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Suppose M is a m-dimensional submanifold without umbilic points in the
(m + p)-dimensional unit sphere Sm+ p. Four basic invariants of Mm under
the Möbius transformation group of Sm+ p are a symmetric positive definite
2-form g called the Möbius metric, a section B of the normal bundle called
the Möbius second fundamental form, a 1-form 8 called the Möbius form,
and a symmetric (0, 2) tensor A called the Blaschke tensor. In the Möbius
geometry of submanifolds, the most important examples of Möbius minimal
submanifolds (also called Willmore submanifolds) are Willmore tori and
Veronese submanifolds. In this paper, several fundamental inequalities of
the Möbius geometry of submanifolds are established and the Möbius char-
acterizations of Willmore tori and Veronese submanifolds are presented by
using Möbius invariants.

1. Introduction

Let x : M → Sm+p be a m-dimensional submanifold without umbilic point in a
(m+ p)-dimensional unit sphere Sm+p. Let {ei } be a local orthonormal tangent
frame field of x for the standard metric I = dx · dx with the dual frame field {θi },
let {eα} be the local orthonormal normal frame field of x , let II =

∑
i, j,α hαi jθiθ j eα

be the second fundamental form, and let H =
∑

α Hαeα be the mean curvature
vector of x . Let ρ2

= (m/(m− 1))|II− (1/m) tr(II)I |2. Then the positive definite
2-form g = ρ2 I is invariant under the Möbius transformations of Sm+p and is
called the Möbius metric of x . In [Wang 1998], the author gave the structure
equations for Möbius geometry of submanifolds in the unit sphere. Three fun-
damental forms 8, A and B appear naturally in the structure equations; together
with g, these determine the submanifold up to Möbius transformations of Sm+p.
8 =

∑
α,i Cα

i θi eα is called the Möbius form, A = ρ2∑
i, j Ai jθiθ j the Blaschke
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tensor, and B = ρBαi jθiθ j eα the Möbius second fundamental form. The relations
among 8, A, and B and Euclidean invariants of x are given by [Wang 1998]

Cα
i =−ρ

−2(Hα
,i +

∑
j (h

α
i j − Hαδi j )e j (log ρ)

)
,(1-1)

Ai j =−ρ
−2(Hessi j (log ρ)− ei (log ρ)e j (log ρ)−

∑
α Hαhαi j

)
(1-2)

−
1
2ρ
−2(∑

i ((log ρ)i )2− 1+ |H|2
)
δi j ,

Bαi j = ρ
−1(hαi j − Hαδi j ),(1-3)

where Hessi j and Hα
,i are the Hessian matrix of dx ·dx and the covariant derivative

of the mean curvature vector field of x in the normal bundle N (M). Let

‖A‖2 =
∑

i, j (Ai j )
2 and ‖8‖2 =

∑
α,i (C

α
i )

2.

Then both ‖A‖2 and ‖8‖2 are Möbius invariants.
In the Euclidean geometry of submanifolds in the unit sphere, a famous result

is this rigidity theorem of minimal submanifolds: If x is a minimal immersion and
the second fundamental form satisfies |II|2 ≤m/(2−1/p), then either |II|2 = 0 or
|II|2=m/(2−1/p) and x is Euclidean equivalent to the geodesic sphere, a Clifford
torus or a Veronese surface; see [Chern et al. 1970; Lawson 1969; Simons 1968].
Recently, Li [2001; 2002] modified this result for the case of a Willmore sub-
manifold x (satisfying the Euler–Lagrange equation of the Willmore functional).
He proved that if x satisfies ρ2

≤ m/(2− 1/p), then ρ2
= m/(2− 1/p) and x is

Euclidean equivalent to a Willmore torus or a Veronese surface. However, ρ2 is
not conformally invariant under the Möbius group of Sm+p. A natural question
is, Do conformal invariants characterize Willmore tori and Veronese submanifolds
in Möbius geometry? In this paper, we give a positive answer to this question. It
should be noted that we don’t need the assumption of Willmore submanifold for
our theorems here. To state our results, we first introduce traceless Blaschke tensor
Ã= ρ2∑

i, j Ãi jθiθ j and traceless tensor B̌ = ρ2∑
i, j B̌i jθiθ j , where

Ãi j = Ai j −
1
m

(∑
k Akk

)
δi j and B̌i j =

m−1
m2 δi j −

∑
k,α Bαik Bαk j .

We let ‖ Ã‖2=
∑

i, j ( Ãi j )
2. We denote by κ the normalized Möbius scalar curvature

of x : M→ Sm+p (see (2-8)).
In the Möbius geometry of submanifolds, Willmore tori{

W n
k = Sk(

√
(m− k)/m)× Sm−k(

√
k/m), 1≤ k ≤ m− 1

}
,

which can also be obtained by exchanging the radii in the Clifford tori

Mn
k = Sk(

√
k/m)× Sm−k(

√
(m− k)/m),
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are the chief examples of stable Willmore submanifolds; see [Guo et al. 2001;
Li 2001; 2002]. The main purpose of this paper is to obtain some geometric in-
equalities expressed in Möbius invariants, which then characterize Willmore tori
and Veronese submanifolds when equalities hold in the inequalities. The main
results are as follows.

Theorem 1.1. Let x : M → Sm+p be an m-dimensional compact submanifold in
the unit sphere Sm+p. Then
(1-4)∫

M

(
κ−m‖8‖2− m

4(m−1)
‖ Ã+ B̌‖2− 1

m2

(
m−2+ 1

2(m−1) sgn(p−1)
))

d M ≤0.

In particular, if

(1-5) κ −m‖8‖2− m
4(m−1)

‖ Ã+ B̌‖2 ≥ 1
m2

(
m− 2+ m−1

2
sgn(p− 1)

)
,

then M is Möbius equivalent to either

(i) a Willmore torus W m
k = Sk(

√
(m− k/m))× Sm−k(

√
k/m) in Sm+1, or

(ii) a Veronese surface in S4.

Theorem 1.2. Let x : M → Sm+p be an m-dimensional compact submanifold in
the unit sphere Sm+p. Let K (x) be the function that assigns to each point of M the
infinimum of the Möbius sectional curvatures of M at that point. Then∫

M

(
2(m+ 1)K −mκ − 1/m−m(m+ 2)‖8‖2−m‖ Ã‖

)
d M ≤ 0.

In particular, if

(1-6) 2(m+ 1)K −mκ −m(m+ 2)‖8‖2−m‖ Ã‖ ≥ 1/m,

then 1/K = m(m + 2) and M is Möbius equivalent to the Veronese submanifold
Sm(
√

2(m+ 1)/m).

Corollary 1.3. Let x : Mm
→ Sm+p be an m-dimensional compact submanifold

with constant Möbius sectional curvature c and vanishing Möbius form. Then

c ≤ 1
m(m+2)

,

with equality holding if and only if M is Möbius equivalent to the Veronese sub-
manifold Sm(

√
2(m+ 1)/m).

Remark 1.4. The functions on the right side of inequalities (1-5) and (1-6) are
Möbius invariants.
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Remark 1.5. For related results about Möbius submanifolds in an unit sphere, see
[Akivis and Goldberg 1996; 1997; Guo and Guo 2006; Hu and Li 2003; 2004;
Li and Wang 2003a; 2003b; Li et al. 2001].

In addition, in Section 4 we prove two Möbius sectional curvature pinching
results, Theorem 4.1 and Theorem 4.2.

2. Möbius invariants for submanifolds in Sm+ p

In this section we define the Möbius invariants for submanifolds in Sm+p. For
more detail we refer to [Wang 1998] or [Guo et al. 2001].

Let Rm+p+2
1 be the Lorentzian space with inner product

〈x, y〉 = −x0 y0+ x1 y1+ · · ·+ xm+p+1 ym+p+1,

where x = (x0, x1, . . . , xm+p+1) and y= (y0, y1, . . . , ym+p+1). Let x :M→ Sm+p

be a submanifold of Sm+p without umbilic points. The second fundamental form
and the mean curvature vector are denoted by II and H respectively. Define the
positive function ρ=

√
(m− 1)/m|II−H I |, and define the Möbius position vector

Y : M→ Rm+p+2
1 of x by Y = ρ(1, x).

Theorem 2.1 [Wang 1998]. Two submanifolds x, x̃ :M→ Sm+p are Möbius equiv-
alent if and only if there exists a T in the Lorentz group O(m+ p+2, 1) on Rm+p+2

1
such that Y = Ỹ T .

Since the Möbius group in Sm+p is isomorphic to the subgroup O+(m+p+2, 1)
of O(m+ p+2, 1), which preserves the positive part of the light cone in Rm+p+2

1 ,
we know from Theorem 2.1 that the 2-form

g = 〈dY, dY 〉 = ρ2dx · dx

is a Möbius invariant; see [Blaschke 1929; Chen 1984; Pedit and Willmore 1988;
Wang 1998]. We call g the Möbius metric or the Möbius first fundamental form
induced by x . Let1 denote the Laplacian of g. Then 〈1Y,1Y 〉 = 1+m2κ , where
κ is the normalized scalar curvature of g. By defining

N =− 1
m
1Y − 1

2m2 (1+m2κ)Y,

we have
〈Y, Y 〉 = 〈N , N 〉 = 0 and 〈Y, N 〉 = 1.

Moreover, if we take a local orthonormal basis {Ei } with respect to g with dual
basis {ωi } and let Yi := Ei (Y ), then

〈Yi , Y j 〉 = δi j and 〈Yi , Y 〉 = 〈Yi , N 〉 = 0 for 1≤ i, j ≤ m.
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Let V be the orthogonal complement of span{Y, N , Yi } in Rm+p+2
1 . Then V is

a spacelike subspace of Rm+p+2
1 , and we have the orthogonal decomposition

Rm+p+2
1 = span{Y, N }⊕ span{Y1, . . . , Ym}⊕ V .

Let {Eα : m+ 1≤ α ≤ m+ p} be an orthogonal basis of V . Then

{Y, N , Y1, . . . , Ym, Em+1, . . . , Em+p}

forms a moving frame in Rm+p+2
1 along M . For ranges of indices, we use the

conventions 1≤ i, j, k, . . . ≤m and m+1≤ α, β, . . . ≤m+ p, and we sum each
repeated index over its respective range unless it also appears unrepeated in the
same context. Then the structure equations are given by

dY = ωi Yi ,

d N = ψi Yi +φαEα,

dYi =−ψi Y −ωi N +ωi j Y j +ωiαEα,

d Eα =−φαY −ωiαYi +ωαβEβ,

where {ψi , ωi j , ωiα, φα, ωαβ} are 1-forms on M satisfyingωi j =−ω j i , ωiα=−ωαi

and ωαβ =−ωβα. Let

ψi = Ai jω j , ωiα = Bαi jω j , φα = Cα
i ωi .

It is clear that A= Ai jωi ⊗ω j , B = Bαi jωi ⊗ω j Eα, and 8=Cα
i ωi Eα are Möbius

invariants; these are called the Blaschke tensor, the Möbius second fundamental
form, and the Möbius form, respectively.

Remark 2.2. The relations among A, B, 8 and the Euclidean invariants of x are
given by (1-1), (1-2) and (1-3).

Taking the exterior derivations of structure equations, we obtain the integrability
conditions for the structure equations as follows:

Ai j = A j i , Bαi j = Bαj i ,(2-1)

Ai j,k − Aik, j = (BαikCα
j − Bαi j C

α
k ),(2-2)

Cα
i, j −Cα

j,i = (B
α
ik Ak j − Bαjk Aki ),(2-3)

Bαi j,k − Bαik, j = δi j Cα
k − δikCα

j ,(2-4)

Ri jkl = (Bαik Bαjl − Bαil Bαjk)+ (δik A jl + δ jl Aik − δil A jk − δ jk Ail),(2-5)

Rαβi j = (Bαik Bβk j − Bαjk Bβki ),(2-6)

Ri j =−Bαik Bαk j + tr(A)δi j + (m− 2)Ai j ,(2-7)

tr(A)= 1
2m
(1+m2κ),

∑
i

Bαi i = 0, Bαi j Bαi j = (m− 1)/m,(2-8)
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where Ri jkl and Rαβi j denote the curvature tensor of g and the normal curvature
tensor of the normal connection, respectively. We let κ = 1/(m(m−1))

∑
i, j Ri j i j

be the normalized scalar curvature of x :M→ Sm+p. The first covariant derivatives
of Ai j and Bαi j are defined through

Ai j,kωk = d Ai j + Ak jωki + Aikωk j ,(2-9)

Bαi j,kωk = d Bαi j + Bαk jωki + Bαikωk j + Bβi jωβα,(2-10)

From (2-4) and (2-8) we have

(2-11) Bαi j,i =−(m− 1)Cα
j .

The second covariant derivative of Ai j and Bαi j are defined through

Ai j,klωl = d Ai j,k + Al j,kωli + Ail,kωl j + Ai j,lωlk,

Bαi j,klωl = d Bαi j,k + Bαl j,kωli + Bαil,kωl j + Bαi j,lωlk + Bβi j,kωβα.

We have the Ricci identities

Ai j,kl − Ai j,lk = At j Rtikl + Ai t Rt jkl,(2-12)

Bαi j,kl − Bαi j,lk = Bαt j Rtikl + Bαi t Rt jkl + Bβi j Rβαkl .(2-13)

3. The proofs of Theorems 1.1 and 1.2

From the definition of the Laplacian, by using (2-8), (2-4), (2-13) and (2-11) we
have

(3-1) 0= 1
21(B

α
i j Bαi j )= Bαi j,k Bαi j,k + Bαi j Bαi j,kk

= ‖∇B‖2+ Bαi j (B
α
lk Rli jk + Bαil Rlk jk + Bβik Rβα jk)

−m(Bαi j C
α
i ) j −m(m− 1)‖8‖2.

Integrating this over M gives a lemma:

Lemma 3.1. Suppose M is an m-dimensional compact submanifold in the unit
sphere Sm+p. Then we have

(3-2) 0=
∫

M

(
‖∇B‖2−m(m− 1)‖8‖2

+ Bαi j (B
α
lk Rli jk + Bαil Rlk jk + Bβik Rβα jk)

)
d M.

By using (2-5), (2-6) and (2-7), we have the calculation

(3-3) Bαi j (B
α
lk Rli jk + Bαil Rlk jk + Bβik Rβα jk)

=− tr
(
(BαBβ − BβBα)(BβBα − BαBβ)

)
− (tr BαBβ)(tr BαBβ)+ ((m− 1)/m) tr(A)+m tr(BαBαA),
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where Bα denotes the matrix (Bαi j ). Since at least one element of Bα is nonzero,
we have the following lemma, which is due to Li A.-M. and Li J.-M. [1992] for
p ≥ 2, and which is obvious for p = 1.

Lemma 3.2. We have

(3-4) tr
(
(BαBβ − BβBα)(BβBα − BαBβ)

)
+ (tr BαBβ)(tr BαBβ)

≤ (1+ 1
2 sgn(p− 1))‖B‖4,

with equality holding if and only if either

(i) p = 1, or

(ii) p = 2 and Bm+1 and Bm+2 can be transformed simultaneously by an ortho-
gonal matrix into λB̃n+1 and µB̃n+2, respectively, where

(3-5)
B̃m+1

1 2 = B̃m+1
2 1 = 1 and B̃m+1

i j = 0 otherwise,

B̃m+2
1 1 =−B̃m+2

2 2 = 1 and B̃m+2
i j = 0 otherwise,

and λ2
= µ2.

Proposition 3.3. Let M be an m-dimensional compact submanifold in the unit
sphere Sm+p. If

(3-6) κ −m‖8‖2− m
4(m−1)

‖ Ã+ B̌‖2 ≥ 1
m2

(
m− 2+ 1

2(m− 1) sgn(p− 1)
)
,

then

(3-7) κ −m‖8‖2− m
4(m−1)

‖ Ã+ B̌‖2 = 1
m2

(
m− 2+ 1

2(m− 1) sgn(p− 1)
)
,

and only the following two cases happen:

(i) p = 1,

(3-8) 8= 0, Bm+1
i j =

{
(
√

m− 1/m)
√
(m− k)/kδi j if 1≤ i ≤ k,

−(
√

m− 1/m)
√

k/(m− k)δi j if k+ 1≤ i ≤ m,

and

(3-9) Ai j =


m−1
m2 ·

3km−k2
−m2

2k(m−k)
δi j if 1≤ i ≤ k,

m−1
m2 ·

m2
−k2
−km

2k(m−k)
δi j if k+ 1≤ i ≤ m.

(ii) p = 2, m = 2, and

(3-10) 8= 0, A= 3
16

g, B3
=

√
2

4

(
0 1
1 0

)
, B4

=

√
2

4

(
1 0
0 −1

)
.
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Proof. We consider two traceless tensors

B̌ = m−1
m2 g− BαBα and Ã= A− 1

m
tr(A)g.

Noting that

(3-11) m · tr(BαBαA)= m−1
m

tr(A)−m tr( ÃB̌)

=
m−1

m
tr(A)− 1

4 m(‖ Ã+ B̌‖2−‖ Ã− B̌‖2)

≥
m−1

m
tr(A)− 1

4 m‖ Ã+ B̌‖2,

we see that the equality holds if and only if B̌ = Ã. From (3-1), (3-3) and (3-4),
we have

0≥
∫

M

(
‖∇B‖2−m(m− 1)‖8‖2− (1+ 1

2 sgn(p− 1))‖B‖4

+
m−1

m
tr(A)+m tr(BαBαA)

)
d M

≥

∫
M

(
‖∇B‖2−m(m− 1)‖8‖2

−
1
4 m‖ Ã+ B̌‖2− (1+ 1

2 sgn(p− 1))‖B‖4+ 2m−1
m

tr(A)
)

d M

≥
m−1

m

∫
M

(
2 tr(A)−m2

‖8‖2−
m2

4(m−1)
‖ Ã+ B̌‖2

− (1+ 1
2 sgn(p− 1))m−1

m

)
d M.

Thus, if (3-6) holds all over M , then from (2-8) we know that (3-7) holds all over M
and ∇B = 0. The latter implies 8= 0. At the same time, equality holds in (3-11),
and so we have

(3-12) A=−BαBα + 1
m

(
tr(A)+ m−1

m

)
g.

Noting that the equality holds in (3-5), from Lemma 3.2 we know that only the
case p = 1 or p = 2 is possible. So we consider the cases p = 1 and p = 2,
separately.

Case: p= 1. Let B = Bm+1. We choose our local frame field so that Bi j = Bi iδi j .
(Here and elsewhere in this case, repeated indexes such as those in Bi i are not
summed over.) Then from (3-12) we have Ai j = Ai iδi j . Since ∇B = 0 and 8= 0,
from (2-4) we know that Bi i is constant, 1≤ i ≤ m, and

0= Bi j,kωk = d Bi j + Bikωk j + Bk jωki = (Bi i − B j j )ωi j ,
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This shows that ωi j = 0 if Bi i 6= B j j . Hence

(3-13) −
1
2 Ri jklωk ∧ωl = dωi j −ωik ∧ωk j = 0.

Then (3-13) and the Gauss Equation (2-5) implies that if Bi i 6= B j j , then

(3-14) Bi i B j j + Ai i + A j j = 0.

From (3-12), we have

(3-15) Ai i =−(Bi i )
2
+

1
m (tr(A)+ (m− 1)/m).

Then (3-14) and (3-15) yield

Bi i B j j − (Bi i )
2
− (B j j )

2
+ 2t = 0,

where mt = tr(A)+ (m−1)/m. We will show that there are only two distinct Bi i .
In fact, if three are distinct — say Bi i , B j j and Bkk — then we have

Bi i B j j − (Bi i )
2
− (B j j )

2
+ 2t = 0,

Bi i Bkk − (Bi i )
2
− (Bkk)

2
+ 2t = 0,

B j j Bkk − (B j j )
2
− (Bkk)

2
+ 2t = 0.

This implies
(B j j − Bkk)(Bi i − (B j j + Bkk))= 0,
(Bi i − Bkk)(B j j − (Bi i + Bkk))= 0,
(Bi i − B j j )(Bkk − (Bi i + B j j ))= 0,

which yields
Bi i − (B j j + Bkk)= 0,
B j j − (Bi i + Bkk)= 0,
Bkk − (Bi i + B j j )= 0.

These equations lead to Bi i = 0, B j j = 0, and Bkk = 0, a contradiction.
Thus we may assume B11 = · · · = Bkk = λ and Bk+1k+1 = · · · = Bmm = µ.

We see that λ,µ, Ai i and A j j satisfy the following relations for 1 ≤ i ≤ k and
k+ 1≤ j ≤ m:

λµ− λ2
−µ2

+
2
m (tr(A)+ (m− 1)/m)= 0,

kλ+ (m− k)µ= 0,

kλ2
+ (m− k)µ2

= (m− 1)/m,

Ai i =−λ
2
+

1
m (tr(A)+ (m− 1)/m) for 1≤ i ≤ k,

A j j =−µ
2
+

1
m (tr(A)+ (m− 1)/m) for k+ 1≤ j ≤ m,

tr(A)=
∑

l All = k Ai i + (m− k)A j j .
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From this system of equations, we get

λ=

√
m−1
m

√
m−k

k
, µ=−

√
m−1
m

√
k

m−k
,

Ai i =
m−1
m2 ·

3mk−k2
−m2

2k(m−k)
, A j j =

m−1
m2 ·

m2
−k2
−mk

2k(m−k)
,

where 1≤ i ≤ k and k+ 1≤ j ≤ m.

Case: p = 2. In this case, Bm+1
= λB̃m+1 and Bm+2

= µB̃m+2, where B̃m+1 and
B̃m+2 are defined in Lemma 3.2 and λ2

= µ2. Noting that 2(λ2
+µ2) = ‖B‖2 =

(m− 1)/m, we have 2λ= 2µ=
√
(m− 1)/m. We get

(3-16) Bm+1
=

1
2

√
m−1

m
B̃m+1 and Bm+2

=
1
2

√
m−1

m
B̃m+2.

Since Bαi j,k = 0, we have from (2-10)

(3-17) d Bαi j =−Bαk jωki − Bαikωk j − Bβi jωβα.

Setting α =m+1, i = 1 and j ≥ 3, we see that by using (3-16) and (3-17) we get

ω2 j = 0 and j ≥ 3.

Setting α = m+ 1, i = 2 and j ≥ 3, we see from (3-16) and (3-17) that

ω1 j = 0 and j ≥ 3.

Thus if j ≥ 3, then

0= dω1 j = ω1k ∧ωk j − (A11+ A j j )ω
1
∧ω j

=−(A11+ A j j )ω
1
∧ω j .

Since ω1, . . . , ωm are orthonormal, ω1
∧ω j

= 0 implies ω j
= 0 for j ≥ 3. Thus

this shows that m = 2. Thus we have

A= 3
16 g, B3

=

√
2

4

(
0 1
1 0

)
, B4

=

√
2

4

(
1 0
0 −1

)
.

This completes the proof of Proposition 3.3. �

Proof of Theorem 1.1. We first consider some examples.

Example 3.4. First, the Willmore torus W m
k = Sk(

√
(m− k)/m)× Sm−k(

√
k/m)

in Sm+1. In [Guo et al. 2001], we proved that the Möbius invariants 8, A and B
of W m

k locally coincide with (3-8) and (3-9).

Example 3.5. Second, the Veronese surface in S4. Let (x, y, z) be the natural
coordinate system in R5. The mapping defined by

u1
=

1
√

3
yz, u2

=
1
√

3
zx, u3

=
1
√

3
xy, u4

=
1

2
√

3
(x2
− y2), u5

=
1
6(x

2
+ y2
− 2z2)
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gives an immersion of S2(
√

3) into S4. We can choose the local frame field
{e1, e2, e3, e4} so that

(h3
i j )=

1
√

3

(
0 1
1 0

)
and (h4

i j )= −
1
√

3

(
1 0
0 −1

)
.

Thus H = 0 and ρ2
= 8/3. Putting these into (1-1), (1-2) and (1-3), we have

8= 0, A= 3
16 g, B3

=

√
2

4

(
0 1
1 0

)
, B4

=

√
2

4

(
1 0
0 −1

)
.

It is known that if two submanifolds in Sm+p have the same Möbius met-
ric, Möbius second fundamental form, and Blaschke tensor, then they are locally
Möbius equivalent. Since we assume M is compact in Theorem 1.1, we complete
the proof by comparing (3-8), (3-9) and (3-10) with Examples 3.4 and 3.5. �

Proposition 3.6. Let x :M→ Sm+p be an m-dimensional compact submanifold in
the unit sphere Sm+p. Let K (x) be the function that assigns to each point of M the
infinimum of the Möbius sectional curvatures of M at that point. Then

(3-18)
∫

M

(
2(m+ 1)K −mκ − 1/m−m(m+ 2)‖8‖2−m‖ Ã‖

)
d M ≤ 0.

In particular, if

(3-19) 2(m+ 1)K −mκ −m(m+ 2)‖8‖2−m‖ Ã‖ ≥ 1/m,

then

(3-20) 2(m+ 1)K −mκ −m(m+ 2)‖8‖2−m‖ Ã‖ = 1/m,

and
K = κ = 1

m(m+2)
, 8= 0, A= 1

m tr(A)g.

Proof. In the proof, we will use Yau’s technique; see [Yau 1975; Itoh 1975; 1978].
By defining

(3-21) ‖R⊥‖2 = tr((BαBβ − BβBα)(BβBα − BαBβ))

and noting that Bαjl Bβlk Rβα jk =−
1
2‖R

⊥
‖

2, from (3-2) and (3-3) we have

(3-22) 0=
∫

M

(
‖∇B‖2−m(m−1)‖8‖2+ (1+a)(Bαk j Bαml Rmkjl+ Bαjk Bαkm Rl jlm)

+ a tr(BαBβ) tr(BαBβ)− a(2(m− 1)/m) tr(A)
− am tr(BαBα Ã)− 1

2(1− a)‖R⊥‖2
)
d M,

where a is a real number.
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For each fixed α, let αi be the eigenvalues of the matrix (Bαi j ). By the definition
of K , we have

(3-23)

(Bαk j Bαml Rmkjl + Bαjk Bαkm Rl jlm)=
1
2(αi −α j )(αi −α j )Ri j i j

≥
1
2(αi −α j )(αi −α j )K

= mK Bαi j Bαi j .

The following equality is called the Lincoln equality (also see [Itoh 1978]):

(3-24) ‖R⊥‖2 ≤ m tr(BαBβ) tr(BαBβ),

where the equality implies

(3-25) (Bαik Bαjl − Bαil Bαjk)= −
1

m2 (δikδ jl − δilδ jk).

Hence, for a ≥ 0, by putting (3-23) and (3-24) into (3-22), we have

(3-26) 0≥
∫

M

(
‖∇B‖2−m(m− 1)‖8‖2+ (1+ a)(m− 1)K

− a(2((m− 1)/m) tr(A)+m tr(BαBα Ã))
+ (a/m− 1

2(1− a))‖R⊥‖2
)
d M.

By Schwarz’s inequality, we have

(3-27) tr( ÃBαBα)≤ ‖ Ã‖‖Bα‖2,

where the equality holds when there exist real numbers aα such that

A = aα(Bα)2 for m+ 1≤ α ≤ m+ p.

Now by taking a = m/(m+ 2) in (3-25), and (2-8) and (3-27), we have

(3-28) 0≥
∫

M

(
‖∇B‖2−m(m− 1)‖8‖2

+
m−1
m+2

(
2(m+ 1)K −mκ − 1

m −m‖ Ã‖
))

d M

Thus we get (3-18). If (3-19) holds, then we have (3-20), ∇B= 0 and the equality
holding in (3-6). These implies 8= 0 and Ã= 0. From (2-2), we get Ai j = λδi j ,
λ= tr(A)/m = constant. Now (3-25) holds since equality holds in (3-24). Hence,
from (2-5) we know that the Möbius sectional curvature is constant. This implies
that K = κ . Substituting these into (3-20), we have K = κ = 1/(m(m+ 2)). �

Proof of Theorem 1.2. Under the assumptions of Theorem 1.2, from Proposition 3.6
we have 8 = 0, Ã = 0 and tr(A) = (1 + m2κ)/(2m) > 0. According to the
classification theorem on Möbius isotropic submanifolds, proved by Liu, Wang,
and Zhao [2001], M is Möbius equivalent to a minimal (Euclidean) submanifold M
with constant Euclidean scalar curvature in Sm+p. Since M shares same A, B
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and K with M , we can use the same symbols to denote the Möbius quantities
of M . Now we can compute the Euclidean sectional curvature KE of M . In fact,
since M is Euclidean minimal and its Euclidean scalar curvature is constant, we
have ρ2

= constant. From (1-2), we have Ai j =
1
2ρ
−2δi j . From g = ρ2dx · dx , we

have

(3-29) K = ρ−2KE ,

Noting that ρ−2
= 2/m tr (A) and tr(A)= (1+m2κ)/(2m), we have

(3-30) ρ−2
= 1/m2

+ κ.

From Proposition 3.6 we have κ = K = 1/(m(m + 2)). Hence, from (3-29) and
(3-30) we get KE = m/(2(m + 1)). Since M is a Euclidean minimal submani-
fold with sectional curvature KE in Sm+p, Itoh’s theorem [1978] shows that M
is isometric to the Veronese submanifold Sm(

√
2(m+ 1)/m). Thus M is Möbius

equivalent to Veronese submanifold

xm : Sm(
√

2(m+ 1)/m)→ Sm+p,

where p = 1
2(m− 1)(m+ 2). This proves Theorem 1.2. �

Proof of Corollary 1.3. We assume c ≥ 1/(m(m + 2)). Under the assumptions
of Corollary 1.3, we have 8 = 0, κ = c and K = c ≥ 1/(m(m + 2)). Writing
Ai j = λiδi j , from (2-2) and (2-12), we have

(3-31) 1
21‖ Ã‖2 = Ai jk Ai jk +

1
2

∑
i, j (λi − λ j )

2 Ri j i j ,

where Ãi j = Ai j − (tr A/m)δi j and ‖ Ã‖2 = Ãi j Ãi j . Thus, from (3-31) we have

Ã= 0.

In this case, (1-6) is equivalent to c≥ 1/(m(m+2)). Thus from Theorem 1.2, M is
Möbius equivalent to Veronese submanifold Sm(

√
2(m+ 1)/m). �

4. Möbius sectional curvature pinching theorems

Theorem 4.1. Let x : M → Sm+p be an m-dimensional compact submanifold in
the unit sphere Sm+p. Let K (x) be the function that assigns to each point of M the
infinimum of the Möbius sectional curvatures of M at that point. Then

(4-1)
∫

M

(
K − m−1

2m2 (1−
1
p +

1
2 sgn(p− 1))−m‖8‖2− 2‖ Ã‖

)
d M ≤ 0.

In particular, if

(4-2) K ≥ m−1
2m2 (1−

1
p +

1
2 sgn(p− 1))+m‖8‖2+ 2‖ Ã‖,
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then either

(i) p = 1, K = 0 and M is Möbius equivalent to the Clifford minimal torus
Mm

k = Sk(
√

k/(m− k))× Sm−k(
√
(m− k)/m) in Sm+1, or

(ii) m = 2, p = 2, K = 1/8 and M is Möbius equivalent to a Veronese surface
in S4.

Theorem 4.2. Let x : M → Sm+p for p ≥ 2 be an m-dimensional compact sub-
manifold in the unit sphere Sm+p. Let K (x) be the function that assigns to each
point of M the infinimum of the Möbius sectional curvatures of M at that point.
Then

(4-3)
∫

M

(
K − (m−1)(3p−2)

4pm2 −m‖8‖2
)

d M ≤ 0.

In particular, if

(4-4) K ≥ (m− 1)(3p− 2)/(4pm2)+m‖8‖2,

then m = 2, p = 2, K = 1/8 and M is Möbius equivalent to a Veronese surface
in S4.

Proof of Theorem 4.1. Choosing a = 1 in (3-22), using (3-23) and (2-8) we have

0=
∫

M

(
‖∇B‖2−m(m− 1)‖8‖2

+ 2(Bαk j Bαml Rmkjl + Bαjk Bαkm Rl jlm)

+ tr(BαBβ) tr(BαBβ)− 1
m 2(m− 1) tr(A)−m tr(BαBα Ã)

)
d M

≥

∫
M

(
‖∇B‖2−m(m− 1)‖8‖2+ 2(m− 1)K

+
1
p

(m−1
m

)2
−

2(m−1)
m

( 1
2m
(1+m2κ)

)
− (m− 1)‖ Ã‖

)
d M

=

∫
M

(
‖∇B‖2−m(m− 1)‖8‖2+ 2(m− 1)K

+
m−1
m2

(m−1
p
− 1

)
− (m− 1)κ − (m− 1)‖ Ã‖

)
d M.

Using (1-4), we get (4-1). If (4-2) holds, we have ‖∇B‖= 0 on M . The conclusion
of Theorem 4.1 follows in the same way as in the proof of Theorem 1.1. �

Proof of Theorem 4.2. Choosing a = 0 in (3-22) and using (3-23) and (2-8), we
have

(4-5) 0≥
∫

M

(
‖∇B‖2−m(m− 1)‖8‖2+ (m− 1)K − 1

2‖R
⊥
‖

2)d M.



CHARACTERIZATIONS OF WILLMORE TORI AND VERONESE SUBMANIFOLDS 241

Combining (4-5), (3-21) with Lemma 3.2, we have

0≥
∫

M

(
‖∇B‖2−m(m− 1)‖8‖2+ (m− 1)K

−
1
2(

3
2‖B‖4− tr(BαBβBαBβ)

)
dv

≥

∫
M

(
‖∇B‖2−m(m− 1)‖8‖2+ (m− 1)K

−
3
4

(m−1
m

)2
+

1
2p

(m−1
m

)2)
d M.

Thus we get (4-3). If (4-4) holds on M , then we have ‖∇B‖ = 0 on M . The
conclusion of Theorem 4.2 then follows as for Theorem 1.1. �
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