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Dedicated to Professor Robert E. Stong, who left us recently.

Define )1, to be the set of equivariant, unoriented cobordism classes of n-
dimensional 2-torus manifolds, where any such manifold is smooth, closed
and n-dimensional, and has an effective smooth action of a rank n 2-torus
group (Z;)". Then 01, forms an abelian group with respect to disjoint
union. For n = 3, we determine the group structure of 1, and show that
each class of 91, contains a small cover as its representative.

1. Introduction

An n-dimensional 2-torus manifold M is a smooth closed manifold of dimension n
with an effective smooth action of a rank n 2-torus group (Z;)". Since the action is
effective, the fixed point set of the action is O-dimensional (that is, it is formed by
finitely many isolated points) if M has a fixed point. In this paper, we shall study
this class of geometrical objects from the viewpoint of cobordism.

We denote by 91, the set of equivariant unoriented cobordism classes of all
n-dimensional 2-torus manifolds. Then 91, forms an abelian group with respect
to disjoint union, and in particular 91, also forms a vector space over Z;. The
zero element of 91, can be represented by a canonical 2-torus manifold, which is
the n-dimensional standard sphere S with the standard (Z,)"-action defined by
(x0, X1, ..., Xp) > (x0, g1X1, ..., uXy); this action fixes two isolated points with
same (Z,)"-representation, where (xg, xi, ..., x,) € S" and (g1, ..., g.) € (Z»)".
When n = 1, 2, it is known from [Conner and Floyd 1964] that 901; is trivial and
9, is generated by the standard (Z;)?-action on RP2.

Problem. Determine the group structure of 21, when n > 3.

Davis and Januszkiewicz [1991] introduced and studied small covers, which are
special kinds of 2-torus manifolds; each small cover is locally isomorphic to a faith-
ful representation of (Z;)" on R", and its orbit space is a simple convex polytope.
This establishes a direct link between equivariant topology and combinatorics. A
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typical example of an equivariant nonbounding small cover is real projective space
RP™ with the standard action of (Z,)". Its orbit space is an n-simplex. Another
example of a bounding small cover is a product of n copies of a circle S' with
reflection; its orbit space is an n-cube. Thus we see that for n = 2 these two
examples can be used as representatives of the two classes of ;.

Conjecture. Each class of M, contains a small cover as its representative.

Bukhshtaber and Ray [1998] proved this conjecture in nonequivariant case. In
Theorems 6.6 and 7.2, we settle the above problem and conjecture for n = 3.

The paper is organized as follows. In Section 2, we introduce and study some
properties of an equivariant cobordism invariant (that is, the prime tangent repre-
sentation set Ng) associated to 2-torus manifolds coming from the Stong homo-
morphism. In Section 3, we introduce the notion of an essential generator of 9,
and show that any element of 9)1,, is a linear combination of essential generators.
In Section 4, we review [Davis and Januszkiewicz 1991] and give two kinds of
3-dimensional small covers that play a key role in the study of 913. In Section 5,
we introduce the moment graphs induced by 2-torus manifolds. The group structure
of M3 is determined completely in Section 6, and the conjecture above is settled
in the 3-dimensional case in Section 7.

2. G-representations and Stong homomorphism

Let G = (Z,)", and let Hom(G, Z5) be the set of all homomorphisms p : G — 7>,
which consists of 2" distinct homomorphisms. Let py denote the trivial element in
Hom(G, Z,), thatis, po(g) =1 for all g € G. The irreducible real G-representations
are all one-dimensional and correspond to all elements in Hom(G, Z;). Thus,
every irreducible real representation of G has the form 4, : G x R — R with
A,(g,x) = p(g) x for p € Hom(G, Z>).

Given an element S of 9, let (M, ¢) be a representative of f such that M has
a fixed point. Taking an isolated point p in MY, the G-representation at p can be

written as
T,M = @ /1?,”
PFPo

with > p#po dp = 1. By the Borel theorem (see [Allday and Puppe 1993]) and the
effectiveness of the action, if g, # 0, then g, must be one. Thus, 7, M is the direct
sum of n irreducible real G-representations (which are linearly independent). The
collection Ny 4y = {[zp,M] | p e M G} is called the tangent representation set of
(M, ¢), where [z, M] denotes the isomorphism class of 7, M.

Denote by R,(G) the vector space over Z, generated by the representation
classes of dimension n. Then R.(G) =3, R.(G) is a graded commutative alge-
bra over Z, with unit. The multiplication in_R*(G) isgiven by [V ]-[Vo]=[Vi®V,].
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We can identify R,(G) with the graded polynomial algebra over Z, generated by
Hom(G, Z;), where the addition in Hom(G, Z5) is given by the tensor product
of representations (p + 1)(g) = p(g) - u(g) and the multiplication is given by
the direct sum of representations. The homomorphisms p; : (g1,...,8,) — &
give a standard basis of Hom(G, Z,). Then R.(G) is isomorphic to the graded
polynomial algebra Z;[py, ..., ps]. Obviously, each [z, M] of Ny, 4) corresponds
to a unique homogeneous monomial of degree n in Z,[py, ..., p,] such that the n
factors of the monomial form a basis of Hom(G, Z5).
There is a natural homomorphism d, : 91, — R, (G) defined by

S(IM, 1) = D [r,M].

peMS
Theorem 2.1 [Stong 1970]. 9, is a monomorphism.

This implies that for each £ in 91, there must be a representative (M, ¢) of
B such that Ny ¢y is prime (that is, either all elements of Ny 4) are distinct or
N(m,¢) is empty), and Ny ¢) is uniquely determined by B. Define Ny := Nz 4)
and call it the prime tangent representation set of £.

Corollary 2.2. Let By, f> € M,. Then B = B if and only if Ny, = Np,.

Remark 2.1. Since Hom(G, Z5) is isomorphic to G, each [z, M ] of N(y,¢) actually
corresponds a unique element (denoted by [A,]) in the quotient GL(n, Z,)/S,,
where S, is the subgroup generated by all matrices of the form E;; (that is, the
identity matrix E, but with columns i and j exchanged); S,, is isomorphic to the
symmetric group of rank n. Thus, for any two o1, 62 in [A , ], there exists a matrix 6
in S;, such that o1 = 0,6. This also means that there is a one-to-one correspondence
between bases in (Z>)" and bases in GL(n, Z>)/S,,. Here we call [A ] the tangent
matrix at p. With this understanding, we often regard each element [7,M] of
Nm.4) as being [A ,]. Note that |GL(n, Z,)| =2""=D/2TT7_, (2 — 1); see [Alperin
and Bell 1995].

Proposition 2.3. Let f be a nonzero element of M,,. Then
2n(n—l)/2 H?:l(zi _ 1)

n+1=<|Ngl < o

Further, such upper and lower bounds are the best possible.

Proof. The lower bound of |Ng| is a special case of [Lii 2008, Theorem 1.2]. Thus,
it suffices to give the proof of the upper bound. For this, we merely need to show
that there is a nonzero element " € 9, such that n! [N/ | = 2nn=1)/2 [T, @ =1.

Consider the standard (Z;,)"-action (RP", Ty) of (Z,)" on the real n-dimensional
projective space RP" defined by n commuting involutions

ti : ([x())xl)“',xn]):[x())xl)"')xi—la_xi,xi+19"‘9~xn] forl = 19“‘7”9
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where 11, ..., t, generate (Z,)". This action fixes the n + 1 isolated points p; ;| =
[0,...,0,1,0,...,0] in which the 1 appears in the (i + 1)-entry. One easily sees
that its tangent matrix set is

No={[Ai]li=0,1,2,...,n},

where A; is E wheni =0 and fori =1, ..., n is obtained from E by replacing

the i-th row with a row of ones. Each [A;] corresponds to the isolated point p;i.

Obviously, Ny is prime. By direct computations, one has that A; A; = E and the

result of the product A; A; for i, j #0 and j # i just exchanges the i-th and j-th

columns of A ;. Thus, for i, j # 0, one has

@1 S E {[E] =
[A;] ifi #j.

Now, let
B,11={0 €GL(n, Z2)|c No=No}, where cNg={[cA¢l,[cA1],...,[cA,]}.

Obviously, B,,11 is a subgroup of GL(n, Z;), and each element of B, actually
makes a permutation in [Ag], [A{],...,[A,]. One then knows from (2-1) that
each A; € B,41.

Claim 1. |B,+1|=®m+ 1)\

First, we prove that B, contains the symmetric group S,. Actually, this is
because for any E;; in S, and any A,

[A)] ifi,j#lorl=0,
[EijAil=[A] if j=1#0,
[A;] ifi=1%#0.
Next, it is easy to see that any ¢ in B, can be expressed as a product of some

matrices of S,, and of the A;. Obviously, A; ¢ S, when i # 0. Thus, B, is
generated by those matrices of S,, and all A;, and Claim 1 then follows from this.

Claim 2. For any o, v € GL(n, Z3), the set a No N\ tNg is nonempty if and only if
O'N() = ‘L'N().

It is obvious that o Ng N 7N is nonempty if o Ng = 7Ny. Conversely, if that
intersection is nonempty, then there are [A;], [A ;] € N such that [c A ;] = [ A;].
By the definition of B, 41, one has that

oNog=1Ny if and only if U*ITGBH].

Hence, it suffices to show that ¢ !z € B, 1. From [0 A ;] = [t A;], there is an
element s € S, such that 6 A js = 7 A;, so ol = AjsA;. Note that Ai—1 = A;.
One also concludes that 0 17 € Bii1.
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For any automorphism o : (Z;)" — (Z;)" where ¢ € GL(n, Z;), one obtains
new generators o (t1), ..., o (¢;) of (Z»)", and then one obtains a new (Z,)"-action
(RP", 6 Ty) from (RP", Tp) by using generators o (¢1), .. ., o (t,) such that its tan-
gent matrix set is (¢ ~') T.Ng. By the arguments above together with Corollary 2.2,
up to equivariant cobordism there are

GL(n, Z3)] _ 2" D2, = 1)
|Bn+1 | (I’l-l— 1)!

different (Z,)"-actions (RP", o Tp); specifically, the union of their tangent matrix
sets just consists of all elements of GL(n, Z,)/S,. Therefore, taking

(1", M") = || (RP", 5 Tp),
{(6="T)eGL(n,Z2)/Bu+1

the tangent representation set of this action is prime, and it has
2n(n—1)/2 H?:l (21 _ 1) _ 2n(n—l)/2 H?:l(zi _ 1)
(n+1)! n!
elements. This completes the proof of the upper bound. O

n+1)-

3. Essential generators of It

Definition 3.1. Let § # 0 in 9N,,. One says that f is an essential generator if
[Ng4y | = |Ng| for any y € I, with [N, | < [Ng].

We know from Proposition 2.3 that up to equivariant cobordism there are

2n(n—1)/2 Hl{l=1(2i _ 1)
(n+1)!
different (Z,)"-actions (RP", o Tp) for 0 € GL(n, Z,), and each (RP", o Ty) fixes
just n 41 isolated points with different representations. Since the lower bound of

|N'g| for any nonzero element f of 91, is n + 1, each (RP", o Tp) is an essential
generator.

Lemma 3.1. Ler f € M, If B is an essential generator, then

2n(n—l)/2 H?:](Zi _ 1)
2n!
2n(n—l)/2 H?:l(zl _ ])
2(n—1D'(n+1)
Proof. The lemma is obvious if |N'g| =n + 1, so suppose that |[Ng| > n+ 1. Then

[ is not just one of the (RP", o Tp) for o € GL(n, Z;). Then one claims that for
each (Z;)"-action (RP", 6 Tp), Np cannot contain more than [(n +1)/2] elements

ifnis odd,
INpl <

if n is even.
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in N®pn 571y). Actually, if not, then one has that |[Ng| > |N g wrp 01|, Which is
impossible since £ is an essential generator. The lemma follows. O

Proposition 3.2. Let f € 9MN,,. Then B is a sum of essential generators.

Proof. The proof is trivial if f = 0 or f is an essential generator. Suppose £ is
nonzero and is not an essential generator. Then there exists some element y € 901,
with [N, | < |Ng| such that f = (B +y) +y with [Ngy, | < [Ng|. We repeat the
argument replacing f by y or f + y; since 91, is finite, the proof is ended. O

4. Small covers

An n-dimensional convex polytope P”" is said to be simple if exactly n faces of
codimension one meet at each of its vertices. Each point of a simple convex poly-
tope P" has a neighborhood that is affine isomorphic to an open subset of the
positive cone RZ ;. A smooth closed n-manifold M" is said to be a small cover if it
admits an effective smooth (Z,)"-action that is locally isomorphic to the standard
action of (Z;)" on R" such that the orbit space of the action is a simple convex
polytope P".

A small cover is a special 2-torus manifold. A canonical example of small
cover is the n-dimensional real projective space RP" with the standard (Z,)"-
action whose orbit space is the n-simplex A”.

Suppose that 7 : M" — P" is a small cover over a simple convex polytope P".
Let #(P")={F), ..., Fy} be the set of codimension one faces (facets) of P". Then
there are £ connected submanifolds My, ..., M, determined by = and F; (that is,
M, =n"1 (F;)), which are called characteristic submanifolds here. Each subman-
ifold M; is fixed pointwise by a Z,-subgroup G; of (Z,)", so that each facet F;
corresponds to the Z;-subgroup G;. Since there is a canonical isomorphism from
(Z2)" to Hom(Z,, (Z3)"), each Z;-subgroup G; corresponds to an element v; in
Hom(Z,, (Z;)"). For each face F of codimension s, since P”" is simple, there are
s facets F;,, ..., F;, whose intersection is F. Then the corresponding characteris-
tic submanifolds M;,, ..., M;, intersect transversally in the (n—s)-dimensional
submanifold 7z ~'(F), and the isotropy subgroup G of = ~'(F) is a subtorus
of rank s and is generated by G;,, ..., G;, (or is determined by v;,,..., v; in
Hom(Z,, (Z;)")). Thus, this actually gives a characteristic function [Davis and
Januszkiewicz 1991]

A:F(P") — Hom(Z,, (Z,)"), F;+—> v;

such that for any face F = F; N---NF; of P", A(F})), ..., A(F;,) are linearly inde-
pendent in Hom(Z;, (Z;)"). When dim F =0 (that is, s = n), F is a vertex of P",
which corresponds to a (Z,)"-fixed point p of M. In this case, A(F},), ..., A(F;,)
uniquely determines a dual basis of Hom((Z3)", Z;), which just gives the tangent
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representation at p. Thus, the characteristic function A completely determines the
tangent representation set Ny, 4) of fixed points of M", where ¢ denotes the (Z)"-
action on M.

By [Davis and Januszkiewicz 1991], there is a reconstruction process of M" by
using the product bundle (Z;)" x P" and 1. Note that each point ¢ € 6 P" must
lie in the relative interior of a unique face F(g) of P". Then, one may define an
equivalence relation on (Z;)" x P" by

(t1,x) ~ (t,x) ifandonlyif t '€ Gr(),
where x € F(q); then the quotient space
M(2) = (Z2)" x P"/(11, x) ~ (12, X)

is equivariantly homeomorphic to M". Obviously, both M" and M (1) have the
same characteristic function, so they also are cobordant equivariantly.
We denote by A(P") the set of all characteristic functions on P”".

Proposition 4.1. Let © : M" — P" be a small cover over a simple convex poly-
tope P". Then all small covers over P" are given by {M(1) | A € A(P")}.

Remark. Generally speaking, one cannot make sure that there always exist char-
acteristic functions (or colorings) over a simple convex polytope P” when n > 4.
For example, see [Davis and Januszkiewicz 1991, Nonexamples 1.22]. However,
the Four Color Theorem ensures that every 3-dimensional simple convex polytope
admits characteristic functions.

The correspondence A — ¢ o A defines an action of GL(n, Z;) on A(P"), and
it then induces an action of GL(n, Z) on {M(4) | 2 € A(P")} that takes M (1) to
M (o o A). It is easy to check that these two actions are free.

The following two kinds of small covers play an important role in determining
of the structure of 3.

Example 4.1 (small covers over a 3-complex A3). A 3-simplex A3 has four 2-
faces, and a canonical characteristic function A¢ on it is defined by assigning to pj,
pi, Py, pF+p3+p3 the four 2-faces of A%, where {p}, p3, p3} is the standard basis
of Hom(Z», (Z»)?), corresponding to pi, p2, p3 of Hom((Z,)?, Z»). Thus, {o 0 g |
o € GL(3, Z,)} gives all characteristic functions on A3. Since the characteristic
function of the standard action Ty of (Z,)> on RP3 is just Ao,

{M(c 0ly) |6 € GL(3,Z,)} = {(RP?,6Tp) | 0 € GL(3, Z,)}.

Proposition 2.3 shows that up to equivariant cobordism, this set has 7 different
denoted by (RP3, 1), (RP3, T),..., (RP3, Ts). A direct calculation gives the
Table I, which lists the tangent representation sets of these seven small covers.
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small cover M tangent representation set Ny

(RP3, Tp) P1p2P3, p1(p1+ p2)(p1 + p3),
p2(p1+ p2)(p2+ p3), p3(p1+ p3)(p2+ p3)
(RP3,Ty) p1(p1+ p2)(p1+ p2+ p3). prpa(p2+ p3),
p2p3(p1+ p2), p3(p2+ p3)(p1+ p2+ p3)
(RP3, T») p1(p1+ p3)(p1 + p2+ p3), prp3(p2 + p3),
p2p3(p1+ p3), p2(p2+ p3)(p1+ p2+ p3)
(RP3, T3) pa(p1+ p2)(p1+ p2+ p3). prpa(p1 + p3).
p1p3(p1 4 p2), p3(p1 + p3)(p1 + p2 + p3)
(RP3, Ty) p1(p1+ p2)(p2 + p3), prp2(p1 + p2 + p3),
p2(p1+ p2)(p1+ p3). (p1+ p3)(p2+ p3)(p1 + p2 + p3)
(RP3, Ts) p1(p1+ p3)(p2+ p3). p1p3(p1 + p2+ p3).
p3(p1+ p2)(p1+ p3), (p1+ p2)(p2+ p3)(p1+ p2+ p3)
(RP3, Tg) p2(p1+ p3)(p2+ p3), p2p3(p1 + p2+ p3),
(p1+ p2)(p1+ p3)(p1 + p2+ p3), p3(p1 + p2)(p2 + p3)
Table I

Example 4.2 (small covers over a prism P3). There exists only one simple convex
3-polytope with six vertices (that is, a prism P3); see [Ewald 1996]. Let Fy, F>, F4
denote the three square facets, and F3, Fs5 the two triangular facets in P3. From
[Cai et al. 2007] we know that essentially there are five different characteristic
functions A1, A2, A3, A4, A5 under the action of GL(3,Z,) on A(P?), which are
defined by this table:

F] F2 F3 F4 FS
AU pT Py Py PLERS pi+ps+p;
A | pi Py Py PTEPS pi+p3
A3 pt Py Py PP ps+p3
Ao | pi Py Py PTEPS P3
As | py Py Py PTEPIEPS P3

It is easy to check that for any o0 € GL(3, Z5), every one of M (o 044) and M (o 04s)

always bounds equivariantly. A direct calculation shows that
1
Ny ifo = (1 ! )
NM(U ol1) = . 11 !
NM(,13) 1f0'=( 11).

Since N(;,) is prime, we know by Corollary 2.2 that if f € 913 is represented by
a small cover over P>, then S belongs to the set of equivariant cobordism classes
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coming from the set {M (o o A1) | 0 € GL(3, Z,)}. By further computations, one
obtains that there are only four matrices,

(! (! (1! (!
a=('): m=(in) =) w=(ing),
such that 7; Ny ;) = Ny (s, fori = 1,2, 3,4, and these four matrices form a sub-
group of GL(3, Z,). Thus, up to equivariant cobordism, there are |GL(3, Z;)|/4 =
42 different nonbounding small covers over P3. We can even construct such small
covers as follows. Consider the (Z5)3-action @ on S' x RP? = S! x RP(C® R)
defined by the three commutative involutions

(2, [v, w]) = (T, [20, w]),
t:(z, [v, w]) — (z, [z0, w]),

t3:(z, [v, w]) = (z, [—z0, W]).

This action fixes the six isolated points (£1, [0, 1]), (£1, [1, 0]), (£1, [/—1, 0)),
and its orbit space is just a prism P3. A direct calculation shows that | (S xRP2, @)
consists of the six distinct monomials

P1P2P3, p1p2(p2+ p3), p1p3(p2+ p3),
p1(p1+p2)(p1+p3), pi(p1+p2)(p2+p3), pi(p1+p3)(p2+ p3)

of Z[p1, p2, p3l, so (S' x RP?, @) is nonbounding. Further, up to equivari-
ant cobordism, 42 different nonbounding small covers over P> can be given by
applying automorphisms of (Z,)> on (S! x RP?, @), and they are denoted by
(S' x RP?, @), (S! x RP?, @), ..., (S x RP?, ®y4).

5. Graphs of actions

Given a nonzero element £ in 9, let (M", ¢) be a representative of £ such that
N(m,¢) 1s prime. For a nontrivial irreducible representation p in Hom((Z;)", Z,),
let C be a component of the fixed point set of ker p (= (Z,)"~!) acting on M, such
that dim C > 0 and the action of (Z,)"/ker p on C has a nonempty fixed point
set. Then the dimension of C must be 1 since the action is effective, and thus
C is equivariantly diffeomorphic to the circle S! with a reflection fixing just two
fixed points. Then one has an edge joining these two fixed points, which is labeled
by p. Furthermore, one can obtain a graph I'(y/ ), which is the union of all those
edges chosen for each p and C. Clearly, the set of vertices of 'y 4) is just the
fixed point set of (Z)" acting on M. Since the tangent representation at a fixed
point p has n irreducible summands, the number of edges in I'(y,4) meeting at p
is exactly n, so I'(y,4) is a regular graph of valence n. It should be pointed out
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that, generally, I'(y,4) is not determined by f uniquely, and it depends upon the
choice of representatives of £.

Let E(I"(m,4)) denote the set of all edges in I'(p7,4), and let V (I'(y, ¢)) denote the
vertices in I'(y7 ¢y. Given a vertex p in V(I'(y,4)), let E,, denote the set of n edges
joining to p. Then there is a natural map a : E(I'(,¢)) — Hom((Z,)", Z), called
an axial function or a (Z;)"-coloring; see [Guillemin and Zara 2001; 2003; Bao
and Lii 2008]. One knows from [Lii 2008] that a satisfies the following properties:

(1) a(E,) spans Hom((Z»)", Z») for each vertex p in V(I'(m,4)),

(2) for each edge e in Er,, )

H o(x) = H o(y) mod a(e),

xek,—E, YEE,—E,

where p and g are the two endpoints of e, and E, denotes the set of all edges
joining the two endpoints of e. The pair (I'(y7,¢), @) is called the moment graph
of (M", ¢). Since N, ¢) is prime, one has from [Lii 2008] that |E.| = 1 for
each edge e in I'(y7,4).

Note. If M is a small cover over a simple convex polytope P”", then 'y ¢) is
Just the I-skeleton of P". In this case, it is easy to see that the map « : Er,, , —
Hom((Z;)", Z;) is dual to the characteristic function 4 : &(P") — Hom(Z,, (Z3)").
In other words, both o and A are determined by each other.

By [Bao and Lii 2008] we know that (I'(s ¢y, &) is a “good” (Z3)"-coloring,
so that each k-nest A¥ of (I’ (M.,¢$)> @) is a connected regular k-valent subgraph
of I'(pr,¢y with dim Span a(A¥) = k, where Span a(AX) denotes the linear space
spanned by all colors of edges in A*. By H(C (41.4).0) On€ denotes the set of all nests
of (I'¢p1,4), &). Since each k-nest (k > 0) determines a k-dimensional subspace
of Hom((Z3)", Z5), it corresponds to an (n — k)-dimensional subspace in the dual
space Hom(Z,, (Z»)"). This actually gives a dual map #» from ¥, ,.«) to the set
of all subspaces of Hom(Z, (Z;)"), which is just the characteristic function when
M is a small cover. Obviously, # maps each (n — 1)-dimensional nest of J(r,, ,.«)
to a nonzero element in Hom(Z,, (Z,)"). Since each vertex p is the intersection of
n (n—1)-nests of H(r,,. 4.a)» it corresponds to a basis of Hom(Z,, (Z;)"), which
is just the dual basis of the basis a(E,) in Hom((Z3)", Z3).

Proposition 5.1 [Bao and Lii 2008]. If dim M = 3, then (I'(y,4), &) admits a 2-
skeletal expansion (N, K) such that N is a closed surface.

We will use this result to study the group structure of 93. Note that if dim M > 4,
under what condition (I'(p7,4), ) admits a skeletal expansion is still open.
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6. Determination of i3

By Proposition 3.2, the structure of 913 is determined by the essential generators
of f)ﬁg .

Lemma 6.1. Let f € 9M3. Then |Ng| is even.

Proof. The Euler characteristic of any 3-dimensional closed manifold is always
zero. The lemma then follows from the classical Smith theorem. U

The following proposition characterizes the essential generators of 913.

Proposition 6.2. A nonzero element § € M3 is an essential generator if and only
if INg| < 6. In this case B is represented by a small cover either of the type
(RP3, 6 Ty), or of the type (S' x RP?, 6 ®y), for some o € GL(3, Z»).

The lemma below proves part of this proposition.
Lemma 6.3. Let f € M3 be nonzero. If |[Ng| <6, then B is an essential generator.

Proof. If |N'g| = 4, then f is an essential generator because the lower bound for
|Ng| is 4. Thus, by Lemma 6.1, it suffices to consider the case |[Nz| = 6. From
Example 4.1, we see that the sets Ngps 7,) fori =0, 1, ..., 6 are disjoint. We first
claim that any intersection Ng NNk p3 7,) cannot contain four elements. If one did,
then there would exist some i such that [Ny (@p3 7,))| = 2. By [Kosniowski and
Stong 1979], p + [(RP3, T;)] would then be zero in 913, which is impossible.
Next, we prove that any intersection Ny N N(rp3 7,y cannot contain three elements.
If one did, then there would be some i” such that [Ny (rps 1,y = 4, and so
b+ [(RP3, T;»)] would be the equivariant cobordism class of another (RP3, T))
with j # i”. Then S would be the sum [(RP3, T;»)] + [(RP3, Tj)]1, so |Ng| would
be 8 rather than 6. This is a contradiction, and thus [Ng N Nrp3 7| is less than 3.
The lemma follows. g

The following lemma indicates the connection between
A={RP>T)|i=0,1,...,6} and B={(S' xRP?, ®;)|j=0,1,...,41}.

Lemma 6.4. Each (RP3, T;) of sd corresponds to six small covers (S' xRP?, @;,),
ooy (ST X RP2, ®;) of B in such a way that these six small covers are not cobor-
dant to each other, and |Ngps 1) N N(sixrp2,0,)| =2 foru=1,...,6.

Proof. Since all Ngps 7,) for i =0, 1, ..., 6 are distinct and since all (RP3, T;)
fori =0,1,...,6, can be translated to each other up to cobordism by applying
automorphisms of (Z)3, it suffices to consider the case of (RP3, Ty). We see from
Table I that N ps3 7, is equal to

{p1p2p3, p1(p1+ p2)(p1 + p3), p2(p1 + p2) (P2 + p3), p3(p1 + p3)(p2 + p3)}.
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P1
P2 p1+p2
P1
p2+p3 p2+p3
p3 p1+p3
P1

Figure 1. An axial function o on the 1-skeleton of a prism P3.

Obviously, any two monomials of Nigpps 7, give five elements of Hom((Z»)3, Z»),
and there are exactly six such pairs in Ngps 7). Considering two monomials
p1p2p3 and pi(p1 + p2)(p1 + p3) of Nwps ), we get five elements pi, p2, p3,
p1+ p2 and py + p3 of Hom((Z,)3, Z,). Using these five elements, we can define
an axial function a on the 1-skeleton of a prism P3 as shown in Figure 1.

Since a uniquely determines a characteristic function on P, we obtain a small
cover (S' x RP?, ®y,) with six fixed points over P* such that its tangent represen-
tation set N XRP?,d,) consists of six monomials pp2p3, p1(p1 + p2)(p1 + p3),
p1p2(p2+p3), pr1p3(p2+p3). p1(p1+p2)(p2+p3) and pi(p1+p3)(p2+ p3). Sim-
ilarly, for other five pairs in Ngps 7,), we can obtain small covers (S I'xRP2, @)
for u =2, ..., 6 with their tangent representation sets as follows:

u N(slx[RaPZ,chM)
2 {p1p2p3, p1p2(p1 + p3), p2p3(p1 + p3), p2(p1 + p2)(p2 + p3),
p2(p1+ p2)(p1+ p3), p2(p1+ p3)(p2+ p3)}
3 Ap1p2p3. p1p3(p1+ p2), p2p3(p1+ p2), p3(p1 + p3)(p2 + p3),
p3(p1+ p2)(p1+ p3), p3(p1+ p2)(p2 + p3)}
4 A{p1(p1+ p2)(p1+ p3), p1p3(p1 + p2), p3(p1+ p2)(p1 + p3)s
p2(p1+ p2)(p2 + p3), p2p3(p1 + p2), p3(p1 + p2)(p2 + p3)}
5 {p1(p1+p2)(p1+ p3), p1p2(p1 + p3), p2(p1 + p2)(p1 + p3),
p3(p1+ p3)(p2+ p3), p2p3(p1+ p3). p2(p1 + p3)(p2 + p3)}
6 {p2(p1+ p2)(p2+ p3), p1p2(p2+ p3), p1(p1+ p2)(p2 + p3),
p3(p1+ p3)(p2+ p3), prp3(p2+ p3)s p1(p1 + p3)(p2 + p3)}

Then the lemma follows from the argument above and Corollary 2.2. O

Remark 6.1. Lemma 6.4 also gives the method for constructing 42 different small
covers (up to equivariant cobordism) with 6 fixed points. In particular, we easily
see the property that for each (' x RP?2, ®;), two elements of Ngi,pp2 o;) are
in some N(wps3 r;), and the remaining elements are just distributed in four different
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N(RP3,E1)’ N(RP3,T,-2)7 N(RP3,E3)7 N(RP3,T}4) with in ;él andov = 1, 2, 3, 4. In addition,
we also see from the argument of Lemma 6.4 that

5([(S" x RP?, @p,)] +[(S" x RP?, Do,)] + [(RP?, Tp)]) =0,
5([(S" x RP?, @p,)] +[(S' x RP?, ®o,)] + [(RP?, Tp)]) =0,
5([(S" x RP?, @o,)] +[(S' x RP?, @g,)] + [(RP?, Tp)]) =0,

where d3 is the monomorphism of Theorem 2.1. This means that actually we
need only to consider the half of the 42 small covers (S! x RP?, ® j) for j =
0,1,...,41, because up to equivariant cobordism the union of any two of them
is not one of the (RP?, T;) fori =0, 1,...,6. With no loss we may assume that
such 21 different small covers are just (S! x RP?, ®;) for j =0,1,...,20, with
their tangent representation sets as stated in Table I1.

Now let # € M3 be an essential generator. By Lemma 3.1, one has that [N'g| < 14.
Claim 1. |N'g| must be less than 12.

Proof. 1f |Ng| = 14, then for each i = 0,1,..., 6, there must be two mono-
mials 5@ and 5§i) in Ngps 7, that are contained in Ny. By Lemma 6.4 and
Remark 6.1, an easy argument shows that there must be some (S' x RP?, ® j) such
that N's1xrp2,0,) CNp. Then 8 = [Np ((s1xrp2,0;)| < [Npl = 14. However, this
is a contradiction since S is an essential generator. Thus |N'z| = 14 is impossible.

If [N p| = 12, since each N(gps 7;) contains at most two monomials in Nz, the set
Np={01, 02, ..., 011, d12} splits into two possible cases: (i) N is the disjoint union
of the subsets {J;, d»}, ..., {J11, J12} that are distributed in six different Nwps,1;) or
(ii) N4 is the disjoint union of seven subsets {J1, d2}, ..., {do, d10}, {11}, {J12} that
are just distributed in Ngps 1), - - - » Nmp3,7,)> respectively. A similar argument
also shows that there must be some (S! x RP2, ® ;) such that for the case (i),
at least five elements of N'g1,rp2 ;) are contained in N g, and for the case (ii), at
least four elements of N'(51xgp2 ¢, are contained in N'g. Then [N g (s1xrp2,0,)| <
10 < |[Ng| = 12. This contradicts the fact that £ is an essential generator. Thus
|N'g| = 12 cannot occur. Il

Let (M, ¢) be arepresentative of # such that Ny 4) is prime, and let (I' (37, ¢, o)
be the moment graph of (M, ¢).

Claim 2. I'(y 4 is connected.

Proof. Suppose the contrary. Let I'” be a connected component of Iy, 4). Then the
restriction a/|rv is still an axial function of I'". By Claim 1, one has [N'(y,¢)| < 10,
so the number of vertices of I'y; is at most 10. If |Vp/| = 2, then obviously
a(Ep) =a(E),,) for pi, po € Vi, but this is impossible since N(y,4) is prime.
If |Vr/| = 4, then T must be the 1-skeleton of a 3-simplex, and thus (I'/, a|r) is
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small cover M tangent representation set Ny,

(' xRP2, @) p1pap3. p1p2(p2+ p3). p1p3(p2+ p3). pr(p1+ p2)(p1 + p3),
p1(p1+ p2)(p2+ p3), pr(p1 + p3)(p2 + p3)
(S' xRP2, ®1)  pipap3, p1p2(p1+ p3), p2p3(p1+ p3). p2(p1+ p2)(p1 + p3),
p2(p1+ p2)(p2 + p3), p2(p1 + p3)(p2 + p3)
(S'xRP2, @2)  pip2p3, p1p3(p1 + p2). pap3(pr + p2), p3(p1 + p2)(p1 + p3),
p3(p1+ p2)(p2+ p3), p3(p1 + p3)(p2 + p3)
(8" xRPZ, ®3)  p1paps, prp2(p1 + p3), p2p3(p1 + p2), p2p3(p1 + p3),
p2p3(p1 + p2+ p3), p2(p1 + p2)(p1 + p2 + p3)
(S'xRP2,®4)  pip2(p1+ p2+ p3), prpz(p1 + p2 + p3).
p1(p1+ p2)(p1+ p2+ p3), pr(p1 + p3)(p1 + p2 + p3),
p2(p1+ p2)(p1+ p2+ p3), p3(p1+ p3)(p1+ p2 + p3)
(8" xRP%, ®s)  pip3(p1 + p2), pr(p1 + p2)(p1 + p3),
p2(p1+ p2)(p1+ p3), p3(p1 + p2)(p1 + p3),
p2(p1+ p2)(p1+ p2+ p3), (p1+ p2)(p1 + p3)(p1 + p2 + p3)
(S'x RP2, D6)  p1pap3, p1p2(p2+ p3). pip3(p1 + p2), p1pa(p2 + p3),
p1p3(p1 + p2+ p3), p1(p1 + p2)(p1 + p2 + p3)
x RP?, ®7)  pipa(p1+ p2+ p3), p2p3(pr + p2 + p3),
p1(p1+ p2)(p1+ p2+ p3), p2(p1 + p2)(p1 + p2+ p3),
p2(p2+ p3)(p1+ p2+ p3), p3(p2+ p3)(p1+ p2+ p3)
(' xRP2, @g)  pap3(p1+ p2). p2(p1+ p2)(p2+ p3). pr(p1 =+ p2)(p2 + p3).
p3(p1 + p2)(p2+ p3), p1(p1 + p2)(p1 + p2 + p3),
(p1+ p2)(p2 + p3)(p1 + p2 + p3)
X RP2, ®9)  p1paps. pr1pa(p1+ p3)s pr1pa(pa+ p3)
p1p2(p1+ p2+ p3), p1p3(p2+ p3), p1(p1 + p3)(p1+ p2+ p3)
(' xRP2, ®19)  p1p3(p1+ p2+ p3). p2p3(p1 + p2+ p3),
p1(p1 =+ p3)(p1+ p2+ p3), p2(p2+ p3)(p1 + p2 + p3),
p3(p1+p3)(p1+ p2+ p3), p3(p2+ p3)(p1 + p2+ p3)
(S'xRP2, @11)  pop3(p1+ p3), pr(pi+ p3)(p2+ p3).
p1(p1+ p3)(p1+ p2+ p3), p2(p1 + p3)(p2 + p3),
p3(p1+p3)(p2+p3), (p1+ p3)(p2+ p3)(p1 + p2+ p3)

Table 1T

(S

(S

the moment graph of some (RP3, T;). Further, the disjoint union of (M, ¢) and
(RP3, T;) forms a (22)3—acti0n with at most six fixed points. This contradicts the
assumption that £ is an essential generator. If |V | = 6, then, since the number of
vertices of I'(y,¢) is at most 10, I'(ys,4) must have another connected component
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(S' x RP?, @)

(S' x RP2, @y3)

(ST x RP?, @y4)

(S' x RP?, ®5)

(S x RP2, @)

(Sl X RP2, (1)17)

(S x RP2, @y3)

(S' x RP?, ®9)

(8" x RP?, dy)

p1p2(p2 + p3), p1(p1 + p2)(p2 + p3),

p2(p1 + p2)(p2 + p3), p2(p1 + p3)(p2 + p3),
p2(p2+ p3)(p1+ p2 + p3),

(p1+ p3)(p2+ p3)(p1 + p2+ p3)

p1p2(p1+ p3), prp2(p1 + p2+ p3),

p1(p1+ p2)(p1+ p3), p1(p1 + p2)(p2 + p3),
p1(p1+ p3)(p2+ p3), p1(p1+ p3)(p1 + p2+ p3)
p1(p1+ p2)(p2+ p3). p1(p1 + p2)(p1 + p2 + p3),
p2(p1+ p2)(p1+ p3), p2(p1 + p2)(p1 + p2 + p3),
(p1+ p2)(p1 + p3)(p1+ p2+ p3),

(p1+ p2)(p2+ p3)(p1 + p2+ p3)

p1p3(p2 + p3), p1(p1 + p3)(p2 + p3),

p3(p1+ p2)(p2+ p3), p3(p1 + p3)(p2 + p3),
p3(p2+p3)(p1+ p2+ p3),

(p1+ p2)(p2+ p3)(p1 + p2+ p3)

p1p3(p1+p2), p1(p1+ p2)(p1 + p3),

p1(p1+ p2)(p2 + p3), p1(p1+ p2)(p1 + p2 + p3),
p3(p1+ p2)(p1+ p3), (pr+ p2)(p2+ p3)(p1+ p2+ p3)
p1p3(p1+ p2+p3), p1(p1+ p3)(p1 + p2+ p3),
(p1+ p2)(p1+ p3)(p1 + p2+ p3),

p3(p1+ p3)(p1+ p2+ p3),

(p1+ p2)(p2+ p3)(p1 + p2 + p3),

(p1+ p3)(p2+ p3)(p1 + p2+ p3)

p2p3(p1+ p3), p2(p1 + p3)(p2 + p3),

p3(p1+ p2)(p1+p3). p3(p1+ p3)(p1 + p2+ p3),
p3(p1+ p3)(p2+ p3), (p1+ p2)(p1 + p3)(p1+ p2+ p3)
p2p3(p1 4 p2), p2(p1 + p2)(p1 + p3),

p2(p1+ p2)(p2 + p3), p2(p1 + p2)(p1 + p2 + p3),
p3(p1+ p2)(p2 + p3). (p1+ p2)(p1+ p3)(p1 + p2 + p3)
p2p3(p1 + p2+ p3), p2(p2+ p3)(p1 + p2 + p3),
(p1+ p2)(p1+ p3)(p1 + p2+ p3),

p3(p2+ p3)(p1+ p2+ p3),

(p1+ p2)(p2+ p3)(p1 + p2 + p3),

(p1+ p3)(p2+ p3)(p1 + p2 + p3)

with 2 or 4 vertices.

completes the proof.

Table II continued.

This reduces the problem to the case |Vr/| = 2 or 4 and
O
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By Proposition 5.1 and Claim 2, the 2-skeletal expansion N of (I'(a,¢), @) is
a connected closed surface. Write Fr,, , for the set of all 2-nests in J(r, ,.a)-
Then one has the formula

(6-1) X(N):|VF(M,¢)|_|EF(M,¢)|+|FF(M,¢)|’

where y (N) is the Euler characteristic of N. Note that |Vr, | = |Np| and
3IVEgp | = 21 Er g |-
Claim 3. The 2-skeletal expansion N of (I .4, @) is a sphere of dimension 2.

Proof. 1t suffices to show that the Euler characteristic y (N) is 2. By Claim 1, one
has |N'(a,¢)| < 10, so one needs to consider the cases [N y,4)| =4, 6, 8, 10.

First, the case |N,4)| =4. If y(N) is not 2, we have from (6-1) LFr ] <3,
so all 2-nests in (I'(p7,¢), @) correspond to no more than three nonzero elements
in Hom(Z,, (Z,)?). However, any three nonzero elements therein cannot produce
four different bases therein. Thus, y (N) must be 2.

Next, the case [N'(y,¢)| = 6. Since any four nonzero elements in Hom(Z», (Z»)?)
cannot produce six different bases there, |Fr,, , | must be 5 and so x(N)is 2.

The case |N'y,4)| = 8. If N is not a sphere of dimension 2, then the argument
above insures that | F,, , | must be 5, and the dual map 7 of a maps five 2-nests of
K, p.a) 1O five different nonzero elements of Hom(Z,, (22)3). An easy argument
shows that any five such nonzero elements can be translated into five given nonzero
elements by applying an automorphism of Hom(Z,, (Z»)?). Thus we may choose
five special elements p}, p3, p3, p{ +p5, pi + p3 as being the images of # on five
2-nests of H(r,,,.a)» Where {p], p5, p3} is the standard basis of Hom(Z>, (Z,)%),
dual to the standard basis {p;, p2, p3} of Hom((Zz)3, Z3). Then from these five
chosen elements, one may produce just 8 bases of Hom(Z», (Z,)?), given by

{03, 03, PT+p3 1 Ap3, 35 Y +03Y: (P35 pT 403 pT P35 ), (03, Y +05, pT+p3 )

So, N(m,4) consists of 8 monomials

P1p2P3s P2p3(p1+ p3), pap3(p1+ p2), pap3(p1+ p2+p3),
p1p3(p1+p2), p1p2(p1+p3), p3(p1+p3)(p1+p2+p3), p2(p1+p2)(p1+p2+p3).

Further, we see from Table I that Ngps 75y C Nm,g), 80 [(Ngpwp3, 1))l < 8. This
means that £ is not an essential generator, which gives a contradiction. Thus
| Fr .4 | must be 6 when [Ny ¢)| =8, and so y (N) is still 2.

When |N7,4)| = 10, suppose that y(N) is not 2. As shown above, any five
nonzero elements in Hom(Z,, (Z»)?) cannot produce ten different bases in it, and
thus the only possibility of | Fr,, , | is 6. Further, one has from (6-1) that y (N) must
be 1. To ensure that [N'y,4)| = 10, six 2-nests in H(r,,. 4).) MUSt then correspond
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via the dual map # to six different nonzero elements in Hom(Z5, (Z»)?%). It is easy
to check that any six different nonzero elements there can still be translated into the
given six different nonzero elements by an automorphism. Thus, as in the argument
of the case |N'(x,¢)| = 8, one needs to merely consider six special nonzero elements
of Hom(Z», (Z,)?). Take six nonzero elements p1s Py Py, pi+ P53, py+ py and
p| + p3 + p3 that are the images by # on six 2-nests. One then may produce 16
different bases of Hom(Z», (Z»)?), given by

1. p3s p3t APy, p3s PT+p5+p3) (T 3. PTH P2 +03) {PTs P35 PT P2 +P3 )
p3. pT +p3. pT + P51 (P53, 3, T + P31 P35, T + 5. P+ P31,

{p3: p3> pT P2} APT + P35 pT + 035 pT + P2 + 034 APt PT 035 P14 03 + 030
{pTs 1+ p3. P17+ 03+ p34ApTs pT+ 02, pT + P34 P15 P35 T+ P53}

1. p3. P14+ P34 AP5, PT 403, PT + P53+ P31 Ap3, pT +p3. pT + P53 + P31

These 16 bases are dual to these 16 bases in Hom((Z»)?, Z,):

p1P2p3, P1(p1+ p2)(p1+ p3), p2(p1 + p2)(p2 + p3), prp2(p1 + p2 + p3),
p2(p1+p2)(pr+p2+p3), pro2(pr+p3), p3(p1+p3)(p1+p2+p3), p1p3(p1+p2),
(p1+ p2)(p1+ p3)(p1+ p2+ p3), p2(p1 + p3)(p2 + p3), p3(p1 + p2)(p2 + p3)s
p2p3(p1+ p2+p3)s
p2p3(p1+ p2), p2p3(p1 + p3), p2(p1 + p2)(p1 + p3), p3(p1 + p2)(p1 + p3).

One sees that the first row above is just Ngp3 7, the second row is Ngps r,), and
the third row is Ngp3 1), but p2p3(p1 + p2), p2p3(p1+ p3), p2(p1+ p2)(p1 + p3).
p3(p1 + p2)(p1 + p3) belong to Nwps 1y, Nwps,15)» Nwe3, 1) Nwp3, 1), respec-
tively. Then N(s7,4) must contain p2p3(p1+p2), p2p3(p1+p3), p2(p1+p2) (p1+p3),
p3(p1+ p2)(p1 4 p3), and [Naz,gy) N Ngps 1yl =2 fori = 0,3, 6.

Now choose any two y1, 72 of p2p3(p1+p2), p2p3(p1+p3), p2(p1+p2)(p1+p3)s
p3(p1+p2)(p1+p3). Thenitis easy to show that there is always one (S! xRP?, D))
such that N(si,rp2 ¢, contains yy, y2. Without loss of generality, we may let
71 = pap3(p1 + p2) and 72 = pap3(p1 + p3). Then one has that

Nisixre2,0,) = {p2p3(p1 + p2), p2p3(p1 + p3), prp2p3, p1p2(p1 + p3),
p2p3(p1+ p2+ p3), p2(p1 + p2)(p1 + p2 + p3)}

with p1pap3 € Ngps 1y, P1p2(p1 + p3), p2(p1 + p2)(p1 + p2 + p3) € Nwp3, 1)
p2p3(p1+ p2 + p3) € Nwps, 1) If Nar,g) contains at least two of the monomials

p1P2P3> p1P2(P1+ p3)s p2p3(p1+ p2+p3)s p2(p1 + p2)(p1 + p2+ p3), we get that

INg11(s1xrp2,0)| < 10,
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P P

Figure 2. Two simple 3-polytopes with eight vertices.

which contradicts that £ is an essential generator. Thus, this case cannot occur. If
N(m.¢) contains only one (say ) of p1pap3, p1p2(p1 + p3), p2p3(p1 + p2 + p3),
p2(p1 + p2)(p1 + p2 + p3), form the union (M, ¢) L (S' x RP2, @) U (RP3, T))
where [ is chosen in {0, 3, 6} so that @ ¢ Nrp3 7,)- Then

\Ngi(s'xmp2,0,)1@ps, 1| < 10,

which leads to a contradiction (note that |Njs1xgp2, ¢ ,)j+{®P3 7)) < 10). Finally,
if N(a1,4) does not contain any one of p1p2p3, p1p2(p1 + p3), p2p3(p1 + p2 + p3),
p2(p1+ p2)(p1+ p2+ p3), the disjoint union (M, p)LI(S! x RP?, @ ;)L(RP?, T3)
leads to the same type of contradiction. Therefore, y (N) must be 2.

Combining the above arguments, we complete the proof. O

Lemma 6.5. Let f € ;. If B is an essential generator, then |Ng| < 6.

Proof. By Claim 1 it suffices to show that |Nz| is not equal to 8 and 10. One knows
by Claim 3 that the 2-skeletal expansion N is a sphere of dimension 2, so I'(y,4)
is planar and, in particular, it is the 1-skeleton of a simple convex 3-polytope P3.
In this case, M is a small cover over P>, so the axial function « on I'(m,¢) is dual
to the characteristic function 4 on P3.

The argument proceeds as follows.

Case (i): |Npg| = 8. If [Ng| =8, then I'(p,4) is the 1-skeleton of a simple convex
polytope with 8 vertices. From [Griinbaum 2003] one knows that there are only two
different combinatorial types of simple 3-polytopes with eight vertices, as shown
in Figure 2.

If T'(p,¢) is the 1-skeleton of a 3-dimensional cube Py, then it is easy to check
that P; does not admit any characteristic function that maps six 2-faces into six
different nonzero elements in Hom(Z,, (22)3), but this is impossible. Thus, I'(y,¢)
cannot be the 1-skeleton of Py. If I'(,4) is the 1-skeleton of P, taking a triangular
facet F of P,, then, up to automorphisms of Hom(Z5, (22)3), it is easy to see that
the characteristic function 4 on P, maps F with its 3 adjacent 2-faces into one of p,
P5s P3s PT+p5+p3 ot pl, py, p3, py + p;. In the first case, obviously there must
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P;

/
\V4 \V4

Pe Py

Figure 3. Simple 3-polytopes with ten vertices.

be some (RP3, T;) such that [Ngr@p3,1,))l = 6 < 8. This contradicts that £ is an
essential generator, and thus this case cannot occur. In the second case, it is easy to
check that there must be some (S! x RP?2, ®;) such that [N (51 xrp2,0,)| =6 <8.
This also is impossible, so I'(y,4) cannot be the 1-skeleton of P;. Thus, if £ is an
essential generator, |[Ns| = 8 is impossible.

Case (ii): |[Ng| =10. If [Ng| = 10, then I'(4,4) is the 1-skeleton of a simple convex
polytope with 10 vertices. From [Griinbaum 2003] one knows that there are only
five different combinatorial types of simple 3-polytopes with ten vertices, as shown
in Figure 3. An easy argument shows that I'(ys 4 cannot be the 1-skeleton of P;.
Since each of Pa, Ps, Pg, P7 has at least one triangular facet, similarly to the proof
of Case (i), one may prove that I'(; 4) cannot be the 1-skeleton of Py, Ps, P, P7.
Therefore, |[Ns| = 10 is impossible, which ends the proof. O

Together with Lemmas 6.3 and 6.5 and Remark 6.1, we complete the proof of
Proposition 6.2.

Theorem 6.6. As a vector space over Z,, M3 has dimension 13, and it is generated
by

®RP?, Ty), RP, T1),..., RP?, Ty),
(S' x RP2, @), (S! x RP2, @), ..., (S' x RP?, @y), (S! x RP2, ).

Proof. By Propositions 3.2 and 6.2, any element of 913 is a sum of elements of the
set

{RP,T)|i=0,1,...,6}U{(S' xRP* ®;)| j=0,1,...,20}.
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To calculate the dimension of 93, one needs to determine a maximal linearly
independent subset of this set. Let

6 20
D LIRP, TH1+ D ki[(S' x RP?), @)1 =0, where ;, k; € Z,.
i=0 j=0

Using the Stong homomorphism d3 in Theorem 2.1, one has that

6 20
(6-2) D LS (RP, T + D kg3 (I(S' x RP?), @;)]) =0.
i=0 j=0

Since Hom((Z»)?, Z,) has 28 different bases, from (6-2) and Tables I and II, one
obtains system of 28 linear equations, whose coefficient matrix A is shown in
Table III. By doing elementary row operations, A is changed into the matrix A’
whose first 13 rows are given in Table IV and whose last 15 rows are zero. Thus
the rank of A is 13, which is just the dimension of 913. Theorem 6.6 then follows
from this. g

7. Representatives of equivariant cobordism classes of )13

Given two small covers 7; : M' — P/ fori =1, 2, their equivariant connected sum
along fixed points can be proceeded as follows: Take a vertex v; of P/ and let p; be
its preimage in M; for i = 1, 2. With no loss one may assume that the underlying
(Z,)"-actions are equivalent in a neighborhood of p; (actually, if necessary, one
can change the action by using an automorphism of (Z;)"). Then one can perform
the connected sum equivariantly near the fixed points p; and p,. The result is a
2-torus manifold M} § MY, and its orbit space P' § P is given by removing a
small ball around v; from P! and gluing the results together. As pointed out in
[Davis and Januszkiewicz 1991], generally P{' § P}’ is not canonically identified
with a simple polytope but is almost as good in the sense that its boundary complex
is dual to some PL triangulation of §”~!. However, it is easy to see that if n = 3,
P[' § P} is also a simple polytope, so M{ § M5 is a small cover over P[' § P;.

Lemma 7.1. There exists a 3-dimensional small cover © : M®> — P> such that
M?3 is equivariantly cobordant to a 2-torus 3-manifold N> with Nys prime and
|N'ys| = 28.

Proof. Consider the two small covers (S! x RP?, ®¢) and (S' x RP?, ®) and P3
the corresponding prism. One sees from Table II that they have fixed points with
the same representation p; p,p3. Then one can make an equivariant connected sum
along these fixed points so that (S' x RP2, ®¢) # (S! x RP?, @) is also a small
cover over a simple 3-polytope with 10 vertices, and its tangent representation set
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Table III. The coefficient matrix A.

is just equal to Ny(s1 xmp2, @g)+1(S! xRP2,,)]> CONSisting of

p1p2(p2+ p3), prp3(p2+p3), pi(pi+ p2)(p1+ p3),
p1(p1+ p2)(p2+ p3), pi(p1+p3)(p2+p3), pr1p2(p1+ p3),
p2p3(p1+ p3), p2(p1+ p2)(p1 + p3), p2(p1 + p2) (P2 + p3), p2(p1 + p3)(p2 + p3).
From Table I one sees the following properties:

(a) N[(Sl xRP2,00)]+[(S'xRP2,d})] and N[(RP3,E)] have nonempty intersection for any



306 ZHI LU

S O O O O O o —= O O O O

S O = O O O O O o o o =

S = O O O O O O o o o O

-0 O O O O O o o o~ O
S O = = = O = O O O O O O
_ 0 = O O O O O O o o o O
_——_ 0 O O O O O O = = O O
_ 0 = = O = O = O O O O O
_——_—_ 0O O O O O O o O O O
—_ 0 O O O O O O O = = = O
— e = O = = OO = O OO ==
—_—— = O = O O O = = O O O
_——_ = O O = O O O O O O O
_— 0O O = = === O O O O O
_ 0 = = O O O = O O = O =
-0 = O O = O = O O O O O
— e O = e e e e = OO = O
S O = = O O = O O O O = ==
S O = O = O = O O O O O O
(e N e R S e N )

S O O O OO O o oo oo~
S O O O OO O o o o o~ O
S O O O OO O o o o~ o O
= eleolel=Nololol =l ==
(e
S O OO OO~ O O o o o O
DHOOOOO'—‘OOOOOOO
S O OO O OO0 O o o o o

(e
(e
(e

0
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0
0
0
1
0
0
0
0
0
0
0
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Table IV. The first 13 rows of the row reduction of A.
(b) Niwp?, 7)) contains the elements p1 (p1+p2)(p1+p3) and p2(p1+p2) (p2+p3)
of Ni(s1 xRP2,00)1+1(S' xRP2,®))]

Next, one performs an equivariant connected sum of two copies of (S! xRP?, ®g)
(S! x RP2, ®;) along the fixed point with representation pi(p; + p2)(p1 + p3).
Then the resulting (Z,)3-manifold M’ fixes 18 isolated points and is also a small
cover over a simple polytope with 18 vertices. Obviously, the representations
at the 18 fixed points of M’ appear in pairs, so M’ bounds equivariantly. Since
Nistxrp2, 0014151 xrP2,00)] N {P1(p1 + p2) (1 + p3)} C N, we have by properties
(a) and (b) that for any (RP3, T;), the intersection Nz NN, [(RP3,7;)] 1S nonempty, and
thus we can make an equivariant connected sum of M’ with each (RP3, T;) along
the fixed points with the same representation. Let M be the equivariant connected
sum of M’ with all (RP?3, T;) as above. Then M is just the desired small cover. [

Theorem 7.2. Any element f in 93 contains a small cover as its representative.

Proof. If f =0, then the bounding small cover M’ of the proof of Lemma 7.1 can
be chosen as a representative of f5.

If p #0, then S is a sum of elements of the basis given in Theorem 6.6. Con-
sider the small cover M?> constructed in Lemma 7.1. Since M? is equivariantly
cobordant to a 2-torus 3-manifold N3 with Nys prime and |Nys| = 28, we can
take a fixed point p of M? with representation p;p,p3. First one performs an
equivariant connected sum M3 § M?> of two copies of M?> along the fixed point p,
so that M3 # M? is also a small cover and bounds equivariantly. Thus, all tangent
representations in N3y 3 appear in pairs. On the other hand, Hom((Z,)?, Z,) has
28 different bases, which gives 28 monomials of degree 3 in Z;[p1, p2, p3]. Let I
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denote the set of these 28 monomials of degree 3 in Z3[p1, p2, p3]. Then we have
that N34 )2 must contain the 27 monomials of T\ {p1p2p3}. Next, we see from
Tables I and II that we can choose a fixed point from each of the 13 small covers
listed in Theorem 6.6 such that the tangent representations at those 13 chosen fixed
points are not isomorphic to each other, and they are all in N34 3. For example,
we can choose the required tangent representations as

p1(p1+ p2)(p1+ p3), p1p2(p2+ p3), p1p3(p2+ p3), p1p3(p1 + p2),
p1p2(p1+ p2+ p3), pip3(pr+ p2+ p3), p2p3(pr + p2 + p3),
p2(p1+ p2)(p1+p3), p3(p1+ p2)(p1+ p3)s p2(p1+ p2)(p1 + p2+ p3),
p3(p1+p3)(p1+pa+p3), (p1+p2)(pr1+p3)(p1+p2+p3), p1(pi+p2)(p1+p2+p3).

Furthermore, in the same way as in the proof of Lemma 7.1, we can perform
an equivariant connected sum of M3 # M3 with the 13 small covers listed in
Theorem 6.6 along those 13 chosen fixed points such that the resulting 2-torus
manifold is a small cover. In particular, this can still be carried out between
M?3 4 M? with some small covers chosen arbitrarily from the 13 small covers listed
in Theorem 6.6. Now choose a representative of f as a disjoint union of some
small covers My, ..., M, of the 13 small covers listed in Theorem 6.6. Then one
can perform an equivariant connected sum of M 3 tM 3 with My, ..., M, such that
M3 M3 4 My 4 ---t M, is a small cover. Since M> # M?> equivariantly bounds,
by Corollary 2.2 one has that

ﬁ:[M1]+"‘+[Mt]=[M1|—|“'|—|Mt]=[M3ﬁMSﬁMlﬁ"'ﬁMt]-

Thus, £ contains a small cover as its representative. O
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