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VIRASORO CONSTRAINTS AND HURWITZ NUMBERS
THROUGH ASYMPTOTIC ANALYSIS

YON-SEO KIM AND KEFENG LIU

We present a new method, using asymptotic analysis, to obtain a system of
recursion relations for integrals on moduli spaces of curves. By applying
the asymptotic analysis on the join-cut relation of the ELSV formula, we
derive the recursion relation of R. Dijkgraaf and E. and H. Verlinde, which
is exactly the Virasoro constraints for topological gravity. This gives an
alternative proof of Witten’s Conjecture using asymptotic analysis.

1. Introduction

We present an alternate proof of Witten’s Conjecture [1991] which claims that the
tautological intersections on the moduli space of stable curves Mg,n is governed by
KdV hierarchy. M. Kontsevich [1992] first proved the conjecture by constructing
combinatorial model for the intersection theory of Mg,n and interpreting the triva-
lent graph summation by a Feynman diagram expansion for a new matrix integral.
A. Okounkov and R. Pandharipande [2001] and M. Mirzakhani [2007a; 2007b] (see
also [Mulase and Safnuk 2006]) gave different approaches through the enumeration
of branched coverings of P1 and the Weil–Petersson volume, respectively.

More recently, M. Kazarian and S. Lando [2005] obtained an algebro-geometric
proof by using the ELSV formula to relate the intersection indices of ψ-classes to
Hurwitz numbers.

Here we take an approach using asymptotic analysis applied on the join-cut
relation satisfied by Hurwitz numbers. The starting point is the ELSV formula
which relates the Hurwitz numbers with linear Hodge integrals

Hg,µ =
r !

|Aut µ|

( l(µ)∏
i=1

µ
µi
i

µi !

)∫
Mg,l(µ)

3∨g (1)∏l(µ)
i=1 (1−µiψi )

where r = 2g − 2 + l(µ) + |µ| and µ is a partition with length l(µ) and size
|µ| =

∑l(µ)
i=1µi . Here ψi = c1(Li ) where Li is the cotangent line bundle of i-th

marked point over Mg,l(µ) and 3∨g (1)= 1− λ1+ · · ·+ (−1)gλg is the total Chern
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character of dual Hodge bundle over Mg,l(µ). We develop asymptotic analysis on
a combinatorial expression involving mapping degrees as given by partition µ.
Applying the asymptotic analysis on the join-cut relation of ELSV formula yields
a system of relations between linear Hodge integrals. It recursively expresses each
linear Hodge integral by lower-dimensional ones. We show that the first nontrivial
relation of the system is the following recursion relation for the correlation func-
tions of topological gravity [Dijkgraaf 1992]:〈
σ̃n

∏
k∈S

σ̃k

〉
g
=

∑
k∈S

(2k+ 1)
〈
σ̃n+k−1

∏
l 6=k

σ̃l

〉
g
+

1
2

∑
a+b=n−2

〈
σ̃a σ̃b

∏
l∈S

σ̃l

〉
g−1

+
1
2

∑
S=X∪Y

a+b=n−2
g1+g2=g

〈
σ̃a

∏
k∈X

σ̃k

〉
g1

〈
σ̃b

∏
l∈Y

σ̃l

〉
g2

,

which is the Virasoro constraints for topological gravity. Here σ̃k denotes the nor-
malized gravitational descendant (2k+ 1)!! ψk .

This paper is organized as follows: In Section 2, we recall the ELSV formula
and the join-cut relation satisfied by Hurwitz numbers, and consequently by linear
Hodge integrals. In Section 3, we develop asymptotic analysis and derive the first
three relations between linear Hodge integrals. In Section 4, we show that the first
nontrivial relation is precisely the Virasoro constraints in the above recursion form.

2. ELSV formula and the join-cut relation

It is well-known that the Hurwitz numbers satisfy the join-cut relation, and hence
the linear Hodge integrals, via the celebrated ELSV formula [Ekedahl et al. 2001]

Hg,µ =
r !

|Aut µ|

( l(µ)∏
i=1

µ
µi
i

µi !

)∫
Mg,l(µ)

3∨g (1)∏l(µ)
i=1 (1−µiψi )

.

The corresponding expressions for linear Hodge integrals in the join-cut relation
of Hurwitz numbers Hg,µ can be understood as coming from the boundary strata
of the moduli space of curves. Precisely, let us introduce the following notation:
• 0r corresponding to a generic curve in Mg,l(µ):

0r =
1

|Aut µ|

n∏
i=1

µ
µi
i

µi !

∫
Mg,n

3∨g (1)∏
(1−µiψi )

• 0
i j
J corresponding to the boundary stratum obtained by joining the i-th and

j-th marked points for 1≤ i 6= j ≤ l(µ):

0
i j
J =

1
|Aut ηi j |

n−1∏
k=1

η
i j
k
η

i j
k

η
i j
k !

∫
Mg,n−1

3∨g (1)∏
(1− ηi j

k ψk)
, ηi j

∈ J (µ)
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where J (µ) denotes the set of join partitions and ηi j is the one obtained by
joining the i-th and j-th parts of µ.

• 0i
C1(ν) corresponding to the boundary stratum obtained by pinching around

the i-th marked point:

0i
C1(ν)=

1
|Aut ν|

n+1∏
k=1

ννk
k

νk !

∫
Mg−1,n+1

3∨g−1(1)∏
(1− νkψk)

, ν ∈ Ci (µ),

where Ci (µ) denotes the set of partitions obtained by cutting µi into two parts
p and q such that p+ q = µi .

• 0i
C2(ν1, ν2) corresponding to the boundary stratum obtained by splitting a-

round the i-th marked point:

0i
C2(ν1, ν2)=

( n+1∏
k=1

ννk
k

νk !

) ∏
s=1,2

1
|Aut νs |

∫
Mgs ,ns

3∨gs
(1)∏

(1− νs,kψk)

where ν1 ∪ ν2 = ν ∈ Ci (µ) with p ∈ ν1 and q ∈ ν2.

In this notation, the join-cut relation [Goulden and Jackson 1997; 1999a; 1999b;
Goulden et al. 2000; Liu et al. 2003] for linear Hodge integrals, via the ELSV
formula, is written as

(1) r0r =

n∑
i=1

(∑
j 6=i

µi +µ j

2
0

i j
J +

∑
ν∈Ci (µ)

p(µi − p)
2

(
0

i,p
C1 +

∑
g1+g2=g
ν1∪ν2=ν

0
i,p
C2

))
.

When there’s no confusion, we will denote by η = ηi j the join-partition and by
ν = νi,p the cut-partition of splitting µi = p + (µi − p) for some 1 ≤ p < µi .
Note that in the 0C2-type contribution, unstable cases are included; precisely, in
the cases M0,1 and M0,2, the integrals are defined to be∫

M0,1

1
1− kψ1

=
1
k2 and

∫
M0,2

1
(1− pψ1)(1− qψ2)

=
1

p+ q
.

3. Asymptotic analysis

In this section, we study asymptotic behaviour of the join-cut relation (1) and obtain
a system of relations between linear Hodge integrals. The expression of linear
Hodge integral admits the expansion

(2)
∫

Mg,n

3∨g (1)∏
(1−µiψi )

=

∑
k

∏
µki

i

∫
Mg,n

∏
ψki

i + lower degree terms

with respect to the ramification degree, where k̃ = (k1, . . . , kn)∈ (Z≥0)
n are multi-

indices satisfying the constraint
∑

ki = 3g − 3+ n. Hence the top-degree terms
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consist of Hodge integrals of ψ-classes only and lower degree terms involve λ-
classes. This will give a system of relations between linear Hodge integrals. More
precisely, any linear Hodge integral is determined recursively in terms of either
lower-dimensional or lower-degree λ-class integrals. The following asymptotic
formula is crucial in asymptotic analysis.

Proposition 3.1. As n→∞, we have for k, l ≥ 0,

e−n
∑

p+q=n

p p+k+1qq+l+1

p!q!
−→

1
2

(
(2k+ 1)!!(2l + 1)!!
2k+l+2(k+ l + 2)!

)
nk+l+2

+ o(nk+l+2),

e−n
∑

p+q=n

p p+k+1qq−1

p!q!
−→

nk+1/2
√

2π
−

(
(2k+ 1)!!

2k+1k!

)
nk
+ o(nk).

Proof. Let m ∈ N be such that 1< m < n and consider three ranges of p, q:

Rl = {(p, q) | p > n−m and q < m},

Rc = {(p, q) | m ≤ p, q ≤ n−m},

Rr = {(p, q) | p < m and q > n−m}.

Recall Stirling’s formula:

n! =

√
2πnn+1/2

en

(
1+

1
12n
+ · · ·

)
For the summation over Rc, let m = nε and p = nx for some ε, x ∈ R>0 so that
m, p ∈ N, then we have

e−n
n−m∑
p=m

p p+k+1

p!
qq+l+1

q!
=

n−m∑
p=m

1
2π

pk+1/2ql+1/2(1+ o(1)
)

−→
nk+l+2

2π

∫ 1−ε

ε

xk+1/2(1− x)l+1/2 dx + o(nk+l+2) as n goes to∞

=
nk+l+2

2π
(2k+ 1)!!(2l + 1)!!
(2(k+ l)+ 3)!!

∫ 1−ε

ε

(1− x)k+l+3/2
√

x
dx + o(nk+l+2)+ O(

√
ε)

=
1
2

(
(2k+ 1)!!(2l + 1)!!
2k+l+2(k+ l + 2)!

)
nk+l+2

+ o(nk+l+2)+ O(
√
ε).

As n −→∞, we can send ε −→ 0. For the summation over Rl and Rr , the top-
degree terms belong to O(nk+1/2) and O(nl+1/2), respectively. Since we assume
k, l ≥ 0, both cases belong to o(nk+l+2), and this proves the first formula. For the
second formula, Rl has highest order of nk+1/2 and one can show that the leading
term in the asymptotic behaviour is nk+1/2/

√
2π . After integration by parts, Rc
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gives the second highest term in the asymptotic behaviour

e−n
n−1∑
p=m

p p+k+1

p!
qq−1

q!
=

n−1∑
p=m

1
2π

pk+1/2ql−3/2(1+ o(1)
)

−→
nk

2π

∫ 1

ε

xk+1/2(1− x)−3/2 dx + o(nk) as n tends to∞

=
nk+1/2
√

2π
−

nk

2π
(2k+ 1)

∫ δ

ε

xk−1/2
√

1− x
dx + o(nk)

=
nk+1/2
√

2π
−

(
(2k+ 1)!!

2k+1k!

)
nk
+ o(nk)+ O(

√
ε).

This proves the second formula. �

Let µi = N xi for some xi ∈R and N ∈N. By taking general values of xi , we can
assume, without loss of generality, that |Aut µ| = 1. As the ramification degree
tends to infinity, that is, as N −→∞, the Hodge integral expansion (2) tends to

n∏
i=1

µ
µi+ki
i

µi !

∫
Mg,n

∏
ψki

i + O(eN N m−1)

−→ e|µ|
n∏

i=1

µ
ki−1/2
i
√

2π

∫
Mg,n

∏
ψki

i + O(eN N m−1)

where m = 3g− 3+ n− (n/2) is the highest degree of N in (2). Same expansion
applies to each term in (1). By taking out the common factor e|µ| and applying the
asymptotic formula in Proposition 3.1, we find that

r0r = N m+1
(
(x1+ · · ·+ xn)

n∏
i=1

xki−1/2
i
√

2π

∫
Mg,n

n∏
i=1

ψki
i

)
+ O(N m),

0i
C1 = O(N m)+

N m+1/2

2

∑
k+l=ki−2

(2k+ 1)!!(2l + 1)!!
2k+l+2(k+ l + 2)!

xk+l+2
i

∏
j 6=i

xk j−1/2
j
√

2π
×(∫

Mg−1,n+1

ψk
1ψ

l
2

∏
j 6=i

ψ
k j
j +

∑
g1+g2=g
ν1∪ν2=ν

∫
Mg1,n1

ψk
1

∏
ψ

k j
j

∫
Mg2,n2

ψ l
1

∏
ψ

k j
j

)
,

0i
C2 = N m+1/2

∏
j 6=i

xk j−1/2
j
√

2π

(
√

N
xki+1/2

i
√

2π

∫
Mg,n

n∏
l=1

ψkl
l

−
(2ki + 1)!!

2ki+1ki !
xki

i

∫
Mg,n

n∏
l=1

ψkl
l

)
+ O(N m),



280 YON-SEO KIM AND KEFENG LIU

0
i j
J = N m+1/2 (xi + x j )

ki+k j−1/2
√

2π

∏
l 6=i, j

xkl−1/2
l
√

2π

∫
Mg,n−1

ψki+k j−1
∏

l 6=i, j

ψkl
l +O(N m).

Putting them together in the join-cut relation (1) yields a system of relations be-
tween linear Hodge integrals as follows: First, we have a system of relations given
by the spectrum of N -degree. Secondly, each relation given by some fixed N -
degree stratum can be viewed as a polynomial in the xi ’s

Rm̃(x1, . . . , xn)=
∑

(s1,...,sn)

C(s1, . . . , sn)x
s1
1 · · · x

sn
n

where m̃ is a half integer less than or equal to m + 1 and the coefficient C(si ) of
the homogeneous polynomial x s1

1 · · · x
sn
n involves linear Hodge integrals. Since the

xi ’s are independent variables, we obtain vanishing relations for each of C(si )’s.
In particular, the first few vanishing relations are given as follows:

• For the N m+1-stratum, we have a trivial identity

(x1+ · · ·+ xn)
∏ xki−1/2

i
√

2π

∫
Mg,n

∏
ψki

i

− (x1+ · · ·+ xn)
∏ xki−1/2

i
√

2π

∫
Mg,n

∏
ψki

i = 0.

• For the N m+1/2-stratum, we have the relation

(3)
n∑

i=1

(
(2ki + 1)!!

2ki+1ki !
xki

i

∏
j 6=i

xk j−1/2
j
√

2π

∫
Mg,n

∏
ψ

k j
j

−

∑
j 6=i

(xi + x j )
ki+k j−1/2
√

2π

∏
l 6=i, j

xkl−1/2
l
√

2π

∫
Mg,n−1

ψki+k j−1
∏

ψkl
l

−
1
2

∑
k+l=ki−2

(2k+ 1)!!(2l + 1)!!
2k+l+2(k+ l + 2)!

xki
i

∏
j 6=i

xk j−1/2
j
√

2π

(∫
Mg−1,n+1

ψk
1ψ

l
2

∏
ψ

k j
j

+

∑
g1+g2=g
ν1∪ν2=ν

∫
Mg1,n1

ψk
1

∏
ψ

k j
j

∫
Mg2,n2

ψ l
1

∏
ψ

k j
j

))
= 0.

• Lower degree strata will give relations for Hodge integrals involving nontrivial
λ-classes in terms of lower-dimensional ones. For example, the relation given
by the N m-stratum verifies the expression of λ1-class

12λ1 = κ1+ δ−

n∑
i=1

ψi
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where δ =Mg,` \Mg,` is the boundary divisor and κ1 = π∗(ψ
2) as the Gysin

image of forgetting map π1 :Mg,`+1→Mg,`.

4. DVV-formula through the asymptotic analysis

Witten’s celebrated conjecture [1991] asserts that the tautological intersections on
Mg,n are governed by the KdV hierarchy. M. Kontsevich gave the first proof [1992]
by constructing proper combinatorial model for the intersection theory of Mg,n .
A. Okounkov and R. Pandharipande [2001] and M. Mirzakhani [2007a; 2007b] (see
also [Mulase and Safnuk 2006]) gave different approaches through the enumeration
of branched coverings of P1 and the Weil–Petersson volume, respectively. More
recently, M. Kazarian and S. Lando [2005] obtained an algebro-geometric proof
starting from the ELSV formula [Ekedahl et al. 2001]. In this section, we show
that the Virasoro constraints is encoded in the join-cut relation of the Hurwitz num-
bers as the first nontrivial relation among the system of relations obtained via the
asymptotic analysis. Precisely we derive the recursion relation for the correlation
functions of topological gravity [Dijkgraaf 1992]

(4)
〈
σ̃n

∏
k∈S

σ̃k

〉
g
=

∑
k∈S

(2k+ 1)
〈
σ̃n+k−1

∏
l 6=k

σ̃l

〉
g
+

1
2

∑
a+b=n−2

〈
σ̃a σ̃b

∏
l∈S

σ̃l

〉
g−1

+
1
2

∑
a+b=n−2

S=X∪Y
g1+g2=g

〈
σ̃a

∏
k∈X

σ̃k

〉
g1

〈
σ̃b

∏
l∈Y

σ̃l

〉
g2

.

This recursion relation consists of the Virasoro constraints written as relations for
coefficients of the partition function. This recursion relation was first obtained by
R. Dijkgraaf, E. Verlinde and H. Verlinde through a physical argument. In this
paper, we will call formula (4) the DVV-formula. We note that similar asymp-
totic behaviour of Hurwitz numbers has been studied before, for example by A.
Okounkov and R. Pandharipande [2001] and D. Zvonkine [2005]. They obtained
the intersection numbers 〈τd1 · · · τdp〉 using asymptotics of Hurwitz numbers. In
particular, A. Okounkov and R. Pandharipande [2001] showed that the Laplace
transform of certain asymptotics of Hurwitz numbers is equal to Kontsevich’s gen-
erating series for ψ integrals:

L Hg(y1, . . . , yl)=
∑

∑
ki=3g−3+l

〈τk1 · · · τkl 〉g

l∏
i=1

(2ki − 1)!!

s2ki+1
i

, si =
√

2yi .

The system of relations between linear Hodge integrals that we develop in this
paper can be considered as full spectrum of asymptotic relations encoded in the
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join-cut relation of Hurwitz numbers while the works of Okounkov–Pandharipande
and Zvonkine concern the top-degree relation.

Now we will show that the first nontrivial relation (3) is the DVV-formula.

Theorem 1. The relation (3) is the DVV-formula (4).

Proof. Introduce formal variables si ∈ R>0 and recall the Laplace transformations∫
∞

0

xk−1/2
√

2π
e−x/2s dx = (2k− 1)!! sk+1/2,

∫
∞

0
xke−x/2s dx = k! (2s)k+1.

We have vanishing relations for coefficients of each monomial in (3). In particular,
the term involving the monomial xk1

1
∏n

i=2 xki−1/2
i is given by

0=
(

xk1
1

2k1+1k1!

n∏
i=2

xki−1/2
i
√

2π

)

×

(
(2k1+ 1)!!

∫
Mg,n

n∏
i=1

ψki
i −

∑
j 6=i

(2k1+2k j−1)!!
(2k j − 1)!!

∫
Mg,n−1

ψki+k j−1
∏

ψkl
l

−
1
2

∑
k+l=k1−2

(2k+ 1)!!(2l + 1)!!
(∫

Mg−1,n+1

ψkψ l
n∏

j=2

ψ
k j
j

+

∑
g1+g2=g

I∪J={2,...,n}

∫
Mg1,1+|I |

ψk
∏
i∈I

ψki
i

∫
Mg2,1+|J |

ψ l
∏
j∈J

ψ
k j
j

))
.

The extra 1
2 factor for the cut cases are due to different graph counting conven-

tions. The coefficient of the join case can be obtained by k1-fold differentiation
of (x1 + x j )

k1+k j−1/2 with respect to x1 followed by evaluation at x1 = 0. It can
also be computed directly using the Laplace transformation: Applying the Laplace
transformation to the above vanishing relation yields

0=
( n∏

j=2

(2k j − 1)!!
)

×

(
(2k1+1)!!

∫
Mg,n

n∏
i=1

ψki
i −

∑
j 6=i

(2k1+2k j−1)!!
(2k j − 1)!!

∫
Mg,n−1

ψki+k j−1
∏

ψkl
l

−
1
2

∑
k+l=k1−2

(2k+ 1)!!(2l + 1)!!
(∫

Mg−1,n+1

ψkψ l
n∏

j=2

ψ
k j
j

+

∑
g1+g2=g

I∪J={2,...,n}

∫
Mg1,1+|I |

ψk
∏
i∈I

ψki
i

∫
Mg2,1+|J |

ψ l
∏
j∈J

ψ
k j
j

))
.
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Multiplying the above formula by a common factor
∏

j 6=1(2kl + 1) and changing
to the notation of DVV-formula given by σ̃k = (2k+ 1)!! ψk yields the relation〈
σ̃n

∏
k∈S

σ̃k

〉
g
=

∑
k∈S

(2k+ 1)
〈
σ̃n+k−1

∏
l 6=k

σ̃l

〉
g
+

1
2

∑
a+b=n−2

〈
σ̃a σ̃b

∏
l∈S

σ̃l

〉
g−1

+
1
2

∑
a+b=n−2

S=X∪Y,g1+g2=g

〈
σ̃a

∏
k∈X

σ̃k

〉
g1

〈
σ̃b

∏
l∈Y

σ̃l

〉
g2

which is the DVV-formula (4). The factor 2k + 1 comes from the missing j-th
marked point in the join-graph contribution. �

The DVV-formula (4) constitutes the Virasoro constraints for the point target
[Dijkgraaf 1992], and hence gives another proof of Witten’s Conjecture (Kontse-
vich’s Theorem).
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