk = µ1 = · · · = µk−1 = id,

the braid move ρ ′1k transforms µk to t−1
1 ·µk . Analogously when

λ1 = · · · = λk−1 = µ1 = · · · = µk−1 = id,

the move τ ′′1k replaces λk by t−1
1 · λk ; see [Kanev 2004, Theorem 1.8].

Definition 3. We call two Hurwitz systems with values in Sh braid equivalent
if one can be obtained from the other using a finite sequence of braid moves
σ ′j , ρ

′

ik , τ ′ik and their inverses.
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2. The Hurwitz spaces HW(Bd),n,e(Y) and HN(W(Bd))(G1),n,e(Y)

2.1. Suppose X , X ′ and Y are smooth, connected, projective complex curves. We
assume throughout what follows that Y is a curve of genus g≥ 1 and d is an integer
greater or equal to 3. Let e= (e1, . . . , er ) be a partition of d where e1≥· · ·≥er ≥1.
In this paper we study coverings that can be decomposed as X π

−→X ′ f
−→Y , where

π and f satisfy the following:

(?) π is a degree 2 étale covering and f is a degree d covering, with monodromy
group Sd , branched at n+1 points, n of which are points of simple branching
and one of which is a special point whose local monodromy has cycle type e.

Kanev and Lange show in [2007, Proposition 2.7] that the monodromy group
of a covering of this type is either W (Dd), or W (Bd) or wN (W (Bd))(G1)w

−1 for
some w ∈ W (Bd). Coverings X π

−→ X ′ f
−→ Y satisfying the conditions (?) and

with monodromy group W (Dd) were studied in [Vetro 2008b]. Here we work with
coverings satisfying the conditions (?) whose monodromy group is either W (Bd)

or wN (W (Bd))(G1)w
−1 for some w ∈W (Bd).

Definition 4. Two coverings

X1
π1
−→ X ′1

f1
−→ Y and X2

π2
−→ X ′2

f2
−→ Y

are said to be equivalent if there exist two biholomorphic maps p : X1→ X2 and
p′ : X ′1→ X ′2 such that p′ ◦ π1 = π2 ◦ p and f2 ◦ p′ = f1. The equivalence class
containing the covering X π

−→ X ′ f
−→ Y is denoted by [X π

−→ X ′ f
−→ Y ].

We write HG,n,e(Y ) for the Hurwitz space that parameterizes equivalence classes
of coverings X π

−→X ′ f
−→Y satisfying the conditions (?) whose monodromy group

is conjugated to G, where G is either W (Bd) or N (W (Bd))(G1).
From now on we will denote by D and by m : π1(Y − D, b0)→ S2d respec-

tively the branch locus and the monodromy homomorphism associated to the cov-
ering X π

−→ X ′ f
−→ Y . The image via m of a standard generating system for

π1(Y − D, b0) determines an equivalence class [t; λ,µ] of Hurwitz systems with
values in (Z2)

d
×

s Sd 'W (Bd) and monodromy group conjugated to G such that n
among the t j belong to C and one belongs to Ce. We denote by AG,n,e,g the set of all
equivalence classes of Hurwitz systems as above. Let δ : HG,n,e(Y )→ Y (n+1)

−1

be the map that assigns to each equivalence class [X π
−→ X ′ f

−→ Y ] the branch
locus D of X π

−→ X ′ f
−→ Y . By Riemann’s existence theorem we can identify

the fiber of δ over D with AG,n,e,g. There is a unique topology on HG,n,e(Y )
such that δ is a topological covering map; see [Fulton 1969]. Therefore the braid
group π1(Y (n+1)

−1, D) acts on AG,n,e,g. The orbits of this action are in one-to-
one correspondence with the connected components of HG,n,e(Y ). So in order to
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determine the connected components of HG,n,e(Y ), it is enough to find the orbits
of the action of π1(Y (n+1)

−1, D) on AG,n,e,g.

2.2. From now on we associate to the partition e = (e1, . . . , er ) of d in which
e1 ≥ · · · ≥ er ≥ 1 the element

(2) (1 2 . . . e1)(e1+ 1 . . . e1+ e2) · · · ((e1+ · · ·+ er−1)+ 1 . . . d) ∈ Sd .

We will also denote the permutation (2) by

ε = (11 21 . . . (e1)1)(12 22 . . . (e2)2) · · · (1r 2r . . . (er )r ).

We write qi for the cycle (1i 2i . . . (ei )i ) and |e| for
∑r

i=1(ei−1). We use Z̃i with
i = 1, . . . , r to denote the sequence ((0; (1i 2i )), (0; (1i 3i )), . . . , (0; (1i (ei )i ))) and
Z̃ to denote the concatenation Z̃1 Z̃2 . . . Z̃r .

Lemma 1 [Kanev 2004, Main Lemma 2.1]. Let (t; λ,µ) be a Hurwitz system
with values in (Z2)

d
×

s Sd . Suppose that ti ti+1 = (0; id). Let H be the subgroup of
(Z2)

d
×

s Sd generated by {t1, . . . , ti−1, ti+2, . . . , tn, λ1, µ1, . . . , λg, µg}. Then for
every h ∈ H , the given Hurwitz system is braid equivalent to

(t1, . . . , ti−1, h−1ti h, h−1ti+1h, ti+2, . . . , tn;λ,µ).

Proposition 1 [Vetro 2008b, Proposition 3]. Let [t] be an equivalence class of
Hurwitz systems with values in (Z2)

d
×

s Sd ' W (Bd) such that n among the t j

belong to C and one belongs to Ce and such that if t j = (z′; t ′j ) for j = 1, . . . , n+1,
the group generated by the permutations t ′j is all of Sd .

(i) If r > 1, then [t] is braid equivalent to a class of the form

[t1] = [Z̃ , (0; (11 12)), (0; (11 12)), . . . , (0; (11 1r−1)), (0; (11 1r−1)),

(z1
111r
; (11 1r )), . . . , (zs

111r
; (11 1r )), (0; ε−1)],

where each (0; (11 1i )) with 2 ≤ i ≤ r − 1 appears twice, the zh are elements
of Z2, and s is an even positive integer.

(ii) If r = 1, then [t] is braid equivalent to a class of the form

[t2] = [Z̃1, (z1
1121
; (11 21)), . . . , (zs

1121
; (11 21)), (0; ε−1)],

where the zh are elements of Z2 and s is an even positive integer.

Observation 1. Note that if in t1 there are elements of type (1̄111r ; (11 1r )), then
they are even in number. This follows from the relation

(0; (11 21)) · · · (0; (11 (e1)1)) · · · (0; (1r 2r )) · · · (0; (1r (er )r ))

· (0; (11 12)) · · · (0; (11 1r−1))(z1
111r
; (11 1r )) · · · (zs

111r
; (11 1r ))= (0; ε).
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Analogously one deduces that if in t2 there are elements of type (1̄1121; (11 21)),
they are even in number.

3. The connected components of HW(Bd),n,e(Y)

In this section we study the spaces HW (Bd ),n,e(Y ). We show that these spaces
are not connected and hence they are not irreducible. We prove, in fact, that the
Hurwitz spaces HW (Bd ),n,e(Y ) have 22g

−1 connected components for n+|e| ≥ 2d.

Proposition 2. Suppose condition (1) holds.

(i) If r > 1, each equivalence class [t;λ,µ] in AW (Bd ),n,e,g is braid equivalent to
a class of the form [T1; c, d], where T1 is the sequence

(Z̃ , (0; (11 12)), (0; (11 12)), . . . , (0; (11 1r−1)), (0; (11 1r−1)),

(0; (11 1r )), . . . , (0; (11 1r )), (0; ε−1))

in which each (0; (11 1i )) for 2 ≤ i ≤ r − 1 appears twice, while (0; (11 1r ))

appears an even number of times.

(ii) If r = 1 each equivalence class [t;λ,µ] in AW (Bd ),n,e,g is braid equivalent to
a class of the form [T2; c, d], where T2 is the sequence

(Z̃1, (0; (11 21)), . . . , (0; (11 21)), (0; ε−1))

in which (0; (11 21)) appears an even number of times.

Moreover (c, d) is the sequence ((c1; id), (d1; id), . . . , (cg; id), (dg; id)), where
the functions ck and dk for k = 1, . . . , g are equal to either 0 or 1̄1 and at least one
among the ck or the dk is different from 0.

Proof. Step 1. At first we prove that every class [t; λ,µ] in AW (Bd ),n,e,g is braid
equivalent to a class of the form [t̂1, . . . , t̂n, (∗ ; ε−1); c, d]. Let t j = (∗ ; t ′j ),
λk = (∗ ; λ′k) and µk = (∗ ;µ′k) for j = 1, . . . , n + 1 and k = 1, . . . , g. By
Riemann’s existence theorem, the equivalence class of Hurwitz systems [t ′; λ′,µ′]
corresponds to an equivalence class of coverings belonging to H o

d,n,e(Y ). By (1),
the Hurwitz space H o

d,n,e(Y ) is irreducible; see [Vetro 2006, Theorem 1]. Therefore
[t ′; λ′,µ′] is braid equivalent to a class of the form [t ′′1 , . . . , t ′′n , ε

−1
; id, . . . , id],

and so [t; λ,µ] is braid equivalent to [t̃1, . . . , t̃n, (∗ ; ε−1); a, b], where (a, b) is
the sequence ((a1; id), (b1; id), . . . , (ag; id), (bg; id)).

If ak and bk for k = 1, . . . , g are equal to either 1̄1 or 0, we obtain the claim. So
we suppose that a1 is different from 1̄1 and 0.

Note that if a1 = 1̄i for i ∈ {2, . . . , d} and if among the t̃h there are both
(1̄1i ; (1 i)) and (0; (1 i)), then our class is braid equivalent to a class of the form
[ . . . , (∗ ; ε−1); (1̄1; id), (b1; id), . . . , (ag; id), (bg; id)]. In fact, using elementary
moves σ ′′l we can move to the first place (0; (1 i)), and we then apply the τ ′′11
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that transforms (a1; id) to (0; (1 i))(a1; id). After that, we move to the first place
(1̄1i ; (1 i)) and again act by τ ′′11. By this process, we can replace (a1; id) with
(1̄1i ; id)(1̄i ; id) = (1̄1; id). Analogously we check that if i and j are two in-
dexes sent to 1̄ by a1 and if in our Hurwitz system among the t̃h there are both
(1̄i j ; (i j)) and (0; (i j)), then our class is braid equivalent to a class of the form
[ . . . , (∗ ; ε−1); (â1; id), (b1; id), . . . , (ag; id), (bg; id)], where â1 is a function that
sends to 1̄ the same indexes sent to 1̄ by a1 except i and j .

Let i, j be indexes belonging to {1, . . . , d}. From what we have just said it
follows that, if acting by elementary moves σ ′h, σ

′′

h with 1≤ h ≤ n, we are able to
replace a class of type [t̃1, . . . , t̃n, (∗ ; ε−1); a, b] belonging to AW (Bd ),n,e,g with
one of the form [ . . . , (1̄i j ; (i j)), . . . , (0; (i j)), . . . , (∗ ; ε−1); a, b], then after a
finite number of steps we can obtain a class braid equivalent to ours of type either

[ . . . , (∗ ; ε−1); (0; id), (b1; id), . . . , (ag; id), (bg; id)] or

[ . . . , (∗ ; ε−1); (1̄1; id), (b1; id), . . . , (ag; id), (bg; id)],

depending on whether a1 sends to 1̄ an even or odd number of indexes.
So far we proved that our class is braid equivalent to [t̃1, . . . , t̃n, (∗ ; ε−1); a, b].

The relation [a, b]= (0; id) implies that t̃1 · · · t̃n(∗ ; ε−1)= (0; id). Since the group
generated by the permutations corresponding to the t̃ j is Sd , the equivalence class
of Hurwitz systems [t̃1, . . . , t̃n, (∗ ; ε−1)] satisfies the hypothesis of Proposition 1
and thus it is braid equivalent to a class of the form [t1] or [t2], depending on
whether r > 1 or r = 1. Note that to replace the class [t̃1, . . . , t̃n, (∗ ; ε−1)] with
one of the form [t1] or [t2], we use elementary moves σ ′j and σ ′′j , and we con-
jugate the elements in our Hurwitz system with elements of type (1̄i ...h; id); see
[Vetro 2008b, proof of Proposition 3]. Since (1̄i ...h; id)(ak; id)(1̄i ...h; id)= (ak; id)
and (1̄i ...h; id)(bk; id)(1̄i ...h; id) = (bk; id), we can conclude by Proposition 1 that
[t̃1, . . . , t̃n, (∗ ; ε−1); a, b] is braid equivalent to a class of the form [t1; a, b] or
[t2; a, b] depending on whether r > 1 or r = 1. Previously we proved under the
hypothesis (1) that every Hurwitz system of type (t i ; a, b) is braid equivalent to a
Hurwitz system of the form ( . . . , (1̄i j ; (i j)), . . . , (0; (i j)), . . . , (0; ε−1); a, b);
see [Vetro 2008b, Theorem 2, Step 2]. Because of this we can confirm that, acting
by braid moves, it is possible to transform [t̃1, . . . , t̃n, (∗ ; ε−1); a, b] to

[ . . . , (∗ ; ε−1); (c1; id), (b1; id), . . . , (ag; id), (bg; id)].

Once we prove that our class is braid equivalent to a class of the form
[ t̂; (c1; id), (b1; id), . . . , (ag; id), (bg; id)], we replace (b1; id)with (d1; id) by pro-
ceeding in the same way but using the braid move ρ ′11. We reason analogously
when ak is different from 0 and 1̄1 and al and bl are equal to 0 or 1̄1 for each
l ≤ k−1, but we use instead the braid moves τ ′′1k . In the end, if bk is different from
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0 and 1̄1 and al , bl , ak are equal to 0 or 1̄1 for each l ≤ k − 1, we replace (bk; id)
with (dk; id) by applying the braid moves ρ ′1k . So we obtain the claim.

Step 2. In Step 1 we proved that [t; λ,µ] is braid equivalent to a class of the
form [t̂1, . . . , t̂n, (∗ ; ε−1); c, d]. From the relation [ c, d ] = (0; id), we deduce
that t̂1 · · · t̂n = (∗ ; ε) and thus (∗ ; ε) ∈ 〈t̂1, . . . , t̂n〉. Since the monodromy group
of the Hurwitz systems belonging to our class is W (Bd) and the t̂h belong to C , at
least one among the ck or the dk is equal to 1̄1.

From the relation [c, d] = (0; id), we also deduce that [t̂1, . . . , t̂n, (∗ ; ε−1)] sat-
isfies all the hypothesis of Proposition 1; because of this [t̂1, . . . , t̂n, (∗ ; ε−1); c, d]
is braid equivalent to a class of type [t1; c, d] or [t2; c, d] depending on whether
r > 1 or r = 1. If r > 1 and the elements of type (∗ ; (11 1r )) in t1 are all equal
to (0; (11 1r )) or if r = 1 and the element of type (∗ ; (11 21)) in t2 are all equal
to (0; (11 21)), we have the normal form required. Otherwise using elementary
moves, depending on whether r > 1 or r = 1, we place nearby the elements of
type (1̄111r ; (11 1r )) that are in t1 or the elements of type (1̄1121; (11 21)) that are
in t2. Observe that condition (1) insures that in t1 there are at least four elements
of type (∗ ; (11 1r )) and in t2 there are at least three elements of type (∗ ; (11 21)).
Since at least one among the ck or the dk is equal to 1̄1, if we cancel two among
the (∗ ; (11 1r )) in t1 or two among the (∗ ; (11 21)) in t2, the group generated by
the remaining elements of the Hurwitz systems (t j ; c, d) is still W (Bd). Because
of this, using Lemma 1, we can replace if r > 1 every pair

((1̄111r ; (11 1r )), (1̄111r ; (11 1r ))) of t1 with ((0; (11 1r )), (0; (11 1r )))

and if r = 1 every pair

((1̄1121; (11 21)), (1̄1121; (11 21))) of t2 with ((0; (11 21)), (0; (11 21)));

it sufficient to choose h = (1̄11; id). Since number of the (1̄111r ; (11 1r )) in t1

and the number of (1̄1121; (11 21)) in t2 are both even (see Observation 1), the
proposition is proved. �

Let {h1, . . . , hs} and {k1, . . . , kl} be two subsets of {1, . . . , g} such that at least
one among s and l is greater of 0. Let us denote by [T̂1]{h1,...,hs},{k1,...,kl } and
[T̂2]{h1,...,hs},{k1,...,kl } the equivalence classes [T1; c, d] and [T2; c, d], respectively,
where T1, T2 and (c, d) are the sequences defined in (i) and (ii) of Proposition 2
and where the ch and the dk with h ∈ {h1, . . . , hs} and k ∈ {k1, . . . , kl} are equal
to 1̄1, while all others are equal to 0.

Note that the equivalence class [T̂i ]{h1,...,hs},{k1,...,kl } contains only Hurwitz sys-
tems of type

(t; (a1; id), (b1; id), . . . , (ag; id), (bg; id)),
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where the ah and the bk with h∈{h1, . . . , hs} and k ∈{k1, . . . , kl} are equal to 1̄i for
some i ∈ {1, . . . , d}, while all others are equal to 0. In fact, if we conjugate (0; id)
and (1̄1; id) with (a; s) ∈ (Z2)

d
×

s Sd , we obtain (a; s)(0; id)(a; s)−1
= (0; id),

while

(a; s)(1̄1; id)(a; s)−1
= (a+8(s) 1̄1; s)(a; s)−1

= (1̄i ; id) with i ∈ {1, . . . , d}.

Because of this, we can confirm that there are 22g
− 1 equivalence classes of the

form [T̂1]{h1,...,hs},{k1,...,kl }, and another 22g
− 1 of the form [T̂2]{h1,...,hs},{k1,...,kl }.

Theorem 1. Suppose (1) holds. The connected components of HW (Bd ),n,e(Y ) are of
number 22g

−1 and are in one-to-one correspondence with the orbits of the equiv-
alence classes [T̂1]{h1,...,hs},{k1,...,kl } or [T̂2]{h1,...,hs},{k1,...,kl }, depending on whether
r > 1 or r = 1.

Proof. The connected components of HW (Bd ),n,e(Y ) are in one-to-one correspon-
dence with the orbits of the action of π1(Y (n+1)

−1, D) on AW (Bd ),n,e,g. Since
(1) holds, by Proposition 2 every equivalence class belonging to AW (Bd ),n,e,g is
braid equivalent to a class of the form [T̂1]{h1,...,hs},{k1,...,kl } or [T̂2]{h1,...,hs},{k1,...,kl },
depending on whether r > 1 or r = 1. It follows that the connected compo-
nents of HW (Bd ),n,e(Y ) are in bijection with the orbits of the equivalence classes
[T̂1]{h1,...,hs},{k1,...,kl } or [T̂2]{h1,...,hs},{k1,...,kl }, depending on whether r > 1 or r = 1.

The equivalence classes [T̂i ]{h1,...,hs},{k1,...,kl } belong to different orbits of the ac-
tion of π1(Y (n+1)

−1, D) on AW (Bd ),n,e,g. In fact, the only braid moves that change
(ck; id) are τ ′ik , τ ′′ik and sequences of braid moves of this type. The moves τ ′ik and
τ ′′ik act on (ck; id) transforming it to w′ · (ck; id), where w′ is an element belonging
either to C or to Ce (see Section 1.2). Therefore w′ is an element of form (a; ξ),
where a is either zero or a function that sends an even number of indexes to 1̄.
From this we deduce that, by acting by sequences of braid moves τ ′ik, τ

′′

jk on an
element (ck; id) of the form (0; id), we can replace (0; id) with an element of form
(a; ξ), but not with an element of form (b; ξ), where b is a function that sends
an odd number of indexes to 1̄. Note that we arrive at the same conclusion if we
reason on the (dk; id) and on the moves ρ ′ik, ρ

′′

ik .
Since the classes of the form [T̂i ]{h1,...,hs},{k1,...,kl } are 22g

−1, the Hurwitz space
HW (Bd ),n,e(Y ) has 22g

− 1 connected components. �

4. The connected components of HN(W(Bd))(G1),n,e(Y)

In this section we fix our attention on the Hurwitz spaces HN (W (Bd ))(G1),n,e(Y ).
We prove under condition (1) that they have 22g

− 1 connected components, and
furthermore we determine these connected components.

From now on we will write 1̄12...d for the function of (Z2)
d that sends to 1̄ each

index h ∈ {1, . . . , d}.
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Proposition 3. Under condition (1), each equivalence class [t; λ,µ] belonging to
AN (W (Bd ))(G1),n,e,g is braid equivalent to a class of the form

(i) [T1; l,m] if r > 1, or

(ii) [T2; l,m] if r = 1,

where (l,m) is the sequence

((l1; id), (m1; id), . . . , (lg; id), (mg; id))

and where the functions lk and mk are equal either to 0 or to 1̄12...d and at least one
among the lk or the mk is different from 0. Moreover, T1 and T2 are the sequences
defined respectively in (i) and (ii) of Proposition 2.

Proof. Let t j = (∗ ; t ′j ), λk = (∗ ; λ
′

k) and µk = (∗ ;µ
′

k) for j = 1, . . . , n+ 1 and
k = 1, . . . , g. By Riemann’s existence theorem, the equivalence class of Hurwitz
systems [t ′; λ′,µ′] corresponds to an equivalence class of coverings belonging to
H o

d,n,e(Y ). By condition (1), the Hurwitz space H o
d,n,e(Y ) is irreducible (see [Vetro

2006, Theorem 1]) and therefore it is possible, acting by braid moves, to replace
[t ′; λ′,µ′] with a class of the form [t ′′1 , . . . , t ′′n , ε

−1
; id, . . . , id]. It follows that

[t;λ,µ] is braid equivalent to a class of type [t̃1, . . . , t̃n, (∗ ; ε−1); a, b], where
(a, b) is the sequence ((a1; id), (b1; id), . . . , (ag; id), (bg; id)).

The relation [ a, b ] = (0; id) implies that t̃1 · · · t̃n(∗ ; ε−1) = (0; id). Since the
group generated by the transpositions corresponding to the t̃ j is Sd , we can con-
firm that the equivalence class [t̃1, . . . , t̃n, (∗ ; ε−1)] satisfies all the hypothesis of
Proposition 1, and thus it is braid equivalent to a class of the form [t1] or [t2],
depending on whether r > 1 or r = 1. Because of this we can replace the sequence
(t̃1, . . . , t̃n, (∗ ; ε−1)) by t1 or t2 depending on whether r > 1 or r = 1, obtaining
that our class is braid equivalent to a class of the form [t i ; a, b] (recall that in
proving Proposition 2, we already observed that in replacing (t̃1, . . . , t̃n, (∗ ; ε−1))

with t1 or t2, we leave unchanged the elements of type (ak; id) and (bk; id)).
Now we separately discuss the cases r > 1 and r = 1.

Case: r > 1. The Hurwitz systems belonging to the class [t1; a, b] have mon-
odromy group conjugate to N (W (Bd))(G1); this insures that in t1 among the
elements of type (zh

111r
; (11 1r )) for h= 1, . . . , s, there are not both (1̄111r ; (11 1r ))

and (0; (11 1r )). In fact, the group H generated by the elements of the sequence t1

contains, for each h ∈ {1, . . . , d}\{11} and for each k ∈ {1, . . . , d}\{1r }with h 6= k,
an element of the type (∗ ; (11 h)) and one of type (∗ ; (1r k)). If (1̄111r ; (11 1r ))

and (0; (11 1r )) are both in t1, then by conjugating (∗ ; (11 h)) with (1̄111r ; (11 1r ))

and (0; (11 1r )), we obtain that both (1̄h1r ; (h 1r )) and (0; (h 1r )) belong to H .
By conjugating (1̄h1r ; (h 1r )) and (0; (h 1r )) with (∗ ; (1r k)), we obtain that both
(1̄hk; (h k)) and (0; (h k)) belong to H . Since h and k are arbitrary indexes in
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{1, . . . , d}, this implies that H =W (Dd). So the monodromy group of the Hurwitz
system (t1; a, b) is either W (Dd) or W (Bd), a contradiction.

Now we observe that if the (zh
111r
; (111r )) in t1 are of the form (1̄111r ; (111r )),

we can replace the system (t1; a, b) by the system (T1; a, b) by conjugating any
element in (t1; a, b) with (1̄1r 2r ...(er )r ; id), where 1̄1r 2r ...(er )r is the function that
sends to 1̄ only the indexes moved by qr . In fact, in our system in addition to
the elements (1̄111r ; (11 1r )), (0; ε−1), (ak; id) and (bk; id), there are elements of
type (zαβ; (α β)), where the indexes α and β are moved both either by qr or by a
cycle different from qr . One easily checks that elements of form (zαβ; (α β)) are
unchanged when conjugated by (1̄1r ...(er )r ; id). Analogously, the elements (0; ε−1),
(ak; id) and (bk; id) are unchanged under conjugation by (1̄1r 2r ... (er )r ; id), while
(1̄111r ; (11 1r )) conjugated by (1̄1r 2r ...(er )r ; id) becomes (0; (11 1r )).

Since the monodromy group G of the Hurwitz system (T1; a, b) is conjugated
to N (W (Bd))(G1), we are sure that at least one among the ak or the bk is different
from 0. Furthermore, we can confirm that the ak and the bk that are different from 0
are equal to 1̄12...d . In fact, we suppose by way of contradiction that ak for some
k is different from 0 and 1̄12...d . Then ak sends to 0̄ an index i and to 1̄ an index
j . Since (0; (i j)) belongs to the group generated by the elements in T1 and since
conjugating (0; (i j)) by (ak; id) gives (1̄i j ; (i j)), we deduce that both (1̄i j ; (i j))
and (0; (i j)) belong to G. This implies that G contains, for each h, k ∈ {1, . . . , d},
both (1̄hk; (hk)) and (0; (hk)). Thus G is either W (Dd) or W (Bd), a contradiction.
Note that if we suppose that bk is different from 0 and 1̄12...d for some k, we arrive
at the same contradiction. This complete the proof in the case r > 1.

Case: r = 1. Because the Hurwitz systems belonging to the class [t2; a, b] have
monodromy group G conjugated to N (W (Bd))(G1), cannot there be in t2 both
(1̄1121; (11 21)) and (0; (11 21)) (see the case r > 1). So the elements of type
(zh

1121
; (11 21)) in t2 must all be equal to (0; (11 21)), that is, the sequence t2 is of

the form T2. Moreover, since G is conjugated to N (W (Bd))(G1), the ak and bk

cannot be all equal to 0. Since the functions ak and bk cannot be different from 0
and from 1̄12...d (see the case r > 1), the proposition is proved. �

Observation 2. Note that the equivalence classes defined in Proposition 3 (i), (ii)
are not braid equivalent to ones defined in Proposition 2 (i), (ii). In fact, the for-
mer have monodromy group conjugate to N (W (Bd))(G1) while the latter have as
monodromy group all of W (Bd).

Let {h1, . . . , hs} and {k1, . . . , kv} be two subsets of {1, . . . , g} such that at least
one among s and v is greater than 0. Let us denote by [T̃1]{h1,...,hs},{k1,...,kv} and
[T̃2]{h1,...,hs},{k1,...,kv} the equivalence classes of the Hurwitz systems

(T̃1){h1,...,hs},{k1,...,kv} = (T1; l,m) and (T̃2){h1,...,hs},{k1,...,kv} = (T2; l,m),
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respectively, where T1, T2 and (l,m) are the sequences defined in (i) and (ii) of
Proposition 2 and where the lh and the mk with h∈{h1, . . . , hs} and k∈{k1, . . . , kv}
are equal to 1̄12...d , while all others equal 0.

If we conjugate (0; id) and (1̄12...d; id) with an element (a; s) ∈ (Z2)
d
×

s Sd ,
we leave them unchanged. Therefore the class [T̃i ]{h1,...,hs},{k1,...,kv} contains only
Hurwitz systems of type (t; l,m), where the lh and the mk with h ∈ {h1, . . . , hs}

and k ∈ {k1, . . . , kv} are equal to 1̄12...d , while all others are 0. From this we
deduce that there are 22g

− 1 equivalence classes of the form [T̃1]{h1,...,hs},{k1,...,kv}

and another 22g
− 1 of the form [T̃2]{h1,...,hs},{k1,...,kv}.

Theorem 2. Suppose (1) holds. The number of the connected components of
HN (W (Bd ))(G1),n,e(Y ) is 22g

−1. The connected components of HN (W (Bd ))(G1),n,e(Y )
are in one-to-one correspondence with the orbits of the equivalence classes
[T̃1]{h1,...,hs},{k1,...,kv} or [T̃2]{h1,...,hs},{k1,...,kv}, depending on whether r > 1 or r = 1.

Proof. Since the connected components of HN (W (Bd ))(G1),n,e(Y ) are in bijection
with the orbits of the action of π1(Y (n+1)

− 1, D) on AN (W (Bd ))(G1),n,e,g and
by (1), Proposition 3 gives that the connected components of HN (W (Bd ))(G1),n,e(Y )
are in bijection with the orbits of the equivalence classes [T̃1]{h1,...,hs},{k1,...,kv} or
[T̃2]{h1,...,hs},{k1,...,kv}, depending on whether r > 1 or r = 1.

Hurwitz systems of the form (T̃i ){h1,...,hs},{k1,...,kv} are not braid equivalent. In
fact, acting by the braid moves ρ ′jk, ρ

′′

jk, τ
′

jh, τ
′′

jh , we can replace t j = (0; t ′j ) only
with an element belonging to the same conjugate class of form (0; ξ) (see [Kanev
2004, Theorem 1.8]). Hence acting with the moves τ ′jk and τ ′′jk we can replace
(lk; id) with (0; ξ) ·(lk; id). So, acting by sequences of braid moves τ ′ik and τ ′′jk , we
can replace one (lk; id) of the form (0; id) with (0; ξ) and one (lk; id) of the form
(1̄12...d; id) with (1̄12...d; ξ), but we cannot transform (0; id) to (1̄12...d; id). Using
that reasoning with the (mk; id) and with the braid moves ρ ′ik and ρ ′′ik , one arrives
at the same conclusion, and therefore the equivalence classes [T̃i ]{h1,...,hs},{k1,...,kv}

belong to different orbits of the action of π1(Y (n+1)
−1, D) on AN (W (Bd ))(G1),n,e,g.

Since the classes of the form [T̃i ]{h1,...,hs},{k1,...,kv} are 22g
−1, the Hurwitz space

HN (W (Bd ))(G1),n,e(Y ) has 22g
− 1 connected components. �
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