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We show that a properly immersed thrice-punctured sphere in a cusped ori-
entable hyperbolic 3-manifold is either embedded or has a single clasp in a
manifold that is the Whitehead link complement or obtained by hyperbolic
Dehn filling on a cusp of the Whitehead link complement.

1. Introduction

Let 6(0,3) be a thrice-punctured sphere, which we will also refer to as a (pair of)
pants. Adams [1985] showed that if M is an oriented 3-manifold with boundary and
hyperbolic interior such that 6(0,3) embeds properly and incompressibly into M ,
then int(M) has an embedded totally geodesic pants. Adams also gave many
examples of hyperbolic manifolds containing embedded incompressible thrice-
punctured spheres, and indeed one may easily produce infinite families of ex-
amples. We study properly immersed π1-injective maps f : 6(0,3) → M , where
int(M) is hyperbolic and f is not homotopic to an embedding. If one takes one
component of the Whitehead link, then it bounds an immersed 2-punctured disk
in the complement of the other component, which has a single clasp (double-point
arc) singularity as in Figure 2. One may perform surgery on the other component to
obtain infinitely many hyperbolic 3-manifolds with an immersed pants. We prove
in Theorem 4.1 that this is the only possible way that a pants may be nontrivially
immersed in a hyperbolic 3-manifold such that the peripheral subgroups are para-
bolic.

Notation. For a path metric space X and a closed subspace Y ⊂ X , let X \\ Y
denote the path metric completion of the open subspace X − Y .

2. Parabolic PSL2(C) representations of π1(6(0,3))

We will use S =6(0,3) from now on to indicate a pair of pants, that is, a surface of
genus zero with three boundary components. Let ∂S = c1∪c2∪c3, and let ai j ⊂ S
be an embedded arc connecting ci to c j (see Figure 1). The arcs ai j are pairwise

MSC2000: 30F40, 57M50.
Keywords: hyperbolic geometry, topology, immersion.
The author is partially supported by NSF grant DMS-0504975 and the Guggenheim foundation.

201

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2009.241-2


202 IAN AGOL

a12 a23

a13

c1

c2

c3

1

Figure 1. Labeling a pants and three seams.

disjoint when i 6= j , and we may assume that there is a complete hyperbolic metric
on int(S) so that int(ai j ) is totally geodesic.

By taking a basepoint x ∈ a12, the map (c1∪c2∪a12, x)→ (S, x) of the eyeglass
graph is a homotopy equivalence. We may identify the generators of π1(S, x) with
c1 and c2, so that the third peripheral element is c1c2, corresponding to the boundary
component c3.

There are two natural classes of representations of π1(S)→ PSL2(C) for which
the peripheral elements are parabolic. The reducible representation is given by

(1) ρ(ci )=
(

1 zi

0 1

)
,

where we have indicated matrix lifts of the generators to SL2(C). Another natural
peripheral parabolic representation is given by

(2) ρ(c1)=
(

1 2
0 1

)
and ρ(c2)=

(
1 0
−2 1

)
.

The following proposition shows that up, to conjugacy, these are the only peripheral
parabolic representations of π1(S) (this is essentially due to Adams [1985]).

Proposition 2.1. Let ρ : π1(S)→ PSL2(C) be a representation such that the pe-
ripheral elements ρ(c1), ρ(c2) and ρ(c1c2) are all parabolic. Then either ρ is
reducible and we may conjugate ρ to Equation (1), or ρ is conjugate to Equation
(2).

Proof. If ρ(c1) and ρ(c2) fix the same point on ∂H3, then we may send this point
to∞, so that the representation is conjugate to the reducible representation given
above in Equation (1). Otherwise, assume that ρ(c1) and ρ(c2) fix different points
on ∂H3. By a further conjugation, we may send the fixed point of ρ(c1) to∞, and
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the fixed point of ρ(c2) to 0, so that we may assume that

(3) ρ(c1)=
(

1 2
0 1

)
, ρ(c2)=

(
1 0
z 1

)
, ρ(c1c2)=

(
1+ 2z 2

z 1

)
.

Since ρ(c1c2) must be parabolic, we have tr(ρ(c1c2)) = 2+ 2z = ±2, so z = 0
or z = −2. The case z = 0 means that ρ(c2) is trivial, so the representation is
reducible, contrary to assumption. Thus, we must have z = −2, and we have the
representation given in Equation (2). �

3. Whitehead link complement

There is a well-known class of immersed pants in 3-manifolds that comes from
drilling out a knot bounding an immersed disk with a single clasp singularity in
a 3-manifold (see Figure 2). Taking a regular neighborhood of the disk with a
clasp gives a solid torus. Since the boundary of the disk forms a knot inside of
the solid torus, if the drilled manifold is to be hyperbolic, the torus bounding the
solid torus must be compressible in the complement of the knot, and therefore
bound a solid torus on the outside as well, or else bound a torus crossed with I .
We immediately see that the only way this may happen is that we have Dehn
filling on one component of the Whitehead link complement, or the Whitehead
link complement itself.

In fact, we may use this immersed twice-punctured disk bounding one compo-
nent of the Whitehead link to parameterize (generalized) hyperbolic Dehn filling
on the other boundary component. Let W ⊂ S3 be the Whitehead link, and let
M = S3 \\N(W ) be its complement. Let ∂M = T1∪ T2 be the two torus boundary
components of M corresponding to the two components of W . Let S be a pants,
and let f : S → M be a clasp immersion of S into M such that f (∂S) ⊂ T2.
Suppose that we have a nonelementary representation ρ : π1(M)→ PSL2(C) such

Figure 2. A twice-punctured disk in the Whitehead link complement.
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Figure 3. The universal cover of the immersion f : S→ M .

that ρ(π1(T2))< PSL2(C) is parabolic. Under the map f : S→M we may assume
that f (a13)= f (a23) is the set of double points of the immersion. Let q ∈ π1(M)
be an element that sends a23 to a13 in such a way that ρ(q) sends the fixed point
of ρ(c2) to the fixed point of ρ(c1c2), and the fixed point of ρ(c1c2) to the fixed
point of ρ(c1) (see Figure 3).

These satisfy the relations c1q2 = q2c2 and [q−1c1q, c1c2] = 1. One may check
that {c1, c2, q} generate π1( f (S)), and therefore π1(M, x), because M has a re-
traction onto the 2-complex f (S) ∪ T2, since M \\ f (S) ∼= T1 × [0, 1] (see the
discussion at the beginning of the section), and π1( f (S)) generates π1( f (S)∪T2).
Then ρ( f#(π1(S))) will be a representation for which the three peripheral ele-
ments of π1(S) are parabolic. We may identify ρ( f#(π1(S))) = 〈C1,C2〉, where
Ci = ρ( f#(ci )). There are two cases depending on whether this representation is
reducible or not.

If 〈C1,C2〉 is reducible, we may assume that ρ is conjugated so that this sub-
group looks like Equation (1). Then ρ(q) must also fix∞, since q−1c1q and c1c2

commute and therefore both fix∞. In this case we see that ρ is reducible.
If 〈C1,C2〉 is parabolic and irreducible, we may assume ρ is conjugated so

that this subgroup looks like Equation (2), by Proposition 2.1. Then a12 lifts to a
geodesic arc in H3 connecting 0 and∞, a13 connects∞ and 1, and a23 connects 0
and 1 (see Figure 3). Keeping track of orientations, ρ(q)(0)=1, and ρ(q)(1)=∞,
which implies that

(4) ρ(q)=
(

a−1− a a
− a a

)
.
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Thus, we see that irreducible representations of π1(M) that are parabolic on one
cusp are parameterized by a single number a ∈ C−{0}.

More importantly, the above discussion implies this intermediate result, which
will be used in the proof of the main theorem:

Proposition 3.1. Let N be an orientable compact 3-manifold such that int(N ) ad-
mits a complete hyperbolic metric of finite volume. Let f : (S, ∂S)→ (N , ∂N )
be an essential map such that f#(ci ) is parabolic in the hyperbolic structure on
int(M) for each component ci of ∂S and f (a13) = f (a23). Then N is obtained by
(possibly empty) Dehn filling on one component of the Whitehead link complement.

Proof. Let 0 < PSL2(C) be the holonomy of π1(N ). Let 〈C1,C2〉 < PSL2(C)

correspond to f#(π1(S)), where we see that Ci and C1C2 are parabolic since
int(N ) has finite volume. If 〈C1,C2〉 is reducible, then π1(S) isn’t essential, so
we may assume that 〈C1,C2〉 is normalized as in Equation (2), by Proposition 2.1.
Let Q be an element of 0 sending a lift of a13 to a lift of a23, so that Q is
normalized as in Equation (4). Then we see ρ(π1(M)) < 0, where M is the
Whitehead link complement and ρ is the representation defined by Equations (2)
and (4). Moreover, ρ is parabolic on one boundary component of M . Since 0
is discrete, ρ(π1(M)) = 0′ < 0 is a finite-index subgroup. By [Francaviglia
and Klaff 2006], Vol(H3/0′) ≤ Vol(int(M)) = 3.66 . . . . If [0 : 0′] > 1, then
Vol(int(N ))=Vol(H3/0)<1.84, which contradicts Vol(int(N ))≥2.0298 by [Cao
and Meyerhoff 2001]. Thus, we see that 0′=0, so 0 is the discrete torsion-free ho-
momorphic image of π1(M). In this case, we apply the analysis of [Neumann and
Reid 1992] to see that every discrete irreducible homomorphic image of π1(M) in
PSL2(C)with one cusp remaining parabolic must come from a hyperbolic structure
on the Whitehead link complement with Dehn surgery type singularity along the
other boundary component. This follows from the parameterization of irreducible
representations ρ(π1(M)) given in the proof of [Neumann and Reid 1992, Theo-
rem 6.2] in terms of a single parameter z ∈ C−{0}. Their parameter z is equal to
x− x−1, where x,−x−1 ∈C−{0,±1} are the complex parameters of two pairs of
tetrahedra in an ideal triangulation of M corresponding to a hyperbolic structure of
int(M)with T2 parabolic and a Dehn surgery type singularity along T1. The param-
eter z must correspond to our parameter a 6=0 up to a Möbius transformation, since
any proper subset of C− {0} is not holomorphically equivalent to C− {0}. Since
0 is discrete and torsion-free, we conclude that ρ(π1(T1)) must be a cyclic group.
Therefore, the completion of int(M) gives a cone-manifold structure M ′ with cone
angle an integral multiple of 2π at the Dehn surgery type singularity along T1

(see [Hodgson and Kerckhoff 2003] for a discussion of cone manifolds). If the
cone angle is not 2π , this implies that the map M ′→ H3/0 must be a branched
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immersion that is at least two-to-one, which would imply that Vol(H3/0) < 1.84,
giving a contradiction as before. �

4. Immersed pants

The goal of this section is to prove the following theorem, which shows that the
examples in Section 3 give the only way that a pants may be nontrivially immersed
in a hyperbolic 3-manifold.

Theorem 4.1. Suppose M is a connected orientable 3-manifold with boundary
and interior admitting a complete hyperbolic metric. Let S be a pants, and let
f : (S, ∂S)→ (M, ∂M) be an essential immersion such that f#(ci ) is parabolic in
the hyperbolic structure on int(M) for each component ci of ∂S. Then either f is
relatively homotopic to an embedding, or M is obtained by (possibly empty) Dehn
filling on one boundary component of the Whitehead link complement, and f may
be homotoped to have a single clasp singularity, that is, a single embedded arc of
double points as in Figure 2.

Proof. We may assume that the map f is homotoped so that the restriction f |int(S) is
totally geodesic with respect to the canonical metric on int(M), by Proposition 2.1.
We may identify int(M) = H3/0, where π1(M) ∼= 0 < PSL2(C) is a torsion-free
discrete group. Throughout the argument, we will fix orientations on S and M ,
as well as the induced orientations on ∂S = c1 ∪ c2 ∪ c3 and on ∂M . The proof
will proceed by deducing a sequence of restrictions on the manifold M and the
nature of the immersion f . We will assume from now on in the argument that the
geodesic immersion f is not an embedding.

Claim. int(M) must have finite volume.

This is achieved via an area estimate. Consider N = int(M)\\ f (int(S)), which has
a hyperbolic metric with convex boundary. For each component Ni of N , there is
a convex core C(Ni ) (which we take to be empty if χ(Ni )≥ 0). Each ∂C(Ni ) has
an intrinsic complete hyperbolic metric. If ∂C(Ni ) has a cusp, then there is some
neighborhood of the cusp that is totally geodesic inside of Ni . This cusp must be
parallel to a cusp of ∂Ni , which corresponds to an embedded cusp of f (int(S)).
But this cusp of f (int(S)) has two sides, and thus there is a component N j on the
other side of this cusp (it’s possible that j = i), with a cusp of ∂N j , and therefore
of ∂C(N j ) (which will be a distinct cusp of ∂C(Ni ) if i = j). Therefore, the cusps
of ∂C(N ) must come in pairs, which implies that χ(∂C(N )) must be even. Throw
out all components Ni of N with C(Ni )=∅ to obtain N ′ ⊂ N with χ(N ′) < 0 if
N ′ 6=∅. Then χ(∂C(N ′)) < 0, and therefore χ(∂C(N ′))≤−2, since it is even.

There is a nearest point 1-Lipschitz retraction N ′→ C(N ′), which is area de-
creasing when restricted to a map ∂N ′→ ∂C(N ′) [Epstein and Marden 1987]. We
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have Area(∂C(N ′))=−2πχ(∂C(N ′))≥4π , but 4π=Area(∂N )≥Area(∂C(N ′)),
which implies that Area(∂N ′) = Area(∂C(N )). This can occur if and only if
N = C(N ′). Since ∂C(N ′) is bent along a compact measured lamination and
∂N is piecewise composed of pieces of f (S), ∂N must be bent along the double
points of f (S). But then ∂N must be bent along a simple closed geodesic. This
is impossible, since there are no simple closed geodesics in S. Thus, we have a
contradiction, and we conclude that N ′ = ∅. This implies that all components of
int(N ) are balls, tori, or T 2×R. This implies that N has finite volume.

Claim. For each boundary component c of ∂S, f (c) is embedded.

Otherwise, since f |int(S) is totally geodesic, f would have degree at least two onto
its image. Then f would factor through a covering f ′ : S→ S′ of degree>1, which
is impossible since χ(S)=−1, so S does not cover any surface S′ nontrivially.

Claim. The image of f (∂S) meets at most two boundary components of M.

Suppose that f (∂S) meets three boundary components of M . Then each compo-
nent of ∂S maps to a distinct boundary component of M . Thus 0 6= f∗[c]∈H1(∂M)
for each component c ⊂ ∂S, and therefore 0 6= f∗([S]) ∈ H2(M, ∂M). Since
int(M) is hyperbolic, each homology class of H2(M, ∂M) has Thurston norm ≥ 1
[Thurston 1986]. There exists an embedded orientable incompressible surface
6 ⊂ M such that f∗([S]) = [6] ∈ H2(M, ∂M) by [Gabai 1983], and such that
χ−(6) = χ−(S) = 1, which implies that 6 is connected and χ(6) = −1. Since
each boundary component of S goes to a different boundary component of M under
the map f , we see that6 is an embedded pants such that int(6) is totally geodesic.
Also, each component of ∂6 is parallel to a component of f (∂S), since each com-
ponent of f (∂S) is homologous to a component of ∂6. Since f and 6 are both
totally geodesic, the boundary components f (∂S)∩ ∂6 = ∅, since otherwise we
would have f (S)=6, which contradicts the assumption that f is not embedded.
Then f −1(6) is a collection of embedded geodesic curves, since 6 is embedded.
But these curves miss ∂S, which means f −1(6) = ∅, since there are no closed
embedded geodesics in int(S). But this is also a contradiction, since M\ f (S) is
a union of regions with abelian fundamental group, and thus cannot contain the
embedded pants 6.

Claim. The image of f (∂S) meets only one boundary component of M.

Suppose that f (∂S) ⊂ T1 ∪ T2 ⊂ ∂M , where Ti is a torus. Let ∂S = c1 ∪ c2 ∪ c3.
Then we may assume that f (c1∪ c2)⊂ T1 and f (c3)⊂ T2, since we are assuming
for contradiction that f (∂S) is not contained in a single boundary component.
This implies that 0 6= f∗([c3]) ∈ H1(T2), and thus 0 6= f∗([S]) ∈ H2(M, ∂M).
Suppose 6 ⊂ M be an embedded orientable incompressible surface satisfying
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[6] = f∗([S]) ∈ H2(M, ∂M) and χ−(6)= 1. Then 6 is either a pants or a punc-
tured torus. First assume that 6 is a pants. Then we may assume that int(6)
is totally geodesic in int(M). Let ∂6 = c′1 ∪ c′2 ∪ c′3, where c′3 ⊂ T2 is a curve
parallel to f (c3), which must be disjoint since f (S) and 6 do not coincide. Then
γ = f −1(6) ⊂ S is a (possibly disconnected) embedded 1-manifold with geo-
desic interior, which must be disjoint from c3. Since c′1 and c′2 are parallel, and
[c′1] + [c′2] = f∗([c1] + [c2]) ∈ H1(T1), either f (ci ) ∩ ∂6 = ∅ for both i = 1, 2,
or | f (ci ) ∩ ∂6| ≥ 2. In the first case, we obtain a contradiction as before in the
case that we assumed that f (∂S) meets three boundary components of M . In
the second case, we have a contradiction, since there is no embedded curve with
geodesic interior γ ⊂ S such that ∂γ ⊂ c1 ∪ c2 and |γ ∩ ci | ≥ 2 for i = 1, 2.

Thus, we must be in the case that 6 is a punctured torus. We may assume that
6 is quasifuchsian, that is, 6 has no accidental parabolics; otherwise there would
be an embedded pants homologous to6, giving a contradiction as before. We may
assume that f (c3)∩ ∂6 =∅, by an isotopy, since these curves are homologically
parallel and therefore isotopic in ∂M . We have f −1(6) is an embedded union
of curves on S that miss ∂S. Homotope f so that the number of components of
f −1(6) has minimal cardinality. We may assume that each component of f −1(6)

is essential in 6, since otherwise a homotopy would reduce the cardinality of
| f −1(6)|. Therefore if f −1(6) is nonempty, each component of f −1(6) is an
embedded closed curve that is boundary parallel in S. An outermost such curve c
on S cobounds an annulus A with a boundary component ci of S. Then f (c)
represents a parabolic element in 6, and therefore must be boundary parallel in
6 since 6 has no accidental parabolics. Thus, since M is acylindrical, we may
homotope f to reduce the number of components of f −1(6), a contradiction. If
f −1(6) is empty, we obtain a contradiction as before. Thus, we conclude that
f (∂S) meets at most one boundary component of M .

Claim. f (∂S) is not embedded.

For sake of contradiction, assume that f (∂S) ⊂ ∂M is embedded. In this case,
again we have 0 6= f∗([∂S]) ∈ H1(∂M), so we have 0 6= f∗([S]) ∈ H2(M, ∂M).
Thus, there is an embedded incompressible norm-minimizing surface 6⊂M such
that χ−(6)= 1 and f∗([S])= [6] ∈ H2(M, ∂M). If 6 is a pants, then ∂6 must be
parallel to f (∂S) since they are homologically parallel. We obtain a contradiction
as before in the case that M had three boundary components. If 6 is a punctured
torus with no accidental parabolic, then f −1(6) ⊂ S is a collection of embedded
closed curves, which are therefore boundary parallel. As in the previous paragraph,
we homotope f so that f −1(6) has fewer components, until f −1(6) is empty,
which gives a contradiction as before, proving that f (∂S) is not embedded.
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We may now assume that f (∂S)meets only one boundary component of M , and
that the curves f (ci ) are not all parallel in ∂M . We introduce some further notation
now to be used throughout the rest of the proof. Let H ⊂ int(M) be a maximal open
horocusp containing neighborhoods of the ends of f (int(S)) (and thus homeomor-
phic to T 2×R). Then H ⊂ int(M)will have self-tangencies. The preimage of H in
H3 is a family of horoballs invariant under the action of 0 ∼= π1(M). The preimage
f −1(H) ⊂ int(S) contains a collection of horocycles in int(S) surrounding ∂S.
There are three curves hi → int(S) such that

⋃3
i=1 hi ⊂ f −1(∂H) and such that

hi is homotopic to ci in S. The curves hi might not be embedded, since they may
have self-tangencies mapping to the self-tangent points of H under the map f . The
curves f (hi )⊂ ∂H are geodesics in the intrinsic euclidean metric on ∂H .

Claim. For i 6= j , we have l(hi )l(h j )≤ 4.

This may be shown by a simple computation in hyperbolic geometry. One way
to see this is to expand hi and h j keeping them horocycles, until they become
tangent horocycles h′i , h′j . Then l(h′i )l(h

′
j ) = 4. This may be shown by shrinking

the longer of the two cycles, while expanding the smaller, until we obtain two
tangent horocycles with the same length. This operation preserves the product of
the lengths, since if we shrink a distance d , then the length gets multiplied by e−d ,
while the expanded horocycle has length multiplied by ed , keeping the product
constant. Once we reach equal size tangent horocycles, both have length 2, so the
product is 4. This horocycle bound is special to pants.

Let 1 : H1(T )× H1(T )→ Z be the algebraic intersection number of a torus T .
We will use the notation 1(a, b) = 1([a], [b]) for embedded oriented curves
a, b ⊂ T .

Claim. |1( f (ci ), f (c j ))| ≤ 1 for all i, j .

If f (hi ) and f (h j ) are horocycles in ∂H , then

|1( f (hi ), f (h j ))|Area(∂H)≤ l(hi ) · l(h j ).

This implies that for any i 6= j , if |1( f (hi ), f (h j ))|> 1, then Area(∂H)≤ 2. But
this is a contradiction by [Cao and Meyerhoff 2001, Proposition 5.8], which states
that the area of ∂H is ≥ 3.35. Thus, we conclude that |1( f (ci ), f (c j ))| ≤ 1 for
all i, j .

Claim. We may assume that 0 6= f∗([∂S]) ∈ H1(∂M).

Suppose that f ([∂S])= 0 ∈ H1(∂M), so that [ f (c3)] = −[ f (c1)] − [ f (c2)] (with
appropriately chosen orientations). Then, since 1 is bilinear and skew-symmetric,

(5) 1( f (c1), f (c2))+1( f (c1), f (c3))+1( f (c2), f (c3))=
1( f (c1), f (c2))+1( f (c1)+ f (c2),− f (c1)− f (c2)) =1( f (c1), f (c2)).
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But we also have that |1( f (c1), f (c2))| + |1( f (c1), f (c3))| + |1( f (c2), f (c3))|
represents the number of endpoints of the arcs of self-intersection of the map
f : S→ M , and therefore must be even. Therefore the term at (5) is also even,
since it has the same parity. Thus, we see that 1( f (c1), f (c2)) must be even,
which implies that 1( f (c1), f (c3)) and 1( f (c2), f (c3)) are also even, by sym-
metry of the indices. Since1( f (ci ), f (c j )) 6=0 for some i, j because f (∂S) is not
embedded, we must have |1( f (ci ), f (c j ))| = 2, which contradicts the previous
claim and thus implies that 0 6= f∗([∂S]) ∈ H1(∂M).

Since |1( f (ci ), f (c j ))| ≤ 1, and the total parity of the 3 intersections is even,
we conclude that 1( f (ci ), f (c j )) = 0 for some i 6= j , that is, f (ci ) and f (c j )

must be parallel (or antiparallel, keeping track of orientations). Since not all three
are parallel, we may assume that f (c1) and f (c2) are parallel, and f (c3) intersects
both precisely once.and Thus, we have l( f (h1))= l( f (h2))= b and l( f (h3))= a
for some a, b such that ab ≤ 4. Moreover, 1 ≤ b ≤ 2, where the lower bound
follows from the fact that the length of a horocycle in a maximal cusp is at least 1
[Adams 2002], and the upper bound follows from the facts that l(h1)= l(h2)= b
and l(h1)l(h2)≤ 4. Clearly we also have a ≤ 4.

In S, there are embedded essential arcs (unique up to isotopy) ai j connecting
ci to c j . We may assume that int(ai j ) ⊂ int(S) is a geodesic. We may use these
arcs to analyze the preimage H̃ ⊂ H3 of the horoball neighborhood of the cusp
H ⊂ int(M). Identifying H3 with the upper half space model, we may conjugate 0
so that there is a component of H̃ which is a horoball H∞ ⊂H3 centered at∞, so
that the boundary of H∞ is a Euclidean plane at height 1, and so that the intrinsic
hyperbolic metric on ∂H∞ is the same as the induced Euclidean metric. Then
H̃ =⋃p∈0(∞) Hp, where Hp is a horoball component of H̃ centered at p ∈ ∂H3.
Up to the stabilizer of H∞, there are two lifts of each geodesic arc int(ai j ) to H3

with one endpoint at∞, corresponding to the two ends of ai j . If f (a13) 6= f (a23),
then we see four horoballs from infinity of height ab/4 up to the stabilizer of H∞
corresponding to the four distinct lifts of these two arcs, where a = l(h3) and
b = l(h1). By possibly conjugating 0, we may assume that the four horoballs are
centered at 0, a/2, w1, and w2, where w1, w2 ∈ C.

Claim. If f (a13) 6= f (a23), then ab < 4.

If f (a13) 6= f (a23) and ab = 4, then these four distinct horoballs (up to the sta-
bilizer of ∞) have height 1. We show that this gives a contradiction. First, we
will consider the case that a < 4 and b < 2. We get three strings of tangent
horoballs up to the stabilizer of ∞ corresponding to each cusp of S. One string
consists of height 1 horoballs Hka/2 and horoballs Hka/2+a/4 of height a2/16 for
k ∈ Z. The other pair of strings has height 1 horoballs Hku+wi , where |u| = b,
u ∈ C− R, k ∈ Z, and w1, w2 ∈ C, and horoballs H(k+1/2)u+wi of height b2/4.
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a/4

a/4

11

√
1 − 4/a2

1

Figure 4. The imaginary part of ku +wi is greater in absolute
value than

√
1− 4/a2 when a ≥ 2

√
2.

Then the horoballs Hku+wi must each be disjoint from the horoballs Hka/2 since
f (a13) 6= f (a23), and disjoint from the horoballs Hka/2+a/4 since they have distinct
heights (since a < 4 by assumption). This implies that |ku+wi − k ′a/2| ≥ 1 and
|ku+wi − (k ′a/2+ a/4)| ≥ a/4 for all k, k ′ ∈Z. A geometric computation shows
that the only points satisfying this property must be distance

√
1− 4/a2 from the

real axis (see Figure 4) when a ≥ 2
√

2, and distance
√

1− (a/4)2 when a ≤ 2
√

2.
The horoballs H(k−1)u+wi and Hku+wi must straddle the real axis (and therefore
the strings of Hk′a/4-balls) for some k ∈ Z, and therefore must be separated by
2
√

1− 4/a2 when a ≥ 2
√

2. Since b = 4/a, we see that b = 4/a ≥ 2
√

1− 4/a2,
so a ≤ 2

√
2, thus a = 2

√
2. Similarly, we see that if a ≤ 2

√
2, then b ≥ √2.

Exchanging the roles of a/2 and b in the above argument, we see that H(k−1)a/2

and Hka/2 must straddle uR+wi for some k. As before, we get b ≤ √2 (where
we are assuming b < 2 to get Hka/2 disjoint from H(k′+1/2)u+wi ). But this implies
in either case that a = 2

√
2, b = √2, and w = √2/2 +√2/2i . Therefore the

horoballs of height 1/2 in the two strings must coincide. This implies that the arcs
a12 and a33 (the arc connecting c3 to itself) in S must get identified by f (S), which
is impossible since there would be an isometry fixing a lift of f (a12∩a33)∈H3. In
fact, this configuration of horoballs does occur in the Whitehead link complement,
but not corresponding to immersed pants in the manner hypothesized.

We now turn to the case that a = 4. Then we have b = 1, and this implies that
M is the figure eight knot complement by [Adams 2002]. Then M satisfies the
conclusion of the theorem, but we need to show that the immersed pants in M are
of the claimed type, and in fact we show that this case does not occur. The previous
argument goes through if f (ai3) 6= f (a33) for i = 1 or i = 2, since this is equivalent
to ka/2+ a/4 6= k ′u +wi for k, k ′ ∈ Z. So assuming that f (a13) = f (a33) and
f (a23)= f (a33), we contradict the assumption of the claim.



212 IAN AGOL

Finally, we consider b=2 and therefore a=2. Again, the argument above works
if ka/4 6= (k ′+1/2)u+wi for all k, k ′∈Z, which is equivalent to f (ai3) 6= f (a12) for
i = 1, 2. So we must have f (a12)= f (a13)= f (a23), contradicting the assumption
of the claim.

Claim. f (a13)= f (a23).

For contradiction, assume that f (a13) 6= f (a23). Thus, we may assume that ab<4.
In this case, we have two full-sized horoballs [Adams 1987], and four horoballs
of height ab/4 up to the action of the stabilizer in 0 of∞. We may estimate the
“seen area” of these horoballs, as in [Cao and Meyerhoff 2001]. The two full-
sized horoballs each have radius 1/2, so they contribute an area of π/2. The other
four balls may be “overshadowed” by the full-sized balls, but the distance of the
centers in ∂H3 must be at least

√
ab/4 from the centers of the full-sized balls (of

radius 1/2). Thus, disks of radius
√

ab/4− 1/2 will be embedded when centered
at the centers of the horoballs. Thus we see an area of π/2+ 4π(

√
ab/2− 1/2)2.

But we have Area(∂H)≤ ab. So we have

π/2+ 4π(
√

ab/2− 1/2)2 ≤ ab.

This is a quadratic inequality in
√

ab, and we complete the square to see that there
are no positive solutions

√
ab satisfying the inequality.

This implies that we must have f (a13)= f (a23). In this case, if ai3 is oriented
away from c3, then the orientations of f (a13) and f (a23) must be reversed under
this identification (otherwise the two arcs would be identified by a parabolic trans-
lation, which is impossible because f (c3) is embedded). By Proposition 3.1, we
see that M is obtained by Dehn filling on one component of the Whitehead link
complement. �

5. Conclusion

The result in this paper answers a special case of the general question, How sin-
gular can an immersed surface be? One may be able to extend the results in
this paper to understand immersed twice-punctured two-sided projective planes
in nonorientable hyperbolic 3-manifolds. These are totally geodesic for the same
reason that pants are, and it is likely that one could classify all the nonembedded
immersions. It is likely that one could also give a classification of collections
of pants in a hyperbolic 3-manifold. That is, one could classify the patterns of
intersections that may arise. It’s also likely possible to classify π1-injective im-
mersions of punctured tori, and maybe some other simple surfaces, into hyperbolic
3-manifolds. It would be interesting to extend the classification of immersed pants
to arbitrary 3-manifolds by analyzing how the surface cuts through the various
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pieces of the geometric decomposition. For turnovers immersed in hyperbolic 3-
orbifolds, G. Martin [1996] showed that a (2, 3, p)-triangle group in a hyperbolic
3-orbifold is embedded for p ≥ 7. However, there are other triangle groups that
are immersed in 3-orbifolds; see [Maclachlan 1996; Rafalski 2007].

For arbitrary surfaces, it’s hard to imagine a complete classification of immer-
sions into 3-manifolds. We conjecture a structural result for immersed surfaces:
For a surface of fixed topological type, there are finitely many homeomorphism
types of 3-manifolds and π1-injective maps of the surface into these manifolds such
that any π1-injective immersion of the surface into a 3-manifold factors through
an embedding of one of these manifolds. This conjecture seems feasible at least
when the target manifold is hyperbolic, and the main result in this paper proves
this conjecture for immersions of pants. Rafalski [2007] has shown the analogue
of this conjecture for turnovers immersed in hyperbolic 3-orbifolds.
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