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From the 2-parameter quantum group Ur,s(G2) defined by Hu and Shi in
2007, we construct finite-dimensional pointed Hopf algebras ur,s(G2) (that
is, restricted 2-parameter quantum groups); these turn out to be Drinfel’d
doubles. Crucial is a detailed combinatorial construction of the convex
PBW-type Lyndon basis for type G2 in the 2-parameter quantum version.
We exhibit the possible commutation relations among quantum root vec-
tors. Then we show that the restricted quantum groups are ribbon Hopf
algebras under certain conditions, by determining their left and right inte-
grals. We also determine all the Hopf algebra isomorphisms of ur,s(G2) by
describing its sets of left (right) skew-primitive elements.

1. Introduction

In 1941, H. Hopf first observed in algebraic topology what are now known as
Hopf algebras. Since then, numerous mathematicians have studied these algebras
as purely algebraic objects, and applied them to other areas of mathematics, such
as Lie theory, knot theory and combinatorics. A long standing problem in the area
is the full classification of the finite-dimensional Hopf algebras. One of the very
few general classification results says that any cocommutative Hopf algebra over
the complex field C is a semidirect product of the universal enveloping algebra
of a Lie algebra and a group algebra; this is the Cartier–Kostant–Milnor–Moore
theorem. Since Kaplansky’s ten conjectures [1975] have stimulated much research
on Hopf algebras, and there have been many significant advances during the last
two decades. A rich set of examples of noncommutative and noncocommutative
Hopf algebras is supplied by the Drinfel’d–Jimbo quantum groups Uq(g), where g
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is a semisimple Lie algebra (see [Drinfel’d 1987]), which were found in the mid
1980s, and by the finite-dimensional small quantum groups uq(g), where q = ε is
a root of unity; the latter were introduced by Lusztig [1990a].

Until now, the classification of Hopf algebras has split into the semisimple case
and the nonsemisimple case. Montgomery [1998] provides a good overview of the
first. The classification in the second focuses on pointed Hopf algebras over an
algebraically closed field of characteristic 0; see [Andruskiewitsch and Schneider
2006; 2002]. Pointed Hopf algebras play an important role in [Andruskiewitsch
and Schneider 1998; Beattie et al. 1999; Gelaki 1998], where Kaplansky’s 10th
conjecture is refuted by constructing infinitely many nonisomorphic Hopf algebras
of a given prime power dimension.

Since finite-dimensional Hopf algebras are far from being classified, it is mean-
ingful to have various means of constructing examples of them (see for example
[Andruskiewitsch and Schneider 1998; 2002; Benkart and Witherspoon 2004b; Hu
2000; 2004; Hu and Wang 2007; 2009; Lusztig 1990a; Radford 1976; Taft 1971].
Interestingly to us, Benkart and Witherspoon [2004b] and Hu and Wang [2009]
determined the structure of restricted 2-parameter quantum groups ur,s(sln) and
ur,s(so2n+1), respectively, when both parameters r and s are roots of unity; both
are new finite-dimensional pointed Hopf algebras and have new ribbon elements
under some conditions. These results will act as a starting point for further studying
the representation theory of 2-parameter quantum groups at roots of unity, as in the
1-parameter setting; see [De Concini and Kac 1990; Lusztig 1990a]. Our goal here
is to solve the same problems for the type G2 case.

Since the work of Drinfel’d [1987] and Jimbo [1986], work on 2- or multi-
parameter quantum groups has focused on quantized function algebras and quan-
tum enveloping algebras. Work in the 1990s focused mainly on the type A cases.
In 2001, motivated by the down-up algebras approach of [Benkart 1999], Benkart
and Witherspoon [2004c] reobtained Takeuchi’s definition of the 2-parameter quan-
tum groups of gln and sln . Since then, a systematic study of the 2-parameter
quantum groups of type A has been developed by Benkart and Witherspoon and
their collaborators Kang and Lee; see [Benkart et al. 2003; 2006; Benkart and
Witherspoon 2004a; 2004b]. In 2004, Bergeron, Gao and Hu [2006] defined the
2-parameter quantum groups Ur,s(g) (in the sense of Benkart and Witherspoon) for
g= so2n+1, so2n and sp2n , which are realized as Drinfel’d doubles, and described
weight modules in the category O when rs−1 is not a root of unity; see [Bergeron
et al. 2007]. Afterwards, Hu and his collaborators continued to develop the corre-
sponding theory for exceptional types G and E and the affine cases; see [Hu and
Shi 2007; Bai and Hu 2008; Hu et al. 2008; Hu and Zhang 2006].

It should be mentioned that, unlike in the 1-parameter case (see [Kassel 1995;
Lusztig 1990b; 1993]), one cannot write out conveniently the convex PBW-type
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bases for 2-parameter quantum groups in terms of Lusztig’s braid group actions.
This is seen in [Bergeron et al. 2006, Theorem 3.1] in the study of Lusztig’s
symmetry, and is one of difficulties encountered in the 2-parameter setting. The
combinatorial construction of the PBW-type bases in the quantum setup is rather
nontrivial, as it depends not only on the choice of a convex ordering on a positive
root system [Beck 1994; Rosso 2002], but also on the corresponding inserting
manner of q-bracketings (see [Rosso 2002; Kharchenko 1999; 2002; Bai and Hu
2008; Hu et al. 2008]) into good Lyndon words; see also [Lalonde and Ram 1995].
The construction of convex PBW-type bases in the 2-parameter quantum cases has
been given for type A in [Benkart et al. 2003], type E in [Bai and Hu 2008], for low
rank cases of types B, C , D in [Hu 2005], and for type B cases of arbitrary rank in
[Hu and Wang 2009]. Motivated by [Hu 2005; Hu and Wang 2009; Lalonde and
Ram 1995; Rosso 2002], we will first explicitly construct the convex PBW-type
Lyndon bases of type G2; this will be a prerequisite for later discussions.

The main purpose of this paper is to construct a family of `16-dimensional
pointed Hopf algebras ur,s(G2) as a quotient of Ur,s(G2) by a Hopf ideal I; these
algebras are generated by certain homogeneous central elements of degree `, where
r is a primitive d-th root of unity, s is a primitive d ′-th root of unity, and ` is the least
common multiple of d and d ′. We will assume that the ground field K contains
a primitive `-th root of unity, and then show that the restricted quantum group
ur,s(G2) is a ribbon Hopf algebra. Our treatments in type G2 are complicated by the
complexity of Lyndon bases corresponding to nonsimply-laced Dynkin diagrams.

The article is organized as follows. In Section 2, we recall the definition of
the 2-parameter quantum groups of type G2, and some basics about their struc-
ture. In particular, we directly construct the convex PBW-type Lyndon bases for
Ur,s(G2). In Section 3, we first exhibit the possible commutation relations, and
then determine those central elements of degree ` that generate a Hopf ideal in
the case when both parameters r and s are roots of unity. These enable us to fur-
ther derive the restricted 2-parameter quantum groups ur,s(G2). In Section 4, we
show that the Hopf algebra ur,s(G2) is pointed, and determine all its Hopf algebra
isomorphisms by describing its set of left (right) skew-primitive elements. In the
type A case, Benkart and Witherspoon missed some important left (right) skew-
primitive elements; see [2004b, (3.6) and (3.7)]. Restoring these elements leads
to new, interesting families of isomorphisms. In Section 5, we show that ur,s(G2)

is a Drinfel’d double of a certain (Borel-type) Hopf subalgebra b. In Section 6,
we determine the left and right integrals of b and use them in combination with a
result of Kauffmann and Radford [1993] to characterize ur,s(G2) as a ribbon Hopf
algebra.
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2. Ur,s(G2) and the convex PBW-type Lyndon basis

We recall the definition of 2-parameter quantum groups of type G2, which were
introduced by Hu and Shi [2007].

The 2-parameter quantum group Ur,s(G2). Let K=Q(r, s) be a field of rational
functions with two indeterminates r and s, with r3

6= s3 and r4
6= s4. Let 8 be a

finite root system of G2, with5 a base of simple roots that is a subset of Euclidean
space E = R3 with an inner product ( · , · ). Let ε1, ε2, ε3 denote an orthonormal
basis of E . Then

5= {α1 = ε1− ε2, α2 = ε2+ ε3− 2ε1},

8=±{α1, α2, α2+α1, α2+ 2α1, α2+ 3α1, 2α2+ 3α1}.

In this case, we set

r1 = r (α1,α1)/2 = r, s1 = s(α1,α1)/2 = s,

r2 = r (α2,α2)/2 = r3, s2 = s(α2,α2)/2 = s3.

Definition 2.1. Let U =Ur,s(G2) be the associative algebra over Q(r, s) generated
by symbols ei , fi , ω±1

i , ω′±1
i for i = 1, 2 subject to the relations (G1)–(G6):

(G1) [ω±1
i , ω±1

j ] = [ω
±1
i , ω′±1

j ] = [ω
′±1
i , ω′±1

j ] = 0, ωiω
−1
i = 1= ω′jω

′−1
j .

(G2) ω1e1ω
−1
1 = (rs−1)e1, ω1 f1ω

−1
1 = (r

−1s) f1,

ω1e2ω
−1
1 = s3e2, ω1 f2ω

−1
1 = s−3 f2,

ω2e1ω
−1
2 = r−3e1, ω2 f1ω

−1
2 = r3 f1,

ω2e2ω
−1
2 = (r

3s−3)e2, ω2 f2ω
−1
2 = (r

−3s3) f2.

(G3) ω′1e1ω
′−1
1 = (r−1s)e1, ω′1 f1ω

′−1
1 = (rs−1) f1,

ω′1e2ω
′−1
1 = r3e2, ω′1 f2ω

′−1
1 = r−3 f2,

ω′2e1ω
′−1
2 = s−3e1, ω′2 f1ω

′−1
2 = s3 f1,

ω′2e2ω
′−1
2 = (r−3s3)e2, ω′2 f2ω

′−1
2 = (r3s−3) f2.

(G4) For 1≤ i, j ≤ 2, we have [ei , f j ] = δi j (ωi −ω
′

i )/(ri − si ).

(G5) We have the (r, s)-Serre relations

(G5)1 e2
2e1− (r−3

+ s−3)e2e1e2+ (rs)−3e1e2
2 = 0,

(G5)2 e4
1e2− (r + s)(r2

+ s2)e3
1e2e1+ rs(r2

+ s2)(r2
+ rs+ s2)e2

1e2e2
1

− (rs)3(r + s)(r2
+ s2)e1e2e3

1+ (rs)6e2e4
1 = 0.
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(G6) We have the (r, s)-Serre relations

(G6)1 f1 f 2
2 − (r

−3
+ s−3) f2 f1 f2+ (rs)−3 f 2

2 f1 = 0,

(G6)2 f2 f 4
1 − (r + s)(r2

+ s2) f1 f2 f 3
1 + rs(r2

+ s2)(r2
+ rs+ s2) f 2

1 f2 f 2
1

− (rs)3(r + s)(r2
+ s2) f 3

1 f2 f1+ (rs)6 f 4
1 f2 = 0.

The algebra Ur,s(G2) is a Hopf algebra, where the ω±1
i and ω′i

±1 are group-like
elements, and the remaining Hopf structure is given by

1(ei )= ei ⊗ 1+ωi ⊗ ei , 1( fi )= 1⊗ fi + fi ⊗ω
′

i ,

ε(ω±1
i )= ε(ω′i

±1
)= 1, ε(ei )= ε( fi )= 0,

S(ω±1
i )= ω∓1

i , S(ω′i
±1
)= ω′i

∓1
,

S(ei )=−ω
−1
i ei , S( fi )=− fiω

′

i
−1
.

When r = q = s−1, the Hopf algebra Ur,s(G2) modulo the Hopf ideal generated
by ω′i −ω

−1
i for i = 1, 2 is just the Drinfel’d–Jimbo-type quantum group Uq(G2).

In any Hopf algebra H, there exist the left- and the right-adjoint action defined
by its Hopf algebra structure as

adl a(b)=
∑

(a) a(1)bS(a(2)) and adr a(b)=
∑

(a) S(a(1))ba(2),

where 1(a)=
∑

(a) a(1)⊗ a(2) ∈H⊗H for any a, b ∈H.
From the viewpoint of adjoint actions, the (r, s)-Serre relations (G5) and (G6)

take the simplest forms

(adl ei )
1−ai j (e j )= 0 for any i 6= j and (adr fi )

1−ai j ( f j )= 0 for any i 6= j.

Let U+ and U− be the subalgebras of U =Ur,s(G2) generated by the elements
ei and fi , respectively, for i = 1, 2. Let B and B′ denote the Hopf subalgebras of
Ur,s(G2) generated by e j , ω

±1
j and f j , ω

′±1
j , respectively, for j = 1, 2.

Proposition 2.2. There exists a unique skew-dual pairing 〈 · , · 〉 :B′×B→Q(r, s)
of the Hopf subalgebras B and B′ such that

〈 fi , e j 〉 = δi j/(si − ri ) for 1≤ i, j ≤ 2,

〈ω′1, ω1〉 = rs−1, 〈ω′1, ω2〉 = r−3,

〈ω′2, ω1〉 = s3, 〈ω′2, ω2〉 = r3s−3,

〈ω′±1
i , ω−1

j 〉 = 〈ω
′±1
i , ω j 〉

−1
= 〈ω′i , ω j 〉

∓1 for 1≤ i, j ≤ 2,

and all other pairs of generators are 0. Also, we have 〈S(a), S(b)〉 = 〈a, b〉 for
a ∈B′ and b ∈B. �
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Convex PBW-type Lyndon basis. Recall that a reduced expression of the longest
element of Weyl group W for type G2 given by w0 = s1s2s1s2s1s2 yields a convex
ordering of positive roots

α1, 3α1+α2, 2α1+α2, 3α1+ 2α2, α1+α2, α2.

A positive root system is 8+ = {α1, 3α1+α2, 2α1+α2, 3α1+ 2α2, α1+α2, α2}.
Note that the above ordering also corresponds to the standard Lyndon tree of

type G2:

d
d

t t d
d d t d

�
�

�

�
�

�

1 1 1 2

2

2 2 1 2

With the ordering and notation above, we can inductively define the quantum
root vectors Eα in U+ as follows. Briefly, we set Ei = Eαi , E12 = Eα1+α2 ,
E112 = E2α1+α2 , E1112 = E3α1+α2 and E11212 = E3α1+2α2 .

We define inductively

E1 = e1, E2 = e2,(2-1)

E12 = e1e2− s3e2e1,(2-2)

E112 = e1 E12− rs2 E12e1,(2-3)

E1112 = e1 E112− r2s E112e1,(2-4)

E11212 = E112 E12− r2s E12 E112.(2-5)

Then the defining relations for U+ in (G5) can be reformulated as saying

E12e2 = r3e2 E12,(2-6)

e1 E1112 = r3 E1112e1.(2-7)

Remark 2.3. (i) The defining relations in (2-1)–(2-4) can be reformulated by
the left-adjoint action defined by its Hopf algebra structure. For example,
E12 = adl e1(e2)= e1e2− s3e2e1.

(ii) Note that

(〈ω′i , ω j 〉)2×2 =

(
rs−1 r−3

s3 r3s−3

)
,
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and set p j i = 〈ω
′

i , ω j 〉. To get the quantum root vector Eα in U+, we have
to add (r, s)-brackets on each good Lyndon word obeying the defining rule as
follows: Eγ := [Eα, Eβ]〈ω′β ,ωα〉 = EαEβ −〈ω′β, ωα〉EβEα for α, γ, β ∈ 8+,
with α < γ < β in the convex ordering and γ = α+β.

Kharchenko [1999] found a PBW-type basis for a Hopf algebra generated by
an abelian group and a finite set of skew primitive elements such that the adjoint
action of the group on the skew primitive generators is given by multiplication with
a character. Once we construct the quantum root vectors as above, according to
[Kharchenko 1999; Rosso 2002], we will have this result:

Theorem 2.4. {En1
2 En2

12 En3
11212 En4

112 En5
1112 En6

1 | ni ∈ N} forms a Lyndon basis of the
algebra U+.

Recall that τ (see [Hu et al. 2008]) is a Q-antiautomorphism of Ur,s(G2) such
that τ(r)= s, τ(s)= r , τ(〈ω′i , ω j 〉

±1)= 〈ω′j , ωi 〉
∓1, and

τ(ei )= fi , τ ( fi )= ei , τ (ωi )= ω
′

i , τ (ω′i )= ωi .

Using τ to U+, we can get the negative quantum root vectors in U−. Define
Fi = τ(Ei )= fi for 1≤ i ≤ 2, and

F12 = τ(E12)= f2 f1− r3 f1 f2,(2-8)

F112 = τ(E112)= F12 f1− r2s f1 F12,(2-9)

F1112 = τ(E1112)= F112 f1− rs2 f1 F112,(2-10)

F11212 = τ(E11212)= F12 F112− rs2 F112 F12.(2-11)

Corollary 2.5. {Fm1
1 Fm2

1112 Fm3
112 Fm4

11212 Fm5
12 Fm6

2 | mi ∈ N} forms a Lyndon basis of
the algebra U−.

3. Restricted 2-parameter quantum groups

From now on, we restrict the parameters r and s to be roots of unity: r is a primitive
d-th root of unity, s is a primitive d ′-th root of unity, and ` is the least common
multiple of d and d ′. We suppose that K contains a primitive `-th root of unity.
We will construct a finite-dimensional Hopf algebra ur,s(G2) of dimension `16 as a
quotient of Ur,s(G2) by a Hopf ideal I that is generated by certain central elements.

Commutation relations in U+ and central elements. We give some commutation
relations that hold in the positive part of 2-parameter quantum group of type G2;
the relations are useful for determining central elements in this subsection and
integrals in Section 6.

In the following lemmas, we adopt the following notations: ξ = r2
− s2
+ rs,

η = r2
− s2
− rs and ζ = (r3

− s3)(r + s)−1, and we will need the r, s-integers,
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factorials and binomial coefficients defined for positive integers i , n and m by

[n]i :=
r in
−sin

r i−si , [n]1 := [n],

[n]! := [n][n− 1] · · · [2][1],
[ n

m

]
:=

[n]!
[m]! [n−m]!

.

By convention, [0] = 0 and [0]! = 1.

Lemma 3.1. The following relations hold in U+:

E112e2 = (rs)3e2 E112+ r(r2
−s2)E2

12.(1)

E11212e2 = (r2s)3e2 E11212+ r3(r−s)(r2
−s2)E3

12.(2)

E1112e2 = (rs2)3e2 E1112+ (r2s)(r3
−s3)E12 E112+ rηE11212.(3)

E1112 E12 = (rs)3 E12 E1112+ rζ E2
112.(4)

e1 E11212 = (rs)3 E11212e1+ rζ E2
112.(5)

E1112 E112 = r3 E112 E1112.
1(6)

E1112 E11212 = (r2s)3 E11212 E1112+ r3ζ(r−s)E3
112.(7)

E11212 E12 = r3 E12 E11212.(8)

E112 E11212 = r3 E11212 E112.(9)

Proof. Part (1) follows directly from (2-3), (2-6) and (2-2).

Part (2) follows from (2-5), (2-6) and (1).

Part (3): Using (2-3), we have

e1 E2
12 = E112 E12+ rs2 E12 E112+ (rs2)2 E2

12e1.

Also, using (2-4), (1) and (2-2), (2-5), we have

E1112e2 = (e1 E112− r2s E112e1)e2

= (rs)3e1e2 E112+ r(r2
−s2)e1 E2

12− r2s E112e1e2

= (rs)3(E12+ s3e2e1)E112+ r(r2
−s2)e1 E2

12− r2s E112(E12+ s3e2e1)

= (rs)3 E12 E112+ (rs2)3e2e1 E112+ r(r2
−s2)e1 E2

12− r2s E112 E12

− (rs2)2((rs)3e2 E112+ r(r2
−s2)E2

12)e1

= (rs)3 E12 E112+ (rs2)3e2e1 E112+ r(r2
−s2)E112 E12

+ (rs)2(r2
−s2)E12 E112+ r3s4(r2

−s2)E2
12e1− r2s E112 E12

+ (rs2)3e2 E1112− (rs2)3e2e1 E112− r3s4(r2
−s2)E2

12e1

= (rs2)3e2 E1112+ (r2s)(r3
−s3)E12 E112+ rηE11212.
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Part (4): Using (2-2), (2-7) and (3), we have

E1112 E12 = E1112(e1e2− s3e2e1)

= r−3e1 E1112e2− s3 E1112e2e1

= r−3e1((rs2)3e2 E1112+ (rs)2ξE12 E112+ rηE112 E12)

− s3((rs2)3e2 E1112+ (rs)2ξE12 E112+ rηE112 E12)e1

= s6e1e2 E1112+ r−1s2ξe1 E12 E112+ r−2ηe1 E112 E12

− (rs3)3e2 E1112e1− r2s5ξE12 E112e1− rs3ηE112 E12e1

= s6 E12 E1112+ r−1s2ξE2
112+ s4ξE12e1 E112+ r−2ηE1112 E12

+ sηE112e1 E12− r2s5ξE12 E112e1− rs3ηE112 E12e1

= s6 E12 E1112+ s4ξE12 E1112+ r−1s2ξE2
112+ r−2ηE1112 E12+ sηE2

112,

that is, (r+s)E1112 E12 = (rs)3(r+s)E12 E1112 + r(r3
−s3)E2

112. Since we have
assumed that r2

6= s2, this implies (4).

Part (5): Using (2-5), (2-4) and (2-3), we have

e1 E11212− (rs)3 E11212e1 = E1112 E12− (rs)3 E12 E1112,

and using (4), we have the desired result.

Part (6): Using (2-3), (2-7) and (4), we have

E1112 E112 = s3 E112 E1112+ r−2ζ(e1 E2
112− (r

2s)2 E2
112e1),

on the other hand, using (2-4), we have

E1112 E112 = e1 E2
112− r2s E112 E1112− (r2s)2 E2

112e1,

so that, because r2
+ s2
6= 0, we get E1112 E112 = r3 E112 E1112.

Part (7) can be proved by using (2-5), (6) and (4).

Part (8): It is easy to check these relations:

e1 E3
12− (rs2)3 E3

12e1 = E112 E2
12+ rs2 E12 E11212+ r2s3(r+s)E2

12 E112,

E2
112e2− (rs)6e2 E2

112 = r4s3(r2
−s2)E2

12 E112+ r(r2
−s2)E112 E2

12,

E112 E2
12− (r

2s)2 E2
12 E112 = E11212 E12+ r2s E12 E11212.

Using (2-2), (5) and (2), we have

E11212 E12 = E11212(e1e2− s3e2e1)

= (rs)−3(e1 E11212− rζ E2
112)e2

− s3((r2s)3e2 E11212+ r3(r−s)(r2
−s2)E3

12)e1
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= s−3e1((rs)3e2 E11212+ (r−s)(r2
−s2)E3

12)− r−2s−3ζ E2
112e2

− (rs)3e2(e1 E11212− rζ E2
112)− (rs)3(r−s)(r2

−s2)E3
12e1

= r3 E12 E11212

+ s−3(r−s)(r2
−s2)(E112 E2

12+ rs2 E12 E11212+ r2s3(r+s)E2
12 E112)

− r−2s−3ζ(r4s3(r2
−s2)E2

12 E112+ r(r2
−s2)E112 E2

12)

= r3 E12 E11212− (rs)−1(r−s)2(E112 E2
12− (r

2s)2 E2
12 E112)

+ rs−1(r−s)(r2
−s2)E12 E11212

= r3 E12 E11212− (rs)−1(r−s)2(E11212 E12+ r2s E12 E11212)

+ rs−1(r−s)(r2
−s2)E12 E11212.

Thus,

(1+r−1s−1(r−s)2)E11212 E12 = (r3
+rs−1(r−s)(r2

−s2)− r(r−s)2)E12 E11212.

Since we have assumed that r2
+s2
−rs 6=0, this implies E11212 E12= r3 E12 E11212.

Part (9): On one hand, we have

E112 E11212 = (e1 E12− rs2 E12e1)E11212

= r−3e1 E11212 E12− rs2 E12e1 E11212

= r−3((rs)3 E11212e1+ rζ E2
112)E12− rs2 E12((rs)3 E11212e1+ rζ E2

112)

= s3 E11212 E112+ r−2ζ(E2
112 E12− (r2s)2 E12 E2

112).

On the other hand,

E2
112 E12 = E112 E11212+ r2s E11212 E112+ (r2s)2 E12 E2

112.

Hence we obtain E112 E11212 = r3 E11212 E112 since r2
+ s2
6= 0. �

The main result of this subsection is the following theorem.

Theorem 3.2. The elements E`α, F`α , ω`k−1 and (ω′k)
`
−1 are central in Ur,s(G2)

for α ∈8+ and k = 1, 2.

Theorem 3.2 will be proved through a sequence of lemmas.

Lemma 3.3. Let x, y, z be elements of a K-algebra such that yx = αxy + z for
some α ∈ K, and let n be a natural number.

(1) If zx = βxz for some β ∈ K not equal to α, then

yxn
= αnxn y+ α

n
−βn

α−β
xn−1z;
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(2) If yz = βzy for some β ∈ K not equal to α, then

ynx = αnxyn
+
αn
−βn

α−β
zyn−1. �

Lemma 3.4. For any positive integer a, the following equalities hold.

Ea
12e2 = r3ae2 Ea

12.(1)

e1 Ea
1112 = r3a Ea

1112e1.(2)

e1 Ea
112 = (r

2s)a Ea
112e1+ r2(a−1)

[a]Ea−1
112 E1112.(3)

e1 Ea
11212 = (rs)3a Ea

11212e1+ r3a−2ζ [a]3 Ea−1
11212 E2

112.(4)

Ea
11212e2 = (r2s)3ae2 Ea

11212+ r3(2a−1)(r−s)(r2
−s2)[a]3 E3

12 Ea−1
11212.(5)

e1ea
2 = s3aea

2e1+ [a]3ea−1
2 E12.(6)

Proof. Parts (1) and (2) follow from (2-6) and (2-7).

Part (3) follows from Lemma 3.3(1), where x = E112, y= e1, z= E1112, α= r2s,
β = r3, and e1 E112 = E1112+ r2s E112e1 and E1112 E112 = r3 E112 E1112.

Part (4) follows from Lemma 3.3(1) and Lemma 3.1(5) and (9), where x = E11212,
y = e1, z = rζ E2

112, α = (rs)3, β = r6, and e1 E11212 = (rs)3 E11212e1+ rζ E2
112

and E112 E11212 = r3 E11212 E112.

Part (5) follows from Lemma 3.1(2) and Lemma 3.3(2), where y= E11212, x = e2,
z = r3(r−s)(r2

−s2)E3
12, α = (r2s)3 and β = r9.

Part (6) follows from Lemma 3.3(1), together with (2-2) and (2-6). �

Lemma 3.5. The following equalities hold for any positive integer a,

Ea
112e2 = (rs)3ae2 Ea

112+ r3(a−2)(r2
−s2)(1)

·
(
r4s2(a−1)

[a]E2
12 E2

112+ r3sa−2
[2]
[a

2

]
E12 E11212 E112

+ [2]
[a

3

]
E2

11212

)
Ea−3

112 .

ea
1e2 = s3ae2ea

1 + s2(a−1)
[a]E12ea−1

1 +sa−2
[a

2

]
E112ea−2

1 +
[a

3

]
E1112ea−3

1(2)

for a > 4.

e1 Ea
12 = (rs2)a Ea

12e1+ (rs)a−1
[a]Ea−1

12 E112+ ra−2
[a

2

]
Ea−2

12 E11212.(3)

Ea
1112e2 = (rs2)3ae2 Ea

1112+ (r
2s)(rs)3(a−1)(r3

−s3)[a]3 E12 E112 Ea−1
1112(4)

+ rη(rs)3(a−1)
[a]3 E11212 Ea−1

1112

+ r3(a−1)ζ(r−s)[2]3
[a

2

]
3 E3

112 Ea−2
1112.

Proof. Part (1): Use induction on a. If a = 1, this is Lemma 3.1(1). Using the
equation E112 E2

12= (r
2s)2 E2

12 E112+r2
[2]E12 E11212, (2-5) and Lemma 3.1(9), we
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see (1) is true for a = 2, 3, 4. Supposing that (1) is true for all a ≥ 4, we obtain

Ea+1
112 e2 = (rs)3a E112e2 Ea

112

+ r3(a−2)(r2
−s2)

(
r4s2(a−1)

[a]E112 E2
12 E2

112

+ r3sa−2
[2]
[a

2

]
E112 E12 E11212 E112

+ [2]
[a

3

]
E112 E2

11212

)
Ea−3

112

= (rs)3(a+1)e2 Ea+1
112 + r(rs)3a(r2

−s2)E2
12 Ea

112

+ r3(a−2)(r2
−s2)

(
r8s2a
[a]E2

12 E3
112+ r6s2a−2

[2][a]E12 E11212 E2
112

+ r3sa−2
[2]
[a

2

]
E2

11212 E112

+ r8sa−1
[2]
[a

2

]
E12 E11212 E2

112+ r6
[2]
[a

3

]
E2

11212 E112

)
Ea−3

112

= (rs)3(a+1)e2 Ea+1
112

+ r3(a−1)(r2
−s2)

(
r4s2a
[a+1]E2

12 E2
112

+ r3sa−1
[2]
[a+1

2

]
E12 E11212 E112

+ [2]
[a+1

3

]
E2

11212

)
Ea−2

112

by the induction hypothesis.

Part (2): We use induction on a. If a = 4, using the defining relations (2-2), (2-3),
(2-4), and (2-7), and a simple computation, we have

e4
1e2 = [4]E1112e1+ s2

[ 4
2

]
E112e2

1+ s6
[4]E12e3

1+ s12e2e4
1.

Furthermore, using the induction hypothesis and (2-7), we obtain

ea+1
1 e2=

[a+1
3

]
E1112ea−2

1 +sa−1
[a+1

2

]
E112ea−1

1 +s2a
[a+1]E12ea

1+s3(a+1)e2ea+1
1 .

Part (3): We use induction on a. If a = 2, using (2-3), we have

e1 E2
12 = E11212+ rs[2]E12 E112+ (rs2)2 E2

12e1.

Suppose that (3) is true for a ≥ 2. Then, using the induction hypothesis, (2-5) and
Lemma 3.1(8), we obtain

e1 Ea+1
12 = (rs2)a Ea

12e1 E12+ (rs)a−1
[a]Ea−1

12 E112 E12+ ra−2
[a

2

]
Ea−2

12 E11212 E12

= (rs2)a Ea
12 E112+ (rs2)a+1 Ea+1

12 e1+ (rs)a−1
[a]Ea−1

12 E11212

+ ra+1sa
[a]Ea

12 E112+ ra+1
[a

2

]
Ea−1

12 E11212

= (rs2)a+1 Ea+1
12 e1+ (rs)a[a+1]Ea

12 E112+ ra−1
[a+1

2

]
Ea−1

12 E11212.
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Part (4): We use induction on a. If a = 1, this is the relation in Lemma 3.1(3).
Suppose that (4) is true for all a ≥ 1. Using the induction hypothesis and Lemma
3.1(3), (4), (6) and (7), we obtain

Ea+1
1112e2 = (rs2)3a(E1112e2)Ea

1112

+ (r2s)(rs)3(a−1)(r3
−s3)[a]3(E1112 E12)E112 Ea−1

1112

+ rη(rs)3(a−1)
[a]3(E1112 E11212)Ea−1

1112

+ r3(a−1)ζ(r−s)[2]3
[a

2

]
3(E1112 E3

112)E
a−2
1112

= (rs2)3a((rs2)3e2 E1112+ (r2s)(r3
−s3)E12 E112+ rηE11212)Ea

1112

+ (r2s)(rs)3(a−1)(r3
−s3)[a]3((rs)3 E12 E1112+ rζ E2

112)E112 Ea−1
1112

+ rη(rs)3(a−1)
[a]3((r2s)3 E11212 E1112+ r3ζ(r−s)E3

112)E
a−1
1112

+ r3a+6ζ(r−s)[2]3
[a

2

]
3 E3

112 Ea−1
1112

= (rs2)3(a+1)e2 Ea+1
1112+ (r

2s)(rs)3a(r3
−s3)[a+1]3 E12 E112 Ea

1112

+ rη(rs)3a
[a+1]3 E11212 Ea

1112+ r3aζ(r−s)[2]3
[a+1

2

]
3 E3

112 Ea−1
1112.

This completes the proof. �

Lemma 3.6. For any positive integer a, these equalities hold:

ea
k fk = fkea

k + [a]k ea−1
k

s−a+1
k ωk−r−a+1

k ω′k
rk−sk

for 1≤ k ≤ 2.(1)

Ea
12 f1 = f1 Ea

12− r2(a−1)
[3][a]e2 Ea−1

12 ω′1.(2)

Ea
112 f1 = f1 Ea

112− (rs)a−1
[2]2[a]E12 Ea−1

112 ω
′

1(3)

− ra−2
[2]2

[a
2

]
E11212 Ea−2

112 ω
′

1.

Ea
1112 f1 = f1 Ea

1112− [3][a]3 E112 Ea−1
1112ω

′

1.(4)

Ea
11212 f1 = f1 Ea

11212− r3a−2(r2
−s2)[3][a]3 E2

12 Ea−1
11212ω

′

1.(5)

Proof. Part (1) can be easily verified by induction on a.
Parts (2), (4) and (5) follow from Lemma 3.3(2) and the facts

E12 f1 = f1 E12− [3]e2ω
′

1, E1112 f1 = f1 E1112− [3]E112ω
′

1,

E112 f1 = f1 E112− [2]2 E12ω
′

1, E11212 f1 = f1 E11212− r(r2
−s2)[3]E2

12ω
′

1.

Part (3) can be verified by induction on a.

Ea+1
112 f1 = (E112 f1)Ea

112− (rs)a−1
[2]2[a](E112 E12)Ea−1

112 ω
′

1

− ra−2
[2]2

[a
2

]
(E112 E11212)Ea−2

112 ω
′

1

= f1 Ea+1
112 − (rs)a[2]2[a+1]E12 Ea

112ω
′

1− ra−1
[2]2

[a+1
2

]
E11212 Ea−1

112 ω
′

1.

This completes the proof. �
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Lemma 3.7. For any positive integer a,

Ea
12 f2 = f2 Ea

12+ω2 Ea−3
12 (s2(a−1)E2

12e1+ sa−2
[a

2

]
E12 E112+

[a
3

]
E11212);(1)

Ea
112 f2 = f2 Ea

112+ r3(a−2)(r2
−s2)ω2 Ea−3

112(2)

×

(
[2]
[a

3

]
E2

1112+ r3sa−2
[2]
[a

2

]
E112 E1112e1

+ [a]r4s2(a−1)E2
112e2

1

)
;

Ea
1112 f2 = f2 Ea

1112+ r−3(a−2)(r2
−s2)(r−s)[a]3ω2e3

1 Ea−1
1112;(3)

Ea
11212 f2 = f2 Ea

11212+ r(rs)3(a−1)
[a]3ω2 Ea−1

11212(ηE1112+ rs(r3
−s3)E112e1)(4)

+ r3(a−1)ζ(r−s)[2]3
[a

2

]
3ω2 Ea−2

11212 E3
112.

Proof. Part (1): Because E12 f2 = f2 E12+ω2e1, it is easy to check the cases when
a = 2, 3, 4. Using the induction hypothesis and Lemma 3.5(3), we have

Ea+1
12 f2 = E12 f2 Ea

12+ω2 Ea−2
12 (s2a+1

[a]E2
12e1+ sa+1[a

2

]
E12 E112+ s3[a

3

]
E11212)

= f2 Ea+1
12 + ra−2ω2

(
r2s2a Ea

12e1+rsa−1
[a]Ea−1

12 E112+
[a

2

]
Ea−2

12 E11212
)

+ω2 Ea−2
12

(
s2a+1
[a]E2

12e1+ sa+1[a
2

]
E12 E112+ s3[a

3

]
E11212

)
= f2 Ea+1

12 +ω2 Ea−2
12

(
s2a
[a+1]E2

12e1+sa−1[a+1
2

]
E12 E112+

[a+1
3

]
E11212

)
.

Part (2): From (1), it is easy to calculate E112 f2 = f2 E112 + r(r2
−s2)ω2e2

1. The
relation below is obtained by Lemma 3.4(3):

e2
1 Ea

112 = r4a−6 Ea−2
112

(
[2]
[a

2

]
E2

1112+ r4sa−1
[2][a]E112 E1112e1+ r6s2a E2

112e2
1
)
.

For a ≥ 1, we have by induction on a

Ea+1
112 f2 = (E112 f2)Ea

112+ r3(a−1)s3(r2
−s2)ω2 Ea−2

112

×

(
[2]
[a

3

]
E2

1112+ r3sa−2
[2]
[a

2

]
E112 E1112e1

+ r4s2(a−1)
[a]E2

112e2
1

)
= f2 Ea+1

112 + r(r2
−s2)r4a−6ω2 Ea−2

112

×

(
[2]
[a

2

]
E2

1112+ r4sa−1
[2][a]E112 E1112e1+ r6s2a E2

112e2
1

)
+ r3(a−1)s3(r2

−s2)ω2 Ea−2
112

×

(
[2]
[a

3

]
E2

1112+ r3sa−2
[2]
[a

2

]
E112 E1112e1+ r4s2(a−1)

[a]E2
112e2

1

)
= f2 Ea+1

112 + r3(a−1)(r2
−s2)ω2 Ea−2

112

×

(
[2]
[a+1

3

]
E2

1112+ r3sa−1
[2]
[a+1

2

]
E112 E1112e1+ r4s2a

[a+1]E2
112e2

1

)
.
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Part (3): We consider the case for a = 1. It follows from (2) that

E1112 f2 = f2 E1112+ r3(r2
−s2)(r−s)ω2e3

1.

So by this and Lemma 3.3(2), we can easily get (3).

Part (4): If a = 1, we have

E11212 f2 = f2 E11212+ rηω2 E1112+ r2s(r3
−s3)ω2 E112e1

by using (1) and (2). Then

E1112 Ea
11212 = (r

2s)3a Ea
11212 E1112+ r3(2a−1)ζ(r−s)[a]3 Ea−1

11212 E3
112.

holds by Lemma 3.3(1). So (4) can be derived easily from this and Lemma 3.4(4)
by induction on a, which completes the proof. �

Proof of Theorem 3.2.. We know from Lemmas 3.4, 3.5, 3.6 and 3.7 that the
elements E`1, E`1112, E`112, E`11212, E`12 and E`2 are central in Ur,s(G2). Applying τ
to Eα for α ∈ 8, we see that F`1 , F`1112, F`112, F`11212, F`12 and F`2 are also central.
It is easy to see that ω`k − 1 and (ω′k)

`
− 1 are central too for k = 1, 2. �

Remark 3.8. If ` = 3`′, then the elements E`
′

1112, F`
′

1112, ω`
′

k −1 and (ω′k)
`′
−1 are

central in Ur,s(G2) for k = 1, 2.

Restricted 2-parameter quantum groups. From now on we will assume that ` is
coprime to 3.

Definition 3.9. The restricted 2-parameter quantum group is the quotient

ur,s(G2) :=Ur,s(G2)/I,

where I denotes the ideal of Ur,s(G2) generated by all elements E`α and F`α for
α ∈8+ and ω`k − 1 and (ω′k)

`
− 1 for 1≤ k ≤ 2.

By Theorem 2.4 and Corollary 2.5, ur,s(G2) is an algebra of dimension `16 with
linear basis

(3-5) Ec1
2 Ec2

12 Ec3
11212 Ec4

112 Ec5
1112 Ec6

1 ω
b1
1 ω

b2
2 (ω

′

1)
b′1(ω′2)

b′2 F
c′1
1 F

c′2
1112 F

c′3
112 F

c′4
11212 F

c′5
12 F

c′6
2

where all powers range between 0 and `− 1.
The remainder of this section is devoted to proving that ur,s(G2) is a finite-

dimensional Hopf algebra.
First note that the generators of I are contained in the kernel of the counit ε,

and so I is as well. Because the coproduct 1 is an algebra homomorphism and
because the antipode S is an algebra antihomomorphism, it suffices to show that
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1(x) ∈ I⊗U +U ⊗I and S(x) ∈ I for each generator x ∈ I. To accomplish
this, we rely on the computations

1(ω`k − 1)= ω`k ⊗ω
`
k − 1⊗ 1

= (ω`k − 1)⊗ω`k + 1⊗ (ω`k − 1) ∈ I⊗U +U ⊗I,

and S(ω`k − 1) = −ω−`k (ω`k − 1) ∈ I. The argument for (ω′k)
`
− 1 is similar. In

determining 1(x) for each generator x ∈ I, we adopt the notation

ω12 = ω1ω2, ω112 = ω
2
1ω2, ω1112 = ω

3
1ω2, ω11212 = ω

3
1ω

2
2.

Some simple computations give rise to these facts:

Lemma 3.10.

1(E12)= E12⊗ 1+ω12⊗ E12+ (r3
− s3)ω2e1⊗ e2;(1)

1(E112)= E112⊗ 1+ω112⊗ E112+ (r + s)(r2
− s2)ω12e1⊗ E12(2)

+ r(r2
− s2)× (r3

− s3)ω2e2
1⊗ e2;

1(E1112)= E1112⊗ 1+ω1112⊗ E1112+ (r3
− s3)ω112e1⊗ E112(3)

+ r(r2
− s2)× (r3

− s3)ω12e2
1⊗ E12

+ r3(r − s)(r2
− s2)(r3

− s3)ω2e3
1⊗ e2;

1(E11212)= E11212⊗ 1+ω11212⊗ E11212+ r(r2
− s2)(r3

− s3)ω2
12e1⊗ E2

12(4)

+ r(r2
− s2)(r3

− s3)2ω12ω2e2
1⊗ E12e2

+ (r3
− s3)ω12 E112⊗ E12

+ r6(r − s)(r2
− s2)× (r3

− s3)2ω2
2e3

1⊗ e2
2

+ r(r3
− s3)ω2((r2

− s2
− rs)E1112+ rs(r3

− s3)E112e1)⊗ e2. �

Lemma 3.11. 1(E`α) ∈ I⊗U +U ⊗I for α ∈8+.

Proof. Note that

1(en
i )=

n∑
j=0

(n
j

)
ri s−1

i

en− j
i ω

j
i ⊗ e j

i

has an ri s−1
i -binomial expansion2 since (ωi ⊗ ei )(ei ⊗1)= ri s−1

i (ei ⊗1)(ωi ⊗ ei ).
So we have 1(e`i )= e`i ⊗1+ω`i ⊗e`i ∈ I⊗U +U⊗I, since r and s are primitive
`-th roots of unity, and

(`
j

)
ri s−1

i
= 0 for 0< j < `.

2We set

(n) := (n)rs−1 :=
rns−n

− 1
rs−1− 1

, (n)! := (n)(n− 1) · · · (2)(1),
(

n
m

)
:=

(n)!
(m)!(n−m)!

.

By convention (0)= 0 and (0)! = 1.
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Note that 1(E`12)= (E12⊗ 1+ (r3
− s3)ω2e1⊗ e2)

`
+ω`12⊗ E`12, because

(ω12⊗ E12)(E12⊗ 1+ (r3
−s3)ω2e1⊗ e2)=

rs−1(E12⊗ 1+ (r3
−s3)ω2e1⊗ e2)(ω12⊗ E12).

We get

1(E`12)= E`12⊗ 1+ r3`(`−1)/2(r3
−s3)`ω`2e`1⊗ e`2+ω

`
12⊗ E`12 ∈ I⊗U +U ⊗I

since r and s are primitive `-th roots of unity, and

(E12+ω2e1)
`
= E`12+ r3`(`−1)/2ω`2e`1.

Similarly, 1(E`112),1(E
`
1112) and 1(E`11212) are in I⊗U +U ⊗I. �

Applying the antipode property to 1(E`α) for α ∈ 8+, we obtain that S(E`α) ∈
I⊗U +U⊗I. Using τ , we find that 1(F`α) ∈ I⊗U +U⊗I for α ∈8+. Hence
I is a Hopf ideal, and ur,s(G2) is a finite-dimensional Hopf algebra. Then:

Theorem 3.12. I is a Hopf ideal of Ur,s(G2), making ur,s(G2) a finite-dimensional
Hopf algebra. �

4. Isomorphisms of ur,s(G2)

Write u = ur,s = ur,s(G2). Let G denote the group generated by ωi and ω′i for
i = 1, 2 in the restricted quantum group u. Define linear subspace ak of u by

(4-1) a0 = KG, a1 = KG+
2∑

i=1

(Kei G+K fi G), ak = (a1)
k for k ≥ 1.

Note that 1 ∈ a0, 1(a0) ⊆ a0 ⊗ a0, a1 generates u as an algebra, and that
1(a1)⊆ a1⊗ a0+ a0⊗ a1. By [Montgomery 1993], {ak} is a coalgebra filtration
of u and u0 ⊆ a0, where the coradical u0 of u is the sum of all the simple sub-
coalgebras of u. Clearly, a0 ⊆ u0 as well, and so u0 = KG. This implies that u is
pointed, that is, every simple subcoalgebra of u is one-dimensional.

Let b be the Hopf subalgebra of u = ur,s(G2) generated by ei and ω±1
i for

i = 1, 2, and let b′ be the Hopf subalgebra generated by fi and (ω′i )
±1 for i = 1, 2.

The same argument shows that b and b′ are pointed as well. Thus, we have this:

Proposition 4.1. The restricted 2-parameter quantum group ur,s(G2) is a pointed
Hopf algebra, as are its subalgebras b and b′.

[Montgomery 1993, Lemma 5.5.1] indicates that ak ⊆ uk for all k, where {uk} is
the coradical filtration of u defined inductively by uk =1

−1(u×uk−1+u0×u). In
particular, a1⊆u1. By [op. cit., Theorem 5.4.1], since u is pointed, u1 is spanned by
the set of group-like elements G together with all the skew-primitive elements of u.
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We claim that under the additional hypothesis of the Lemma 4.2 below, u1 = a1.
That is, each skew-primitive element of u is a linear combination of elements of G,
of ei G, and of fi G for i = 1, 2.

The following lemma gives a precise description of u1.

Lemma 4.2. Assume that rs−1 is a primitive `-th root of unity. Then

u1 = KG+
2∑

i=1

(Kei G+K fi G).

Given two group-like elements g and h in a Hopf algebra H , let Pg,h(H) denote
the set of skew-primitive elements of H given by

Pg,h(H)= {x ∈ H |1(x)= x ⊗ g+ h⊗ x}.

We want to compute P1,σ (ur,s) and Pσ,1(ur,s) for σ ∈ G.

Lemma 4.3. Assume that rs−1 is a primitive `-th root of unity. Then we have

P1,ωi (ur,s)= K(1−ωi )+Kei , P1,ω′−1
i
(ur,s)= K(1−ω′−1

i )+K fiω
′−1
i ,(1)

P1,σ (ur,s)= K(1− σ) if σ 6∈ {ωi , ω
′−1
i | i = 1, 2};

Pω′i ,1(ur,s)= K(1−ω′i )+K fi , Pω−1
i ,1(ur,s)= K(1−ω−1

i )+Keiω
−1
i ,(2)

Pσ,1(ur,s)= K(1− σ) if σ 6∈ {ω′i , ω
−1
i | i = 1, 2}.

Proof. (1): Assuming rs−1 is a primitive `-th root of unity, we have

KG+
∑

g,h∈G

Pg,h(ur,s)= KG+
2∑

i=1

(Kei G+K fi G).

Thus, any x ∈ P1,σ (ur,s), where σ ∈ G, may be written as a linear combination

x =
∑
g∈G

γgg+
∑
g∈G

2∑
i=1

αi,gei g+
∑
g∈G

2∑
i=1

βi,g fi g,

where γg, αi,g and βi,g are scalars. Comparing 1(x) = x ⊗ 1+ σ ⊗ x with the
coproduct of the right side, which is

∑
g∈G

γgg⊗g+
∑
g∈G

2∑
i=1

αi,g(ei g⊗g+ωi g⊗ei g)+
∑
g∈G

2∑
i=1

βi,g(g⊗ fi g+ fi g⊗ω′i g),

we obtain βi,g = 0 for all i and g 6=ω′−1
i , and αi,g = 0 for all g 6= 1. A further com-

parison of the group-like components yields γσ =−γ1 and γg = 0 for all g 6= 1, σ .
Finally, comparing 1(x) with 1(γ1(1− σ)+

∑2
i=1 αi,1ei +

∑2
i=1 βi,ω′−1

i
fiω
′−1
i )
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yields αi,1 = 0 for all i when σ /∈ {ω1, ω2}, and yields βi,ω′−1
i
= 0 for all i when

σ /∈ {ω′−1
1 , ω′−1

2 }.
Consider two more cases: First, when σ = ωi for some i , we have α j,1 = 0 for

all j 6= i ; and β j,ω′−1
j
= 0 for all j . So x = γ1(1− ωi )+ αi,1ei . Second, when

σ = ω′−1
i for some i , we have β j,ω′−1

j
= 0 for all j 6= i , and we have α j,1 = 0 for

all j . So x = γ1(1−ω′−1
i )+βi,ω′−1

i
fiω
′−1
i . Thus

P1,ωi (ur,s)= K(1−ωi )+Kei for 1≤ i ≤ 2,

P1,ω′−1
i
(ur,s)= K(1−ω′−1

i )+K fiω
′−1
i for 1≤ i ≤ 2,

P1,σ (ur,s)= K(1− σ) if σ 6∈ {ωi , ω
′−1
i } for any i.

Similarly, we get (2). �

Remark 4.4. The description of the set of left (right) skew-primitive elements
of ur,s(sln) is not complete; see [Benkart and Witherspoon 2004b, formulas (3.6)
and (3.7)]. This left many families of isomorphisms of ur,s(sln) undiscovered. In
the second part of the proof of [Hu and Wang 2009, Theorem 5.4], the authors
described explicitly all of the Hopf algebra isomorphisms of ur,s(sln); see [op. cit.,
Theorem 5.5].

Theorem 4.5. Assume that rs−1 and r ′s ′−1 are primitive `-th roots of unity with
` 6= 3, 4, and assume ζ is a 3rd root of unity. Then ϕ : ur,s ∼= ur ′,s′ as Hopf algebras
if and only if either

• (r ′, s ′)= ζ(r, s) and ϕ is a diagonal isomorphism, that is,

ϕ(ωi )= ω̃i , ϕ(ω′i )= ω̃
′

i ,

ϕ(ei )= ai ẽi , ϕ( fi )= ζ
δi,1a−1

i f̃i for ai ∈ K∗; or

• (r ′, s ′)= ζ(s, r) and

ϕ(ωi )= ω̃
′−1
i , ϕ(ω′i )= ω̃

−1
i ,

ϕ(ei )= ai f̃i ω̃
′−1
i , ϕ( fi )= ζ

δi,1a−1
i ω̃−1

i ẽi for ai ∈ K∗.

Proof. Suppose ϕ :ur,s→ur ′,s′ is a Hopf algebra isomorphism. Write the generators
of ur ′,s′ as ẽi , f̃i , ω̃i and ω̃′i . Because

1(ϕ(ei ))= (ϕ⊗ϕ)(1(ei ))= ϕ(ei )⊗ 1+ϕ(ωi )⊗ϕ(ei ),

we have ϕ(ei ) ∈ P1,ϕ(ωi )(ur ′,s′) for i = 1, 2. As ϕ is an isomorphism, ϕ(ωi ) ∈ KG̃.
Lemma 4.3(1) implies that ϕ(ωi ) ∈ {ω̃ j , ω̃

′−1
j | j = 1, 2}. Let π : {1, 2} → {1, 2}

be a permutation. We distinguish four cases:

(i) There is some π such that ϕ(ωi ) = ω̃π(i) and ϕ(ei ) = α(1− ω̃π(i))+ β ẽπ(i)
for i = 1, 2 and α, β ∈ K.
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(ii) There is some π such that ϕ(ωi )= ω̃
′−1
π(i) and ϕ(ei )=α

′(1−ω̃′−1
π(i))+β

′ f̃π(i)ω̃′−1
π(i)

for i = 1, 2 and α′, β ′ ∈ K.

(iii) ϕ(ω1)= ω̃π(1), but ϕ(ω2)= ω̃
′−1
π(2).

(iv) ϕ(ω1)= ω̃
′−1
π(1), but ϕ(ω2)= ω̃π(2).

Case (i): In this case, we claim ϕ(ωi )= ω̃i . Assume otherwise, that is, ϕ(ω1)= ω̃2

and ϕ(ω2)= ω̃1. Applying ϕ to the relation ω1e1 = rs−1e1ω1 yields

ϕ(ω1)ϕ(e1)= rs−1ϕ(e1)ϕ(ω1), whence

ω̃2(α(1− ω̃2)+β ẽ2)= rs−1(α(1− ω̃2)+β ẽ2)ω̃2.

Since r 6= s, this forces α to be 0, so that ϕ(e1) = β ẽ2 for some β 6= 0. Also,
because ω̃2ẽ2 = r ′2s ′−1

2 ẽ2ω̃2, it follows that r ′3s ′−3
= rs−1.

Applying ϕ to the relation ω1e2 = s3e2ω1, we get ϕ(ω1)ϕ(e2)= s3ϕ(e2)ϕ(ω1),
that is, ω̃2ẽ1 = s3ẽ1ω̃1. But ω̃2ẽ1 = r ′−3ẽ1ω̃1 in ur ′,s′ . So r ′3 = s−3. Similarly, the
relation ω2e1 = r−3e1ω2 gives s ′−3

= r3. It then follows from r ′3s ′−3
= rs−1 that

r2
= s2, a contradiction. So we proved ϕ(ωi )= ω̃i . Similarly, we have ϕ(ω′i )= ω̃

′

i .
Furthermore, applying ϕ to the relations ωi e j = 〈ω

′

j , ωi 〉e jωi for i, j ∈ {1, 2},
we get 〈ω′j , ωi 〉 = 〈ω̃

′

j , ω̃i 〉 for i, j ∈ {1, 2}, that is,

r ′3s ′−3
= r3s−3, r ′s ′−1

= rs−1, r ′−3
= r−3, s ′3 = s3.

Hence, (r ′, s ′)=ζ(r, s), where ζ is a 3rd root of unity. As ϕ preserves relation (G4),
ϕ(ei )= ai ẽi and ϕ( fi )= ζ

δi,1a−1
i f̃i for ai ∈ K∗, so ϕ is a diagonal isomorphism.

Case (ii): In this case

ϕ(ωi )= ω̃
′−1
π(i) for some π(i) and ϕ(ei )= α

′(1− ω̃′−1
π(i))+β

′ f̃π(i)ω̃′−1
π(i).

In fact, applying ϕ to the relation ωi ei = ri s−1
i eiωi gives α′ = 0, so we have

ϕ(ei )= β
′ f̃π(i)ω̃′−1

π(i). We claim that ϕ(ωi ) = ω̃
′−1
i . Assume otherwise, that is,

ϕ(ω1)= ω̃
′−1
2 and ϕ(ω2) = ω̃

′−1
1 . Then ϕ(e1) = a1 f̃2ω̃

′−1
2 and ϕ(e2) = a2 f̃1ω̃

′−1
1 .

Apply ϕ to the relation ω1e1 = rs−1e1ω1 to get rs−1
= (r ′3s ′−3)−1, to the relation

ω2e1= r−3e1ω2 to get r−3
= r ′3, and to the relation ω1e2= s3e2ω1 to get s3

= s ′−3.
So we have (rs−1)2 = 1, a contradiction. Hence, ϕ(ωi )= ω̃

′−1
i , ϕ(ω′i )= ω̃

−1
i and

ϕ(ei )= ai f̃i ω̃
′−1
i , where ai ∈ K∗.

Apply ϕ to the relation ω1e1= rs−1e1ω1 to get rs−1
= (r ′s ′−1)−1, to the relation

ω1e2= s3e2ω1 to get s3
= r ′3 and to the relation ω2e1= r−3e1ω2 to get r−3

= s ′−3.
So we have (r ′, s ′)= ζ(s, r), where ζ is a 3rd root of unity. In order that ϕ preserve
the relation (G4), one has to take ϕ( fi )= ζ

δi,1a−1
i ω̃−1

i ẽi , where ai ∈K∗. Also, we
can easily check that this ϕ does preserve the Serre relations (G5) and (G6).

Case (iii): We claim that this case is impossible. First, we assume that ϕ(ω1)= ω̃1

and ϕ(ω2) = ω̃
′−1
2 . Then we have ϕ(e1) = a1ẽ1 and ϕ(e2) = a2 f̃2ω̃

′−1
2 , where
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a1, a2 ∈ K∗. Apply ϕ to the relation ω1e2 = s3e2ω1 to get s3
= s ′−3 and to the

relation ω2e1 = r−3e1ω2 to get r−3
= s ′3. So we get r3

= s3, a contradiction.
Next, we assume that ϕ(ω1)= ω̃2 and ϕ(ω2)= ω̃

′−1
1 . Then we have ϕ(e1)=a1ẽ2

and ϕ(e2)= a2 f̃1ω̃
′−1
1 , where a1, a2 ∈ K∗. Apply ϕ to the relation ω1e2 = s3e2ω1

to get s3
= r ′3 and to the relation ω2e1 = r−3e1ω2 to get r−3

= r ′−3. So we have
r3
= s3, a contradiction.

Case (iv): This case is similar to case (iii), and also impossible. �

5. ur,s(G2) is a Drinfel’d double

We will show that u ∼= D(b) under a few assumptions. Let θ be a primitive `-th
root of unity in K, and write r = θ y and s = θ z .

Lemma 5.1. Assume that (3(y2
+ z2
+ yz), `)= 1 and rs−1 is a primitive `-th root

of unity. Then (b′)coop ∼= b∗ as Hopf algebras.

Proof. Define γ j , η j for j = 1, 2 in b∗ as follows: The γ j are algebra homo-
morphisms with γ j (ωi )= 〈ω

′

j , ωi 〉 and γ j (ei )= 0 for i = 1, 2. So they are group-
like elements in b∗. Let η j =

∑
g∈G(b)(e j g)∗, where G(b) is the group generated

by ω1, ω2 and the asterisk denotes the dual basis element relative to the PBW-basis
of b. The isomorphism φ : (b′)coop

→ b∗ is then defined by

φ(ω′j )= γ j and φ( f j )= η j .

We have to check that φ is a Hopf algebra homomorphism and a bijection.
First, we observe that the γ j are invertible elements of b∗ that commute with

one another and that γ `j = 1. Note that η`j = 0, as it is 0 on any basis element of b.
We calculate γ jηiγ

−1
j : It is nonzero only on basis elements of the form eiω

k1
1 ω

k2
2 ,

and on any such element it takes the value

(γ j ⊗ ηi ⊗ γ
−1
j )((ei ⊗ 1⊗ 1+ωi ⊗ ei ⊗ 1+ωi ⊗ωi ⊗ ei )(ω

k1
1 ω

k2
2 )
⊗3)

= γ j (ωiω
k1
1 ω

k2
2 )ηi (eiω

k1
1 ω

k2
2 )γ

−1
j (ωk1

1 ω
k2
2 )= γ j (ωi )= 〈ω

′

j , ωi 〉.

Thus we have γ jηiγ
−1
j = 〈ω

′

j , ωi 〉ηi , which corresponds to relation (G3) for b′.
Next, we check relation (G6): We compute

(η2
2η1)(e2

2e1)= (η2⊗ η2⊗ η1)((e2⊗ 1⊗ 1+ω2⊗ e2⊗ 1+ω2⊗ω2⊗ e2)
2

× (e1⊗ 1⊗ 1+ω1⊗ e1⊗ 1+ω1⊗ω1⊗ e1))

= (η2⊗ η2⊗ η1)(e2ω2ω1⊗ e2ω1⊗ e1+ω2e2ω1⊗ e2ω1⊗ e1)

= (η2⊗ η2⊗ η1)((1+ r3s−3)e2ω2ω1⊗ e2ω1⊗ e1)= 1+ r3s−3,

and similarly (η2
2η1)(e2 E12)= 0. Thus, for any k1, k2, we have

(η2
2η1)(e2

2e1ω
k1
1 ω

k2
2 )= 1+ r3s−3 and (η2

2η1)(e2 E12ω
k1
1 ω

k2
2 )= 0.
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On all other basis elements, η2
2η1 is 0. Therefore, we have

(5-1) η2
2η1 =

∑
g∈G

(1+ r3s−3)(e2
2e1g)∗.

Similarly, we calculate

(η2η1η2)(e2
2e1)

= (η2⊗ η1⊗ η2)(e2ω2ω1⊗ω2e1⊗ e2+ω2e2ω1⊗ω2e1⊗ e2)

= r−3
+ s−3,

(η2η1η2)(e2 E12)

= (η2η1η2)(e2e1e2− s3e2
2e1)

= (η2⊗ η1⊗ η2)(ω2ω1e2⊗ω2e1⊗ e2+ e2ω1ω2⊗ e1ω2⊗ e2)− 1− r−3s3

= 1− r−3s3.

So we have

(5-2) η2η1η2 =
∑
g∈G

((r−3
+ s−3)(e2

2e1g)∗+ (1− r−3s3)(e2 E12g)∗).

We compute

(η1η
2
2)(e

2
2e1)= r−3(r−3

+ s−3) and (η1η
2
2)(e2 E12)= s3(s−6

− r−6).

So we have

(5-3) η1η
2
2 =

∑
g∈G

(r−3(r−3
+ s−3)(e2

2e1g)∗+ s3(s−6
− r−6)(e2 E12g)∗).

We use (5-1)–(5-3) to establish the relation

r3s3η1η
2
2− (r

3
+ s3)η2η1η2+ η

2
2η1 = 0.

Similarly, it is easy to verify that

η2η
4
1− (r + s)(r2

+ s2)η1η2η
3
1+ rs(r2

+ s2)(r2
+ rs+ s2)η2

1η2η
2
1

− (rs)3(r + s)(r2
+ s2)η3

1η2η1+ (rs)6η4
1η2 = 0.

Therefore, φ is an algebra homomorphism.
Now we will check that φ preserves coproducts. We have already seen that γi

is a group-like element in b∗. We calculate

1(ηi )(eiω
j1
1 ω

j2
2 ⊗ω

k1
1 ω

k2
2 )= ηi (eiω

j1+k1
1 ω

j2+k2
2 )= 1,

1(ηi )(ω
j1
1 ω

j2
2 ⊗ eiω

k1
1 ω

k2
2 )= ηi (ω

j1
1 ω

j2
2 eiω

k1
1 ω

k2
2 )= 〈ω

′

i , ω1〉
j1〈ω′i , ω2〉

j2 .
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These are the only basis elements of b ⊗ b on which 1(ηi ) is nonzero. As a
consequence, we have

(ηi ⊗ 1+ γi ⊗ ηi )(eiω
j1
1 ω

j2
2 ⊗ω

k1
1 ω

k2
2 )= 1,

(ηi ⊗ 1+ γi ⊗ ηi )(ω
j1
1 ω

j2
2 ⊗ eiω

k1
1 ω

k2
2 )= 〈ω

′

i , ω1〉
j1〈ω′i , ω2〉

j2 .

So 1(ηi )= ηi ⊗1+γi ⊗ηi . This proves that φ is a Hopf algebra homomorphism.
Finally, we prove that φ is bijective. As b∗ and (b′)coop have the same dimen-

sion, it suffices to show that φ is injective. By [Montgomery 1993], we need
only show that φ, when restricted to (b′)coop

1 , is injective. Lemma 4.2 yields
(b′)

coop
1 = KG(b′)+

∑2
i=1 K fi G(b′), where G(b′) is the group generated by ω′1

and ω′2. First, we claim that

spanK{γ
k1
1 γ

k2
2 | 0≤ ki < `} = spanK{(ω

k1
1 ω

k2
2 )
∗
| 0≤ ki < `}.(5-4)

This is equivalent to the statement that the γ k1
1 γ

k2
2 span the space of characters

over K of the finite group Z/`Z×Z/`Z generated by ω1 and ω2. We have assumed
that K contains a primitive `-th root of unity. Therefore, the irreducible characters
of this group are the functions χi1,i2

given by χi1,i2
(ωk1

1 ω
k2
2 ) = θ

i1k1+i2k2 , where θ
is a primitive `-th root of unity in K. Note that γ1 = χy−z,−3y and γ2 = χ3z,3(y−z).
We must show that, given i1, i2, there are k1, k2 such that χi1,i2 = γ

k1
1 γ

k2
2 , which is

equivalent to the existence of a solution to the matrix equation AK = I in Z/`Z

(as these are powers of θ ), where A =
( y−z 3z
−3y 3(y−z)

)
, K is the transpose of (k1, k2)

and I is the transpose of (i1, i2). The determinant of the coefficient matrix A
is 3(y2

+ z2
+ yz), which is invertible in Z/`Z by the hypothesis of the lemma.

Therefore (5-4) holds. In particular, this implies that the matrix

(5-5)
(
(γ k1

1 γ
k2
2 )(ω

j1
1 ω

j2
2 )
)

k̄× j̄

is invertible, and that φ is bijection on group-like elements.
Next we will show for each i = 1 and i = 2 the matrix

(5-6)
(
(ηiγ

k1
1 γ

k2
2 )(eiω

j1
1 ω

j2
2 )
)

k̄× j̄

is invertible. This will complete the proof that φ is injective on (b′)coop
1 , as desired.

We will show that the matrix is block upper-triangular. Each matrix entry is

(ηi ⊗ γ
k1
1 γ

k2
2 )(1(ei )1(ω

j1
1 ω

j2
2 ))= (ηi ⊗ γ

k1
1 γ

k2
2 )(eiω

j1
1 ω

j2
2 ⊗ω

j1
1 ω

j2
2 ).

Thus, (5-6) is precisely the invertible matrix (5-5). �

Recall that the Drinfel’d double D(b) of the finite-dimensional Hopf algebra b

is a Hopf algebra whose underlying coalgebra is b⊗ (b∗)coop (that is, the vector
space b⊗(b∗)coop with the tensor product coalgebra structure). As an algebra, D(b)
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contains the subalgebras b⊗ 1∼= b and 1⊗ b∗ ∼= b∗, and if a ∈ b and b ∈ (b∗)coop,
then (a⊗ 1)(1⊗ b)= a⊗ b and

(1⊗ b)(a⊗ 1)=
∑

b(1)(S−1a(1))b(3)(a(3))a(2)⊗ b(2),

where S−1 is the composition inverse of the antipode S for b.

Theorem 5.2. Assume that (3(y2
+ z2
+ yz), `) = 1. Then D(b) ∼= ur,s(G2) as

Hopf algebras.

Proof. We denote the image ei ⊗ 1 of ei in D(b) by ěi , and similarly for ωi , ηi

and γi . Define ψ : D(b)→ ur,s(G2) on the generators by

ψ(ěi )= ei , ψ(η̌i )= (si − ri ) fi ,

ψ(ω̌±1
i )= ω±1

i , ψ(γ̌±1
i )= (ω′i )

±1.

Then the proof is the same as that of [Hu and Wang 2009, Theorem 6.2]. �

6. Integrals and ribbon elements

Integrals play a basic role in the structure theory of finite-dimensional Hopf alge-
bras H and their duals H∗. In this section, we compute the left and right integrals
in the Borel subalgebra b of ur,s(G2) and the distinguished group-like elements of
b and b∗. We use this information to determine that ur,s(G2) has a ribbon element
when ur,s(G2)∼= D(b).

Let H be a finite-dimensional Hopf algebra. An element y ∈ H is a left integral
if ay = ε(a)y for all a ∈ H , and a right integral if ya = ε(a)y. The left and
right integrals form a one-dimensional ideals

∫ l
H and

∫ r
H , respectively, of H , and

SH (
∫ r

H )=
∫ l

H under the antipode SH of H .
When y 6= 0 is a left integral of H , there exists a unique group-like element γ

in the dual algebra H∗ (the so-called distinguished group-like element of H∗) such
that ya = γ (a)y. If we had begun instead with a right integral y′ ∈ H , then we
would have ay′= γ−1(a)y′. This is an easy consequence of the fact that group-like
elements are invertible, and can be found in [Montgomery 1993, page 22].

Now if λ 6= 0 is right integral of H∗, then there exists a unique group-like
element g of H (the distinguished group-like element of H ) such that ξλ= ξ(g)λ
for all ξ ∈ H∗. The algebra H is unimodular (that is,

∫ l
H =

∫ r
H ) if and only if γ = ε;

and the dual algebra H∗ is unimodular if and only if g = 1.
The left and right H∗-module actions on H are given by

ξ ⇀ a =
∑

a(1)ξ(a(2)) and a ↼ ξ =
∑

ξ(a(1))a(2)

for all ξ ∈ H∗ and a ∈ H . In particular, ε⇀ a= a= a↼ε for all a ∈ H . In [1976],
Radford found a remarkable expression relating the antipode, the distinguished
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group-like elements γ and g, and the H∗-action, namely,

S4(a)= g(γ ⇀ a ↼γ−1)g−1 for all a ∈ H.

This formula was crucial in [Kauffman and Radford 1993] for determining a nec-
essary and sufficient condition for a Drinfel’d double of a Hopf algebra to have a
ribbon element.

A finite-dimensional Hopf algebra H is quasitriangular if there is an invertible
element R =

∑
xi ⊗ yi in H ⊗ H such that 1op(a)R = R1(a) for all a ∈ H , and

R satisfies the relations (1⊗ id)R = R1,3 R2,3 and (id⊗1)R = R1,3 R1,2, where
R1,2 =

∑
xi ⊗ yi ⊗ 1, R1,3 =

∑
xi ⊗ 1⊗ yi , and R2,3 =

∑
1⊗ xi ⊗ yi . Suppose

u =
∑

S(yi )xi . Then c = uS(u) is central in H and is referred to as the Casimir.
An element v ∈ H is a quasiribbon element of a quasitriangular Hopf algebra

(H, R) if

v2
= c, S(v)= v, ε(v)= 1, 1(v)= (R2,1 R1,2)

−1(v⊗ v),

where R2,1 =
∑

yi ⊗ xi and R1,2 = R. If v is also central in H , then v is a ribbon
element, and (H, R, v) is called a ribbon Hopf algebra. Ribbon elements provide
an effective means of constructing invariants of knots and links; see [Kauffman and
Radford 1993; Reshetikhin and Turaev 1990; 1991; Reshetikhin et al. 1989]. The
Drinfel’d double D(A) of a finite-dimensional Hopf algebra A is quasitriangular,
and Kauffman and Radford [1993] have provided a simple criterion for D(A) to
have a ribbon element.

Theorem 6.1. Assume that A is a finite-dimensional Hopf algebra, and let g and γ
be the distinguished group-like elements of A and A∗, respectively. Then

(i) (D(A), R) has a quasiribbon element if and only if there exist group-like ele-
ments h ∈ A and δ ∈ A∗ such that h2

= g and δ2
= γ .

(ii) (D(A), R) has a ribbon element if and only if there exist h and δ as in (i) such
that

S2(a)= h(δ ⇀ a ↼ δ−1)h−1 for all a ∈ A.

Next we compute a left integral and a right integral in b.

Proposition 6.2. Let

t =
2∏

i=1

(1+ωi + · · ·+ω
`−1
i ) and x = E`−1

2 E`−1
12 E`−1

11212 E`−1
112 E`−1

1112 E`−1
1 .

Then y = t x and y′ = xt are respectively a left integral and a right integral in b.

Proof. To prove y = t x is a left integral in b, we need to show that by = ε(b)y for
all b ∈ b. It suffices to show this for the generators ωk and ek for k = 1, 2, as the
counit ε is an algebra homomorphism.
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Observe that ωk t = t = ε(ωk)t for all k = 1, 2, because the ωi commute and
ωk(1+ωk+· · ·+ω

`−1
k )=1+ωk+· · ·+ω

`−1
k . From that, the relation ωk y= ε(ωk)y

is clear for all k.
Next we compute ek y. By a simple calculation, we get

ek t =
2∏

i=1

(1+〈ω′k, ωi 〉
−1ωi + · · ·+ 〈ω

′

k, ωi 〉
−(`−1)ω`−1

i )ek .

So it suffices to check that ek x = 0= ε(ek)x .
Note that e2x = 0. We want to show that e1 can be moved across the terms

E`−1
2 E`−1

12 E`−1
11212 E`−1

112 E`−1
1112 preceding E`−1

1 . We have

e1 E`−1
2 E`−1

12 E`−1
11212 E`−1

112 E`−1
1112 = s3(`−1)E`−1

2 e1 E`−1
12 E`−1

11212 E`−1
112 E`−1

1112

= r`−1s5(`−1)E`−1
2 E`−1

12 e1 E`−1
11212 E`−1

112 E`−1
1112

= r4(`−1)s8(`−1)E`−1
2 E`−1

12 E`−1
11212e1 E`−1

112 E`−1
1112

= r6(`−1)s9(`−1)E`−1
2 E`−1

12 E`−1
11212 E`−1

112 e1 E`−1
1112

= r9(`−1)s9(`−1)E`−1
2 E`−1

12 E`−1
11212 E`−1

112 E`−1
1112e1,

where the first equality follows from Lemma 3.4(6), the second from Lemmas
3.5(3) and 3.1(9), the third from Lemma 3.4(4), the fourth from Lemma 3.4(3) and
the last from Lemma 3.4(2). Thus, we have e1x = 0, which implies the desired
conclusion that y is a left integral in b.

To prove that y′= xt is a right integral in b, it suffices to show that xe j =0. Note
that xe1= 0. By a similar argument and Lemma 3.5(2), (4), (1), Lemma 3.4(5), (1)
and Lemma 3.1(4), (6), (8), (9), together with (2-5) and (2-6), we can move e2 to
the left until it is next to E`−1

2 , which gives zero. �

A finite-dimensional Hopf algebra H is semisimple if and only if ε(
∫ l

H ) 6= 0 or
equivalently ε(

∫ r
H ) 6= 0. For the algebra b, y gives a basis for

∫ l
b and y′ gives a

basis for
∫ r
b . Since ε(y)= 0= ε(y′), we have this:

Proposition 6.3. The Hopf algebra b is not semisimple. �

We will compute the distinguished group-like elements of b and b∗. The group-
like elements of b∗ are exactly the algebra homomorphisms AlgK(b,K), so to
verify that a particular homomorphism is the distinguished group-like element, it
suffices to compute its values on the generators.

Proposition 6.4. Write 2ρ = 10α1+6α2, where ρ is the half sum of positive roots.
Let γ ∈ AlgK(b,K) be defined by

(6-1) γ (ek)= 0 and γ (ωk)= 〈ω
′

1, ωk〉
10
〈ω′2, ωk〉

6.

Then γ is the distinguished group-like element of b∗.
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Proof. It suffices to argue that γ as in (6-1) satisfies ya = γ (a)y for a = ek and
a = ωk for k = 1, 2 and for y = t x given in Theorem 6.1. Recall from the proof of
Proposition 6.2 that xek = 0. Thus, yek = t xek = 0= γ (ek)y. We have for k = 1, 2

yωk = t xωk = t (E`−1
2 E`−1

12 E`−1
11212 E`−1

112 E`−1
1112 E`−1

1 )ωk

= 〈ω′1, ωk〉
−10(`−1)

〈ω′2, ωk〉
−6(`−1)tωk x

= 〈ω′1, ωk〉
10
〈ω′2, ωk〉

6tωk x = γ (ωk)y. �

Under the assumptions of Lemma 5.1, (b′)coop ∼= b∗ as Hopf algebras, via the
map φ : (b′)coop

→ b∗ under which φ(ω′j ) = γ j and φ( f j ) = η j . (The γ j and η j

are defined in the proof of Lemma 5.1). This allows us to define a Hopf pairing
b′× b→ K whose values on generators are given by

(6-2) ( f j | ei )= δi j and (ω′j | ωi )= 〈ω
′

j , ωi 〉,

and are zero on all other pairs of generators. If we set ω′2ρ := ω′1
10ω′2

6, then
(ω′2ρ | b)= γ (b) for all b ∈ b, that is, γ = (ω′2ρ | · ).

Note that bs−1,r−1 ∼= (b′)coop ∼= b∗ as Hopf algebras. Under the isomorphism
φψ−1 (where ψ( fi ) = ei and ψ(ω′i ) = ωi ), a nonzero left integral of b maps to a
nonzero left integral of b∗, and likewise for right integrals. Thus, we have:

Proposition 6.5. Let λ= νη and λ′ = ην ∈ b∗, where

ν =

2∏
i=1

(1+ γi + · · ·+ γ
`−1
i ) and η = η`−1

2 η`−1
12 η`−1

11212η
`−1
112 η

`−1
1112η

`−1
1 ,

where
η12 = [η1, η2]r3, η112 = [η1, η12]r2s,

η1112 = [η1, η112]rs2, η11212 = [η112, η12]rs2 .

Then λ is a left integral and λ′ is a right integral of b∗. �

Proposition 6.6. The element g := ω−1
2ρ is the distinguished group-like element

of b, and under the Hopf pairing in (6-2),

(ω′i | g)= 〈ω
′

i , ω1〉
−10
〈ω′i , ω2〉

−6
= γi (g) for i = 1, 2.

Proof. Let F = F`−1
2 F`−1

12 F`−1
11212 F`−1

112 F`−1
1112 F`−1

1 . Then we have

ω′k F = 〈ω′k, ω1〉
−10
〈ω′k, ω2〉

−6 Fω′k .

Since φ−1(λ′)= F
(∏2

i=1(1+ω
′

i + · · ·+ (ω
′

i )
`−1)

)
, it follows that

γkλ
′
= 〈ω′k, ω1〉

−10
〈ω′k, ω2〉

−6λ′ and ηkλ
′
= 0.

Taking g := ω−1
2ρ , we have ξλ′ = ξ(g)λ′ for all ξ ∈ b∗. �
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Theorem 6.7. Assume that r and s are `-th roots of unity. Then D(b) has a ribbon
element.

Proof. By Proposition 6.6, g = ω−1
2ρ is the distinguished group-like element of b.

There is a group-like element h = ω−1
ρ ∈ b such that h2

= g. Because γ = (ω′2ρ | · )
corresponds to ω′2ρ under the isomorphism φ−1

: b∗ → (b′)coop, there exists a
δ = (ω′ρ | · ) ∈ b∗ such that δ2

= γ , which is given by

δ(ek)= 0 and δ(ωk)= 〈ω
′

1, ωk〉
5
〈ω′2, ωk〉

3 for k = 1, 2.

Then

h(δ ⇀ ωk ↼ δ−1)h−1
= δ(ωk)δ

−1(ωk)hωkh−1
= ωk = S2(ωk),

h(δ ⇀ ek ↼ δ−1)h−1
= δ(1)δ−1(ωk)hekh−1

= 〈ω′1, ωk〉
−5
〈ω′2, ωk〉

−3hekh−1

= 〈ω′1, ωk〉
−5
〈ω′2, ωk〉

−3
〈ω′k, ω1〉

−5
〈ω′k, ω2〉

−3ek

= ω−1
k ekωk = S2(ek).

Then Theorem 6.1 implies the result. �

Under the hypothesis of Theorem 5.2, ur,s(G2)∼=D(b), leading to this corollary:

Corollary 6.8. Assume that r = θ y and s = θ z , where θ is a primitive `-th root of
unity and (3(y2

+ z2
+ yz), `)= 1. Then ur,s(G2) has a ribbon element. �
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