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Smooth irreducible representations of tori over local fields have been pa-
rameterized by Langlands, using class field theory and Galois cohomology.
This paper extends this parameterization to some central extensions of such
tori, which arise naturally in the setting of nonlinear covers of reductive
groups.
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1. Introduction

Motivation. Let T be an algebraic torus over a local field F ; let T = T (F). Let
L/F be a finite Galois extension over which T splits, with 0 = Gal(L/F). Let
X(T ) denote the group of continuous characters of T with values in C×. In a
preprint from 1968, now appearing as [Langlands 1997] (see [Labesse 1985]),
Langlands proves the following:

Theorem 1.1. There is a natural isomorphism

X(T )∼= H 1
c (WL/F , T̂),

where WL/F denotes the Weil group of L/F , T̂ denotes the complex dual torus
of T , and H 1

c denotes the continuous group cohomology.
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We may consider T as a sheaf of groups, on the big Zariski site over F . In
addition, we may consider K 2 as such a sheaf, using Quillen’s algebraic K-theory.
Let T ′ be a central extension of T by K 2 in the category of sheaves of groups on
the big Zariski site over F . Such objects are introduced and studied extensively by
Brylinski and Deligne [2001].

Let T ′ = T ′(F) be the resulting extension of T by K2 = K 2(F). If F 6∼= C

and F has sufficiently many n-th roots of unity, one may push forward the central
extension T ′ via the Hilbert symbol to obtain a central extension T̃ as

1→ µn→ T̃ → T → 1.

We are interested in the set Iε(T̃ ) of irreducible genuine representations of T̃ ,
as defined in Section 3. Such representations arise frequently in the literature on
“metaplectic groups”, especially when considering principal series representations
of nonlinear covers of reductive groups (see among others [Savin 2004; Kazhdan
and Patterson 1984; Adams et al. 2007]). This paper’s goal is to parameterize the
set Iε(T̃ ) in a way that naturally generalizes Theorem 1.1.

Main results. Associated to the central extension T ′, Deligne and Brylinski asso-
ciate two functorial invariants: an integer-valued quadratic form Q on the cocharac-
ter lattice Y of T , and a 0-equivariant central extension Ỹ of Y by L×. Associated
to Q is a symmetric bilinear form BQ : Y ⊗Z Y → Z.

Define

Y #
= {y ∈ Y such that BQ(y, y′) ∈ nZ for all y′ ∈ Y }.

Similarly, define

Y0#
= {y ∈ Y such that BQ(y, y′) ∈ nZ for all y′ ∈ Y0}.

Associated to the inclusion ι : Y # ↪→ Y is an isogeny ι̂ : T̂→ T̂# of complex tori.
This isogeny is also a morphism of WL/F -modules. Associated to the sequence
of inclusions Y #

⊂ Y0#
⊂ Y are F-isogenies T #

→ T0#
→ T of F-tori. The

main results of this paper are Theorems 4.8, 5.17, and 7.7. Putting these theorems
together yields the following:

Theorem 1.2. Suppose that one of these conditions is satisfied:

(1) T is a split torus.

(2) F is nonarchimedean with residue field f, the torus T splits over an unramified
extension of F , and n is relatively prime to the characteristic of f.

(3) F ∼= R.
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Then, there exists a finite-to-one map

8 : Iε(T̃ )→ H 1
c (WL/F , T̂)

/
H 1

c (WL/F , T̂→ T̂#)

that intertwines canonical actions of H 1
c (WL/F , T̂). The finite fibres of this map

are torsors for a finite group X(P†)=Hom(P†,C×). In the three cases above, the
“packet group” P† can be respectively described by the three conditions that

(1) P† is trivial;

(2) P†
= Im(T0#(f)→ T (f))

/
Im(T #(f)→ T (f));

(3) P†
= Im(π0T0#(R)→ π0T (R))

/
Im(π0T #(R)→ π0T (R)).

In this theorem, H 1
c denotes the continuous group cohomology or hypercoho-

mology, as discussed by Kottwitz and Shelstad [1999]. The parameterization 8 of
irreducible genuine representations is not unique; rather, it depends upon the choice
of a base point. The choice of this base point is a significant problem. We identify a
natural class of “pseudospherical” representations, following previous authors such
as [Savin 2004] and [Adams et al. 2007]. We also parameterize pseudospherical
irreducible representations as a torsor for a complex algebraic torus in Section 6;
perhaps more naturally, the category of pseudospherical representations can be
identified with the category of modules over a “quantum dual torus”.

2. Background

Fields and sheaves. F will always denote a local field. FZar will denote the big
Zariski site over F . By this, we mean that FZar is the full subcategory of the
category of schemes over F , whose objects are schemes of finite type over F ,
endowed with the Zariski topology. SetF will denote the topos of sheaves of sets
over FZar, and GpF will denote the topos of sheaves of groups over FZar.

Any scheme or algebraic group over F will be identified with its functor of
points, that is, the associated object of SetF or GpF , respectively. Quillen’s
K-theory [1973] yields sheaves K n of abelian groups on FZar. We only work with
K 1 and K 2, viewed as objects of GpF .

For any field L , the group K 2(L) is identified as a quotient

K 2(L)=
L×⊗Z L×

〈x⊗(1−x)〉16=x∈L×
.

If l1, l2∈ L , and l1, l2 6∈ {0, 1}, then we write {l1, l2} for the image of l1⊗l2 in K 2(L).
The bilinear form { · , · } is called the universal symbol. The relation {x, 1− x} = 1
implies that {x,−x} = 1 for all x ∈ L×. This implies that the universal symbol is
skew-symmetric. It is usually not alternating, but {x, x} = {x,−1} for all x ∈ L×.
Proofs of these facts can be found in [Milnor 1971, Chapter 11].
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Local nonarchimedean fields. Suppose that F is a nonarchimedean local field.
Then OF will denote the valuation ring of F , and f the residue field of OF . We let
p denote the characteristic of f and assume that the value group of F is Z. We let
q denote the cardinality of f.

There is a canonical short exact sequence

1→ O×F → F×→ Z→ 1

of abelian groups, given by inclusion and valuation. It is sometimes convenient to
split this sequence of abelian groups by choosing a uniformizing element$ ∈ F×.
However, our main results do not depend on which uniformizing element is chosen.

Reduction yields another canonical short exact sequence

1→ O×1
F → O×F → f×→ 1.

This sequence is split by the Teichmüller lifting 2 : f×→ O×F .

The Weil group. We let WF denote a Weil group of F as in [Tate 1979]. In
particular, we follow Tate’s choices and normalize the reciprocity isomorphism
rec : F×→Wab

F of nonarchimedean local class field theory so that uniformizing
elements of F× act as the geometric Frobenius via rec.

When L is a finite Galois extension of F , we continue to follow [Tate 1979] and
define WL/F =WF/[WL ,WL ]. There is then a short exact sequence

1→ L×→WL/F → Gal(L/F)→ 1.

The Hilbert symbol. We say that F has enough n-th roots of unity if µn(F) has n
elements. When F has enough n-th roots of unity and F 6∼= C, the Hilbert symbol
provides a nondegenerate skew-symmetric bilinear map

( · , · )F,n :
F×

F×n ⊗Z
F×

F×n → µn(F).

In general, the Hilbert symbol is not alternating. The Hilbert symbol factors
through K 2(F) via the universal symbol.

The definition of the Hilbert symbol relies on a choice of reciprocity isomor-
phism in local class field theory — this choice has been made earlier in sending a
uniformizing element of F× to a geometric Frobenius.

If F is nonarchimedean and (p, n) = 1, then we say that the Hilbert symbol
( · , · )F,n is tame. If p is odd, then in the tame case, ($,$)F,n = (−1)(q−1)/n for
every uniformizing element$ ∈ F×. When p=2, in the tame case, ($,$)F,n=1.
When F ∼= R, we have (−1,−1)F,2 =−1.
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Tori. Henceforth T will always denote an algebraic torus over F . Let L be a
finite Galois extension of F , over which T splits, and define 0 = Gal(L/F). We
write X = Hom(T , Gm) for the character group and Y for the cocharacter group
Hom(Gm, T ). We view X and Y as finite rank free Z-modules endowed with
actions of 0. The groups X and Y are in canonical 0-invariant duality.

The dual torus T̂ is the split torus Spec(Z[Y ]) over Z, with the resulting action
of 0. We write T̂= T̂ (C)≡ X⊗Z C× for the resulting C-torus, also endowed with
the action of 0.

Central extensions of tori by K 2. Let CExt(T , K 2) be the category of central ex-
tensions of T by K 2 in GpF . Let CExt0(Y, L×) be the category of 0-equivariant
extensions of Y by L×.

In [2001], Deligne and Brylinski study a category we will call DBT . Its objects
are pairs (Q, Ỹ ), where

• Q : Y → Z is a 0-invariant quadratic form;

• Ỹ is a 0-equivariant central extension of Y by L×; and

• the resulting commutator map C :
∧2 Y → L× satisfies

C(y1, y2)= (−1)BQ(y1,y2) for all y1, y2 ∈ Y,

where BQ is the symmetric bilinear form associated to Q.

If (Q1, Ỹ1), and (Q2, Ỹ2) are two objects of DBT , then a morphism from
(Q1, Ỹ1) to (Q2, Ỹ2) exists only if Q1 = Q2, in which case the morphisms of
DBT are the just those from Ỹ1 to Ỹ2 in CExt0(Y, L×).

In [2001, Section 3.10], Deligne and Brylinski go on to construct an equivalence
of categories from CExt(T , K 2) to the category DBT . In particular, given a central
extension T ′ of T by K 2, their work (in part following [Esnault et al. 1998]) yields
a quadratic form Q : Y → Z, and a central extension Ỹ of Y by L×. Considering
the central extension T ′(L) in

1→ K 2(L)→ T ′(L)→ T (L)→ 1,

they show that the resulting commutator CL :
∧2 T (L)→ K 2(L) satisfies

CL(y1(l1), y2(l2))= {l1, l2}
BQ(y1,y2) for all y1, y2 ∈ Y and l1, l2 ∈ L×.

Locally compact abelian groups. An LCA group is a locally compact Hausdorff
separable abelian topological group. We work here in the category LCAb whose
objects are LCA groups and whose morphisms are continuous homomorphisms.
Suppose that we are have a short exact sequence of LCA groups and continuous
homomorphisms given by

0→ A→ B→ C→ 0.



174 MARTIN H. WEISSMAN

Given a fourth LCA group D, the functor Hom( • , D) is left-exact, yielding an
exact sequence

0→ Hom(C, D)→ Hom(B, D)→ Hom(A, D).

2.0.1. Continuous characters. When A is an LCA group, we write X(A) for the
group of continuous homomorphisms from A to the LCA group C×, under point-
wise multiplication. We call elements of X(A) characters (or continuous charac-
ters) of A. If χ ∈X(A) and |χ(a)| = 1 for all a ∈ A, then we say that χ is a unitary
character. We write Â for the Pontryagin dual of A, that is, the set of unitary
characters of A, with its natural topology as an LCA group.

We say that A is an elementary LCA group if A ∼= Ra
× Zb

× (R/Z)c × F for
some finite group F and some nonnegative integers a, b, c. When A is elementary,
X(A) has a natural structure as a complex algebraic group. In the case above,
X(A)∼= Ca

× (C×)b×Zc
× F̂ .

If A is generated by a compact neighborhood of the identity, then A is canon-
ically isomorphic to the inverse limit of its elementary quotients by compact sub-
groups. In this case, X(A) is endowed with the (inductive limit) structure of a
complex algebraic group. In this paper, all LCA groups will be generated by a
compact neighborhood of the identity, and thus X(A) will be viewed as a complex
algebraic group.

2.0.2. Exactness criteria. Given a short exact sequence

0→ A→ B→ C→ 0,

there are two important cases in which the induced map X(B)→X(A) is surjective,
leading to an exact sequence

0→ X(C)→ X(B)→ X(A)→ 0.

Proposition 2.1. Suppose that A is compact. Then X(B)→ X(A) is surjective.

Proof. If A is compact, every continuous character of A is unitary. The exactness
of Pontryagin duality implies that every unitary character of A extends to a unitary
character of B. Hence X(B) surjects onto X(A). �

Proposition 2.2. Suppose that the map from A to B is an open embedding. Then
X(B)→ X(A) is surjective.

Proof. The proof, which is not difficult, follows directly from [Hoffmann and
Spitzweck 2007, Proposition 3.3], for example. �
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Complex varieties and groups. We use a script letter, such as M, to denote the
(complex) points of a complex algebraic variety. It is unnecessary for us to distin-
guish between complex varieties and their complex points. If R is a commutative
reduced finitely-generated C-algebra, then we write M=MS(R) for the maximal
ideal spectrum of A, viewed as a complex variety. We view C× as a complex
algebraic variety, identifying C×≡MS(C[Z]), where C[Z] denotes the group ring.
We view C itself as an algebraic variety (the affine line over the field C).

Let G be a complex algebraic group, or in other words, a group in the category of
complex algebraic varieties. A G-variety is a complex algebraic variety M endowed
with an action G×M→M that is complex-algebraic. A G-torsor is a G-variety M

such that the induced map G×M→ M×M sending (g,m) to (g · m,m) is an
isomorphism of complex algebraic varieties.

If M1 and M2 are G-varieties, then a morphism of G-varieties is a complex al-
gebraic map from M1 to M2 that intertwines the action of G. Morphisms of torsors
are defined in the same way.

3. Genuine representations of metaplectic tori

In this section, we fix notation as follows:

• F will be a local field, with F 6∼= C, and n will be a positive integer such that
F has enough n-th roots of unity.

• T will be a torus over a local field F which splits over a finite Galois exten-
sion L/F , with 0 = Gal(L/F). X and Y will be the resulting character and
cocharacter groups.

• T ′ will be an extension of T by K 2 in GpF .

• (Q, Ỹ )will be the Deligne–Brylinski invariants of T ′. B will be the symmetric
bilinear form associated to Q.

• ε : µn(F)→ C× will be a fixed injective character.

Heisenberg groups. Suppose that S is an LCA group and A is a finite cyclic
abelian group endowed with a faithful unitary character ε : A → C×. Suppose
that S̃ is a locally compact group that is a central extension of S by A (in the
category of locally compact groups and continuous homomorphisms:

1→ A→ S̃→ S→ 1.

In this situation, the commutator on S̃ descends to a unique alternating form

C :
∧2 S→ A.
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Let Z(S̃) be the center of S̃. Then Z(S̃) is the preimage of a subgroup Z†(S)⊂ S,
where Z†(S)= {s ∈ S such that C(s, s ′)= 1 for all s ′ ∈ S}. Throughout this paper,
the following condition will be satisfied, and hence we assume that

Z†(S) is an open subgroup of finite index in S.

We define two sets:

• The set Xε(S̃) of continuous genuine characters of S̃. These are elements of
X(S̃) whose restriction to A equals ε.

• The set Iε(S̃) of irreducible genuine representations of S̃. These are irre-
ducible (algebraic) representations (π, V ) of S̃ on a complex vector space, on
which Z(S̃) acts via a continuous genuine character. In particular, since Z(S̃)
will always have finite index in S̃, these are finite-dimensional representations.

We often use the following analogue of the Stone–von Neumann theorem:

Theorem 3.1. Suppose that χ ∈ Xε(Z(S̃)) is a genuine continuous character. Let
M̃ denote a maximal commutative subgroup of S̃. Then there exists an extension
χ̃ ∈ X(M̃) of χ to M̃. Define a representation of S̃ by

(πχ , Vχ )= IndS̃
M̃
χ̃ .

Algebraic induction suffices here, since we always assume that Z(S̃) has finite
index in S̃. Then

(1) the representation (πχ , Vχ ) is irreducible;

(2) the representation (πχ , Vχ ) has central character χ ;

(3) the isomorphism class of (πχ , Vχ ) depends only upon χ and not upon the
choices of subgroup M̃ and extension χ̃ ;

(4) every irreducible representation of S̃ on which Z(S̃) acts via χ is isomorphic
to (πχ , Vχ ).

Proof. Extension of χ to M̃ follows from Proposition 2.2. All but the last claim
are proved in [Kazhdan and Patterson 1984, Section 0.3] and follow directly from
Mackey theory. The last claim follows from the previous claims and Frobenius
reciprocity. �

Metaplectic tori over local fields. The central extension of T by K 2 yields a central
extension of groups given by

1→ K 2(F)→ T ′(F)→ T (F)→ 1.

Since F is assumed to have enough n-th roots of unity, the Hilbert symbol allows
us to push forward this extension to get

1→ µn→ T̃ → T → 1,
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where µn = µn(F) and T = T (F). By results of [Brylinski and Deligne 2001,
Sections 10.2 and 10.3], which followed [Moore 1964], this is a topological central
extension of the LCA group T by the LCA group µn .

In this case, the center Z(T̃ ) has finite index in T̃ . Furthermore, Theorem 3.1
implies this:

Proposition 3.2. There is a natural bijection between the set Iε(T̃ ) of irreducible
genuine representations of T̃ and the set Xε(Z(T̃ )) of genuine characters of Z(T̃ ).

There is a short exact sequence 1→µn→ Z(T̃ )→ Z†(T )→ 1 of LCA groups.
Proposition 2.1 then implies:

Proposition 3.3. The space Xε(Z(T̃ )) of genuine continuous characters of Z(T̃ )
is a X(Z†(T ))-torsor.

Corollary 3.4. The set Iε(T̃ ) is a X(Z†(T ))-torsor.

In particular, we give Iε(T̃ ) the structure of a complex algebraic variety so that it
is a complex algebraic X(Z†(T ))-torsor.

Since Z†(T ) is a finite index subgroup of T , restriction of continuous characters
yields a surjective homomorphism res : X(T )→ X(Z†(T )) of complex algebraic
groups. As a result, the set Iε(T̃ ) is a homogeneous space for X(T ), or equivalently
(by Langlands’s theorem [1997]), a homogeneous space for H 1

c (WL/F , T̂).

4. Split tori

In this section, we keep the assumptions of the previous section. In addition, we
assume that T is a split torus of rank r over F . Thus, there is a canonical iden-
tification T (F) ≡ Y ⊗Z F×. We are interested in parameterizing Iε(T̃ ). By the
results of the previous section, we may describe this set, up to a choice of base
point, by describing the set Z†(T ).

An isogeny. Recall that B : Y⊗Z Y→Z is the symmetric bilinear form associated
to Q. It allows us to construct a subgroup of finite index Y #

⊂ Y by setting

Y #
= {y ∈ Y such that B(y, y′) ∈ nZ for all y′ ∈ Y }.

Note that we suppress mention of Q, B, and n in our notation Y #.
The subgroup Y # can be related to the “Smith normal form” of the bilinear

form B. Namely, there exists a pair of group isomorphisms α and β with diagram

Zr Y
βoo α // Zr

such that one has BQ(y1, y2) = D(α(y1), β(y2)) for all y1, y2 ∈ Y , and D is
a symmetric bilinear form on Zr represented by a diagonal matrix with entries
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(d1, . . . , dr ) (the elementary divisors). Let e j denote the smallest positive integer
such that d j e j ∈ nZ for every 1≤ j ≤ r . Then we find that

Y #
= α−1(e1Z⊕ e2Z⊕ · · ·⊕ er Z).

Let ι : Y #
→ Y denote the inclusion of Z-modules. Since Y # has finite index

in Y , this corresponds to an F-isogeny ι : T #
→ T of split tori, where T # is the

split algebraic torus with cocharacter lattice Y #. From the previous observations,
we find that

ι(T #)= ι(T #(F))= α−1(F×e1 × · · ·× F×er ).

Describing the center. Recall that extension T̃ of T by µn yields a commutator
C :

∧2 T → µn . This commutator can be directly related to the bilinear form B;
see [Brylinski and Deligne 2001]. If u1, u2 ∈ F× and y1, y2 ∈ Y , then one may
directly compute

C(y1(u1), y2(u2))= (u1, u2)
B(y1,y2)
n .

The diagonalization of B via group isomorphisms α, β yields two isomorphisms
of F-tori, given by

Gr
m T

βoo α // Gr
m .

One arrives at a bilinear form on (F×)r , given by

1(Ez1, Ez2)=

r∏
j=1

(z( j)
1 , z( j)

2 )
d j
n .

This is related to the commutator C by C(t1, t2)=1(α(t1), β(t2)).
We can now characterize Z†(T ):

Proposition 4.1. The subgroup Z†(T ) of T is equal to the image of the isogeny ι
on the F-rational points, that is, Z†(T )= ι(T #).

Proof. We find that

t1 ∈ Z†(T ) if and only if C(t1, t2)= 1 for all t2 ∈ T

if and only if 1(α(t1), β(t2))= 1 for all t2 ∈ T

if and only if 1(α(t1), Ez2)= 1 for all Ez2 ∈ (F×)r

if and only if α(t1) ∈ (F×e1 × · · ·× F×er )

if and only if t1 ∈ ι(T #).

The penultimate step follows from the nondegeneracy of the Hilbert symbol. �

We have now proved this:

Theorem 4.2. If F is a local field, then Iε(T̃ ) is a torsor for X(ι(T #)).
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Character groups. The previous theorem motivates the further analysis of the
group X(ι(T #)). We write ι∗ for the pullback homomorphism ι∗ : X(T )→ X(T #).

Proposition 4.3. There is a natural identification X(ι(T #))≡ Im(ι∗).

Proof. There are short exact sequences

1→ ker(ι)→ T #
→ ι(T #)→ 1 and 1→ ι(T #)→ T → cok(ι)→ 1

of LCA groups. Using Propositions 2.1 and 2.2, we arrive at short exact sequences

1→ X(ι(T #)→ X(T #)→ X(ker(ι))→ 1,

1→ X(cok(ι))→ X(T )→ X(ι(T #))→ 1

of character groups. Since X(T ) surjects onto X(ι(T #)), we find that the image of
ι∗ : X(T )→ X(T #) equals the image of the injective map X(ι(T #))→ X(T #). �

The dual complex. The isogeny of split F-tori ι : T #
→ T yields an isogeny

ι̂ : T̂→ T̂# of the complex dual tori. One may pull back continuous characters
via ι∗ : X(T )→ X(T #).

The following result follows from local class field theory, and demonstrates the
naturality of Langlands’s classification [1997].

Proposition 4.4. There is a commutative diagram

X(T ) //

ι∗

��

H 1
c (WF , T̂)

ι̂
��

X(T #) // H 1
c (WF , T̂#)

of complex algebraic groups, whose rows are the reciprocity isomorphisms of local
class field theory.

Note that since T and T # are split tori, the continuous cohomology groups are
simply given by H 1

c (WF , T̂)= Homc(WF , T̂).

Corollary 4.5. There is a natural identification

X(Z†(T ))≡ Im(ι̂ : H 1
c (WF , T̂)→ H 1

c (WF , T̂#)).

Parameterization by hypercohomology. We may now parameterize representa-
tions using the hypercohomology of the complex of tori T̂ ι̂ // T̂# concentrated
in degrees zero and one. We follow the treatment in the appendices of [Kottwitz
and Shelstad 1999] when discussing continuous hypercohomology of Weil groups
with coefficients in complexes of tori. In particular, we concentrate the complexes
in degrees 0 and 1 following [Kottwitz and Shelstad 1999], and not in degrees −1
and 0 as in [Borovoi 1998].
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There is a long exact sequence in cohomology that includes

H 1
c (WF , T̂→ T̂#)

η // H 1
c (WF , T̂) // H 1

c (WF , T̂#).

Lemma 4.6. The homomorphism η is injective.

Proof. Extending the long exact sequence above, it suffices to prove the surjectivity
of the preceding homomorphism H 0

c (WF , T̂)→ H 0
c (WF , T̂#). But T̂ and T̂# are

complex tori, trivial as WF -modules, and ι̂ is an isogeny. Therefore, the map above
is surjective. �

From this lemma, we identify the hypercohomology group H 1
c (WF , T̂→ T̂#)

with a subgroup of H 1
c (WF , T̂).

Lemma 4.7. The group H 1
c (WF , T̂→ T̂#) is finite.

Proof. Since ι̂ is an isogeny, it has finite kernel and cokernel. The lemma follows
because there is a long exact sequence that includes the terms

H 1
c (WF , ker(ι̂))→ H 1

c (WF , T̂→ T̂#)→ H 0
c (WF , cok(ι̂)). �

This leads to the first main theorem:

Theorem 4.8. There exists an isomorphism

Iε(T̃ )∼= H 1
c (WF , T̂)

/
H 1

c (WF , T̂→ T̂#)

in the category of varieties over C endowed with an action of H 1
c (WF , T̂).

Remark 4.9. The global analogue of this result also seems to hold. Let Iaut
ε (T̃A)

denote the appropriate set of genuine automorphic representations of T̃A; it seems
likely that

Iaut
ε (T̃A)∼= H 1

c (WF , T̂)
/

H 1
c (WF , T̂→ T̂#)

when T is a split torus over a global field F . The proof follows the same techniques
(together with the Hasse principle for isogenies of split tori), but requires some
analytic care with extension of continuous characters and the appropriate Stone–
von Neumann theorem. We hope to treat this global theorem in a future paper.

5. Unramified tori

For split tori, the cohomology groups that arise in Theorem 4.8 are quite simple,
since WF acts trivially on T̂ and T̂#. In fact, the statement of this theorem makes
sense even when T is a nonsplit torus. However, for general nonsplit tori, it seems
that our explicit methods are insufficient to prove such a result. For “tame covers”
of unramified tori over local nonarchimedean fields, such a paramaterization is
possible.

In this section, we fix these notations:
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• T will be a local nonarchimedean field F , which splits over a finite unramified
Galois extension L/F , with 0 = Gal(L/F). X and Y will be the resulting
character and cocharacter groups.

• We define d = [L : F] and write l for the residue field of OL (note that l has
cardinality qd ).

• We fix a uniformizer $ of F× (and hence of L× as well).

• We let γ be the generator of 0 that acts upon l via γ (x) = xq . We let
r = (qd

− 1)/(q − 1)= #(l×/ f×).
• T ′ will be an extension of T by K 2 in GpF .

• (Q, Ỹ )will be the Deligne–Brylinski invariants of T ′. B will be the symmetric
bilinear form associated to Q.

• n will be a positive integer such that F has enough n-th roots of unity. We
also assume that (p, n)= 1.

• ε : µn(F)→ C× will be a fixed injective character.

• If W is a subgroup of Y , then we write W0 for the subgroup of 0-fixed ele-
ments of W . We also define

W #
= {y ∈ Y such that B(y, w) ∈ nZ for all w ∈W }.

Z[0]-modules. 0 is a cyclic group generated by γ and of order d . Let Z[0] denote
the integral group ring of 0. We define the following elements of Z[0]:

• Let Tr=
∑d−1

i=0 γ
i , and let Trq =

∑d−1
i=0 q iγ i .

• Let δ = γ − 1, and let δq = qγ − 1.

Note that Tr ◦ δ = 0 and Trq ◦ δq = qd
− 1. When M is an Z[0]-module, we

let M = M/(qd
− 1)M . We write M0 for the 0-invariant Z-submodule of M .

Therefore,
M0
= {m ∈ M such that δm = 0}.

We define
M0,q

= {m ∈ M such that δqm = 0}.

Proposition 5.1. Suppose that M is an Z[0]-module. Then

Tr(M)⊂ M0 and Trq(M)⊂ M0,q .

Proof. The first inclusion is obvious. For the second inclusion, suppose that m ∈M .
Then δqTrqm = Trqδqm = (qd

− 1)m = 0. �

Proposition 5.2. Suppose that M is a Z[0]-module that is free as an Z-module.
Then δq and Trq act as injective endomorphisms of M , and

Im(δq)= {m ∈ M such that Trqm ∈ (qd
− 1)M}.
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Proof. Since M is free as an Z-module, δq ◦ Trq = Trq ◦ δq = qd
− 1 acts as

an injective endomorphism of M . Hence δq and Trq must also act as injective
endomorphisms of M , proving the first assertion.

Since Trq ◦ δq = qd
− 1, it follows that

Im(δq)⊂ {m ∈ M such that Trqm ∈ (qd
− 1)M}.

In the other direction, if Trqm ∈ (qd
−1)M , then Trqm=Trqδqm′, for some m′∈M .

Since Trq acts via an injective endomorphism, it follows that m = δqm′. �

Unramified tori. Much of our treatment of unramified tori is inspired by Ono
[1961, Section 2]. Recall that X and Y are naturally Z[0]-modules, and the pairing
is 0-invariant.

We fix a smooth model T of T over OF . We make the identifications

TL = T (L)≡ Y ⊗Z L× and TF = T (F)≡ (Y ⊗Z L×)0.

Similarly, for the integral points, we identify

T ◦L = T (OL)≡ Y ⊗Z O×L and T ◦F = T (OF )≡ (Y ⊗Z O×L )
0.

We write T for the special fibre of T . Then, we also identify

T l = T (l)≡ Y ⊗Z l× and T f = T (f)≡ (Y ⊗Z l×)0.

There are natural reduction homomorphisms T ◦L → T l and T ◦F → T f. Let T 1
L

and T 1
F denote the kernels of these reduction maps. The reduction morphisms

are split by the Teichmüller lift, and we arrive at a decomposition T ◦L ≡ T 1
L × T l of

Z[0]-modules. Together with the valuation map, we arrive at a short exact sequence
1 → T 1

L × T l → TL → Y → 1 of Z[0]-modules. The choice of (0-invariant)
uniformizing element $ splits this exact sequence, leading to a decomposition of
Z[0]-modules given by TL ≡ Y × T l× T 1

L .
We use this decomposition to “get our hands on” elements of TL . First, every

element of TL can be expressed as y($)t◦ for uniquely determined y ∈ Y and
t◦ ∈ T ◦L . Let θl denote a generator of the cyclic group l×, and let θf = θ

r
l . Thus

θf is a generator of the cyclic group f×. Let ϑL ∈ O×L and ϑF ∈ O×F denote the
Teichmüller lifts of θl and θf, respectively.

Let ζL = ($, ϑL)L ,qd−1. Let ζF = ζ
r
L . Note that ζL is a primitive (qd

− 1)-st
root of unity, and ζF is a primitive (q−1)-st root of unity.

Recall that Y =Y/(qd
−1)Y ; thus, for y ∈Y , it makes sense to write y(ϑL) as an

element of T ◦L . According to the decomposition TL ≡ Y × T l× T 1
L , every element

t ∈ TL has a unique expression as t = y1($)y2(ϑL)t1, where y1 ∈ Y , y2 ∈ Y , and
t1
∈ T 1

L . To determine when such an expression lies in TF , we have the following
characterization:
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Proposition 5.3. An element y1($)y2(ϑL)t1 of TL , with y1, y2, and t1 as above,
lies in TF if and only if

• y1 ∈ Y0, that is, δ(y1)= 0;

• y2 ∈ Y0,q , that is, δq(y2)= 0; and

• t1
∈ T 1

F .

Proof. By the 0-invariance of the decomposition TL ≡ Y × T l× T 1
L , we find that

y1($)y2(ϑL)t1
∈ TF if and only if the three factors are fixed by 0. The proposition

follows from three observations:

• Since $ ∈ F , we have y1($) ∈ T 0
L if and only if y1 ∈ Y0.

• Since γ (ϑL)= ϑ
q
L , we find that y2(ϑL) ∈ T 0

L if and only if y2 = qγ (y2) in Y .

• Since the reduction map intertwines the action of 0, we have t1
∈ (T 1

L )
0 if

and only if t1
∈ T 1

F . �

Tame metaplectic unramified tori. The structure of T ′(L) and T ′(F) is based on
[Brylinski and Deligne 2001, Sections 12.8–12.12]. In particular, if we let T ′L =
T ′(L) and T ′F = T ′(F), there is a natural commutative diagram

1 // K 2(F) //

��

T ′F //

��

TF //

��

1

1 // K 2(L) // T ′L // TL // 1.

There is a natural action of 0 on the bottom row such that K 2(F)maps to K 2(L)0,
TF = T 0

L , and T ′F maps to (T ′L)
0. The tame symbols yield a commutative diagram

K 2(F)
t //

��

f×

��
K 2(L)

t // l×,

where the downward arrows arise from the functoriality of K 2 and K 1. The bottom
row is a morphism of Z[0]-modules. Pushing forward T ′F and T ′L via the tame
symbols yields a commutative diagram of locally compact groups, with exact rows:

(5-1)

1 // f× //

��

T̃ t
F

//

��

TF //

��

1

1 // l× // T̃ t
L

// TL // 1.

The downward arrows arise from the inclusion of F in L , and of f in l. Deligne
and Brylinski, in [2001, Section 12.8], note the following:
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Proposition 5.4. In the commutative diagram (5-1), the groups in the top row are
precisely the 0-invariant subgroups of the bottom row. In other words, f× = (l×)0,
TF = T 0

L , and T̃ t
F = (T̃

t
L)
0.

We may push forward the covers further to obtain all tame covers. Recall that
(p, n)= 1 and F has enough n-th roots of unity. Then, we find n divides (q − 1),
and one obtains a natural surjective map

ψF : f×→ µn(F),

by first applying the Teichmüller map (from f× to µq−1(F)), and then raising to
the power m = (q−1)/n. Recall that r = (qd

−1)/(q−1). One gets a similar map

ψL : l×→ µnr (L)

by applying the Teichmüller map (from l× to µqd−1(L)) and then raising to the
power m = (q − 1)/n. The compatibility of these maps yields a new commutative
diagram with exact rows:

1 // µn(F) //

��

T̃F //

��

TF //

��

1

1 // µnr (L) // T̃L // TL // 1.

With this construction, we say that T̃F is a tame metaplectic cover of TF , and T̃L

is a tame metaplectic cover of TL as well. T̃F is identified as a subgroup of T̃L .
Note that the commutator map for T̃L satisfies

CL(y1(u), y2(v))= (u, v)
B(y1,y2)
L ,nr = (u, v)m B(y1,y2)

L ,qd−1 ,

where ( · , · )L ,nr and ( · , · )L ,qd−1 denote the appropriate Hilbert symbols (in this
case, norm residue symbols) on L×. The commutator on TF is simply the restric-
tion of CL . As a result, Z†(TF )⊃ Z†(TL)∩ TF , where the preimage of Z†(TF ) is
the center of T̃F and the preimage of Z†(TL) is the center of T̃L .

Computation of the center. We now recall that the set Iε(T̃F ) is a torsor for
X(Z†(TF )). Therefore we wish to study the group Z†(TF ) in more detail. To
this end, we first observe this:

Proposition 5.5. The group T 1
L is contained in Z†(TL). Similarly, T 1

F is contained
in Z†(TF ).

Proof. Since (qd
−1, p)= 1, the Hilbert symbol (in this case, a norm-residue sym-

bol) is trivial when one of its “inputs” is contained in O1
L . Hence the commutator

CL( · , · ) is trivial when one of its inputs is contained in T 1
L . Hence T 1

L ⊂ Z†(TL).
Since Z†(TF )⊃ Z†(TL)∩ TF , we find that T 1

F ⊂ Z†(TF ) as well. �
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Since T 1
F is contained in Z†(TF ), Z†(TF ) corresponds to a subgroup of TF/T 1

F .
Our choice of uniformizing element, together with the previously mentioned split-
tings, yields a decomposition TL/T 1

L ≡ Y × T l of Z[0]-modules. Namely, every
element t of TL/T 1

L can be represented by y1($)y2(ϑL), for uniquely determined
y1 ∈ Y and y2 ∈ Y .

In order to describe Z†(TF ), we work with a number of subgroups of Y . Recall
that Y0#

= {y ∈ Y such that B(y, y′) ∈ nZ for all y′ ∈ Y0}. Note that Y0#
⊃ Y #.

Also, it is important to distinguish between Y0# and Y #0
= (Y #)0.

Lemma 5.6. There are inclusions of Z[0]-modules, of finite index in Y , given by

Y ⊃ Y0#
⊃ Y #

⊃ (qd
− 1)Y.

Furthermore, δq(Y )⊂ Y0#, and Trq(Y0#)⊂ Y #.

Proof. The inclusions are clear, since n divides qd
− 1. If y ∈ Y and y′ ∈ Y0, then

we find

B(δq y, y′)= B(qγ y− y, y′)

= q B(y, γ−1 y′)− B(y, y′)

= (q − 1)B(y, y′) ∈ nZ (since q − 1= mn).

Hence δq(Y )⊂ Y0#.
Now, suppose that w ∈ Y0# and y′ ∈ Y . Then, we find

B(Trq(w), y′)=
d−1∑
i=0

B(q iγ iw, y′)

≡

d−1∑
i=0

B(γ iw, y′) (mod n) (since q − 1= mn)

≡ B(w,Tr(y′)) ∈ nZ (since Tr(y′) ∈ Y0).

Hence Trq(Y0#) ∈ Y #. �

Now, we fully describe Z†(TF ) with two results:

Theorem 5.7. Let y1 ∈ Y and y2 ∈ Y . Then if the element t = y1($)y2(ϑL) is
contained in Z†(TF ), then for every lift y2 ∈ Y of y2,

y1, y2 ∈ Y # and δq y2 ∈ (qd
− 1)Y0#.

Proof. For reference during this proof, we recall that

nm = q − 1, r = 1+ q + · · ·+ qd−1, nmr = qd
− 1.
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Suppose furthermore that y′1, y′2 ∈ Y , and let y′2 ∈ Y be the reduction of y′2. Then
we find that [Tr(y′1)]($) and [Trq(y′2)](ϑL) are elements of TF . It follows that

CL(y1($)y2(ϑL), [Tr(y′1)]($))= 1 and CL(y1($)y2(ϑL), [Trq(y′2)](ϑL))= 1.

The explicit formula for the commutator CL yields

1= CL
(
y1($)y2(ϑL), [Trq(y′2)](ϑL)

)
=

d−1∏
i=0

($, ϑL)
mq i B(y1,γ

i y′2)
L ,qd−1

= ζ
∑d−1

i=0 mq i B(y1,γ
i y′2)

L (since ($, ϑL)L ,qd−1 = ζL )

= ζ
∑d−1

i=0 mq i B(γ d−i y1,y′2)
L (by the 0-invariance of B)

= ζ
∑d−1

i=0 mq i B(y1,y′2)
L (by the 0-invariance of y1)

= ζ
mr B(y1,y′2)
L (by summing a partial geometric series)

= ζ
m B(y1,y′2)
F (since ζF = ζ

r
L ).

Since 1= ζ
m B(y1,y′2)
F for all y′2 ∈ Y , we find that y1 ∈ Y #.

Carrying out a similar analysis, an explicit computation yields

1= CL
(
y1($)y2(ϑL), [Tr(y′1)]($)

)
=

d−1∏
i=0

($,$)
m B(y1,γ

i y′1)
L ,qd−1 ($, ϑL)

m B(y2,γ
i y′1)

L ,qd−1 .

Now if p is odd, we find that q − 1 is even. Since ($,$)L ,qd−1 = ±1, and
m B(y1, γ

i y′1) ∈ mnZ= (q − 1)Z⊂ 2Z (since y1 ∈ Y #), we find that

($,$)
m B(y1,γ

i y′1)
L ,qd−1 = 1.

On the other hand, if p = 2, then ($,$)L ,qd−1 = 1, and once again the equality
above holds. Continuing our computations yields

1=
d−1∏
i=0

($,$)
m B(y1,γ

i y′1)
L ,qd−1 ($, ϑL)

m B(y2,γ
i y′1)

L ,qd−1

=

d−1∏
i=0

ζ
m B(y2,γ

i y′1)
L (since ($,$)

m B(y2,γ
i y′1)

L ,qd−1 = 1 and ($, ϑL)L ,qd−1 = ζL )

= ζ
∑d−1

i=0 mq i B(y2,y′1)
L (since qγ (y2)= y2)

= ζ
mr B(y2,y′1)
L (by summing a partial geometric series)

= ζ
m B(y2,y′1)
F (since ζF = ζ

r
L ).
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Hence, we find that y2 ∈ Y #.
Finally, we prove that δq y2 ∈ (qd

− 1)Y0#. Note that δq y2 ∈ (qd
− 1)Y because

y2 ∈ Y0,q . Thus, δq y2 = (qd
− 1)y3 for some y3 ∈ Y . It suffices to prove that

y3 ∈ Y0#.
Now, to prove that y3 ∈ Y0#, suppose that y′ ∈ Y0. It follows that

1= CL
(
y1($)y2(ϑL), y′($)

)
= ($,$)

m B(y1,y′)
qd−1 (ϑL ,$)

m B(y2,y′)
qd−1 = ζ

m B(y2,y′)
L .

Hence B(y2, y′) ∈ nrZ. It follows that

B(y3, y′)= (qd
− 1)−1 B(δq y2, y′)

= (qd
− 1)−1(B(qγ y2, y′)− B(y2, y′))= r−1 B(y2, y′) ∈ nZ.

Thus y3 ∈ Y0#. �

Theorem 5.8. Suppose that y1, y2 ∈ Y #. Also suppose that y1 ∈ Y0 and y2 ∈ Y0,q .
Finally, suppose that δq y2 ∈ (qd

− 1)Y0#. Then y1($)y2(ϑL) ∈ Z†(TF ).

Proof. Since y1 ∈ Y0 and y2 ∈ Y0,q , it follows that y1($)y2(ϑL) ∈ TF . Now we
may compute some commutators.

Suppose that y′1 ∈ Y0, y′2 ∈ Y , and y′2 ∈ Y0,q . Thus y′1($) and y′2(ϑL) are
elements of TF . We begin by computing

CL(y1($), y′1($))= ($,$)
m B(y1,y′1)
L ,qd−1 .

If p is odd, then mn = q − 1 is even, and thus m B(y1, y′1) is even. Hence the
commutator is trivial. If p is even, then qd

−1 is odd, and hence ($,$)L ,qd−1=1.
In either case, the commutator is trivial.

Now, consider the commutator CL(y1($), y′2(ϑL))= ζ
m B(y1,y′2)
L . We claim that

m B(y1, y′2) ∈ (q
d
− 1)Z. Indeed, we have

B(y1, y′2)= B(γ y1, y′2)= B(y1, γ
−1 y′2)= B(y1, qy′2+ (q

d
− 1)y′3),

for some y′3 ∈Y . Since y1 ∈Y #, we have B(y1, (qd
−1)y′3)∈ n(qd

−1)Z. It follows
that (q − 1)B(y1, y′2) ∈ n(qd

− 1)Z. From this, we find B(y1, y′2) ∈ nrZ. Hence
m B(y1, y′2) ∈mnrZ= (qd

− 1)Z. This proves our claim, and we have proved that
CL(y1($), y′2(ϑL)= 1.

Next, consider the commutator CL(y2(ϑL), y′1($)) = ζ
−m B(y2,y′1)
L . We claim

now that m B(y2, y′1) ∈ (q
d
− 1)Z. Indeed, we have

B(y2, y′1)= B(qγ y2+ (qd
− 1)y3, y′1)= q B(y2, y′1)+ (q

d
− 1)B(y3, y′1)
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for some y3 ∈ Y0#. In particular, B(y3, y′1) ∈ nZ since y′1 ∈ Y0. It follows that
(q−1)B(y2, y′1)∈ n(qd

−1)Z. From this we find that B(y2, y′1)∈ nrZ, from which
the claim follows. We have proved that CL(y2(ϑL), y′1($))= 1.

Finally, note that (ϑL , ϑL)L ,qd−1= 1. Hence CL(y2(ϑL), y′2(ϑL))= 1. We have
proved that y1($) and y2(ϑL) commute with a set of generators for TF/T 1

F . Since
T 1

F ∈ Z†(TF ), this suffices to prove that y1($)y2(ϑL) ∈ Z†(TF ). �

The previous two theorems fully characterize the subgroup Z†(TF ).

Corollary 5.9. Suppose that y1 ∈Y , y2 ∈Y , and t1
∈ T 1

F . Then t = y1($)y2(ϑL)t1

belongs to Z†(TF ) if and only if

• y1 ∈ Y #0,

• y2 ∈ Y # for any choice of representative y2 of y2, and

• δq y2 ∈ (qd
− 1)Y0# for any choice of representative y2 of y2.

Proof. This corollary follows directly from the previous two theorems. One im-
portant observation is that the latter two conditions do not depend upon the choice
of representative y2 ∈ Y for a given y2 ∈ Y .

Indeed, suppose that y′2 = y2+ (qd
− 1)z for some z ∈ Y , so that y2 and y′2 are

representatives for y2. Since Y #
⊂ nY and n divides (qd

−1), we find that y2 ∈ Y #

if and only if y′2 ∈ Y #.
Similarly, we find that δq y′2 = δq y2+ (qd

− 1)δq z. By Lemma 5.6, δq z ∈ Y0#.
It follows that δq y2 ∈ (qd

− 1)Y0# if and only if δq y′2 ∈ (q
d
− 1)Y0#. �

The above corollary implies that y1($)∈ Z†(TF ) for a given y1 ∈ Y if and only
if y1 ∈ Y #0. It also implies the following:

Corollary 5.10. Suppose that y2 ∈ Y . Then y2(ϑL) ∈ Z†(TF ) if and only if

(5-2) y2 ∈ Im(Trq(Y0#)→ Y ).

Proof. The previous corollary implies that y2(ϑL) ∈ Z†(TF ) if and only if

(1) y2 ∈ Y # for some (equivalently, every) representative y2 of y2, and

(2) δq y2 ∈ (qd
− 1)Y0# for some (equivalently, every) representative y2 of y2.

Given these conditions and a representative y2 of y2, there exists w ∈ Y0# such
that δq(y2) = (qd

− 1)w. Hence δq(y2) = δqTrq(w). The injectivity of δq implies
that y2=Trq(w). It follows that y2 is the image of Trq(w) in Y . Hence, conditions
(1) and (2) imply the one condition (5-2) of this corollary.

Conversely, suppose that Equation (5-2) is satisfied. Then we may choose
w ∈ Y0# such that y2 equals the image of Trq(w) in Y . Thus y2 = Trq(w) is a
representative for y2 in Y . Since Trq(Y0#) ⊂ Y # by Lemma 5.6, condition (1) is
satisfied. Since δq y2 = Trqδqw = (qd

− 1)w, condition (2) is satisfied as well.
Therefore, y2(ϑL) ∈ Z†(TF ). �
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The image of an isogeny. For split metaplectic tori, we found a useful charac-
terization of Z†(TF ) as the image of an isogeny on F-rational points. The same
isogeny makes sense for nonsplit tori; however there is a small but important dif-
ference between the image of the isogeny and Z†(TF ). We view this difference
as accounting for “packets” of representations of metaplectic tori, with the same
parameter.

Consider the inclusion of Z[0]-modules ι : Y # ↪→ Y . Note that we use the fact
that Q is a 0-invariant quadratic form, so that Y # is a Z[0]-submodule. This
inclusion corresponds to an isogeny ι : T #

→ T of algebraic tori over F . Our
description of the F-rational and L-rational points for T is also valid, mutatis
mutandis, for T #. When y ∈ Y # and u ∈ L×, we simply write (y ⊗ u) for the
corresponding element of T #(L)≡ Y #

⊗ L×. We choose this notation rather than
y(u) since we do not wish to confuse cocharacters of T with cocharacters of T #.
Since Y # is a Z[0]-module, we find this:

Proposition 5.11. The torus T # splits over an unramified extension of F. Suppose
that y1, y2 ∈ Y #. Then (y1⊗$)(y2⊗ϑL) ∈ T #

= T #(F) if and only if

y1 ∈ Y #0 and y2 ∈ (Y #)0,q .

The isogeny ι acts on L-rational points by

ι(y⊗ u)= y(u) for all y ∈ Y #, u ∈ L× and (y⊗ u) ∈ T #(L).

Proposition 5.12. Suppose that y1 ∈ Y , y2 ∈ Y , and t1
∈ T 1

L . Then y1($)y2(ϑ)t1

is an element of the image of ι : T #(F)→ T (F) if and only if

• y1 ∈ Y #0,

• there exists a y2 ∈ Y # representing y2 such that δq y2 ∈ (qd
− 1)Y #, and

• t1
∈ T 1

F .

Proof. Since (n, p)= 1, the image of ι contains T 1
F . It suffices only to consider the

images ι((y1⊗$)(y2⊗ϑL)) for all y1 ∈Y #0 and y2 ∈Y # such that y2 ∈ (Y #)0,q . �

Corollary 5.13. Suppose that y2 ∈ Y . Then y2(ϑL) ∈ ι(T #(F)) if and only if

y2 ∈ Im(Trq(Y #)→ Y ).

Proof. If y2∈ Im(Trq(Y #)→Y ), there exists an element y3∈Y # such that y2 equals
the image of Trq(y3) in Y . If y2 = Trq(y3), then y2 is a representative for y2 in Y .
Note that y2 ∈ Y # since y3 ∈ Y #. Also δq y2= δqTrq(y3)= (qd

−1)y3 ∈ (qd
−1)Y #.

Hence y2(ϑL) ∈ ι(T #(F)) by the previous proposition.
Conversely, suppose that y2(ϑL)∈ ι(T #(F)). By the previous proposition, there

exists a representative y2 of y2 in Y such that y2 ∈ Y # and δq(y2) ∈ (qd
− 1)Y #. It
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follows that δq(y2)= δqTrq(y3) for some y3 ∈ Y #. Hence y2 = Trq(y3). Hence y2

is contained in the image of Trq(Y #) in Y . �

The packet group. From the previous two sections, we have described the groups
Z†(TF ) and ι(T #(F)). They are quite similar, with one exception. For given y2∈Y ,
we have

• y2(ϑL) ∈ Z†(TF ) if and only if y2 ∈ Im(Trq(Y0#)→ Y ), and

• y2(ϑL) ∈ ι(T #(F)) if and only if y2 ∈ Im(Trq(Y #)→ Y ).

Define a finite group P†
θl

by

P†
θl
= Im(Trq(Y0#)→ Y )

/
Im(Trq(Y #)→ Y ).

It follows from Proposition 5.12 and Corollary 5.9 that there is a natural short exact
sequence

(5-3) 1→ ι(T #(F))→ Z†(TF )→ P†
θl
→ 1.

However, this sequence depends upon the choice of generator θl of l×. We identify
P†
θl

here so that this sequence is independent of the choice of generator.
The Z[0]-modules Y0# and Y # correspond to a pair T0# and T # of f-tori that

split over l. Moreover, the inclusions Y #
⊂ Y0#

⊂ Y correspond to f-isogenies of
f-tori via T #

→ T0#
→ T . The choice of generator θl of l× corresponds to the

identifications
T0#( l)≡ Y0# and T #( l)≡ Y #.

Furthermore, the trace map Trq corresponds to the norm maps. For example, there
is a commutative diagram

T0#(l) ≡ //

N l/k
��

Y0#

Trq
��

T0#(f) ≡ // Y0#.

Now, Lang’s theorem [1956] implies that the norm map is surjective. In other
words, the commutative diagram above yields the identifications

T0#(f)≡ TrqY0# and T #(f)≡ TrqY #.

A proposition follows:

Proposition 5.14. Define a finite group P† by

P†
= Im(T0#(f)→ T (f))

/
Im(T #(f)→ T (f)).

Then P†
θl
∼= P†.
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The construction of the group P† does not depend upon the choice of generator θl.
This yields a canonical short exact sequence

1→ ι(T #(F))→ Z†(TF )→ P†
→ 1,

which depends neither on the choice of uniformizing element $ nor on the choice
of generator θ l.

The main theorem of Langlands [1997], which parameterizes smooth characters
of tori over local fields, determines isomorphisms

X(TF )∼= H 1
c (WL/F , T̂) and X(T #

F )
∼= H 1

c (WL/F , T̂#).

As before, the characters of the image of an isogeny can be parameterized coho-
mologically:

Proposition 5.15. The Langlands parameterization yields a finite-to-one parame-
terization of the smooth characters of Z†(TF ):

1→ X(P†)→ X(Z†(TF ))→ H 1
c (WL/F , T̂)

/
H 1

c (WL/F , T̂→ T̂#)→ 1.

Remark 5.16. To view H 1
c (WL/F , T̂→ T̂#) as a subgroup of H 1

c (WL/F , T̂) as
above, we must know that the map H 0

c (WL/F , T̂)→ H 0
c (WL/F , T̂#) is surjective.

This follows from the identifications

H 0
c (WL/F , T̂)≡ HomZ(Y0,C×) and H 0

c (WL/F , T̂#)≡ HomZ(Y #0,C×)

and the fact that Y #0 has finite index in Y0.

This leads directly, via a Stone–von Neumann theorem, to a main theorem for
tame covers of unramified tori:

Theorem 5.17. Suppose that we have tame metaplectic cover of an unramified
torus given by

1→ µn→ T̃ → T → 1.

Then, with the sublattices Y #
⊂ Y0#

⊂ Y defined as before and the resulting isoge-
nies T #

→ T0#
→ T of unramified tori, we find that

• there is a finite-to-one surjective map

8 : Iε(T̃ )→ H 1
c (WL/F , T̂)

/
H 1

c (WL/F , T̂→ T̂#)

intertwining the natural action of H 1(WL/F , T̂), and

• the fibres of this map are torsors for the finite group X(P†), where

P†
= Im(T0#(f)→ T (f))

/
Im(T #(f)→ T (f)).
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Remark 5.18. We do not know if a parameterization such as that above holds
for general metaplectic tori over local fields. Namely, we have not been able to
describe the center of such metaplectic tori for the case in which T is ramified or
an unramified torus but the cover is not tame. We hope that such a parameterization
is possible, though the packets might be substantially different.

Remark 5.19. In proving the previous theorem, we chose a uniformizing element
$ ∈ F× and a root of unity θL . However, this choice does not have any effect
on the parameterization given above. The sublattices Y # and Y0# clearly do not
depend upon such a choice. Moreover, the action of X(P†) on the fibres of 8 does
not depend on such a choice.

6. Pseudospherical and pseudotrivial representations

We maintain all of the conventions of the previous section. In particular, we have
a tame metaplectic cover of an unramified torus given by

1→ µn→ T̃F → TF → 1.

We have shown that the irreducible genuine representations of T̃F can be param-
eterized by the points of a homogeneous space on which H 1(WL/F , T̂) acts tran-
sitively. However, such a parameterization is not unique; one must choose a base
point in the space of irreducible genuine representations of T̃F in order to choose
a specific morphism

8 : Iε(T̃F )→ H 1(WL/F , T̂)
/

H 1(WL/F , T̂→ T̂#)

of homogeneous spaces.
In this section, we discuss the data that determines such base points. Such

choices arise frequently in treatments of metaplectic groups, often as choices of
square roots of −1 in C.

The residual extension. Recall that the unramified torus T has a smooth model T
over OF , and T ◦F = T (OF ). In this case, T ◦F is the maximal compact subgroup of
T , and we let T̃ ◦F be its preimage in T̃F . Also, T denotes the special fibre of T that
is a torus over f. Recall that T ′ is a central extension of T by K 2. Pushing forward
via the tame symbol led to the tame central extension

1→ f×→ T t
F → TF → 1.

We write T t◦
F for the preimage of T ◦F in T t

F .
Deligne and Brylinski, in [2001, Section 12.11], construct an extension T ′ of

T by Gm (in the category of groups over f). We call T ′ the residual extension
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associated to T ′. The residual extension fits into the commutative diagram

1 // f× //

��

T t◦
F

//

��

T ◦F //

��

1

1 // f× // T ′f // T f // 1.

Here, the map from f× to itself is the identity, the map from T ◦F to T f is the reduction
map, and the diagram identifies the top row with the pullback of the bottom row
via reduction.

As an extension of T by Gm over f, the group T ′ is an algebraic torus over f.
Note that the category of extensions of T by Gm , in the category of groups over f, is
equivalent to the category of extensions of Y by Z, in the category of Z[0]-modules
(where Z is given the trivial module structure). In this way, the construction of
[Brylinski and Deligne 2001, Section 12.11] associates an extension of Y by Z to
any extension of an unramified torus T by K 2.

Remark 6.1. Recall that Ỹ is a 0-equivariant extension of Y by L×, constructed
as a functorial invariant of the extension T ′ of T by K 2. Let Y ′ be the extension
of Y by Z, obtained by pushing forward Ỹ via the valuation map L×→ Z, that is,

0→ Z→ Y ′→ Y → 0.

We do not know whether this extension is naturally isomorphic to the exact se-
quence of cocharacter groups of the residual extension of tori described above

Definition 6.2. Let Spl(T ′) denote the set of splittings, in the category of algebraic
groups over f, of the short exact sequence

1→ Gm→ T ′→ T → 1.

We say the extension T ′ of the unramified torus T is a residually split extension if
Spl(T ′) is nonempty.

In particular, if T is a split torus, then T ′ is residually split.

Proposition 6.3. If Spl(T ′) is nonempty, then Spl(T ′) is a torsor for the abelian
group X0.

Proof. Any two algebraic splittings are related by an element of Homf(T , Gm).
This group may be identified with the 0-fixed characters of T . �

Pseudospherical representations. Suppose now that T ′ is a residually split exten-
sion of T by K 2. Fix a splitting s ∈ Spl(T ′). The splitting lifts to a splitting
σ : T ◦F → T t◦

F . Pushing forward via the m-th power map, we may also view σ as
a splitting T ◦F → T̃ ◦F . From such a splitting s, we let θ◦s : T̃ ◦F → C× denote the
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character obtained by projecting onto µn (via the splitting σ ) and then applying
the injective homomorphism ε : µn→ C×.

Let Z T̃F (T̃
◦

F ) be the centralizer of T̃ ◦F in T̃F .

Proposition 6.4. The group Z T̃F (T̃
◦

F ) is the preimage of a subgroup Z†
TF
(T ◦F )⊂TF .

Consider the valuation map

val : TF → Y0

whose kernel is T ◦F . Then Z†
TF
(T ◦F ) is equal to the preimage of Y #0.

Proof. Since Z†
TF
(T ◦F )⊃ T ◦F , it suffices to identify the set of y ∈ Y0 such that

CL(y($), y′(ϑL))= 1 for all y′ ∈ Y0,q .

In fact, the set of such y has been identified in the proofs of Theorems 5.7 and 5.8.
The above condition is satisfied if and only if y ∈ Y #0. �

Corollary 6.5. The group Z T̃F (T̃
◦

F ) is abelian.

Proof. As Z T̃F (T̃
◦

F ) is the centralizer of the abelian group T̃ ◦F , it suffices to prove
that C(y($), y′($)) = 1 for all y, y′ ∈ Y #0. This is proved in the beginning of
the proof of Theorem 5.8. �

Directly following [Savin 2004, Section 4], we find this:

Proposition 6.6. There is a natural bijection between the following two sets:

• The set I
sph
s,ε (T̃F ) of pseudospherical irreducible representations of T̃F (for the

splitting s). These are the genuine irreducible representations of T̃F whose re-
striction to T̃ ◦F via the splitting s contains a nontrivial θ◦s -isotypic component.

• The set of extensions of θ◦s to the group Z T̃F
(T̃ ◦F ).

Namely, if (π, V ) is a pseudospherical irreducible representation, its θ◦s -isotypic
subrepresentation is an extension of θ◦s to the group Z T̃F (T̃

◦

F ). Conversely, given
such an extension θ1

s of θ◦s to a character of Z T̃F
(T̃ ◦F ), the induced representation

IndT̃F
Z T̃F (T̃

◦

F )
θ1

s is a pseudospherical irreducible representation.

One may rephrase the bijection above slightly: the splitting s yields an injective
homomorphism from T ◦F onto a normal subgroup of Z T̃F

(T̃ ◦F ). This fits into a
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commutative diagram

1

��

1

��
1 // 1 //

��

T ◦F //

s
��

T ◦F //

��

1

1 // µn //

��

Z T̃F (T̃
◦

F )
//

��

Z†
TF
(T ◦F ) //

��

1

1 // µn //

��

Ỹ #0 //

��

Y #0 //

��

1

1 1 1

with exact rows and columns. Hence, the splitting s determines an extension Ỹ #0

of Y #0 by µn . A standard diagram chase now yields this:

Proposition 6.7. There is a natural bijection

Isph
s,ε (T̃F )↔ Xε(Ỹ #0).

Corollary 6.8. The space I
sph
s,ε (T̃F ) is naturally a torsor for the complex algebraic

torus X(Y #0).

Remark 6.9. One may view Xε(Ỹ #0) as the set of irreducible representations of a
“quantum torus”. Indeed, the ring

Cε[Ỹ #0
] = C[Ỹ #0

]
/
〈ζ − ε(ζ )〉ζ∈µn ,

can be viewed as (the coordinate ring of) a quantum complex torus. This torus,
which we call T̂#0

ε , is the quantization of a complex torus, at a root of unity. Qua-
sicoherent sheaves on this quantum torus (that is, modules over its coordinate ring)
correspond naturally to pseudospherical representations of T̃F .

Pseudotrivial representations. In many practical situations, the extension Ỹ #0 of
Y #0 by µn splits over a quite large submodule of Y #0. For example, in many cases,
the extension splits over Y #0

∩ 2Y .
Suppose that V ⊂ Y #0 is a finite index subgroup, endowed with a splitting v of

the resulting exact sequence

1 // µn // Ṽ // V //
v

uu 1.
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Let U = Y #0/V denote the quotient. The splitting v yields an extension of finite
abelian groups given by 1→ µn→ Ũ →U → 1.

Pulling back yields natural inclusions Xε(Ũ ) ↪→ Xε(Ỹ #0)≡ I
sph
s,ε (T̃F ).

Therefore, within the set of pseudospherical representations of T̃F , we find a
finite set of “pseudotrivial” representations (relative to the choice of splitting sub-
group (V, v) of Y #0:

Definition 6.10. The genuine pseudotrivial representations of T̃F are those irre-
ducible pseudospherical genuine representations that are in the image of Xε(Ũ ).
This definition depends upon the choice of

• the splitting s (to determine the pseudospherical representations), and

• the splitting subgroup (V, v) (to determine the pseudotrivial representations).

Remark 6.11. Most often, one chooses a pseudotrivial “base point” in the space
Iε(T̃F ). Very often (see the examples of [Savin 2004]), Ũ is a finite abelian group
of exponent 4. It follows that pseudotrivial representations may often be given by
specifying certain characters of an abelian group of exponent 4. This explains why
choosing fourth roots of unity is often necessary in work on metaplectic groups.

7. Tori over R

In this section, we fix these notations:

• T will be a torus over R, and 0 = Gal(C/R) = {1, γ }. X and Y will be the
resulting character and cocharacter groups, viewed as Z[0]-modules.

• T ′ will be an extension of T by K 2 in GpR.

• (Q, Ỹ ) will be the Deligne–Brylinski invariants of T ′, and B will be the sym-
metric bilinear form associated to Q.

• We fix n = 2, so that R has enough n-th roots of unity.

• If W is a subgroup of Y , then we write W0 for the subgroup of 0-fixed ele-
ments of W . We also define

W #
= {y ∈ Y such that B(y, w) ∈ 2Z for all w ∈W }.

• ε : µ2(R)→ C× will be the unique injective character.

• We view T = T (R) as a real Lie group. We write T ◦ for the connected
component of the identity element, and π0T for the component group of T .

• The extension T ′, and the quadratic Hilbert symbol, yields an extension of
Lie groups given by

1→ µ2→ T̃ → T → 1.
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We are interested in parameterizing the irreducible genuine representations of T̃ ,
which, as before, we call Iε(T̃ ).

Structure of metaplectic tori over R. There is a short exact sequence

1→ T ◦→ T → π0T → 1

of Lie groups. Let T0 be the split real torus with cocharacter group Y0. Let T 0

denote the real points of T0. Then, we find that π0T 0 is canonically isomorphic
to Y0 = Y0 ⊗Z µ2 ≡ Y0/2Y0. Moreover, the inclusion of R-tori from T0 into T
induces a surjection π0T 0�π0T of component groups. Therefore, every element t
of T has a (often nonunique) decomposition t = t◦y(−1) for some t◦ ∈ T ◦ and
y ∈ Y0. In other words, there is a natural surjective homomorphism Y0→ π0T .

Now, we consider the metaplectic cover 1→ µ2 → T̃ → T → 1 of T . The
commutator C : T ×T→µ2 is bimultiplicative and continuous. It follows that the
commutator is trivial when either of its inputs is in T ◦. Hence:

Proposition 7.1. T ◦ is a subgroup of Z†(T ).

Description of the center. It follows from the previous proposition that to describe
Z†(T ), it suffices to describe its image in T/T ◦. Hence, it suffices to determine
the y ∈Y0 for which y(−1)∈ Z†(T ). We must be able to compute the commutator
C(y(−1), y′(−1)) for arbitrary y, y′ ∈ Y0.

Here, we note that such elements y(−1) and y′(−1) are contained in the real
points of the maximal R-split subtorus T0 ↪→ T . Restricting the central extension
of T by K 2 to the split subtorus T0, the formula of [Brylinski and Deligne 2001,
Corollary 3.14] is valid for computing commutators.

Proposition 7.2. If y, y′ ∈ Y0, then C(y(−1), y′(−1))= (−1)B(y,y′).

Proof. This follows directly from [Brylinski and Deligne 2001, Corollary 3.14]
and the Hilbert symbol over R, which satisfies (−1,−1)R,2 =−1. �

Proposition 7.3. Given y ∈ Y0, we have y(−1) ∈ Z†(T ) if and only if every rep-
resentative y of y in Y satisfies y ∈ Y0#0.

Proof. Suppose y, y′ ∈ Y0. Let y be a representative of y in Y . The commu-
tator has been computed as C(y(−1), y′(−1)) = (−1)B(y,y′). Thus, we find that
C(y(−1), y′(−1))= 1 for all y′ ∈ Y0 if and only if B(y, y′) ∈ 2Z for all represen-
tatives y of all y′ ∈ Y0. This occurs if and only if B(y, y′) ∈ 2Z for all y′ ∈ Y0,
that is, y ∈ Y0#.

Thus, y(−1) ∈ Z†(T ) for y ∈ Y0 if and only if y ∈ Y0#
∩ Y0 = Y0#0. �

Corollary 7.4. Let T0# be the real torus with cocharacter group Y0#. Suppose
T 0#
= T0#(R). Then the quotient Z†(T )/T ◦ is isomorphic to Im(π0T 0#

→ π0T ).
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Proof. The diagram
Y0#0

⊗Z µ2
η //

p0#

��

Y0 ⊗Z µ2

p

��
π0T 0# ρ // π0T

of finite abelian groups commutes. The previous proposition demonstrates that
Z†(T )/T ◦ can be identified with the image of p ◦ η. The commutativity of the
above diagram, together with the surjectivity of p0#, implies that this image is the
same as the image of ρ. �

The image of an isogeny. The inclusion Y # ↪→ Y of Z[0]-modules corresponds,
as in the nonarchimedean case, to an isogeny ι : T #

→ T of tori over R. We
are interested in the resulting continuous homomorphism ι : T #

→ T of real Lie
groups. Since ι is an isogeny, we find that ι(T #) ⊃ T ◦. Thus, in order to fully
describe ι(T #), it suffices to determine the y ∈ Y0 for which y(−1) ∈ ι(T #).

Proposition 7.5. Let y ∈Y0. Then y(−1)∈ ι(T #) if and only if y ∈ Im(Y #0→Y0).

Proof. We find that y(−1) ∈ ι(T #) if and only if there exists a y ∈ Y #0 that
represents y. The proposition follows. �

Corollary 7.6. We can identify the quotient ι(T #)/T ◦ with Im(π0T #
→ π0T ).

Comparing the image of the isogeny ι to the group Z†(T ) yields a short exact
sequence 1→ ι(T #)→ Z†(T )→ P†

→ 1, where we may identify the finite group

P†
≡ Im(π0T 0#

→ π0T )
/

Im(π0T #
→ π0T ).

Parameterization. As for the case of nonarchimedean fields, we choose to param-
eterize the genuine irreducible representations of T̃ through a finite-to-one map and
a description of the fibres. Over R, the previous two sections imply that the space
Iε(T̃ ) can be identified (via Theorem 3.1) with the complex variety of genuine
characters Xε(Z(T̃ )). This is a torsor for the complex algebraic group of characters
X(Z†(T )). There is a short exact sequence

1→ X(P†)→ X(Z†(T ))→ H 1
c (WR, T̂)

/
H 1

c (WR, T̂→ T̂#)→ 1.

Hence:

Theorem 7.7. Suppose that we are given a metaplectic cover

1→ µn→ T̃ → T → 1

of a real torus. Then, with the sublattices Y #
⊂ Y0#

⊂ Y defined as before and the
resulting isogenies T #

→ T0#
→ T , we find that
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• there is a finite-to-one surjection

8 : Iε(T̃ )→ H 1
c (WR, T̂)

/
H 1

c (WR, T̂→ T̂#)

that intertwines the natural action of H 1(WR, T̂), and

• the fibres of this map are torsors for the finite group X(P†), where

P†
= Im(π0T 0#

→ π0T )
/

Im(π0T #
→ π0T ).

Note that this theorem is quite similar to the parameterization of Iε(T̃ ) for tame
covers of unramified tori over nonarchimedean local fields. The only difference is
that points of residual tori are replaced by component groups.
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