THE MOBIUS CHARACTERIZATIONS OF WILLMORE TORI
AND VERONESE SUBMANIFOLDS IN THE UNIT SPHERE

ZHEN GUO, HAIZHONG LI AND CHANGPING WANG

Volume 241 No. 2 June 2009



PACIFIC JOURNAL OF MATHEMATICS
Vol. 241, No. 2, 2009

THE MOBIUS CHARACTERIZATIONS OF WILLMORE TORI
AND VERONESE SUBMANIFOLDS IN THE UNIT SPHERE

ZHEN GUO, HAIZHONG L1 AND CHANGPING WANG

Suppose M is a m-dimensional submanifold without umbilic points in the
(m + p)-dimensional unit sphere S™*7. Four basic invariants of M™ under
the Mobius transformation group of S™*? are a symmetric positive definite
2-form g called the Mobius metric, a section B of the normal bundle called
the Mobius second fundamental form, a 1-form ® called the Moébius form,
and a symmetric (0, 2) tensor A called the Blaschke tensor. In the Mobius
geometry of submanifolds, the most important examples of Mobius minimal
submanifolds (also called Willmore submanifolds) are Willmore tori and
Veronese submanifolds. In this paper, several fundamental inequalities of
the Mobius geometry of submanifolds are established and the Mobius char-
acterizations of Willmore tori and Veronese submanifolds are presented by
using Mobius invariants.

1. Introduction

Let x : M — S™*P be a m-dimensional submanifold without umbilic point in a
(m+ p)-dimensional unit sphere S 7. Let {e;} be a local orthonormal tangent
frame field of x for the standard metric / = dx - dx with the dual frame field {6;},
let {e,} be the local orthonormal normal frame field of x, let I] = Zi, ja h;’jﬁiﬁ ieq
be the second fundamental form, and let H = >, H”e, be the mean curvature
vector of x. Let p? = (m/(m — 1))|{I — (1/m) tr(IT)1|%>. Then the positive definite
2-form g = p?I is invariant under the Mobius transformations of $”*7 and is
called the Mobius metric of x. In [Wang 1998], the author gave the structure
equations for Mobius geometry of submanifolds in the unit sphere. Three fun-
damental forms ®, A and B appear naturally in the structure equations; together
with g, these determine the submanifold up to Mdbius transformations of S™*7.
= Za,i Cl0;e, is called the Mobius form, A = p? Zi’j A;;j0;6; the Blaschke
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tensor, and B = pBlf’jHiﬁ e, the Mobius second fundamental form. The relations
among ®, A, and B and Euclidean invariants of x are given by [Wang 1998]

(A-1) €l =—p2(HG+;(hf. — H*5;j)e;(log p)),
(1-2)  Ajj =—p*(Hess;;(log p) —e; (log p)ej(log p) — >, H )

—5p 72 (2 ((og p)i)> — 1+ H?)5;,
(1-3) By =p~'(hf; — H"3;p),

where Hess;; and H¢ are the Hessian matrix of dx -dx and the covariant derivative
of the mean curvature vector field of x in the normal bundle N (M). Let

1A =3, (Ai)? and [|®]* =3, ,(CH)?.

Then both ||A||> and ||®||?> are M&bius invariants.

In the Euclidean geometry of submanifolds in the unit sphere, a famous result
is this rigidity theorem of minimal submanifolds: If x is a minimal immersion and
the second fundamental form satisfies |II|> < m /(2 —1/p), then either |II|*> = 0 or
|II|>=m/(2—1/p) and x is Euclidean equivalent to the geodesic sphere, a Clifford
torus or a Veronese surface; see [Chern et al. 1970; Lawson 1969; Simons 1968].
Recently, Li [2001; 2002] modified this result for the case of a Willmore sub-
manifold x (satisfying the Euler-Lagrange equation of the Willmore functional).
He proved that if x satisfies p> <m/(2 —1/p), then p> =m/(2—1/p) and x is
Euclidean equivalent to a Willmore torus or a Veronese surface. However, p? is
not conformally invariant under the Mobius group of S™*7. A natural question
is, Do conformal invariants characterize Willmore tori and Veronese submanifolds
in Mobius geometry? In this paper, we give a positive answer to this question. It
should be noted that we don’t need the assumption of Willmore submanifold for
our theorems here. To state our results, we first introduce traceless Blaschke tensor
A=)p? Zi’j Aije,-@j and traceless tensor B = p? Zi,j éijQiGj, where

~ 5 m—1
A,]:Al]—%(zk Akk)éij and Bij:—mZ 5ij_2k,a BIO;CB;:]
We let || A I1>= > i (A~,~ j)z. We denote by x the normalized Mdbius scalar curvature

of x : M — S™FP (see (2-8)).
In the Mobius geometry of submanifolds, Willmore tori

(Wi = S"(Jm —k)/m) x " *(Jk/m), 1 <k <m—1},

which can also be obtained by exchanging the radii in the Clifford tori

M} = SE(Jk/m) x S" 7 (/(m — k) /m),
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are the chief examples of stable Willmore submanifolds; see [Guo et al. 2001;
Li 2001; 2002]. The main purpose of this paper is to obtain some geometric in-
equalities expressed in Mobius invariants, which then characterize Willmore tori
and Veronese submanifolds when equalities hold in the inequalities. The main
results are as follows.

Theorem 1.1. Let x : M — S™*P be an m-dimensional compact submanifold in
the unit sphere S™tP. Then
(1-4)

_ 2o.om x pn Lo 5 10 _
/M(K ml |~ A+ BI mz(m 24 1m—1)sgn(p 1)))dM§0.

In particular, if

m m—1

2
1-5 x—ml®|"— m

1A+BIP 2 5 (m—2+
m

sen(p— 1)),
then M is Mobius equivalent to either

(1) a Willmore torus W;"" = SK(/m =k/m)) x S"k(Jk/m) in S"*1, or
(ii) a Veronese surface in S*.

Theorem 1.2. Let x : M — S™*P be an m-dimensional compact submanifold in
the unit sphere S"P. Let K (x) be the function that assigns to each point of M the
infinimum of the Mobius sectional curvatures of M at that point. Then

/ 2m + 1)K —mx —1/m —m(m +2)||®||* —m| A|)dM < 0.
M

In particular, if

(1-6) 2(m + 1)K —mx —m(m +2)| @[> — m||A|| = 1/m,

then 1/K = m(m + 2) and M is Mobius equivalent to the Veronese submanifold
S"(/2(m+1)/m).

Corollary 1.3. Let x : M™ — S™*P be an m-dimensional compact submanifold
with constant Mobius sectional curvature ¢ and vanishing Mobius form. Then

c < ;
~m(m+2)’

with equality holding if and only if M is Mobius equivalent to the Veronese sub-

manifold S™ (/2(m + 1)/ m).

Remark 1.4. The functions on the right side of inequalities (1-5) and (1-6) are
Mobius invariants.



230 ZHEN GUO, HAIZHONG LI AND CHANGPING WANG

Remark 1.5. For related results about Mobius submanifolds in an unit sphere, see
[Akivis and Goldberg 1996; 1997; Guo and Guo 2006; Hu and Li 2003; 2004;
Li and Wang 2003a; 2003b; Li et al. 2001].

In addition, in Section 4 we prove two Mobius sectional curvature pinching
results, Theorem 4.1 and Theorem 4.2.

2. Mobius invariants for submanifolds in S™1?

In this section we define the Mébius invariants for submanifolds in S”*7. For
more detail we refer to [Wang 1998] or [Guo et al. 2001].
Let R;Hp 2 be the Lorentzian space with inner product

(x,y) = —Xoyo +X1y1 + "+ Xt pr1Ymtp+is

where x = (xo, X1, . .., Xm4p+1) and y = (Yo, Y1, - - - » Ymtp+1). Letx : M — S"*P
be a submanifold of S”*7 without umbilic points. The second fundamental form
and the mean curvature vector are denoted by Il and H respectively. Define the
positive function p = +/(m — 1)/m|Ill — H I |, and define the M&bius position vector
Y:M— R;"+p+2 of x by Y = p(1, x).

Theorem 2.1 [Wang 1998]. Two submanifolds x, X : M — S™P are Mébius equiv-
alent if and only if there exists a T in the Lorentz group O (m~+p+2, 1) on RTJ”DJr2
such thatY =YT.

Since the M6bius group in $”*7 is isomorphic to the subgroup O+ (m+p+2, 1)

of O(m+ p+2, 1), which preserves the positive part of the light cone in R, ,

we know from Theorem 2.1 that the 2-form
g =(dY,dY)=p*dx -dx

is a Mobius invariant; see [Blaschke 1929; Chen 1984; Pedit and Willmore 1988;
Wang 1998]. We call g the Mobius metric or the Mobius first fundamental form
induced by x. Let A denote the Laplacian of g. Then (AY, AY) = 1+m?’x, where
x is the normalized scalar curvature of g. By defining

LAy L 2
N = mAY 2mz(l—l—m}c)Y,

we have
(Y,Y)=(N,N)=0 and (Y,N)=1.

Moreover, if we take a local orthonormal basis {E;} with respect to g with dual
basis {w;} and let ¥; := E;(Y), then

(Yi9Yj>:5ij and (V;,Y)=(Y;,N)=0 forl<i,j<m.
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Let V be the orthogonal complement of span{Y, N, Y;} in RT+p *2 Then V is

m~+p+2
Rl

a spacelike subspace of , and we have the orthogonal decomposition

R'1"+p+2 =span{Y, N} @®span{Yy, ..., YV,} B V.
Let {E, :m+1 <a <m+ p} be an orthogonal basis of V. Then

{Y,N,Yl,...,Ym,Em+1,...,Em+p}

. . 42 ..
forms a moving frame in R{'"""" along M. For ranges of indices, we use the

conventions 1 <i, j, k,... <mandm+1<a,f,... <m+ p, and we sum each
repeated index over its respective range unless it also appears unrepeated in the
same context. Then the structure equations are given by
dy = wj Y,‘ .
dN = y;Y; + ¢, E,,
dYi=—y;Y —o;N +a),-ij +wi Ey,
dE, = _¢aY — WiqY; +waﬁEﬂa
where {y;, w;j, Wiq, Pa, Wqp} are 1-forms on M satisfying w;; = —wj;, Wjq=—q;
and wqp = —wgp,. Let
l//,':Aija)j, a)iazBf‘jwj, (ﬁa:Ciaa)i.

Itis clear that A = A;;0; Qwj, B = Bl.“ja)i ®w;E,, and ® = C!w, E, are Mobius
invariants; these are called the Blaschke tensor, the Mobius second fundamental
form, and the Mobius form, respectively.

Remark 2.2. The relations among A, B, ® and the Euclidean invariants of x are
given by (1-1), (1-2) and (1-3).

Taking the exterior derivations of structure equations, we obtain the integrability
conditions for the structure equations as follows:

(2-1) Aij=Aji, Bjj=Bj,
(2-2) Ajjx — Air,j = (B, C{ — B{;C}),

23)  CF;—C% = (BY Ak — BY A,

(2-4) BY, — B = 0,;Cl — 0 CY,

(2-5) Rijiu = (BB}, — B1Bjy) + (0ik A ji + j1Aik — duA jk — djiAin),
(2-6) Ropij = (BY, B, — B BY),

2-7 Rij = —BiO;CB,?j +tr(A)d;; + (m —2)A;j,

1
(2-8) tr(4) = 5-(1 + mx), Z B} =0, BSBj=(m—1)/m,
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where R;ji; and R,p;; denote the curvature tensor of g and the normal curvature

tensor of the normal connection, respectively. We let k = 1 /(m(m — 1)) Zi, j Rijij
be the normalized scalar curvature of x : M — S™ 7P The first covariant derivatives
of A;; and B“ are defined through

(2-9) Ajjror =dA;j + Agjor; + Ajray,

(2-10) B, oo = d Bl + B on + Bl + Blroga,

From (2-4) and (2-8) we have

(2-11) B} =—(m—1)CY.

The second covariant derivative of A;; and Blf’j are defined through

Ajjop =dAijx + Ajj o + Ao + Aij ok,
B yyon = dBYs  + Bfs oou; + B yooyj + By + Bl yopa.

We have the Ricci identities

(2-12) Aijrt — Aijik = Atj Riiki + Air Rija s
(2-13) B 11 — B ik = Bf; Reixi + Bjy Rejia + Bl-/j- Rpaki-

3. The proofs of Theorems 1.1 and 1.2

From the definition of the Laplacian, by using (2-8), (2-4), (2-13) and (2-11) we
have

(3-1) 0= 3A(B{B}) = B,/ Bfs , + B: B, 11
= |VBJ|*+ B}, " (Bji Riijk + By Ruji + B,ﬂkR/ka)
—m(BjCf); —m(m —1)|| @,
Integrating this over M gives a lemma:

Lemma 3.1. Suppose M is an m-dimensional compact submanifold in the unit
sphere S™TP. Then we have

(3-2) oz/ (IVBI*> = m(m—1)||®|?
" + B{: (Bji Ruijk + B Riji + B,-ﬂkR/)’ajk))dM
By using (2-5), (2-6) and (2-7), we have the calculation
(3-3) B (B, Riijx + Bfj Ruji + B Rpoin)
= —tr((B*B” — B’ B*)(B” B* — B“BF))
— (tr B*BP)(tr B* BP) + ((m — 1)/m) tr(A) +m tr(B* B* A),
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where B* denotes the matrix (Blf“j). Since at least one element of B* is nonzero,
we have the following lemma, which is due to Li A.-M. and Li J.-M. [1992] for
p > 2, and which is obvious for p = 1.

Lemma 3.2. We have
(3-4) tr((B*B? — B B*)(B’B* — B*B")) + (tr B“B”)(tr B* BY)
< (I+3sgn(p — D) BII%,
with equality holding if and only if either
i p=1,or

(i) p =2 and B™*! and B™+? can be transformed simultaneously by an ortho-
gonal matrix into 2 B"T! and uB"*?, respectively, where

EmH = ém“ =1 and gf;“ = 0 otherwise,
(3-5) -
Berz Ber2 =1 and B{;’H = 0 otherwise,
and )* = pi°.

Proposition 3.3. Let M be an m-dimensional compact submanifold in the unit
sphere S"tP_If

_ _ 2 m xRS Lo L _
(6) = ml®| — M| A+BIP = s (m =2+ Sm — 1) sgn(p — 1)),
then
(3-7) k—m|®|*— i )|A+B|| n:(m 2+ 3(m —1)sgn(p — 1)),
and only the following two cases happen:

1 p=1,

(Vm—1/m)/(m —k)/kd;; if 1<i<k,
(W = m) R =6, ifk+1<i<m,

(3-8) @®=0, BZ?“:{

and
_ 2
m l.3km —k“— 51']' if | <i<k,
(3-9) Ai=1 m* 2k(m—k)
Y m—1 m?—k*—km

(1) p=2, m=2,and

_ _3, p_v2(01 s_v2(1 0
(-100 @=0, A=qce 3_4(10’ B =30 -1
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Proof. We consider two traceless tensors

B:m_zlg—B“B“ and A:A—%tr(A)g.
m
Noting that
3-11) m- (BB A) = mﬂf tr(A) — m tr(A B)
-1 .y .y
=" t(A) — ym(|A+ B|* ~ | A~ B|)
>m=lia —Im|A+ B,
m

we see that the equality holds if and only if B = A. From (3-1), (3-3) and (3-4),
we have

O;LQWMFﬂMm—me—u+$@w—nmmﬁ

m—1

+ tr(A) +m tr(B“B“A))dM

2 2
;@OWMIﬂﬂm—MWH

—Im) A+ BI? — (14 Lsen(p — 1) B|* + 2=

|
- tr(A))dM

m—1 2 2 m2 e u2
> — 2tr(A) — ®|"——||A+B
> "= (/;( (A) = m? | B~ g A+ B

1 m—1
— 1+ sen(p = 1)™ )M,

Thus, if (3-6) holds all over M, then from (2-8) we know that (3-7) holds all over M
and VB = 0. The latter implies ® = 0. At the same time, equality holds in (3-11),
and so we have

(3-12) A= —B“B“+l(tr(A)+m—_1)g.
m m

Noting that the equality holds in (3-5), from Lemma 3.2 we know that only the
case p =1 or p = 2 is possible. So we consider the cases p = 1 and p = 2,
separately.

Case: p=1.Let B = B+ We choose our local frame field so that B;j = B;;d;;.
(Here and elsewhere in this case, repeated indexes such as those in B;; are not
summed over.) Then from (3-12) we have A;; = A;;0;;. Since VB =0 and ® =0,
from (2-4) we know that B;; is constant, 1 <i <m, and

0= Bjj xwx = dBij + Bixwyj + Bijox = (Bi; — Bjj)wij,
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This shows that w;; = 0 if B;; # B;;. Hence
(3-13) —%Rijklwk Ay =dwij — o Awgj = 0.
Then (3-13) and the Gauss Equation (2-5) implies that if B;; # B;;, then
(3-14) B;iBjj+A;;+Aj; =0.
From (3-12), we have
(3-15) Aii = —(Bii)* + L(t(A) + (m — 1) /m).
Then (3-14) and (3-15) yield
B,','Bjj — (B,'l')z — (Bjj)z +2t =0,
where mt = tr(A) + (m — 1)/m. We will show that there are only two distinct B;;.
In fact, if three are distinct—say B;;, Bj; and By —then we have
B,','Bjj — (B,'l')2 — (Bjj)z +2t =0,
Bii B — (Bii)* — (Bw)* +2t =0,
BjjBkk — (Bjj)2 — (Bkk)2 + 2t =0.
This implies
(Bjj — Buk)(Bii — (Bjj + Bix)) =0,
(Bii — Bi)(Bjj — (Bii + Bik)) =0,
(Bii — Bj;)(Bu — (Bii + Bjj)) =0,
which yields
Bii — (Bjj + Bi) =0,
Bjj — (Bj; + Bi) =0,
By — (Bii + Bjj) = 0.
These equations lead to B;; =0, Bj; =0, and By, = 0, a contradiction.
Thus we may assume By; = -+ = By = 4 and Byyipr1 = -+ = Bum = L.
We see that 4, i, A;; and Aj; satisfy the following relations for 1 < i < k and
k+1<j<m:
[ 2u— 22— i+ 2 (tr(A) + (m — 1) /m) =0,
kA+(m—ku=0,
k224 (m—kyu? = (m—1)/m,
Aji = =27+ L(tr(A) + (m —1)/m)  for1 <i <k,
Ajj=—u?+L(r(A) + (m—1)/m) fork+1<j<m,
| tr(A) = Zl Ay =kA; +(m— k)Ajj.
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From this system of equations, we get

1= m—1 [m—k _ _m—1 k
T oom k = m m—k’
m—1 3mk—k*—m?> m—1 m?—k*—mk
A = : , Ajj= : ,
m? 2k(m—k) m? 2k(m—k)

where 1l <i<kandk+1<j<m.

Case: p =2. In this case, B"+! = AB"™+! and B"+2 = ;y B"*2, where B! and
B"*2 are defined in Lemma 3.2 and 1> = p?. Noting that 2(A? 4+ u?) = | B||> =
(m—1)/m, we have 2A =2u = /(m — 1)/m. We get

(3'16) Bm—H — l m_lém-i-l and Bm+2 — 1 m—lém—i—z'
2 m 2V m

Since Bi“j,k =0, we have from (2-10)

(3-17) dB{: = — B0 — Blyonj — Blooga.

Setting o =m+1, i =1 and j > 3, we see that by using (3-16) and (3-17) we get
;=0 and j=>3.

Settinga =m +1,i =2 and j > 3, we see from (3-16) and (3-17) that
wj=0 and j=>3.

Thus if j > 3, then

0:da)1j = Wik N Wkj — (A]] —I—Ajj)a)l /\a)j = —(A]l —I—Ajj)a)l /\wj.

Since w!, ..., @™ are orthonormal, w' A @/ =0 implies @/ = 0 for j > 3. Thus

this shows that m = 2. Thus we have

_3 s_v2 (01 4_v2(1 0
L%&B_4Q0’B_404'

This completes the proof of Proposition 3.3. U
Proof of Theorem 1.1. We first consider some examples.

Example 3.4. First, the Willmore torus W;" = SK(/m —k)/m) x S" k(& /m)
in "+, In [Guo et al. 2001], we proved that the Mébius invariants ®, A and B
of W locally coincide with (3-8) and (3-9).

Example 3.5. Second, the Veronese surface in S*. Let (x, y, z) be the natural
coordinate system in R>. The mapping defined by

1

1 2
u = —F= u
B3I

3

= %zx, u = \/%xy, ut = #g(x2 —y?), W’ =1+ y*—27%)
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gives an immersion of SZ(\@) into S*. We can choose the local frame field
{e1, e, e3, e4} so that

1 (01 sy L (10
(hl-j)_\/g(1 0) and (h;;) = ﬁ(O 1)
Thus H =0 and p2 = §/3. Putting these into (1-1), (1-2) and (1-3), we have

_ _ 3 3_2(01 4_N2(1 0
®=0. A= B‘4(10)’ =110 -1)

It is known that if two submanifolds in S”*? have the same Mobius met-
ric, Mobius second fundamental form, and Blaschke tensor, then they are locally
Mobius equivalent. Since we assume M is compact in Theorem 1.1, we complete
the proof by comparing (3-8), (3-9) and (3-10) with Examples 3.4 and 3.5. |

Proposition 3.6. Let x : M — S™P be an m-dimensional compact submanifold in
the unit sphere S™*P. Let K (x) be the function that assigns to each point of M the
infinimum of the Mobius sectional curvatures of M at that point. Then

(3-18) / (2(m+ DK —mx — 1/m —m(m +2)||®||* —m|Al|)dM <O0.
M

In particular, if

(3-19) 2(m+ DK —mx —m(m+2)|®|> —m| Al = 1/m,
then
(3-20) 2(m + 1)K —mx —m(m +2)|®|> —m|A| =1/m,
and

K=K=m, ®=0, A=lu(a)yg.

Proof. In the proof, we will use Yau’s technique; see [Yau 1975; Itoh 1975; 1978].
By defining

(3-21) IR*|1? = tr((B* B — B B*)(B” B* — B*B"))

and noting that B;‘,B{;{Rﬂajk = —%HRl %, from (3-2) and (3-3) we have

(3-22) 0=/ (IIVBIIZ—m(m—1)I|<I>||2+(1+a)(31?j3r‘flszkﬂ+B?kB?,anjlm)
M
+atr(B*B?) tr(B*B?) — a(2(m — 1) /m) tr(A)
—amtr(B*B*A) — 1(1 — a)|R*|})d M,

where a is a real number.
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For each fixed a, let a; be the eigenvalues of the matrix (Bl.“;.). By the definition
of K, we have

(BY; By Runkji + B By Rijim) = 3 (ai — a;)(a; — a;) Rijij

(3-23) > 3(a; — aj) (e —aj)K
=mKB;§B;‘;..

The following equality is called the Lincoln equality (also see [Itoh 1978]):
(3-24) |R*|1? < m tr(B* B?) tr(B* BY),
where the equality implies
1
(3-25) (BiiBji — BiiBji) = — ~ 5 (0ikdji = ditdjx).
Hence, for a > 0, by putting (3-23) and (3-24) into (3-22), we have

(3-26) 0> / (IVB)? —m(m — 1) || @[>+ (1 +a)(m — K
" — a@((m — 1)/m) tr(A) + m tr(B* B* A))
+(a/m— (1 —a)|IR*|*)dM.
By Schwarz’s inequality, we have
(3-27) w(AB*B*) < ||AlllB*|%,
where the equality holds when there exist real numbers a* such that
A=a*(B*)? form+1<a<m+ p.
Now by taking a = m/(m + 2) in (3-25), and (2-8) and (3-27), we have

(3-28) Oz/ (IVBI2 = mon - 1)@
M
m—1 k=L —m||A
+ 0 @m + DK —mrc m||A||))dM

Thus we get (3-18). If (3-19) holds, then we have (3-20), VB = 0 and the equality
holding in (3-6). These implies ® = 0 and A = 0. From (2-2), we get A;; = A0;j,
A =tr(A)/m = constant. Now (3-25) holds since equality holds in (3-24). Hence,
from (2-5) we know that the Mdbius sectional curvature is constant. This implies
that K = x. Substituting these into (3-20), we have K =x =1/(m(m +2)). U

Proof of Theorem 1.2. Under the assumptions of Theorem 1.2, from Proposition 3.6
we have ® = 0, A = 0 and tr(4) = (1 + m%k)/(2m) > 0. According to the
classification theorem on Mdbius isotropic submanifolds, proved by Liu, Wang,
and Zhao [2001], M is Mobius equivalent to a minimal (Euclidean) submanifold M
with constant Euclidean scalar curvature in 7. Since M shares same A, B
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and K with M, we can use the same symbols to denote the Mobius quantities
of M. Now we can compute the Euclidean sectional curvature Kz of M. In fact,
since M is Euclidean minimal and its Euclidean scalar curvature is constant, we
have p? = constant. From (1-2), we have Ajj = %p‘zéij. From g = p%dx -dx, we
have

(3-29) K =p~*K,
Noting that p=2 =2/mtr (A) and tr(A) = (1 + m?«x)/(2m), we have
(3-30) p2=1/m*+«.

From Proposition 3.6 we have k = K = 1/(m(m + 2)). Hence, from (3-29) and
(3-30) we get Kg = m/(2(m + 1)). Since M is a Euclidean minimal submani-
fold with sectional curvature Kg in "7, Itoh’s theorem [1978] shows that M
is isometric to the Veronese submanifold $™ (/2(m + 1)/m). Thus M is Mobius
equivalent to Veronese submanifold

Xm 2 S™(V2(m +1)/m) — S™TP,

where p = %(m — 1)(m + 2). This proves Theorem 1.2. O

Proof of Corollary 1.3. We assume ¢ > 1/(m(m + 2)). Under the assumptions
of Corollary 1.3, we have ® =0, k = c and K = ¢ > 1/(m(m + 2)). Writing
A;j = 4;0;j, from (2-2) and (2-12), we have

(3-31) SANAIP = AijrAiji+ 5 X0 ;G = ) Riji
where A,'j =A;j — (r A/m)d;; and |A|2 = Aiinj- Thus, from (3-31) we have
A=0.

In this case, (1-6) is equivalent to ¢ > 1/(m(m +2)). Thus from Theorem 1.2, M is
Mobius equivalent to Veronese submanifold §™ (4/2(m + 1)/m). U

4. Mobius sectional curvature pinching theorems

Theorem 4.1. Let x : M — S™*P be an m-dimensional compact submanifold in
the unit sphere S"P. Let K (x) be the function that assigns to each point of M the
infinimum of the Mobius sectional curvatures of M at that point. Then

-1 ~
(4-1) / (K - ”;mz (1= +3sgn(p— 1) —m|@| —2||A||)dM <0.
M

In particular, if

(4-2) k=m"1

> 23—+ gsen(p— 1) +ml@|* +2] 4],
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then either

i) p=1, K =0 and M is Mobius equivalent to the Clifford minimal torus
M = S (JEk/(m —k)) x S"*(/(m —k)/m) in S"*1, or

() m=2, p=2, K =1/8 and M is Mobius equivalent to a Veronese surface
in §%.

Theorem 4.2. Let x : M — S™*P for p > 2 be an m-dimensional compact sub-
manifold in the unit sphere S™P. Let K (x) be the function that assigns to each
point of M the infinimum of the Mobius sectional curvatures of M at that point.
Then

(m=1)Bp=2) 2
(4-3) /M (k- s ml|®|)dM <0,

In particular, if
(4-4) K > (m—1)@p—2)/(4pm?) +m|®|?,

thenm =2, p=2, K =1/8 and M is Mobius equivalent to a Veronese surface
in §%.

Proof of Theorem 4.1. Choosing a = 1 in (3-22), using (3-23) and (2-8) we have
0=/ (IVB|*> = m(m — 1) ®|>
M
+ 2(By; By Rkjt + Bjy Biy Rijim)
+tr(B“ BP) tr(B* BF) — L2(m — 1) tr(A) — m tr(B* B“A))d M

> [ (1981 = mn— 1@ +20n - DK
M

+l(’"__1) 202D (L (14 m?0) = n = DIIAN)dm

p\ m m
:/M(||VB||2—m(m —DI®I*+2(m - DK
m—1 (—1 - 1) — (m— 1)k — (m — 1)||A||)dM.

m? p
Using (1-4), we get (4-1). If (4-2) holds, we have ||V B| =0 on M. The conclusion
of Theorem 4.1 follows in the same way as in the proof of Theorem 1.1. O

Proof of Theorem 4.2. Choosing a = 0 in (3-22) and using (3-23) and (2-8), we
have

4-5) oz/M(||VB||2—m(m—1)||<I>||2+(m DK — IR |1?)dM
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Combining (4-5), (3-21) with Lemma 3.2, we have

0 z/ (IVBI|> = m(m — 1)||®]* + (m — DK
M
— GBI - w(B* B’ B* B%))dv

> [ (I9BI = mn = D1 + n = DK
M

3/m—1\2 1 (m—1)\2
- — —— M.
4( m ) + 2p( m ) )d
Thus we get (4-3). If (4-4) holds on M, then we have |[VB| = 0 on M. The
conclusion of Theorem 4.2 then follows as for Theorem 1.1. O
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