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Boring is an operation that converts a knot or two-component link in a 3-
manifold into another knot or two-component link. It generalizes rational
tangle replacement and can be described as a type of 2-handle attachment.
Sutured manifold theory is used to study the existence of essential spheres
and planar surfaces in the exteriors of knots and links obtained by bor-
ing a split link. It is shown, for example, that if the boring operation is
complicated enough, a split link or unknot cannot be obtained by boring a
split link. Particular attention is paid to rational tangle replacement. If a
knot is obtained by rational tangle replacement on a split link, and a few
minor conditions are satisfied, the number of boundary components of a
meridional planar surface is bounded below by a number depending on
the distance of the rational tangle replacement. This result is used to give
new proofs of two results of Eudave-Muñoz and Scharlemann’s band sum
theorem.

1. Introduction

Refilling and boring. Given a genus 2 handlebody W embedded in a 3-manifold
M , a knot or two component link can be created by choosing an essential disc α⊂
W and boundary-reducing W along α. Then W− η̊(α) is the regular neighborhood
of a knot or link Lα. We say that the exterior M[α] of this regular neighborhood is
obtained by refilling the meridian disc α. Similarly, given a knot or link Lα ⊂ M ,
we can obtain another knot or link Lβ by the following process:

(1) Attach an arc to Lα forming a graph.

(2) Thicken the graph to form a genus 2 handlebody W .

(3) Choose a meridian β for W and refill β.

Refilling the meridian α of the attached arc returns Lα. Any two knots in S3

can be related by such a move if we allow α and β to be disjoint: Just let W be a
neighborhood of the wedge of the two knots. Therefore we’ll restrict attention to
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meridians of W that cannot be isotoped to be disjoint. If a knot or link Lβ can be
obtained from Lα by this operation, we say Lβ is obtained by boring Lα. Since
the relation is symmetric we may also say Lα and Lβ are related by boring.

Boring generalizes several well-known operations in knot theory. Band sums,
crossing changes, generalized crossing changes, and, more generally, rational tan-
gle replacement can all be realized as boring. The band move from the Kirby
calculus [Fenn and Rourke 1979; Kirby 1978] is also a type of boring. If W is the
standard genus 2 handlebody in S3 and Lα is the unlink of two components, then
all tunnel number 1 knots can be obtained by boring Lα using W .

If Lα and Lβ are related by boring, it is natural to ask under what circum-
stances both links can be split, both the unknot, both composite, and so on. Many
of these questions have been effectively addressed for special types of boring,
such as rational tangle replacement [Eudave-Muñoz 1988]. This paper, following
[Scharlemann 2008], will focus on the exteriors M[α] and M[β] of the knots Lα
and Lβ , respectively. There, Scharlemann conjectured that, with certain restric-
tions (discussed in Section 6), if M[α] and M[β] are both reducible or boundary
reducible, then either W is an unknotted handlebody in S3 or α and β are positioned
in a particularly nice way in W . He was able to prove his conjecture (with slightly
varying hypotheses and conclusions) when M − W̊ is boundary reducible, when
|α ∩β| ≤ 2, or when one of the discs is separating.

This paper looks again at these questions and completes, under stronger hy-
potheses, the proof of Scharlemann’s conjecture except when M = S3 and M[α]
and M[β] are solid tori. With these stronger hypotheses, however, we reach con-
clusions that are stronger than those obtained in [Scharlemann 2008]. Even in the
one situation that is not completed, we do gain significant insight. The remaining
case is finally completed in [Taylor 2008]. Here is a simplified version of one of
the main theorems:

Simplified Theorem 6.1. Suppose that M is S3 or the exterior of a link in S3 and
that M−W̊ is irreducible and boundary irreducible. If α and β cannot be isotoped
to be disjoint, then at least one of M[α] or M[β] is irreducible. Also, if one is
boundary reducible (for example, a solid torus), then the other is not reducible.

The conclusions of Theorem 6.1 are an “arc version” of the conclusions of the
main theorem of [Scharlemann 1990], which considers surgeries on knots produc-
ing reducible 3-manifolds. The methods of this paper are similar in outline to those
of [Scharlemann 1990] but differ in detail.

Perhaps the most interesting application of these techniques to rational tangle
replacement is the following theorem, which generalizes some results of Eudave-
Muñoz and Scharlemann:
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Theorem 7.3. Suppose that Lβ is a knot or link in S3 and that B ′ ⊂ S3 is a 3-ball
intersecting Lβ so that (B ′, B ′ ∩ Lβ) is a rational tangle. Let (B ′, rα) be another
rational tangle of distance d ≥ 1 from rβ = B ′∩Lβ , and let Lα be the knot obtained
by replacing rβ with rα. Let (B, τ ) = (S3

− B̊ ′, Lβ − B̊ ′). Suppose that Lα is a
split link and that (B, τ ) is prime. Then Lβ is not a split link or unknot. Further-
more, if Lβ has an essential properly embedded meridional planar surface with m
boundary components, it contains such a surface Q with |∂Q| ≤m such that either

Q ⊂ B or |Q ∩ ∂B|(d − 1)≤ |∂Q| − 2.

One consequence of this is a new proof of Scharlemann’s band sum theorem: If
the unknot is obtained by attaching a band to a split link, then the band sum is the
connected sum of unknots. This and other rational tangle replacement theorems
are proved in Section 7.

The main tool in this paper is Scharlemann’s combinatorial version of Gabai’s
sutured manifold theory. The relationship of this paper to [Scharlemann 2008],
where he states his conjecture about refilling meridians, is similar to the relation-
ship between Gabai’s and Scharlemann’s proofs of the band sum theorem. Earlier,
Scharlemann [1985] proved that the band sum of two knots is unknotted only if it
is the connect sum of two unknots. Later Scharlemann and Gabai simultaneously
and independently proved that

genus(K1 #b K2)≥ genus(K1)+ genus(K2),

where #b denotes a band sum. Gabai [1987] used sutured manifold theory to give
a particularly simple proof. Scharlemann’s proof [1989] uses a completely com-
binatorial version of sutured manifold theory. Since rational tangle replacement is
a special type of boring, a similar relationship also holds between this paper and
some of Eudave-Muñoz’s extensions [1988] of the original band sum theorem. The
techniques of this paper can be specialized to rational tangle replacement to recap-
ture and extend some, but not all, of his results. In [2008], Scharlemann suggests
that sutured manifold theory might contribute to a solution to his conjecture. This
paper vindicates that idea.

The paper [Taylor 2008] uses sutured manifold theory in a different way. The
two approaches are often useful in different circumstances. For example, the one
used in this paper is more effective for studying the existence of certain reduc-
ing spheres in a manifold obtained by refilling meridians and for studying non-
separating surfaces that are not homologous to a surface with interior disjoint
from W . The approach of [Taylor 2008] is more effective for studying essential
discs and separating surfaces.
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Notation. We work in the PL or smooth categories. All manifolds and surfaces
will be compact and orientable, except where indicated. |A| denotes the number
of components of A. If A and B are embedded curves on a surface, |A ∩ B| will
generally be assumed to be minimal among all curves isotopic to A and B. For a
subcomplex B ⊂ A, we denote by η(B) a closed regular neighborhood of B in A.
Both B̊ and int B denote the interior of B, and cl(B) denotes the closure of B.
∂B denotes the boundary of B. All homology groups have Z (integer) coefficients.

2. Sutured manifold theory

We begin by reviewing a few relevant concepts from combinatorial sutured mani-
fold theory [Scharlemann 1989].

2.1. Definitions. A sutured manifold is a triple (N , γ, ψ), where N is a compact,
orientable 3-manifold, γ is a collection of oriented simple closed curves on ∂N ,
and ψ is a properly embedded 1-complex. T (γ) denotes a collection of torus
components of ∂N . The curves γ divide ∂N−T (γ) into two surfaces that intersect
along γ. Removing η̊(γ) from these surfaces creates the surfaces R+(γ) and R−(γ).
Let A(γ)= η(γ).

For an orientable, connected surface S ⊂ N in general position with respect
to ψ , we define

χψ(S)=max{0, |S ∩ψ | −χ(S)}.

If S is disconnected, χψ(S) is the sum of χψ(Si ) for each component Si . For a class
[S] ∈ H2(N , X), we define χψ([S]) be the minimum of χψ(S) over all embedded
surfaces S representing [S]. If ψ =∅, then χψ( · ) is the Thurston norm.

Of utmost importance is the notion of ψ-tautness for both surfaces in a sutured
manifold (N , γ, ψ) and for a sutured manifold itself. Let S be a properly embedded
surface in N .

• S is ψ-minimizing in H2(N , ∂S) if χψ(S)= χψ [S, ∂S].

• S is ψ-incompressible if S−ψ is incompressible in N −ψ .

• S is ψ-taut if it is ψ-incompressible, ψ-minimizing in H2(N , ∂S), and each
edge of ψ intersects S with the same sign. If ψ = ∅, we say either that S is
∅-taut or that S is taut in the Thurston norm.

A sutured manifold (N , γ, ψ) is ψ-taut if

• ∂ψ (that is, valence one vertices) is disjoint from A(γ)∪ T (γ);

• T (γ), R+(γ), and R−(γ) are all ψ-taut; and

• N −ψ is irreducible.

The final important notion is the concept of a conditioned surface. A conditioned
surface S ⊂ N is an oriented properly embedded surface such that
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• if T is a component of T (γ), then ∂S ∩ T consists of coherently oriented
parallel circles;

• if A is a component of A(γ), then S∩ A consists of either circles parallel to γ
and oriented the same direction as γ or arcs all oriented in the same direction;

• no set of simple closed curves of ∂S ∩ R(γ) is trivial in H1(R(γ), ∂R(γ));

• each edge of ψ that intersects S ∪ R(γ) does so always with the same sign.

Conditioned surfaces, along with product discs and annuli, are the surfaces along
which a taut sutured manifold is decomposed to form a taut sutured manifold hi-
erarchy. A hierarchy can be taken to be “adapted” to a parameterizing surface,
that is, a surface Q ⊂ N − η̊(ψ) no component of which is a disc disjoint from
γ ∪ η(ψ). The index of a parameterizing surface is a certain number associated
to Q that does not decrease as Q is modified during the hierarchy.

2.2. Satellite knots have property P. It will be helpful to review the essentials of
the proof of [Scharlemann 1989, Theorem 9.1], where it is shown that satellite
knots have property P.

In that theorem, which considers a 3-manifold N with ∂N a torus, it is assumed
that H1(N ) is torsion-free and that k⊂ N is a knot in N such that (N ,∅) is a k-taut
sutured manifold. Suppose that some nontrivial surgery on k creates a manifold
that has a boundary-reducing disc Q and still has torsion-free first homology. The
main goal is to show that (N ,∅) is ∅-taut. The surface Q = Q − η̊(k) acts as
a parameterizing surface for a k-taut sutured manifold hierarchy of N . At the
end of the hierarchy, there is at least one component containing pieces of k. A
combinatorial argument using the assumption that H1(N ) is torsion-free shows
that, in fact, the last stage of the hierarchy is ∅-taut. Sutured manifold theory then
shows that the original manifold N is ∅-taut, as desired. This argument is extended
in [Scharlemann 1990] to study surgeries on knots in 3-manifolds that produce
reducible 3-manifolds. In that paper, the surface Q can be either a ∂-reducing disc
or a reducing sphere.

This paper extends these techniques in two other directions. First, we use an arc
α ⊂ M[α] in place of the knot k ⊂ N . Second, we develop criteria that allow the
surface Q⊂M[β] to be any of a variety of surfaces, including essential spheres and
discs. Section 5 shows how to construct a useful surface Q. Section 4 discusses
the placement of sutures on ∂M[α]. This allows theorems about sutured manifolds
to be phrased without reference to sutured manifold terminology. Section 6 applies
the sutured manifold results in order to (partially) answer Scharlemann’s conjecture
about refilling meridians of genus 2 handlebodies. Section 7 uses the technology
to reprove three classical theorems about rational tangle replacement and prove a
new theorem about essential meridional surfaces in the exterior of a knot or link
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obtained by boring a split link. Finally, Section 8 shows how the sutured man-
ifold theory results of this paper can significantly simplify certain combinatorial
arguments.

3. Attaching a 2-handle

Let N be a compact orientable 3-manifold containing a component F ⊂ ∂N of
genus at least two. Let a⊂ F be an essential closed curve and let B={b1, . . . , b|B|}
be a collection of disjoint, pairwise nonparallel essential closed curves in F iso-
toped so as to intersect a minimally. Suppose that γ⊂ ∂N is a collection of simple
closed curves, disjoint from a, such that (N , γ∪a) is a taut sutured manifold and γ
intersects the curves of B minimally. Let 1i = |bi ∩ a| and νi = |bi ∩ γ|.

Suppose that Q ⊂ N is a surface with qi boundary components parallel to the
curve bi , for each 1≤ i≤|B|. Let ∂0 Q be the components of ∂Q that are not parallel
to any bi . Assume that ∂Q intersects γ∪a minimally. Define 1∂ = |∂0 Q ∩a| and
ν∂ = |∂0 Q ∩ γ|. We need two definitions. The first defines a specific type of
boundary compression and the second (as we shall see) is related to the notion of
“Scharlemann cycle”.

Definition. An a-boundary compressing disc for Q is a boundary compressing
disc D for which ∂D ∩ F is a subarc of some essential circle in η(a).

Definition. An a-torsion 2g-gon is a disc D ⊂ N with ∂D ⊂ F ∪ Q consisting
of 2g arcs labeled around ∂D as δ1, ε1, . . . , δg, εg. The labels are chosen so that
∂D∩Q=

⋃
δi and ∂D∩F =

⋃
εi . We require that each εi arc is a subarc of some

essential simple closed curve in η(a) and that the εi arcs are all mutually parallel
as oriented arcs in F−∂Q. Furthermore we require that attaching to Q a rectangle
in F − ∂Q containing all the εi arcs produces an orientable surface.

Example. Figure 1 shows a hypothetical example. The surface outlined with
dashed lines is Q. It has boundary components on F . There are two such boundary
components pictured. The curve running through Q and F could be the boundary
of an a-torsion 4-gon. Notice that the arcs ε1 and ε2 are parallel and oriented in the
same direction. Attaching the rectangle containing those arcs as two of its edges
to Q produces an orientable surface.

Remark. Notice that an a-torsion 2-gon is an a-boundary compressing disc.

If 2-handles are attached to each curve bi for 1 ≤ i ≤ |B|, a 3-manifold N [B]
is obtained. Each component of ∂Q − ∂0 Q bounds a disc in N [B]. Let Q be the
result of attaching a disc to each component of ∂Q − ∂0 Q. Then ∂Q = ∂0 Q. We
will usually also attach 3-balls to spherical components of ∂N [B]. Throughout the
paper, if a 2-handle β× I is attached to a curve b, the cocore of the 2-handle will be
denoted β. Thus, the notations α, β, and β∗ all refer to arcs in certain 3-manifolds.
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δ1

Q

δ2

ε2 ε1

F

Figure 1. The boundary of an a-torsion 4-gon.

Remark. The term “a-torsion 2g-gon” is chosen because in certain cases (but not
all) the presence of an a-torsion 2g-gon with g ≥ 2 guarantees that N [B] has
torsion in its first homology.

Define

K (Q)=
|B|∑
i=1

qi (1i − 2)+1∂ − ν∂ .

We will use the surface Q to study the effects of attaching a 2-handle α × I
to a regular neighborhood of the curve a ⊂ F . Let N [a] denote the resulting 3-
manifold. Perform the attachment so that the 2-disc α has boundary a. Let α
denote the arc that is the cocore of the 2-handle α× I .

We can now state our main sutured manifold theory result. It is an adaptation of
[Scharlemann 1989, Theorem 9.1]; see also [Scharlemann 1990, Proposition 4.1].

Main Theorem. Suppose that (N [a], γ) is α-taut, that Q is incompressible, and
that Q contains no disc or sphere component disjoint from γ∪a. Suppose that one
of the following holds:

• N [a] is not ∅-taut.

• There is a conditioned α-taut surface S ⊂ N [a] that is not ∅-taut.

• N [a] is homeomorphic to a solid torus S1
× D2 and α cannot be isotoped so

that its projection to the S1 factor is monotonic.
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Then at least one of the following holds:

• There is an a-torsion 2g-gon for Q for some g ∈ N.

• H1(N [a]) contains nontrivial torsion.

• −2χ(Q)≥ K (Q).

Remark. If α can be isotoped to be monotonic in the solid torus N [a] then it is,
informally, a “braided arc”. The contrapositive of this aspect of the theorem is sim-
ilar to the conclusion in [Gabai 1989] and [Scharlemann 1990] that if a nontrivial
surgery on a knot with nonzero wrapping number in a solid torus produces a solid
torus, then the knot is a 0 or 1-bridge braid.

The rest of this section proves the theorem. Following [Scharlemann 1990],
define a Gabai disc for Q to be an embedded disc D ⊂ N [a] such that

• |α ∩ D̊|> 0 and all points of intersection have the same sign of intersection,

• |Q ∩ ∂D|< |∂Q ∩ η(a)|.

The next proposition points out that the existence of a Gabai disc guarantees the
existence of an a-boundary compressing disc or an a-torsion 2g-gon.

Proposition 3.1. If there is a Gabai disc for Q, then there is an a-torsion 2g-gon.

Proof. Let D be a Gabai disc for Q. The intersection of Q with D produces a
graph 3 on D. The vertices of 3 are ∂D and the points α ∩ D. The latter are
called the interior vertices of 3. The edges of 3 are the arcs Q ∩ D. A loop is an
edge in 3 with initial and terminal points at the same vertex. A loop is trivial if it
bounds a disc in D with interior disjoint from 3.

To show that there is an a-torsion 2g-gon for Q, we will show that the graph
3 contains a “Scharlemann cycle” of length g. The interior of the Scharlemann
cycle will be the a-torsion 2g-gon. In our situation, Scharlemann cycles will arise
from a labeling of 3 that is slightly nonstandard. Traditionally, when α is a knot
instead of an arc, the labels on the endpoints of edges in3, which are used to define
“Scharlemann cycles”, are exactly the components of ∂Q. In our case, since each
component of ∂Q likely intersects a more than once, we need to use a slightly dif-
ferent labeling. After defining the labeling and the revised notion of “Scharlemann
cycle”, it will be clear to those familiar with the traditional situation that the new
Scharlemann cycles give rise to the same types of topological conclusions as in the
traditional setting. The discussion is modeled on [Culler et al. 1987, Section 2.6].

A Scharlemann cycle of length 1 is defined to be a trivial loop at an interior
vertex of 3 bounding a disc with interior disjoint from 3. We now work toward
a definition of Scharlemann cycles of length g > 1. Without loss of generality,
we may assume that |α ∩ D| ≥ 2. Recall that the arc α always intersects the
disc D with the same sign. There is, in F , a regular neighborhood A of a such
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that D ∩ F ⊂ A. We may choose A so that ∂A ⊂ D ∩ F . Let ∂±A be the two
boundary components of A. The boundary components of Q all have orientations
arising from the orientation of Q. We may assume by an isotopy that all the arcs
∂Q∩ A are fibers in the product structure on A. Cyclically around A, label the arcs
of ∂Q ∩ A with labels c1, . . . , cµ. Let C be the set of labels. Being a submanifold
of ∂Q, each arc is oriented. Say that two arcs are parallel if they run through A in
the same direction (that is, both from ∂−A to ∂+A or both from ∂+A to ∂−A). Call
two arcs antiparallel if they run through A in opposite directions. Note that since
the orientations of D̊ ∩ F in A are all the same, an arc intersects each component
of D̊ ∩ F with the same algebraic sign.

Call an edge of 3 with at least one endpoint on ∂D a boundary edge, and call
all other edges interior edges. As each edge of 3 is an arc and as all vertices of 3
are parallel oriented curves on ∂W , an edge of 3 must have endpoints on arcs of
C = {c1, . . . , cµ} that are antiparallel. As in [Culler et al. 1987], we call this the
parity principle. Label each endpoint of an edge in 3 with the arc in C on which
the endpoint lies.

We will occasionally orient an edge e of3; in which case, let ∂−e be the tail and
∂+e the head. A cycle in 3 is a subgraph homeomorphic to a circle. An x-cycle
is a cycle which, when each edge e in the cycle is given a consistent orientation,
has ∂−e labeled with x ∈ C. Let 3′ be a subgraph of 3, and let x be a label in C.
We say that 3′ satisfies condition P(x) if, for each vertex v of 3′, there exists an
edge of 3′ incident to v with label x connecting v to an interior vertex.

Lemma 3.2 [Culler et al. 1987, Lemma 2.6.1]. Suppose that 3′ satisfies P(x).
Then each component of 3′ contains an x-cycle.

Proof. The proof is the same as in [Culler et al. 1987]. �

A Scharlemann cycle is an x-cycle σ where the interior of the disc in D bounded
by σ is disjoint from 3. See Figure 2. Since each intersection point of D ∩ α has
the same sign, the set of labels on a Scharlemann cycle contains x and precisely
one other label y, a component of C adjacent to x in A. The arc y and the arc x
are antiparallel by the parity principle. The length of the Scharlemann cycle is the
number of edges in the x-cycle.

Lemma 3.3 [Culler et al. 1987, Lemma 2.6.2]. If 3 contains an x-cycle, then
(possibly after a trivial 2-surgery on D), 3 contains a Scharlemann cycle.

Proof. The proof is again the same as in [Culler et al. 1987]. It uses the assumption
that Q is incompressible to eliminate circles of intersection on the interior of an
innermost x-cycle. �



136 SCOTT A. TAYLOR
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δ1

x

δ2

x
δ3

x

δ4 E

Figure 2. A Scharlemann cycle of length 4 bounding an a-torsion
8-gon.

Remark. The presence of any such disc D with3 containing a Scharlemann cycle
is good enough for our purposes. So, henceforth, we assume that all circles in 3
have been eliminated using the incompressibility of Q.

Remark. In [Culler et al. 1987], there is a distinction between x-cycles and so-
called great x-cycles. We do not need this here because all components of D ∩ F
are parallel in η(∂α) as oriented curves.

The next corollary explains the necessity of considering Scharlemann cycles.

Corollary 3.4 [Culler et al. 1987]. If ∂D intersects fewer than |∂Q ∩ A| edges
of 3, then 3 contains a Scharlemann cycle.

Proof. As ∂D contains fewer than |∂Q ∩ A| endpoints of boundary edges in 3,
there is some x ∈ C that does not appear as a label on a boundary edge. As every
interior vertex of3 contains an edge with label x at that vertex, none of those edges
can be a boundary edge. Consequently, 3 satisfies P(x). Hence, by Lemmas 3.2
and 3.3, 3 contains a Scharlemann cycle of length g (for some g). �

In A there is a rectangle R with boundary consisting of the arcs x and y and
subarcs of ∂A. See Figure 3. Because α always intersects D with the same sign,
∂D always crosses R in the same direction. This shows that the arcs εi are all
mutually parallel in F . The arcs x and y are antiparallel, so attaching R to Q
produces an orientable surface. Hence, the interior of the Scharlemann cycle is an
a-torsion 2g-gon. �

We now proceed with proving the contrapositive of the theorem. Suppose that
none of the three possible conclusions of the theorem hold.
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A

R
x

y

Figure 3. The rectangle R.

First, Q is a parameterizing surface for the α-taut sutured manifold (N [a], γ).
Let

(N [a], γ)= (N0, γ0)
S1
−→ (N1, γ1)

S2
−→ · · ·

Sn
−→ (Nn, γn)

be an α-taut sutured manifold hierarchy for (N [a], γ) that is adapted to Q. The
surface S1 may be obtained from the surface S by performing the double-curve sum
of S with k copies of R+ and l copies of R− [Scharlemann 1989, Theorem 2.6].

The index I (Qi ) is defined to be

I (Qi )= |∂Qi ∩ ∂η(αi )| + |∂Qi ∩ γi | − 2χ(Qi ),

where Qi is the parameterizing surface in Ni and αi is the remnant of α in Ni . Since
−2χ(Q) < K (Q), simple arithmetic shows that I (Q) < 2|∂Q∩η(a)|. Since there
is no a-torsion 2g-gon for Q, by the previous proposition, there is no Gabai disc
for Q. The proof of [Scharlemann 1989, Theorem 9.1] shows that (Nn, γn) is also
∅-taut, after substituting the assumption that there are no Gabai discs for Q in N
wherever [Scharlemann 1989, Lemma 9.3] was used, as in [Scharlemann 1990,
Proposition 4.1]. To prove 3, 4, and 11 of [Scharlemann 1989, Theorem 9.1],
use the inequality I (Q) < 2|∂Q ∩ A| to derive a contradiction rather than the
inequalities stated in the proofs of those claims.

Hence, the hierarchy is ∅-taut, (N [a], γ) is a ∅-taut sutured manifold, and S1 is
a ∅-taut surface. Suppose that S is not ∅-taut. Then there is a surface S′ with the
same boundary as S but with smaller Thurston norm. Then the double-curve sum
of S′ with k copies of R+ and l copies of R− has smaller Thurston norm than S1,
showing that S1 is not ∅-taut. Hence, S is ∅-taut.



138 SCOTT A. TAYLOR

The proof of [Scharlemann 1989, Theorem 9.1] concludes by noting that at the
final stage of the hierarchy, there is a canceling or (nonself) amalgamating disc
for each remnant of α. When N [a] is a solid torus the only ∅-taut conditioned
surfaces are unions of discs. If S is chosen to be a single disc, then S1 is isotopic
to S. To see this, notice that R± is an annulus and so the double-curve sum of S
with R± is isotopic to S. Hence, the hierarchy has length one and the cancelling
and (nonself) amalgamating discs show that α is braided in N [a]. �

Remark. The proof proves more than the theorem states. It is actually shown that
at the end of the hierarchy, α∩ Nn consists of unknotted arcs in 3-balls. This may
be useful in future work.

For this theorem to be useful, we need to discuss the placement of sutures γ on
∂N and the construction of a surface Q without a-torsion 2g-gons. The next two
sections address these issues. In each of them, we restrict F to being a genus 2
surface.

4. Placing sutures

Let N be a compact, orientable, irreducible 3-manifold with F ⊂ ∂N a component
containing an essential simple closed curve a. Suppose that ∂N−F is incompress-
ible in N . For effective application of the main theorem, we need to choose curves
γ on ∂N [a] so that (N [a], γ) is α-taut. With our applications in mind, we restrict
our attention to the situation when the boundary component F containing a has
genus 2. Define ∂1 N [a] = ∂N − F and ∂0 N [a] = ∂N [a] − ∂1 N [a].

For the moment, we consider only the choice of sutures γ̂ on ∂0 N [a]. If a is sep-
arating, so that ∂0 N [a] consists of two tori joined by the arc α, we do not place any
sutures on ∂0 N [a], that is, γ̂ =∅. See Figure 4A. If a is nonseparating, choose γ̂
to be a pair of disjoint parallel loops on F−η(a) that separate the endpoints of α.
See Figure 4B.

If we are in the special situation of “refilling meridians”, we will want to choose
the curves γ̂ more carefully. Recall that in this case N ⊂ M and F bounds a
genus 2 handlebody W ⊂ (M− N̊ ). The curves a and b bound in W discs α and β
respectively.

Assuming that the discs β and α have been isotoped to intersect minimally and
nontrivially, the intersection α ∩ β is a collection of arcs. An arc of α ∩ β that is
outermost on β cobounds with a subarc ψ of b a disc with interior disjoint from α.
This disc is a meridional disc of a (solid torus) component of W− η̊(α). The arc ψ
has both endpoints on the same component of ∂η(a) ⊂ F . We therefore define
a meridional arc of b − a to be any arc of b − η̊(a) that together with an arc in
∂η(α) ∩ W̊ bounds a meridional disc of W − η̊(α). If a is nonseparating, then
the existence of meridional arcs shows that every arc of b− η̊(a) with endpoints
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B.

γ̂

α

α

Figure 4. Choosing γ̂.

Figure 5. Some meridional arcs on ∂W .

on the same component of ∂η(a) ⊂ F is a meridional arc of b − a. An easy
counting argument shows that if a is nonseparating, then there are equal numbers
of meridional arcs of b−a based at each component of ∂η(a)⊂ F . Hence, when a
is nonseparating, the number of meridional arcs of b− a, denoted Ma(b), is even.
Some meridional arcs are depicted in Figure 5.

Returning to the definition of the sutures γ̂, we insist that when “refilling merid-
ians” and when α is nonseparating, the curves γ̂ be meridional curves of the solid
torus W − η̊(α) that separate the endpoints of α and that are disjoint from the
meridional arcs of b− a for a specified b.

We now show how to define sutures γ̃ on nontorus components of ∂1 N [a]. Let
T (γ) be all the torus components of ∂1 N [a]. If ∂1 N=T (γ), then γ̃=∅. Otherwise,
the next lemma demonstrates how to choose γ̃ so that, under certain hypotheses,
(N , γ ∪ a) is taut, where γ = γ̂ ∪ γ̃.
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Lemma 4.1. Suppose that F − (γ ∪ a) is incompressible in N. Suppose also that
if ∂1 N [a] 6= T (γ), then there is no essential annulus in N with boundary on γ̂ ∪ a.
Then γ̃ can be chosen so that (N , γ ∪ a) is ∅-taut and so that (N [a], γ) is α-taut.
Furthermore, if c⊂ ∂1 N [a] is a collection of disjoint, nonparallel curves such that

• |c| ≤ 2;

• all components of c are on the same component of ∂1 N [a];

• no curve of c cobounds an essential annulus in N with a curve of γ̂ ∪ a;

• if |c| = 2, then there is no essential annulus in N with boundary c; and

• if |c| = 2 and a is separating, there is no essential thrice punctured sphere in
N with boundary c∪ a,

then γ̃ can be chosen to be disjoint from c.

The main ideas of the proof are contained in [Scharlemann 1990, Section 5]
and [Lackenby 1997, Theorem 2.1]. Scharlemann considers “special” collections
of curves on a nontorus component of ∂N . These curves cut the component into
thrice punctured spheres. Exactly two of the curves in the collection bound once
punctured tori. In those tori are two curves of the collection that are called “re-
dundant”. The redundant curves are removed, and the remaining curves form the
desired sutures. Scharlemann shows how to construct such a special collection that
is disjoint from a set of given curves and that gives rise to a taut-sutured manifold
structure on the manifold under consideration. Lackenby uses essentially the same
construction (but with fewer initial hypotheses) to construct a collection of curves
cutting the nontorus components of ∂N into thrice punctured spheres, but where all
the curves are nonseparating. We need to allow the sutures to contain separating
curves as c may contain separating curves. By slightly adapting Scharlemann’s
work, in the spirit of Lackenby, we can make do with the hypotheses of the lemma,
which are slightly weaker than what a direct application of Scharlemann’s work
would allow.

Proof. Let τ be the number of once punctured tori in ∂N with boundary some
component of c∪a. Since all components of c are on the same component of ∂N ,
τ ≤ 4 with τ ≥ 3 only if a is separating.

Say that a collection of curves on ∂N is pantsless if, whenever a thrice punctured
sphere has its boundary a subset of the collection, all components of the boundary
are on the same component of ∂N . If a is nonseparating, then τ ≤ 2. Hence, either
τ ≤ 2 or c∪ a ∪ γ̂ is pantsless.

Scharlemann shows how to extend the set c to a collection 0 such that there is
no essential annulus in N with boundary on 0∪a∪ γ̂ and the curves 0 cut ∂N into
tori, once punctured tori, and thrice punctured spheres. Furthermore, if c ∪ a ∪ γ̂
is pantsless, then so is 0 ∪ a ∪ γ̂. An examination of Scharlemann’s construction
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shows that all curves of 0−c may be taken to be nonseparating. Thus, the number
of once punctured tori in ∂N with boundary on some component of 0∪a is still τ .
If 0 cannot be taken to be a collection of sutures on ∂N , then, by construction,
|c| = 2, and one curve of c bounds a once punctured torus in ∂N containing the
other curve of c. The component of c in the once punctured torus is “redundant”
in Scharlemann’s terminology. If no curve of c is redundant, let γ̃ = 0; otherwise,
form γ̃ by removing the redundant curve from 0. Let γ′ = γ̃ ∪ a ∪ γ̂. We now
have a sutured manifold (N , γ′). Notice that the number of once punctured torus
components of ∂N − γ′ is equal to τ .

We now desire to show that (N , γ′) is ∅-taut. If it is not taut, then R±(γ) is
not norm-minimizing in H2(N , η(∂R±)). Let J be an essential surface in N with
∂ J = ∂R±=γ′. Notice that χ∅(R±)=−χ(∂N )/2 and that |γ′|=−3χ(∂N )/2−τ .

Recall that either τ ≤ 2 or γ′ is pantsless. Suppose first that τ ≤ 2. Since no
component of J can be an essential annulus, by the arguments of Scharlemann and
Lackenby, χ∅(J ) ≥ |∂ J |/3 = |γ′|/3. Hence, χ∅(J ) ≥ −χ(∂N )/2− τ/3. Since
τ ≤ 2 and since χ∅(J ) and −χ(∂N )/2 are integers, χ∅(J ) ≥ |∂N |/2= χ∅(R±).
Thus, (N , γ′) is a ∅-taut sutured manifold when τ ≤ 2.

Suppose therefore that γ′ is pantsless. Recall that τ ≤ 4. We first examine the
case when each component of J has its boundary contained on a single component
of ∂M . Let J0 be all the components of J with boundary on a single component T
of ∂N . Let τ0 be the number of once punctured torus components of T−γ′. Notice
that τ0 ≤ 2. The proof for the case when τ ≤ 2 shows that χ∅(J0)≥ χ∅(R± ∩ T ).
Summing over all component of ∂N shows that χ∅(J )≥ χ∅(R±), as desired.

We may therefore assume that some component J0 of J has boundary on at
least two components of ∂N . Since γ′ is pantsless, χ∅(J0) ≥ (|∂ J0| + 2)/3. For
the other components of J we have χ∅(J − J0)≥ |∂(J − J0)|/3. Thus

χ∅(J )≥
|γ′|+2

3
≥ −

χ(∂N )
2
+

2−τ
3
.

Since τ ≤ 4 and since χ∅(J ) and −χ(∂N )/2 are integers, we have as desired that
χ∅(J )≥−χ(∂N )/2= χ∅(R±). Hence (N , γ′)= (N , γ ∪ a) is ∅-taut. �

Remark. The assumption that all components of c are contained on the same
component of ∂1 N [a] can be weakened to a hypothesis on the number τ . For
what follows, however, our assumption suffices.

We will be interested in when a component of ∂N − F becomes compressible
upon attaching a 2-handle to a⊂ F and also becomes compressible upon attaching
a 2-handle to b ⊂ F . If such occurs, the curves c of the previous lemma will be
the boundaries of the compressing discs for that component of ∂N . Obviously, in
order to apply the lemma we will need to make assumptions on how that component
compresses.
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5. Constructing Q

The typical way in which we will apply the main theorem is as follows. Suppose
that a and b are simple closed curves on a genus 2 component F ⊂ ∂N and that
there is an “interesting” surface R⊂ N [b]. We will want to use this surface to show
that either−2χ(R)≥K (R) or N [a] is taut. A priori, though, the surface R= R∩N
may have a-boundary compressing discs or a-torsion 2g-gons. The purpose of this
section is to show how, given the surface R, we can construct another surface Q
which will hopefully have similar properties to R but be such that Q= Q∩N does
not have a-boundary compressing discs or a-torsion 2g-gons. This goal will not be
entirely achievable, but Theorem 5.1 shows how close we can come. Throughout
we assume that N is a compact, orientable, irreducible 3-manifold with F ⊂ ∂N
a component having genus equal to 2. Let a and b be two essential simple closed
curves on F so that a and b intersect minimally and nontrivially. As before, let
∂1 N = ∂1 N [b] = ∂N − F and let ∂0 N [b] = ∂N [b]− ∂1 N [b]. Let T0 and T1 be the
components of ∂0 N [b]. If b is nonseparating, then T0 = T1.

Before stating the theorem, we make some important observations about N [b]
and surfaces in N [b]. If b is nonseparating, there are multiple ways to obtain a
manifold homeomorphic to N [b]. Certainly attaching a 2-handle to b is one such
way. If b∗ is any curve in F that cobounds in F with ∂η(b) a thrice punctured
sphere, then attaching 2-handles to both b∗ and b creates a manifold with a spher-
ical boundary component. Filling in that sphere with a 3-ball creates a manifold
homeomorphic to N [b]. We will often think of N [b] as obtained in this fashion.
Say that a surface Q ⊂ N [b] is suitably embedded if each component of ∂Q−∂Q
is a curve parallel to b or to some b∗. We denote the number of components of
∂Q− ∂Q parallel to b by q = q(Q) and the number parallel to b∗ by q∗ = q∗(Q).
Let q̃ = q+q∗. If b is separating, define b∗=∅. Define1= |b∩a|, 1∗= |b∗∩a|,
ν = |b∩ γ|, and ν∗ = |b∗ ∩ γ|. We then have

K (Q)= (1− ν− 2)q + (1∗− ν∗− 2)q∗+1∂ − ν∂ .

Define a slope on a component of ∂N [b] to be an isotopy class of pairwise dis-
joint, pairwise nonparallel curves on that component. The set of curves is allowed
to be the empty set. Place a partial order on the set of slopes on a component
of ∂N [b] by declaring r ≤ s if there is some set of curves representing r that is
contained in a set of curves representing s. Notice that ∅ ≤ r for every slope r .
Say that a surface R ⊂ N [b] has boundary slope ∅ on a component of ∂N if ∂Q
is disjoint from that component. Say that a surface R ⊂ N [b] has boundary slope
r 6=∅ on a component of ∂N if each curve of ∂R on that component is contained
in some representative of r and every curve of a representative of r is isotopic to
some component of ∂R.
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Define a surface to be essential if it is incompressible, boundary incompressible
and has no component that is boundary-parallel or that is a 2-sphere bounding
a 3-ball. The next theorem takes as input an essential surface R ⊂ N [b] and
gives as output a surface Q such that Q = Q ∩ N can (in many circumstances)
be effectively used as a parameterizing surface. The remainder of the section will
be spent proving it.

Theorem 5.1. Suppose that R ⊂ N [b] is a suitably embedded essential surface
and suppose either

(I) R is a collection of essential spheres and discs, or

(II) N [b] contains no essential sphere or disc.

Then there is a suitably embedded incompressible and boundary-incompressible
surface Q ⊂ N [b] with the following properties. (The properties have been orga-
nized for convenience. The properties marked with a “*” are optional and need
not be invoked.)

• Q is no more complicated than R:

(C1) (−χ(Q), q̃(Q))≤ (−χ(R), q̃(R)) in lexicographic order.
(C2) The sum of the genera components of Q is no bigger than the sum of the

genera of components of R.
(C3) Q and R represent the same class in H2(N [b], ∂N [b]).

• The options for compressions, a-boundary compressions, and a-torsion 2g-
gons are limited:

(D0) Q is incompressible.
(D1) Either there is no a-boundary compressing disc for Q or q̃ = 0.

(*D2) If no component of R is separating and if q̃ 6= 0, then there is no a-torsion
2g-gon for Q.

(D3) If Q is a disc or 2-sphere, then either N [b] has a lens space connected
summand or there is no a-torsion 2g-gon for Q with g ≥ 2.

(D4) If Q is a planar surface, then either there is no a-torsion 2g-gon for
Q with g ≥ 2 or attaching 2-handles to ∂N [b] along ∂Q produces a
3-manifold with a lens space connected summand.

• The boundaries are not unrelated:

(*B1) Suppose that (II) holds, that we are refilling meridians, that no component
of R separates, and that ∂R has exactly one nonmeridional component on
each component of ∂0 N [b]. Then Q has exactly one boundary component
on each component of ∂0 N [b] and the slopes are the same as those of
∂R ∩ ∂0 N [b].
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(B2) If ∂R ∩ ∂1 N is contained on torus components of ∂1 N or if neither (*D2)
or (*B1) are invoked, then the boundary slope of Q on a component of
∂1 N [b] is less than or equal to the boundary slope of R on that compo-
nent.

(B3) If (*D2) is not invoked and if the boundary slope of R on a component of
∂0 N [b] is nonempty, then the boundary slope of Q on that component is
less than or equal to the boundary slope of R.

Property (*B1), which is the most unpleasant to achieve, is present to guarantee
that if R is a Seifert surface for Lβ , then Q (possibly after discarding components)
is a Seifert surface for Lβ . This is not used subsequently in this paper, but future
work is planned which will make use of it. However, achieving property (*D2),
which is used here, requires similar considerations. Here, we will often want to
achieve (*D2), though it is incompatible with (B3). However, [Taylor 2008] does
not need (*D2), and so we state the theorem in a fairly general form.

The only difficulty in proving the theorem is keeping track of the listed properties
of Q and R. Eliminating a-boundary compressions is psychologically easier than
eliminating a-torsion 2g-gons, so we first go through the argument that a surface
Q exists that has all but properties (*D2)–(D4). The argument may be easier to
follow if, on a first reading, R is considered to be a sphere or essential disc. The
proof is based on similar work in [Scharlemann 2008], which restricts R to being
a sphere or disc.

The main purpose of assumptions (I) and (II) is to easily guarantee that the pro-
cess for creating Q described below terminates. We will show that if q̃(R) 6= 0 and
there is an a-boundary compressing disc or a-torsion 2g-gon for R = R ∩ N , then
there is a sequence of operations on R each of which reduces a certain complexity
but preserves the properties listed above (including essentiality of R). If (I) holds,
the complexity is (q̃(R),−χ(R)), with lexicographic ordering. If (II) holds, the
complexity is (−χ(R), q̃(R)), also with lexicographic ordering. If (II) holds, it
is clear that −χ(R) is always nonnegative. It will be evident that each measure
of complexity has a minimum. The process stops either when q̃ = 0 or when the
minimum complexity is reached.

5.1. Eliminating compressions. Suppose that R is compressible, and let D be a
compressing disc. Since R is incompressible, ∂D is inessential on R. Compress R
using D. Let Q be the new surface. Q consists of a surface of the same topological
type as R and an additional sphere. We have q̃(Q)= q̃(R). If we are assuming (II),
the sphere component must be inessential in N [b] and so may be discarded. Notice
that in both cases (I) and (II) the complexity has decreased. Since R can be com-
pressed only finitely many times, the complexity cannot be decreased arbitrarily
far by compressions.
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T0 W1 Wq−1 T1

β1 βq

Figure 6. The tori and 1-handles W j .

R
δ

W j

Figure 7. The disc D describes an isotopy of R.

5.2. Eliminating a-boundary compressions. Assume that q̃ 6= 0 and that there is
an a-boundary compressing disc D for R with ∂D = δ ∪ ε, where ε is a subarc of
some essential circle in η(a). There is no harm in considering ε ⊂ a− ∂R.

Case 1: b separates W . In this case, η(β)−int R consists of q−1 copies of D2
× I ,

labeled W1, . . . ,Wq−1, and ∂0 N [b] = ∂N [b]−∂N has two components T0 and T1,
both tori. The frontiers of the W j in η(β) are discs β1, . . . , βq , each parallel to β,
the core of the 2-handle attached to b. Each 1-handle W j lies between β j and β j+1.
The torus T0 is incident to β1 and the torus T1 is incident to βq . See Figure 6.

The interior of the arc ε ⊂ F is disjoint from ∂R. Consider the options for how
ε could be positioned on W :

Case 1.1: ε lies in ∂W j ∩ F for some 1≤ j ≤ q − 1. In this case, ε must span the
annulus ∂W j ∩ F . The 1-handle W j can be viewed as a regular neighborhood of
the arc ε. The disc D can then be used to isotope W j through ∂D ∩ R, reducing
|R∩β| by 2. See Figure 7. This maneuver decreases q̃(R). Alternatively, the disc
E describes an isotopy of R to a surface Q in N [b] reducing q̃ . Clearly, Q satisfies
the (C) and (B) properties.
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T0
∂R

D

R

β1

Figure 8. The disc D describes an isotopy of R.

Suppose, then, that ε is an arc on T0 or T1. Without loss of generality, we may
assume it is on T0.

Case 1.2: ε lies in T0 and has both endpoints on ∂R. This is impossible since R
was assumed to be essential in N [b] and q̃ > 0.

Case 1.3: ε lies in T0 and has one endpoint on ∂β1 and the other on ∂R. The
disc D guides a proper isotopy of R to a surface Q in N [b] that reduces q̃ . See
Figure 8. Clearly, the (C) and (D) properties are satisfied.

Case 1.4: ε lies in T0 and has endpoints on ∂β1. Boundary-compressing R − β̊1

produces a surface J with two new boundary components on T0, both of which are
essential curves. They are oppositely oriented and bound an annulus containing β1.
If ∂R∩T0 6=∅, then these two new components have the same slope on T0 as ∂R,
showing that property (B2) is satisfied. It is easy to check that χ(J ) = χ(R) and
that q̃(J ) = q̃(R)− 1, so that (C1) is satisfied. Clearly, (C2), (C3), and (B3) are
also satisfied.

If J were compressible, there would be a compressing disc for R by an outermost
arc/innermost disc argument. Thus, J is incompressible. Suppose that E is a
boundary-compressing disc for J in N [b] with ∂E = κ ∪ λ, where κ is an arc
in ∂N [b] and λ is an arc in J . Since R is boundary-incompressible, the arc κ
must lie on T0 (and not on T1). Since T0 is a torus, either some component of J
is a boundary-parallel annulus or J (and therefore R) is compressible. We may
assume the former. If J has other components apart from the boundary-parallel
annulus, discarding the boundary-parallel annulus leaves a surface Q satisfying
the (C) and (B) properties. We may therefore assume that J in its entirety is a
boundary-parallel annulus.

Since χ(R) = χ(J ), since J is a boundary-parallel annulus, and since ∂ J has
two more components then ∂R, R is an essential torus. However, using D to
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T0

β1

Figure 9. The annulus A lies between ∂R and one of the new
boundary components of L .

isotope η(δ) ⊂ R into T0 and then isotoping J into T0 gives a homotopy of R
into T0, showing that it is not essential, a contradiction.

Thus, after possibly discarding a boundary-parallel annulus from J to obtain L ,
we obtain a nonempty essential surface in N [b] satisfying the first five required
properties. If we do not desire property (*B1) to be satisfied, take Q = L . Notice
that this step may, for example, convert an essential sphere into two discs or an
essential disc with boundary on ∂1 N [b] into an annulus and a disc with boundary
on ∂0 N [b]. This fact accounts for the delicate phrasing of the (B) properties.

Suppose therefore that we wish to satisfy (*B1). Among other properties, we
assume that R has a single boundary component on T0.

There is an annulus A⊂ T0 that is disjoint from β1⊂ T0, that has interior disjoint
from ∂L , and that has its boundary two of the two or three components of ∂L . See
Figure 9, in which the dashed line represents the arc ε. The two circles formed
by joining ε to ∂β1 are the two new boundary components of L . Since they came
from a boundary-compression, they are oppositely oriented. If ∂R has a single
component on T0 (indicated by the curve with arrows in the figure), it must be
oriented in the opposite direction from one of the new boundary components of ∂L .
Attaching A to L creates an orientable surface and does not increase negative Euler
characteristic or q̃.

Thus, L ∪ A is well defined if |∂R ∩ T0| ≤ 1. It may however be compress-
ible or boundary-compressible. Since it represents the homology class [R] in
H2(N [b], ∂N [b]), as long as that class is nonzero we may thoroughly compress
and boundary-compress it, obtaining a surface J . Discard all null-homologous
components of J to obtain a surface Q. By assumption (II), we never discard an
essential sphere or disc. Note that since ∂R has a single boundary component on T1,
the surface Q will also have a single boundary component on T1. That is, discarding
separating components of J does not discard the component with boundary on T1.



148 SCOTT A. TAYLOR

Boundary-compressing J may change the slope of ∂ J on nontorus components
of ∂1 N [b]. Discarding separating components may convert a slope on a torus
component to the empty slope. Nevertheless, properties (B2) and (B3) still hold.

If a component of J is an inessential sphere, then either L A contained an inessen-
tial sphere or the sphere arose from compressions of L A. Suppose that the latter
happened. Then after some compressions L A contains a solid torus and compress-
ing that torus creates a sphere component. Discarding the torus instead of the
sphere shows that this process does not increase negative Euler characteristic. If
L A contains an inessential sphere, this component is either a component of L and
therefore of R or it arose by attaching A to two disc components, D1 and D2, of L .
The first is forbidden by the assumption that R is essential and the second by (II).
Consequently, negative Euler characteristic is not increased.

Notice that, in general, compressing L A may increase q̃ , but because −χ(Q)
is decreased, property (C1) is still preserved and complexity is decreased. Since
we assume (II) for the maneuver, if (I) holds at the end of this case, we can still
conclude that q̃ was decreased. (This is an observation needed to show that the
construction of Q for the conclusion of the theorem terminates.)

Case 2: b is nonseparating and q∗ 6= 0. This is very similar to Case 1. In what
follows, only the major differences are highlighted.

Since q∗ 6= 0, the cocore β∗ of the 2-handle attached to b∗ and the cocore β
form an arc with a loop at one end. Let U = η(β∗ ∪ β). Then U − R consists
of a solid torus, q∗− 1 copies of D2

× I labeled W ∗1 , . . . ,W ∗q∗−1, a 3-ball P, and
q−1 copies of D2

× I labeled W1, . . . ,Wq−1. The cylinders W ∗1 , . . . ,W ∗q∗−1 have
frontiers in U consisting of discs β∗1 , . . . , β

∗
q∗ all parallel to β∗ (the core of the

2-handle attached to b∗). The ball P has frontier in U consisting of 3 discs β∗q∗,
β1, and βq . The cylinders W1, . . . ,Wq−1 have with frontiers β1, . . . , βq consisting
of discs β1, . . . , βq∗ all parallel to β. See Figure 10. ∂0 N [b] consists of a single
torus T0.

Case 2.1: ε is not located in P. This is nearly identical to Case 1. To achieve
(*B1), an annulus attachment trick like that in Case 1.4 is necessary.

Case 2.2: ε is located in P. Since ∂R is essential in N [b] and since R is em-
bedded, ∂R is disjoint from P. The arc ε has its endpoints on exactly two of
{∂β∗q∗, ∂β1, ∂βq}. Denote by x and y the two discs containing ∂ε, and denote
the third by z. That is, {∂x, ∂y, ∂z} = {∂β∗q∗, ∂β1, ∂βq}. Boundary-compressing
cl(Q − (x ∪ y)) along D removes ∂x and ∂y as boundary-components of R and
adds another boundary-component parallel to ∂z. Attach a disc in F parallel to z
to this new component, forming J . Such J is isotopic in N [b] to R (see Figure 11)
and is therefore essential and satisfies the (C) and (B) properties.
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Figure 10. The torus, pair of pants, and 1-handles.
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Figure 11. The disc D in Case 2.2.

Case 3: b is nonseparating and q∗=0. Since b is nonseparating, η(β)−Q consists
of copies of D2

× I labeled W1, . . . ,Wq−1 that are separated by discs β1, . . . , βq

each parallel to β so that each Wi is adjacent to βi and βi+1, where the indices run
mod q. ∂0 N [b] is a single torus T0. See Figure 12.

We need only consider two more cases, as the others are similar to prior cases.
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Figure 12. The solid torus and 1-handles W j .

Case 3.4: ε is located on T0 and either both endpoints are on ∂β1 or both are
on ∂βq . The arc ε is a meridional arc. Suppose without loss of generality that
∂ε ⊂ ∂β1. Boundary-compress R − β̊1 along D. This creates a surface J with
boundary on T0. After possibly discarding a boundary-parallel annulus, J is es-
sential and the (C) properties hold as well as (B2) and (B3). We need to show that
(*B1) can be achieved, if desired.

Suppose that we are in the situation of refilling meridians, so that N ⊂ M and
F bounds a genus 2 handlebody W in M − N with a and b bounding discs in W .
Then since the endpoints of ε are on the same component of ∂η(a) ⊂ F , ε is a
meridional arc of b− a. If ∂R is not meridional on T0, this case therefore cannot
occur. Thus, the (C) and (B) properties hold.

Case 3.5: ε is located on T0 and has one endpoint on β1 and the other on βq . The
disc D guides an isotopy of R to a surface Q that is suitably embedded in N [b]
and has q∗(Q)= 1. We have q̃(Q)= q̃(R)−1. The surface Q can also be created
by boundary-compressing R− (β1 ∪ βq) with D and then adding a disc β∗ to the
new boundary component. See Figure 11. Clearly, the (C) and (B) properties hold.

The previous cases have each described an operation on R that produces an
essential surface Q having the (C) and (B) properties. Furthermore, the maneuver
described in each case strictly decreases complexity. Thus, after repeating the
operation enough times, either the surface Q will have q̃(Q) = 0 or there will be
no a-boundary compressions for Q. That is, the (C) and (B) properties hold, and
in addition, (D0) and (D1) hold.
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5.3. Eliminating a-torsion 2g-gons. We may now assume there is an a-torsion
2g-gon D for Q with g≥2 (since an a-torsion 2-gon is an a-boundary compressing
disc). For ease of notation, relabel and let R = Q and R = Q. By the definition of
a-torsion 2g-gon, there is a rectangle E containing the parallel arcs ∂D∩F which,
when attached to R, creates an orientable surface. Two opposite edges of ∂E lie
on ∂R and the other two are parallel (as unoriented arcs) to the arcs of ∂D ∩ F .
Denote the components of ∂R containing the two edges of ∂E by ∂x and ∂y . It is
entirely possible that ∂x = ∂y . If ∂x is a component of ∂R− ∂R, let βx denote the
disc in R− R that it bounds. Similarly define βy .

Suppose that R is a planar surface or 2-sphere. Let N̂ be the 3-manifold obtained
from N [b] by attaching 2-handles to ∂N [b] so that each component of ∂ J but one
bounds a disc in N̂ . Attach these discs to R, forming a surface R̂. Since R was
a planar surface or 2-sphere, R̂ is a disc or 2-sphere. A regular neighborhood of
R̂ ∪ E is a solid torus, and the disc D is in the exterior of that solid torus and
winds longitudinally around it n ≥ 2 times. Thus η(R̂ ∪ E ∪ D) is a lens space
connected summand of N̂ . Hence, redefining Q = J we satisfy the (C), (B), and
(D) properties.

We may therefore assume that R is not a planar surface or 2-sphere. We need
to show that we can achieve (*D2) in addition to the (C), (B), (D0), and (D1)
properties. The surface R′ = (R − (βx ∪ βy))∪ E is compressible by the disc D.
Compress it to obtain an orientable surface J . Notice that

(−χ(J ), q̃(J )) < (−χ(R), q̃(R)).

Analyzing the position of E as we did the position of ε in the previous section
and possibly performing the annulus attachment trick, we can guarantee that the (C)
and (B) properties are satisfied. If the ends of E are both on ∂R, the boundary of J
may have different slope from the boundary of R. Whether or not we perform the
annulus attachment trick, the surface J may be inessential. Compressing, boundary
compressing, and discarding null-homologous components produces a nonempty
essential surface Q satisfying properties (B) and (C). Considerations similar to
those necessary for achieving (*B1) in Case 1.4 explain why (B2) is phrased as
it is. (B3) is incompatible with (*D2) since discarding components may discard
∂R∩ ∂0 N [b], converting a nonempty slope to an empty slope. A future attempt to
eliminate an a-boundary compressing disc or a-torsion 2g-gon may then introduce
new boundary components on ∂0 N [b] of different slope.

As before, complexity has been strictly decreased under both assumptions (I)
and (II). Of course, we may now have additional compressing discs, a-boundary
compressing discs, or a-torsion 2g-gons to eliminate as in the previous sections.
Since all these operations lower complexity, the process terminates with the re-
quired surface Q. �
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The surface Q produced by the previous theorem may be disconnected. (For
example, if b is separating it is possible we could start with R being a disc with
boundary on T0 and end up with Q being the union of an annulus with boundary
on T0 ∪ T1 and a disc with boundary on T1.) The next corollary puts our minds
at rest by elucidating when we can discard components to arrive at a connected
surface Q.

Corollary 5.2. • If R is a collection of spheres or discs then after discarding
components of the surface Q created by Theorem 5.1, we may assume that Q
is an essential sphere or disc such that q̃(Q) ≤ q̃(R) and conclusions (B2),
(B3), (D0), (D1), (D3), and (D4) hold.

• If N [b] does not contain an essential disc or sphere, then we may assume the
Q produced by Theorem 5.1 to be connected and conclusions (C1), (C2), (B2),
and (D0)–(D4) hold. Furthermore, if R is nonseparating, so is Q.

Proof. Suppose that R is a collection of spheres or a discs, and let Q̃ be the surface
produced by Theorem 5.1. Notice that each component of Q̃∩N is incompressible.
Since −χ(R) < 0, by conclusions (C1) and (C2) of that theorem, −χ(Q̃) < 0 and
each component of Q̃ is a planar surface or Q̃ is a sphere. Indeed, at least one
component Q of Q̃ is a sphere or disc. By conclusion (D1), either Q̃ is disjoint
from β or there is no a-boundary compressing disc for Q̃ ∩ N . If there is an a-
boundary compressing disc for Q∩N , then an outermost arc argument shows that
there would be one for Q̃ ∩ N . Thus, either Q is disjoint from β or there is no a-
boundary compressing disc for Q. As argued in the proof of Theorem 5.1, if there
is an a-torsion 2g-gon for Q, then N [b] contains a lens space connected summand.
It is clear, therefore, that the required conclusions hold.

Suppose that N [b] contains no essential disc or sphere. Let Q̃ be the surface
produced by Theorem 5.1. Notice that Q̃ contains no disc or sphere components,
and also that each component of Q̃ ∩ N is incompressible. Choose a component
Q̃0 of Q̃ and discard the other components. Neither negative Euler characteristic
nor q̃ are raised. If R was nonseparating, choose Q̃0 to be nonseparating. Either Q̃0

satisfies the conclusion of the corollary or q̃(Q̃0) > 0, and there is an a-boundary
compressing disc or a-torsion 2g-gon for Q̃0∩N . Apply the theorem with R= Q̃0,
and notice that the surface Q̃1 produced has strictly smaller complexity. Thus,
repeating this process, each time discarding all but one component, we eventually
obtain the connected surface Q promised by corollary. �

6. Refilling meridians

We now turn to applying the main theorem to “refilling meridians”. For the remain-
der, suppose that M is a 3-manifold containing an embedded genus 2 handlebody
W . Let N = M− W̊ . Let α and β be two essential discs in W isotoped to intersect
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minimally and nontrivially. Let a = ∂α, b = ∂β, b∗ = ∂β∗, M[α] = N [a], and
M[β] = N [b]. Recall that Lα and Lβ are the cores of the solid tori produced by
cutting W along α and β respectively. If we need to place sutures γ̂ on F = ∂W
we will do so as described in Section 4. We begin by briefly observing that for
any suitably embedded surface Q ⊂ M[β], with boundary disjoint from γ ∩ ∂M ,
K (Q)≥ 0.

If α is separating,

K (Q)= q(1− 2)+ q∗(1∗− 2)+1∂ .

Since b, b∗, and a all bound discs in W , 1 is at least two. If q∗ 6= 0, then 1∗ is
also at least two. Thus, K (Q)≥ 0.

Recall from Section 4 that if α is nonseparating, any arc of b− η̊(a) with end-
points on the same component of ∂η(a) is a meridional arc of b− a. The number
of these meridional arcs is denoted Ma(b), and it is always even and always at least
two since there are the same number of meridional arcs based at each component
of ∂η(a)⊂ F . The sutures γ̂ are disjoint from these meridional arcs. Since any arc
of b− a that is not a meridional arc intersects exactly one suture exactly once, we
have

1− ν =Ma(b)≥ 2 and 1∗− ν∗ ≥Ma(b∗)≥ 2.

Since ∂Q is disjoint from b∪b∗, it is also disjoint from the meridional arcs of b−a.
Consequently, each arc of ∂Q− a intersects γ̂ at most once. Hence, 1∂ − ν∂ ≥ 0.
When α is nonseparating, we therefore have

K (Q)≥ q(Ma(b)− 2)+ q∗(Ma(b∗)− 2)+1∂ − ν∂ ≥ 0.

6.1. Scharlemann’s conjecture. Studying the operation of refilling meridians in
[2008], Scharlemann was led to the following definitions and conjecture.

Define (M,W ) to be admissible if

(A0) every sphere in M separates,

(A1) M contains no lens space connected summands,

(A2) any two curves in ∂M which compress in M are isotopic in ∂M ,

(A3) M −W is irreducible, and

(A4) ∂M is incompressible in N .

Conjecture (Scharlemann). If (M,W ) is admissible, then one of the following
occurs:

• M = S3 and W is unknotted (that is, N is a handlebody).

• At least one of M[α] and M[β] is irreducible and boundary-irreducible.

• α and β are “aligned” in W .
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The definition of “aligned” is rather complicated and is not needed for what
follows, so I will not define it here. I will only remark that it is a notion that is
independent of the embedding of W in M .

Scharlemann proved the following for admissible pairs (M,W ):

Theorem.
• If ∂W compresses in N , then the conjecture is true.

• If 1≤ 4, then the conjecture is true.

• If α is separating and M contains no summand that is a nontrivial rational
homology sphere, then one of M[α] and M[β] is irreducible and boundary-
irreducible.

• If both α and β are separating, then the conjecture is true. If in addition
1≥ 6, then one of M[α] and M[β] is irreducible and boundary-irreducible.

With a slight variation on the notion of admissible, Scharlemann’s conjecture
can now be completed for a large class of manifolds.

Define the pair (M,W ) to be licit if the following hold:

(L0) H2(M)= 0.

(L1) H1(M) is torsion-free.

(L2) No curve on a nontorus component of ∂M that compresses in M bounds an
essential annulus in N with a meridional curve of ∂W (that is, a curve on ∂W
that bounds a disc in W ).

(L3) N is irreducible.

(L4) ∂M is incompressible in N .

The major improvement provided by the next theorem is that the case of non-
separating meridians can be effectively dealt with. The theorem nearly completes
Scharlemann’s conjecture for pairs (M,W ) that are both licit and admissible. The
one major aspect of Scharlemann’s conjecture that is not covered by this theorem
is the question of whether or not both of M[α] and M[β] can be solid tori. In
[Taylor 2008], this case is resolved.

Theorem 6.1 (Modified Scharlemann conjecture). Suppose that (M,W ) is licit
and that α and β are two essential discs in W . Suppose ∂W is incompressible
in N. Then either α and β can be isotoped to be disjoint or all of the following
hold:

• One of M[α] or M[β] is irreducible.

• If one of M[α] or M[β] is reducible, then no curve on ∂M compresses in the
other.

• No curve on ∂M compresses in both M[α] and M[β].
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• If one of M[α] or M[β] is a solid torus, then the other is not reducible.

Conditions (L0) and (L1) are stronger than conditions (A0) and (A1) but are
used to guarantee that H1(M[α]) and H1(M[β]) are torsion-free; this is required
for the application of the main theorem. Condition (L2) is neither stronger nor
weaker than condition (A2) since we allow multiple curves on ∂M to compress
in M but forbid the existence of certain annuli. To show that some condition like
(A2) was required, Scharlemann points out an example:

Example. Let M be a genus 2-handlebody, and let W ⊂ M so that M − W̊ is
a collar on ∂W . (That is, M is a regular neighborhood of W .) Then conditions
(A0), (A1), (A3), (A4), (L0), (L1), (L3), and (L4) are all satisfied. But given any
essential disc α⊂W , M[α] is obviously boundary-reducible. Both (A2) and (L2)
rule out this example.

The modified Scharlemann conjecture is simply a “symmetrized” version of the
following theorem, in which the incompressibility assumption has been weakened
for later applications.

Theorem 6.2. Suppose that (M,W ) is licit and that α and β are two essential
discs, isotoped to intersect minimally, with 1> 0. Suppose that M[β] is reducible
or boundary-reducible. If α is separating, assume that ∂W − a is incompressible
in N. If β is nonseparating, assume that there is no essential disc in M[β] that is
disjoint from both β and a. Then

• M[α] is irreducible;

• if M[β] is reducible, no essential curve in ∂M compresses in M[α]; and

• if M[β] is boundary-reducible, no essential curve of ∂M compresses in both
M[β] and M[α].

Proof. We begin by showing that H1(M[α]) is torsion-free. Consider M as the
union of V = W − η̊(α) and M[α]. Using assumption (L0) that H2(M) = 0, we
see that the Mayer–Vietoris sequence gives the exact sequence

0→ H1(∂V )
φ
−→ H1(M[α])⊕ H1(V )

ψ
−→ H1(M)→ 0.

Suppose that x is an element of H1(M[α]) and that n ∈ N is such that nx = 0.
Then nψ(x, 0) = ψ(nx, 0) = 0. Since H1(M) is torsion-free, ψ(x, 0) = 0. Thus,
by exactness, (x, 0) is in the image of φ. Let y ∈ H1(∂V ) be in the preimage
of (x, 0). Also, φ(ny)= nφ(y)= (nx, 0)= (0, 0). From exactness, we know that
φ is injective. Hence, ny = 0 ∈ H1(∂V ). The boundary of V is a collection of tori,
and therefore H1(∂V ) is torsion-free. Consequently, y = 0. Therefore, x = 0 and
H1(M[α]) is torsion-free.
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We now proceed with the theorem by choosing appropriate sutures on ∂M . If
∂M is compressible in M[β], let cβ be a curve on ∂M that compresses in M[β].
If cβ =∅, let c be any curve on ∂M that compresses in M ; otherwise let c = cβ .

By Lemma 4.1, we may choose sutures γ on ∂M[α] so that γ̂ = γ ∩ ∂0 M[α] is
chosen as usual and so that γ ∩ c = ∅ and (M[α], γ) is an α-taut sutured mani-
fold. Let R be either an essential sphere, an essential disc with boundary cβ = c,
or an essential disc with boundary on ∂0 M[β]. Let Q be the result of applying
Corollary 5.2 to R. Q is an essential sphere, an essential disc with boundary cβ ,
or an essential disc with boundary on ∂0 M[β].

If Q is a sphere or disc with boundary cβ , then, since N is irreducible and ∂M
is incompressible in N , q̃ > 0. By Corollary 5.2, there is no compressing disc,
a-boundary compressing disc, or a-torsion 2g-gon for Q = Q ∩ N . Suppose, for
the moment, that Q is a disc with boundary on ∂W . If q̃ > 0, then Q is not disjoint
from a. By Corollary 5.2 there is no compressing disc, a-boundary compressing
disc or a-torsion 2g-gon for Q. If q̃ = 0, then by hypothesis Q = Q is not disjoint
from a. Since Q = Q is a disc, there are no essential arcs in Q and so there is no
compressing disc, a-boundary compressing disc, or a-torsion 2g-gon in this case
either.

Since in all cases ∂Q is disjoint from the sutures on ∂M , K (Q) ≥ 0 as noted
in the introduction to this section. Since Q is a sphere or disc, we also have
−2χ(Q) < 0. Hence, by the main theorem, (M[α], γ) is ∅-taut. This implies that
M[α] is irreducible and that R±(γ) does not compress in M[α]. Consequently, c
does not compress in M[α]. �

Remark. At the cost of adding hypotheses on the embedding of W in M , the con-
ditions for being licit can be significantly weakened. For example, the hypotheses
on the curves c, a, and b of Lemma 4.1 can be substituted for (L2). An examination
of the homology argument at the beginning of the proof shows that (L0) can be
replaced with the assumption that Lα and Lβ are null-homologous in M .

7. Rational tangle replacement

In this section, we show how the main theorem combined with Theorem 5.1 can be
used to give new proofs of several theorems concerning rational tangle replacement.
Following [Eudave-Muñoz 1988], we define a few relevant terms.

A tangle (B, τ ) is a properly embedded pair of arcs τ in a 3-ball B. Two tangles
(B, τ ) and (B, τ ′) are equivalent if they are homeomorphic as pairs. They are equal
if there is a homeomorphism of pairs that is the identity on ∂B. The trivial tangle
is the pair (D2

× I, {.25, .75} × I ). A rational tangle is a tangle equivalent to the
trivial tangle. Each rational tangle (B, r) has a disc Dr ⊂ B separating the strands
of r (each of which is isotopic into ∂B). The disc Dr is called a trivializing disc
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for (B, r). The distance d(r, s) between two rational tangles (B, r) and (B, s) is
simply the minimal intersection number |Dr ∩Ds |. We will often write d(Dr , Ds)

instead of d(r, s). A prime tangle (B, τ ) is one without local knots (that is, every
meridional annulus is boundary-parallel) and where no disc in B separates the
strands of τ .

Given a knot Lβ ⊂ M and a 3-ball B ′ intersecting Lβ in two arcs such that
(B ′, B ′∩Lβ)= (B ′, rβ) is a rational tangle, to replace (B ′, rβ)with a rational tangle
(B ′, rα) is to do a rational tangle replacement on Lβ . Note that η(Lβ) ∪ B ′ is a
genus 2 handlebody W . The knots or links Lβ and Lα can be obtained by refilling
the meridians β and α respectively. If M = S3, then (B, τ ) = (S3

− B̊ ′, Lβ − B̊ ′)
is a tangle. We assume that no component of Lβ is disjoint from B.

Before stating the applications, we state and prove some lemmas that allow the
terminology of tangle sums and rational tangle replacement to be converted into
the terminology of boring.

7.1. Boring and rational tangle replacement.

Lemma 7.1. Let (B, τ ) be a tangle and N = B − η̊(τ ). Suppose that c is an
essential curve on ∂B− τ that separates ∂N. If ∂N − c is compressible in N then
c compresses in N.

Proof. Let d be an essential curve in ∂N − c that bounds a disc D ⊂ N . Since c is
separating and ∂N has genus 2, d is a curve in a once punctured torus. Thus, it is
either nonseparating or parallel to c. In the latter case, we are done, so suppose that
d is nonseparating. Let D+ and D− be parallel copies of D so that d is contained
in an annulus between ∂D+ and ∂D−. Use a loop that intersects d exactly once to
band together D+ and D−, forming a disc D′. The boundary of D′ is an essential
separating curve in the once punctured torus. ∂D′ is therefore parallel to c. Hence,
c compresses in N . �

Lemma 7.2. Suppose that (B, τ ) and (B ′, rα) are tangles embedded in S3 with
(B ′, rα) a rational tangle such that ∂B = ∂B ′ and ∂τ = ∂rα. Suppose that (B ′, rβ)
is rational tangle of distance at least one from (B ′, rα). Define the sutures γ∪a on
∂N as before. If

• α is nonseparating in the handlebody W = B ′ ∪ η(τ), or

• if (B, τ ) is a prime tangle, or

• if (B, τ ) is a rational tangle and ∂α does not bound a trivializing disc for
(B, τ ), or

• if ∂α does not compress in (B, τ ),

then ∂W − (γ∪a) is incompressible in N. Consequently, (N , γ∪a) is ∅-taut and
(N [a], γ) is α-taut.
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Proof. If α is nonseparating, then any compressing disc for ∂W − (γ ∪ ∂α) would
have meridional boundary, implying that S3 had a nonseparating 2-sphere. Thus,
we may suppose that α is separating. If (B, τ ) is prime, there is no disc separating
the strands of τ . Similarly, if (B, τ ) is a rational tangle but a does not bound a
trivializing disc, then a does not compress in (B, τ ). Thus, for the remaining three
hypotheses, we may assume that a does not compress in (B, τ ). By Lemma 7.1,
∂N − a is incompressible in N , as desired. By Lemma 4.1, (N , γ ∪ a) is taut and
(N [a], γ) is α-taut. �

One pleasant aspect of working with rational tangle replacements is that we can
make explicit calculations of K (Q). Here are two lemmas which we jointly call
the Tangle Calculations.

Tangle Calculations I (β separating). Suppose that Lβ is a link obtained from
Lα by a rational tangle replacement of distance d using W . Let Q be a suitably
embedded surface in the exterior S3

[β] of Lβ . Let ∂1 Q be the components of ∂Q
on one component of ∂S3

[β], and let ∂2 Q be the components on the other. Let ni be
the minimum number of times a component of ∂i Q intersects a meridian of ∂S3

[β].

• If Lα is a link, then

K (Q)≥ 2q(d − 1)+ d(|∂1 Q|n1+ |∂2 Q|n2).

• If Lα is a knot, then

K (Q)≥ 2q(d − 1)+ (d − 1)(|∂1 Q|n1+ |∂2 Q|n2).

Proof. Since Lβ is a link, β is separating. Thus, q∗=0. Since a and b are contained
in ∂B ′ = ∂B, every arc of b− a is an meridional arc. Hence, ν = 0. By definition
2d =1.

Let T be a component of ∂S3
[β]. Without loss of generality, suppose that the

components of ∂Q on T are ∂1 Q. Since every arc of a − b is meridional, there
exist d meridional arcs on each component of ∂S3

[β]. Thus, each component of
∂1 Q intersects a at least dn1 times. Each component of ∂2 Q intersects a at least
dn2 times. Consequently, |∂1 Q∩a| ≥ |∂1 Q|n1d . Similarly, |∂2 Q∩a| ≥ |∂2 Q|n2d .
Hence

1∂ ≥ d(|∂1 Q|n1+ |∂2 Q|n2).

If α is nonseparating, the curves γ are also meridian curves of Lβ . Thus, γ is
intersected ni times by each component of ∂i Q. Hence, if Lα is a knot,

ν∂ = |∂1 Q|n1+ |∂2 Q|n2.

The result follows. �
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Tangle Calculations II (β nonseparating). Suppose that Lβ is a knot obtained
from Lα by a rational tangle replacement of distance d using W . Let Q be a suitably
embedded surface in the exterior S3

[β] of Lβ . Suppose that each component of
∂Q intersects n times a meridian of ∂S3

[β].

• If Lα is a link, then

K (Q)≥ 2q(d − 1)+ 2q∗(2d − 1)+ 2d|∂Q|n.

• If Lβ is a knot, then

K (Q)≥ 2(d − 1)(q + 2q∗)+ 2(d − 1)|∂Q|n.

Proof. These calculations are similar to the calculations of the previous lemma, so
we make only a few remarks. First, since b∗ and ∂η(b) cobound a thrice punctured
sphere, every meridional arc of a− b intersects b∗ at least twice. Since every arc
of a− b is meridional, there are 1 such arcs. Hence 1∗ ≥ 4d . Second, if Lα is a
knot, then b∗ intersects γ twice and b intersects γ not at all. Thus

q(1− ν− 2)+ q∗(1∗− ν∗− 2)≥ q(2d − 2)+ q∗(4d − 4).

The given inequality follows. �

7.2. Discs, spheres, and meridional planar surfaces. In [1988], Eudave-Muñoz
states six related theorems. In this section, we give new proofs for three of them.
Gordon and Luecke [1994] have also given different proofs for some of them.
The new proofs will follow from the following generalization. Using completely
different sutured manifold theory techniques, [Taylor 2008] further extends this
theorem.

Theorem 7.3. Suppose that Lβ is a knot or link obtained by a rational tangle
replacement of distance d ≥ 1 on the split link Lα. Suppose that ∂W − ∂α does
not compress in N. Then Lβ is not a split link or unknot. Furthermore, if Lβ
has an essential properly embedded meridional planar surface with m boundary
components, it contains such a surface Q with |∂Q| ≤ m such that either Q is
disjoint from β or

|Q ∩β|(d − 1)≤ |∂Q| − 2.

Proof. By Lemma 7.2, (N , γ ∪ a) is a taut sutured manifold. Notice that the pair
(S3,W ) is licit and that since Lα and Lβ are related by rational tangle replacement,
no essential disc in S3

[β] is disjoint from a. Thus by Theorem 6.2, Lβ is neither a
split link nor an unknot.

Suppose therefore that S3
[β] contains an essential meridional surface R with m

boundary components. Use Corollary 5.2 to obtain the connected planar surface
Q ⊂ S3

[β], and assume that Q is not disjoint from β. That is, assume that q̃ > 0.
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Since Q is connected and has Euler characteristic not lower than our original planar
surface, |∂Q| ≤ m. The boundary of Q is meridional, by construction, since each
arc of a − b is meridional. Corollary 5.2 allows us to conclude that there is no
compressing disc, a-boundary compressing disc, or a-torsion 2g-gon for Q. Also,
S3
[α] is reducible and H1(S3

[α]) is torsion-free.
The main theorem implies, therefore, that K (Q) ≤ −2χ(Q). Since ∂Q is dis-

joint from a ∪ γ and since Lα is a link, the tangle calculations tell us that

2q(d − 1)+ 2q∗(2d − 1)≤−2χ(Q).

Since 4q∗(d−1)≤ 2q∗(2d−1), we conclude that 2(q+2q∗)(d−1)≤−2χ(Q).
Because Q is a planar surface with |∂Q| boundary components, we conclude that
−2χ(Q)= 2|∂Q|−4. Plugging into our inequality and dividing by two, we obtain

(q + 2q∗)(d − 1)≤ |∂Q| − 2.

A slight isotopy pushing the discs in Q with boundary parallel to b∗ converts
each such disc into two discs each with boundary parallel to b. Hence, after the
isotopy |Q ∩β| = q + 2q∗. Consequently,

|Q ∩β|(d − 1)≤ |∂Q| − 2. �

As corollaries, we have two classical results.

Theorem [Eudave-Muñoz 1988]. If (B, τ ) is prime, if Lα is a split link, and if Lβ
is composite, then d(α, β)≤ 1.

Proof. Suppose that d ≥ 1. Since (B, τ ) is prime and α is separating, Lemma 7.2
shows that ∂W − a is incompressible in N . Since Lβ contains an essential merid-
ional annulus, we may apply Theorem 7.3 with m = 2. Since there are no merid-
ional discs, Q is also a meridional annulus. Since (B, τ ) is prime, Q is not disjoint
from β. The inequality from the theorem shows that d = 1. �

Theorem [Eudave-Muñoz 1988]. If (B, τ ) is any tangle and if Lα and Lβ are split
links, then rα = rβ .

Proof. It suffices to show that α and β are disjoint. Suppose not, so that d ≥ 1. If
∂W − a is incompressible in N , then by Theorem 7.3 Lβ is not a split link. Thus
∂W −a compresses in N . By reversing the roles of α and β, we can also conclude
that ∂W − b compresses in N . Since both α and β are separating, Lemma 7.1
shows that both a and b compress in N .

There is therefore a disc Da in B with boundary a separating the strings of τ .
Similarly, there is a disc Db in B with boundary b = ∂β separating the strings
of τ . An easy innermost disc/outermost arc argument shows that Da and Db are
isotopic. In particular, a and b are isotopic in ∂B− τ , which implies that rα = rβ .
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Thus we may assume without loss of generality that ∂W−∂α is not compressible
in N . Let R be an essential sphere in S3

[β], and apply Corollary 5.2 to obtain
an essential sphere or disc Q. Since a − b consists of meridional arcs, Q is not
disjoint from η(a). If Q were a disc disjoint from β, there would be no a-boundary
compressing disc for Q. If Q is a sphere, q̃ > 0. Thus, we may apply the main
theorem to conclude that S3

[α] is irreducible or that α and β are disjoint. If the
latter is true, rα = rβ . �

Theorem [Scharlemann 1985]. If (B, τ ) is any tangle and Lβ is a trivial knot and
Lα a split link, then (B, τ ) is a rational tangle and d ≤ 1.

Proof. Suppose d ≥ 1. If ∂W − a were incompressible in N , then Lβ would not
be the unknot by Theorem 7.3. Hence ∂W − a is compressible in N . Since α is
separating, Lemma 7.1 shows that a compresses in N . Since Lβ is the unknot,
τ has no local knots. Thus, (B, τ ) is a rational tangle with trivializing disc having
boundary a.

It remains to prove that d = 1. Since Lβ is the unknot, a double-branched cover
of S3 with branch set Lβ is S3. The preimage B̃ of B is an unknotted solid torus.
There is a correspondence between rational tangle replacement and Dehn-surgery
in the double-branched cover. Replacing (B ′, rβ)with (B ′, rα) converts the double-
branched cover to a lens space, S3 or S1

× S2. In the double branched cover, the
Dehn surgery is achieved by making a curve in ∂ B̃ that intersects a meridian of B̃
d times bound a disc in the complementary solid torus. Since Lα is a split link, the
double branched cover of S3 over Lα is reducible. Thus, it must be S1

× S2 and d
must be one, as desired. �

Remark. In the proof of the previous theorem, note that even without proving
d ≤ 1, we have provided a new proof of Scharlemann’s band sum theorem [1985]:
If K = K1 #b K2 is the unknot, then the band sum is the connected sum of unknots.
To see this note that W is η(K1∪K2∪b), where b is the band. The tangle (B, τ ) is
(S3
− η̊(b), (K1∪ K2)− η̊(b)). Since ∂β is a loop that encircles the band, ∂β only

bounds a disc in (B, τ ) when the band sum is a connected sum and K1 and K2 are
unknots.

[Taylor 2008] gives other significant applications of sutured manifold theory to
problems involving rational tangle replacement.

8. Intersections of ∅-taut surfaces

The main theorem is useful for studying a homology class in H2(N [a], ∂N [a]) that
is not represented by a surface disjoint from β. The propositions of this section
consist of observations that can dramatically simplify the combinatorics of such
a situation. Let N be a compact, orientable 3-manifold with F ⊂ ∂M a genus 2
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boundary component. Let a, b ⊂ F be essential curves that cannot be isotoped to
be disjoint, and suppose that (N [a], γ) is α-taut, as in Section 4.

8.1. Intersection graphs.

Proposition 8.1. Let (N [a], γ) and b be as above, and let z ∈ H2(N [a], ∂N [a])
be a nontrivial homology class. Suppose that N [a] does not contain an essential
disc disjoint from α. Then z is represented by an embedded conditioned α-taut
surface P. Furthermore, for any such P , either P is disjoint from α or P = P ∩ N
has no compressing discs, b-boundary compressing discs or b-torsion 2g-gons.

Proof. Let P be a conditioned α-taut surface. (Such a surface is guaranteed to
exist by [Scharlemann 1989, Theorem 2.6].) Suppose that P is not disjoint from α.
Recall from the definition of “α-taut” that α intersects P always with the same sign.
Because P is α-taut, P is incompressible. Suppose that D is a b-torsion 2g-gon
for P . If g = 1, D is a b-boundary compressing disc for P . Let εi be the arcs
∂D ∩ F . Let R be the rectangle containing the εi from the definition of b-torsion
2g-gon. Suppose that the ends of R are on components of ∂P−∂P . The endpoints
of the εi have signs arising from the intersection of ∂D with ∂P . Since α always
intersects P with the same sign, an arc εi has the same sign of intersection at both
its head and tail. Since the arcs are all parallel, all heads and tails of all the εi

have the same sign of intersection. However, an arc of ∂D∩ P must have opposite
signs of intersection, arising as it does from the intersection of two surfaces. This
implies that the head of some εi has a sign different from the tail of some εi , a
contradiction. Hence, at least one end of R must lie on a component of ∂P .

If one end of R is on ∂P − ∂P , denote that component by a1 and denote by α1

the disc that it bounds in P . If both ends of R are on ∂P , let α1 = ∅. Attach R
to P −α1, creating a surface P̃ . The disc D is contained in N and, therefore, had
interior disjoint from α. Compress P̃ using D and continue to call the result P̃ .

An easy calculation shows that

if α1 6=∅, then χ(P̃)= χ(P) but |α ∩ P̃| = |α ∩ P| − 1;

if α1 =∅, then −χ(P̃)=−χ(P)− 1 and |α ∩ P̃| = |α ∩ P|.

If χα(P) 6= |α ∩ P| −χ(P), then a component of P is a disc disjoint from α or a
sphere intersected by α once. Either of these contradict our hypotheses on N [a].
Suppose therefore that χα(P)= |α ∩ P| −χ(P).

Similarly, χα(P̃)= |α∩ P̃|−χ(P̃). Hence χα(P̃)= χα(P)−1. Since α always
intersects P̃ with the same sign, P is not α-taut, a contradiction. Hence, there are
no b-torsion 2g-gons for P . �

Remark. As Scharlemann notes [2008], when a and b are nonseparating it can
be difficult to use combinatorial methods to analyze the intersection of surfaces
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in N [a] and N [b]. The primary reason for this is the need to work with a∗ and
b∗ boundary components on the surfaces. The previous proposition shows that
when the surfaces in question are α-taut and β-taut and not disjoint from α and β,
respectively, there is no need to consider a∗ and b∗ curves.

The remainder of this section develops notation for studying the intersection
graphs of such surfaces. Let P ⊂ N [a] be an α-taut surface, and let Q⊂ N [b] be a
β-taut surface. Suppose that P and Q are not disjoint from α and β, respectively.
Suppose also that there is no b-torsion 2g-gon for P = P ∩ N and no a-torsion
2g-gon for Q = Q ∩ N . It is clear that P and Q are incompressible.

In Section 3, we defined intersection graphs between Q and a disc D. We
now define, in a similar fashion, intersection graphs between P and Q. Orient
P (respectively, Q) so that all boundary components of ∂P − ∂P (respectively,
∂Q − ∂Q) are parallel on η(α) (respectively, η(β). The intersection of P and Q
forms graphs 3α and 3β on P and Q. A component of ∂P − ∂P or ∂Q − ∂Q
is called an interior boundary component. The vertex of 3α or 3β to which it
corresponds is called an interior vertex.

Label the components of ∂Q ∩ η(a) as 1, . . . , µQ and those of ∂P ∩ η(b) as
1, . . . , µP . The labels should be in order around η(a) and η(b). An endpoint of
an edge on an interior vertex of 3α corresponds to an arc of ∂Q∩∂η(α). Give the
endpoint of the edge the label associated to that arc. Similarly, label all endpoints
of edges on interior vertices of 3β . A Scharlemann cycle is a type of cycle that
bounds a disc in P (Q, respectively). The interior of the disc must be disjoint from
3α (3β) and all of the vertices of the cycle must be interior vertices. Furthermore,
the cycle can be oriented so that the tail end of each edge has the same label. This
is the same notion of Scharlemann cycle as in Section 3, but adapted to the possibly
nonplanar surfaces P and Q.

Lemma 8.2. There is no Scharlemann cycle in 3α or 3β .

Proof. Were there a trivial loop at an interior vertex or a Scharlemann cycle in
3α or 3β , the interior would be an a or b-torsion 2g-gon, which contradicts
Proposition 8.1. �

Although we will not use it here, the next lemma may be a useful observation
in the future.

Lemma 8.3. If P is a disc, then every loop in 3α is based at ∂P.

Proof. Suppose that P is a disc and that there is a loop based at an interior vertex
of 3α. A component X of the complement of the loop in P does not contain ∂P .
The loop is an x-cycle and Lemma 3.3 then guarantees the existence of a Scharle-
mann cycle in X , contrary to Lemma 8.2. �
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8.2. When the exterior of W is anannular. We conclude this section with an
application to refilling meridians of a genus 2 handlebody whose exterior is irre-
ducible, boundary-irreducible, and anannular. It is based on the ideas in [Scharle-
mann and Wu 1993]. Suppose that M is the exterior of a link in S3. Suppose that
W ⊂ M is a genus 2 handlebody embedded in M . Let N = M − W̊ .

Theorem 8.4. Suppose that N is irreducible, boundary-irreducible and anannular.
Suppose that α and β are nonseparating meridians of W such that1> 0. Suppose
that neither M[α] nor M[β] contain an essential disc or sphere. Suppose also that
in H2(M[α], ∂M) there is a homology class za that cannot be represented by a
surface disjoint from α and that in H2(M[β], ∂M) there is a homology class zb

that cannot be represented by a surface disjoint from β. Then there is a ∅-taut
surface P ⊂ M[α] representing za intersecting α p times and an ∅-taut surface
Q ⊂ M[β] representing zb intersecting β q times such that one of the following
occurs:

(1) −2χ(P)≥ p(Mb(a)− 2).

(2) −2χ(Q)≥ q(Ma(b)− 2).

(3) All of the following occur:
• Q is β-taut.
• P is α-taut.
• pq1≤ 18(p−χ(P))(q −χ(Q)).
• 1< 9

2 Ma(b)Mb(a).

Proof. Notice that the right hand side of the inequalities in (1) and (2) are K (P)
and K (Q), respectively. Choose a taut representative in M[β] for zb and apply
Theorem 5.1, obtaining Q. Since negative Euler characteristic is not increased and
M[β] does not contain an essential disc or sphere, Q is also taut. If (1) holds, we
are done, so assume that −2χ(Q) < K (Q). Recall that Q is not disjoint from β.
Apply the main theorem to obtain a surface P ⊂ M[α] representing za . (The
surface P is the surface S in the statement of that theorem.) P is both α-taut and
∅-taut. If (2) holds, we are done, so assume −2χ(P) < K (P). Applying the main
theorem again, with α and β reversed, we find a β-taut and ∅-taut surface in M[β]
representing zb. We may call this surface Q, forgetting the previous one. Consider
the graphs formed by the intersection of P and Q; let 3α be the graph on P and
3β the graph on Q. Lemma 8.2 assures us that there is no trivial loop based at an
interior vertex of either graph.

Lemma 8.5. pq1≤ 18(p−χ(P))(q −χ(Q)).

Proof of Lemma 8.5. By [Scharlemann and Wu 1993, Lemma 2.1], if two edges of
P ∩Q are parallel in both 3α and 3β , there is an essential annulus in N , contrary
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to our assumption that N is anannular. The proof proceeds as in [Scharlemann and
Wu 1993].

Each interior boundary component of P intersects ∂Q at q1 places. Therefore
|∂Q ∩ ∂P| ≥ pq1. Thus, 3α and 3β each have at least pq1/2 edges.

Claim. 3α has at least pq1/(6(p−χ(P))) mutually parallel edges.

This claim is similar to work in [Gordon and Litherland 1984]. Let 3′ be the
graph obtained by combining each set of parallel edges of 3α into a single edge.
Since 3′ has no loops at interior vertices and no parallel edges, by applying the
formula for the Euler characteristic of a closed surface we obtain

χ(P)+ |∂P| = V − E + F

≤ p+ |∂P| − E + (2/3)E

= p+ |∂P| − (1/3)E,

where V , E , and F represent the number of vertices, edges, and faces of3′. Thus,
E ≤ 3(p− χ(P)). Let n be the largest number of mutually parallel edges in 3α.
Then, since there are at least pq1/2 edges in 3α, we have

pq1/(2n)≤ E ≤ 3(p−χ(P)).

The claim follows.
A similar argument shows that if a graph in Q has more than 3(q−χ(Q)) edges,

then two of them are parallel. Hence, since there are no mutually parallel edges in
3α and 3β we must have

pq1

6(p−χ(P))
≤ 3(q −χ(Q)),

whence the lemma and the first inequality of conclusion (3) follow. �

We now proceed with the proof of the theorem. Since we are assuming that
neither (1) nor (2) hold, we have

−χ(P) < K (P)/2= p(Mb(a)− 2)/2,

−χ(Q) < K (Q)/2= q(Ma(b)− 2)/2

Plugging into the inequality from the lemma, we obtain

pq1< 18pq
(

1+ Mb(a)−2
2

)(
1+ Ma(b)−2

2

)
.

Since neither p nor q is zero, we divide and simplify to obtain

1< 9Mb(a)Ma(b)/2. �
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Remark. The point of the previous theorem is that, under the specified conditions,
either we obtain a bound on the Euler characteristic of surfaces representing the
homology classes za or zb or we obtain a restriction on the number of nonmerid-
ional arcs of a− b and b−a. For example, suppose that discs α and β are chosen
so that za is represented by a once punctured torus, and so that Mb(a)=Ma(b)= 6.
Then−2χ(P)=2<4p=K (P). Then if zb is also represented by a once punctured
torus, we have 1< 162. Since 1 is even, this implies 1≤ 160.
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