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Dedicated to Professor Robert E. Stong, who left us recently.

Define Mn to be the set of equivariant, unoriented cobordism classes of n-
dimensional 2-torus manifolds, where any such manifold is smooth, closed
and n-dimensional, and has an effective smooth action of a rank n 2-torus
group (Z2)

n. Then Mn forms an abelian group with respect to disjoint
union. For n = 3, we determine the group structure of Mn and show that
each class of Mn contains a small cover as its representative.

1. Introduction

An n-dimensional 2-torus manifold M is a smooth closed manifold of dimension n
with an effective smooth action of a rank n 2-torus group (Z2)

n . Since the action is
effective, the fixed point set of the action is 0-dimensional (that is, it is formed by
finitely many isolated points) if M has a fixed point. In this paper, we shall study
this class of geometrical objects from the viewpoint of cobordism.

We denote by Mn the set of equivariant unoriented cobordism classes of all
n-dimensional 2-torus manifolds. Then Mn forms an abelian group with respect
to disjoint union, and in particular Mn also forms a vector space over Z2. The
zero element of Mn can be represented by a canonical 2-torus manifold, which is
the n-dimensional standard sphere Sn with the standard (Z2)

n-action defined by
(x0, x1, . . . , xn) 7→ (x0, g1x1, . . . , gnxn); this action fixes two isolated points with
same (Z2)

n-representation, where (x0, x1, . . . , xn) ∈ Sn and (g1, . . . , gn) ∈ (Z2)
n .

When n = 1, 2, it is known from [Conner and Floyd 1964] that M1 is trivial and
M2 is generated by the standard (Z2)

2-action on RP2.

Problem. Determine the group structure of Mn when n ≥ 3.

Davis and Januszkiewicz [1991] introduced and studied small covers, which are
special kinds of 2-torus manifolds; each small cover is locally isomorphic to a faith-
ful representation of (Z2)

n on Rn , and its orbit space is a simple convex polytope.
This establishes a direct link between equivariant topology and combinatorics. A
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typical example of an equivariant nonbounding small cover is real projective space
RPn with the standard action of (Z2)

n . Its orbit space is an n-simplex. Another
example of a bounding small cover is a product of n copies of a circle S1 with
reflection; its orbit space is an n-cube. Thus we see that for n = 2 these two
examples can be used as representatives of the two classes of M2.

Conjecture. Each class of Mn contains a small cover as its representative.

Bukhshtaber and Ray [1998] proved this conjecture in nonequivariant case. In
Theorems 6.6 and 7.2, we settle the above problem and conjecture for n = 3.

The paper is organized as follows. In Section 2, we introduce and study some
properties of an equivariant cobordism invariant (that is, the prime tangent repre-
sentation set Nβ) associated to 2-torus manifolds coming from the Stong homo-
morphism. In Section 3, we introduce the notion of an essential generator of Mn ,
and show that any element of Mn is a linear combination of essential generators.
In Section 4, we review [Davis and Januszkiewicz 1991] and give two kinds of
3-dimensional small covers that play a key role in the study of M3. In Section 5,
we introduce the moment graphs induced by 2-torus manifolds. The group structure
of M3 is determined completely in Section 6, and the conjecture above is settled
in the 3-dimensional case in Section 7.

2. G-representations and Stong homomorphism

Let G = (Z2)
n , and let Hom(G,Z2) be the set of all homomorphisms ρ : G→ Z2,

which consists of 2n distinct homomorphisms. Let ρ0 denote the trivial element in
Hom(G,Z2), that is, ρ0(g)=1 for all g∈G. The irreducible real G-representations
are all one-dimensional and correspond to all elements in Hom(G,Z2). Thus,
every irreducible real representation of G has the form λρ : G × R → R with
λρ(g, x)= ρ(g) · x for ρ ∈ Hom(G,Z2).

Given an element β of Mn , let (M, φ) be a representative of β such that M has
a fixed point. Taking an isolated point p in MG , the G-representation at p can be
written as

τp M =
⊕
ρ 6=ρ0

λ
qρ
ρ

with
∑

ρ 6=ρ0
qρ = n. By the Borel theorem (see [Allday and Puppe 1993]) and the

effectiveness of the action, if qρ 6= 0, then qρ must be one. Thus, τp M is the direct
sum of n irreducible real G-representations (which are linearly independent). The
collection N(M,φ) = {[τp M] | p ∈ MG

} is called the tangent representation set of
(M, φ), where [τp M] denotes the isomorphism class of τp M .

Denote by Rn(G) the vector space over Z2 generated by the representation
classes of dimension n. Then R∗(G)=

∑
n≥0 Rn(G) is a graded commutative alge-

bra over Z2 with unit. The multiplication in R∗(G) is given by [V1]·[V2]=[V1⊕V2].
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We can identify R∗(G) with the graded polynomial algebra over Z2 generated by
Hom(G,Z2), where the addition in Hom(G,Z2) is given by the tensor product
of representations (ρ + µ)(g) = ρ(g) · µ(g) and the multiplication is given by
the direct sum of representations. The homomorphisms ρi : (g1, . . . , gn) 7→ gi

give a standard basis of Hom(G,Z2). Then R∗(G) is isomorphic to the graded
polynomial algebra Z2[ρ1, . . . , ρn]. Obviously, each [τp M] of N(M,φ) corresponds
to a unique homogeneous monomial of degree n in Z2[ρ1, . . . , ρn] such that the n
factors of the monomial form a basis of Hom(G,Z2).

There is a natural homomorphism δn :Mn→ Rn(G) defined by

δn([M, φ])=
∑

p∈MG

[τp M].

Theorem 2.1 [Stong 1970]. δn is a monomorphism.

This implies that for each β in Mn , there must be a representative (M, φ) of
β such that N(M,φ) is prime (that is, either all elements of N(M,φ) are distinct or
N(M,φ) is empty), and N(M,φ) is uniquely determined by β. Define Nβ := N(M,φ)
and call it the prime tangent representation set of β.

Corollary 2.2. Let β1, β2 ∈Mn . Then β1 = β2 if and only if Nβ1 = Nβ2 .

Remark 2.1. Since Hom(G,Z2) is isomorphic to G, each [τp M] of N(M,φ) actually
corresponds a unique element (denoted by [1p]) in the quotient GL(n,Z2)/Sn ,
where Sn is the subgroup generated by all matrices of the form Ei j (that is, the
identity matrix E , but with columns i and j exchanged); Sn is isomorphic to the
symmetric group of rank n. Thus, for any two σ1, σ2 in [1p], there exists a matrix θ
in Sn such that σ1=σ2θ . This also means that there is a one-to-one correspondence
between bases in (Z2)

n and bases in GL(n,Z2)/Sn . Here we call [1p] the tangent
matrix at p. With this understanding, we often regard each element [τp M] of
N(M,φ) as being [1p]. Note that |GL(n,Z2)|= 2n(n−1)/2∏n

i=1(2
i
−1); see [Alperin

and Bell 1995].

Proposition 2.3. Let β be a nonzero element of Mn . Then

n+ 1≤ |Nβ | ≤
2n(n−1)/2∏n

i=1(2
i
− 1)

n!
.

Further, such upper and lower bounds are the best possible.

Proof. The lower bound of |Nβ | is a special case of [Lü 2008, Theorem 1.2]. Thus,
it suffices to give the proof of the upper bound. For this, we merely need to show
that there is a nonzero element β ′ ∈Mn such that n!|Nβ ′ |= 2n(n−1)/2∏n

i=1(2
i
− 1).

Consider the standard (Z2)
n-action (RPn, T0) of (Z2)

n on the real n-dimensional
projective space RPn defined by n commuting involutions

ti : ([x0, x1, . . . , xn])= [x0, x1, . . . , xi−1,−xi , xi+1, . . . , xn] for i = 1, . . . , n,
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where t1, . . . , tn generate (Z2)
n . This action fixes the n+1 isolated points pi+1 =

[0, . . . , 0, 1, 0, . . . , 0] in which the 1 appears in the (i + 1)-entry. One easily sees
that its tangent matrix set is

N0 = {[1i ] | i = 0, 1, 2, . . . , n},

where 1i is E when i = 0 and for i = 1, . . . , n is obtained from E by replacing
the i-th row with a row of ones. Each [1i ] corresponds to the isolated point pi+1.
Obviously, N0 is prime. By direct computations, one has that 1i1i = E and the
result of the product 1i1 j for i, j 6= 0 and j 6= i just exchanges the i-th and j-th
columns of 1 j . Thus, for i, j 6= 0, one has

(2-1) [1i1 j ] =

{
[E] if i = j,
[1 j ] if i 6= j.

Now, let

Bn+1={σ ∈GL(n,Z2) |σN0=N0}, where σN0 = {[σ10], [σ11], . . . , [σ1n]}.

Obviously, Bn+1 is a subgroup of GL(n,Z2), and each element of Bn+1 actually
makes a permutation in [10], [11], . . . , [1n]. One then knows from (2-1) that
each 1i ∈ Bn+1.

Claim 1. |Bn+1| = (n+ 1)!.

First, we prove that Bn+1 contains the symmetric group Sn . Actually, this is
because for any Ei j in Sn and any 1l ,

[Ei j1l] =


[1l] if i, j 6= l or l = 0,
[1i ] if j = l 6= 0,
[1 j ] if i = l 6= 0.

Next, it is easy to see that any σ in Bn+1 can be expressed as a product of some
matrices of Sn and of the 1i . Obviously, 1i 6∈ Sn when i 6= 0. Thus, Bn+1 is
generated by those matrices of Sn and all 1i , and Claim 1 then follows from this.

Claim 2. For any σ, τ ∈ GL(n,Z2), the set σN0 ∩ τN0 is nonempty if and only if
σN0 = τN0.

It is obvious that σN0 ∩ τN0 is nonempty if σN0 = τN0. Conversely, if that
intersection is nonempty, then there are [1i ], [1 j ] ∈N0 such that [σ1 j ] = [τ1i ].
By the definition of Bn+1, one has that

σN0 = τN0 if and only if σ−1τ ∈ Bn+1.

Hence, it suffices to show that σ−1τ ∈ Bn+1. From [σ1 j ] = [τ1i ], there is an
element s ∈ Sn such that σ1 j s = τ1i , so σ−1τ = 1 j s1i . Note that 1−1

i = 1i .
One also concludes that σ−1τ ∈ Bn+1.
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For any automorphism σ : (Z2)
n
→ (Z2)

n where σ ∈ GL(n,Z2), one obtains
new generators σ(t1), . . . , σ (tn) of (Z2)

n , and then one obtains a new (Z2)
n-action

(RPn, σT0) from (RPn, T0) by using generators σ(t1), . . . , σ (tn) such that its tan-
gent matrix set is (σ−1)>N0. By the arguments above together with Corollary 2.2,
up to equivariant cobordism there are

|GL(n,Z2)|

|Bn+1|
=

2n(n−1)/2∏n
i=1(2

i
− 1)

(n+ 1)!

different (Z2)
n-actions (RPn, σT0); specifically, the union of their tangent matrix

sets just consists of all elements of GL(n,Z2)/Sn . Therefore, taking

(T ′,M ′n)=
⊔

{(σ−1)>}∈GL(n,Z2)/Bn+1

(RPn, σT0),

the tangent representation set of this action is prime, and it has

(n+ 1) ·
2n(n−1)/2∏n

i=1(2
i
− 1)

(n+ 1)!
=

2n(n−1)/2∏n
i=1(2

i
− 1)

n!

elements. This completes the proof of the upper bound. �

3. Essential generators of Mn

Definition 3.1. Let β 6= 0 in Mn . One says that β is an essential generator if
|Nβ+γ | ≥ |Nβ | for any γ ∈Mn with |Nγ |< |Nβ |.

We know from Proposition 2.3 that up to equivariant cobordism there are

2n(n−1)/2∏n
i=1(2

i
− 1)

(n+ 1)!

different (Z2)
n-actions (RPn, σT0) for σ ∈GL(n,Z2), and each (RPn, σT0) fixes

just n+ 1 isolated points with different representations. Since the lower bound of
|Nβ | for any nonzero element β of Mn is n + 1, each (RPn, σT0) is an essential
generator.

Lemma 3.1. Let β ∈Mn . If β is an essential generator, then

|Nβ | ≤


2n(n−1)/2∏n

i=1(2
i
− 1)

2n!
if n is odd,

2n(n−1)/2∏n
i=1(2

i
− 1)

2(n− 1)!(n+ 1)
if n is even.

Proof. The lemma is obvious if |Nβ | = n+ 1, so suppose that |Nβ |> n+ 1. Then
β is not just one of the (RPn, σT0) for σ ∈ GL(n,Z2). Then one claims that for
each (Z2)

n-action (RPn, σT0), Nβ cannot contain more than [(n+1)/2] elements



290 ZHI LÜ

in N(RPn,σT0). Actually, if not, then one has that |Nβ |> |Nβ+[(RPn,σT0)]|, which is
impossible since β is an essential generator. The lemma follows. �

Proposition 3.2. Let β ∈Mn . Then β is a sum of essential generators.

Proof. The proof is trivial if β = 0 or β is an essential generator. Suppose β is
nonzero and is not an essential generator. Then there exists some element γ ∈Mn

with |Nγ | < |Nβ | such that β = (β + γ )+ γ with |Nβ+γ | < |Nβ |. We repeat the
argument replacing β by γ or β + γ ; since Mn is finite, the proof is ended. �

4. Small covers

An n-dimensional convex polytope Pn is said to be simple if exactly n faces of
codimension one meet at each of its vertices. Each point of a simple convex poly-
tope Pn has a neighborhood that is affine isomorphic to an open subset of the
positive cone Rn

≥0. A smooth closed n-manifold Mn is said to be a small cover if it
admits an effective smooth (Z2)

n-action that is locally isomorphic to the standard
action of (Z2)

n on Rn such that the orbit space of the action is a simple convex
polytope Pn .

A small cover is a special 2-torus manifold. A canonical example of small
cover is the n-dimensional real projective space RPn with the standard (Z2)

n-
action whose orbit space is the n-simplex 1n .

Suppose that π : Mn
→ Pn is a small cover over a simple convex polytope Pn .

Let F(Pn)={F1, . . . , F`} be the set of codimension one faces (facets) of Pn . Then
there are ` connected submanifolds M1, . . . ,M` determined by π and Fi (that is,
Mi = π

−1(Fi )), which are called characteristic submanifolds here. Each subman-
ifold Mi is fixed pointwise by a Z2-subgroup Gi of (Z2)

n , so that each facet Fi

corresponds to the Z2-subgroup Gi . Since there is a canonical isomorphism from
(Z2)

n to Hom(Z2, (Z2)
n), each Z2-subgroup Gi corresponds to an element υi in

Hom(Z2, (Z2)
n). For each face F of codimension s, since Pn is simple, there are

s facets Fi1, . . . , Fis whose intersection is F . Then the corresponding characteris-
tic submanifolds Mi1, . . . ,Mis intersect transversally in the (n−s)-dimensional
submanifold π−1(F), and the isotropy subgroup G F of π−1(F) is a subtorus
of rank s and is generated by Gi1, . . . ,Gis (or is determined by υi1, . . . , υis in
Hom(Z2, (Z2)

n)). Thus, this actually gives a characteristic function [Davis and
Januszkiewicz 1991]

λ : F(Pn)→ Hom(Z2, (Z2)
n), Fi 7→ υi

such that for any face F= Fi1∩· · ·∩Fis of Pn , λ(Fi1), . . . , λ(Fis ) are linearly inde-
pendent in Hom(Z2, (Z2)

n). When dim F = 0 (that is, s = n), F is a vertex of Pn ,
which corresponds to a (Z2)

n-fixed point p of M . In this case, λ(Fi1), . . . , λ(Fin )

uniquely determines a dual basis of Hom((Z2)
n,Z2), which just gives the tangent
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representation at p. Thus, the characteristic function λ completely determines the
tangent representation set N(M,φ) of fixed points of Mn , where φ denotes the (Z2)

n-
action on M .

By [Davis and Januszkiewicz 1991], there is a reconstruction process of Mn by
using the product bundle (Z2)

n
× Pn and λ. Note that each point q ∈ ∂Pn must

lie in the relative interior of a unique face F(q) of Pn . Then, one may define an
equivalence relation on (Z2)

n
× Pn by

(t1, x)∼ (t2, x) if and only if t−1
1 t2 ∈ G F(q),

where x ∈ F(q); then the quotient space

M(λ) := (Z2)
n
× Pn/(t1, x)∼ (t2, x)

is equivariantly homeomorphic to Mn . Obviously, both Mn and M(λ) have the
same characteristic function, so they also are cobordant equivariantly.

We denote by 3(Pn) the set of all characteristic functions on Pn .

Proposition 4.1. Let π : Mn
→ Pn be a small cover over a simple convex poly-

tope Pn . Then all small covers over Pn are given by {M(λ) | λ ∈3(Pn)}.

Remark. Generally speaking, one cannot make sure that there always exist char-
acteristic functions (or colorings) over a simple convex polytope Pn when n ≥ 4.
For example, see [Davis and Januszkiewicz 1991, Nonexamples 1.22]. However,
the Four Color Theorem ensures that every 3-dimensional simple convex polytope
admits characteristic functions.

The correspondence λ 7→ σ ◦ λ defines an action of GL(n,Z2) on 3(Pn), and
it then induces an action of GL(n,Z2) on {M(λ) | λ ∈3(Pn)} that takes M(λ) to
M(σ ◦ λ). It is easy to check that these two actions are free.

The following two kinds of small covers play an important role in determining
of the structure of M3.

Example 4.1 (small covers over a 3-complex 13). A 3-simplex 13 has four 2-
faces, and a canonical characteristic function λ0 on it is defined by assigning to ρ∗1 ,
ρ∗2 , ρ∗3 , ρ∗1+ρ

∗

2+ρ
∗

3 the four 2-faces of13, where {ρ∗1 , ρ
∗

2 , ρ
∗

3 } is the standard basis
of Hom(Z2, (Z2)

3), corresponding to ρ1, ρ2, ρ3 of Hom((Z2)
3,Z2). Thus, {σ ◦λ0 |

σ ∈ GL(3,Z2)} gives all characteristic functions on 13. Since the characteristic
function of the standard action T0 of (Z2)

3 on RP3 is just λ0,

{M(σ ◦ λ0) | σ ∈ GL(3,Z2)} = {(RP3, σT0) | σ ∈ GL(3,Z2)}.

Proposition 2.3 shows that up to equivariant cobordism, this set has 7 different
denoted by (RP3, T0), (RP3, T1), . . . , (RP3, T6). A direct calculation gives the
Table I, which lists the tangent representation sets of these seven small covers.
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small cover M tangent representation set NM

(RP3, T0) ρ1ρ2ρ3, ρ1(ρ1+ ρ2)(ρ1+ ρ3),
ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ3(ρ1+ ρ3)(ρ2+ ρ3)

(RP3, T1) ρ1(ρ1+ ρ2)(ρ1+ ρ2+ ρ3), ρ1ρ2(ρ2+ ρ3),
ρ2ρ3(ρ1+ ρ2), ρ3(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(RP3, T2) ρ1(ρ1+ ρ3)(ρ1+ ρ2+ ρ3), ρ1ρ3(ρ2+ ρ3),
ρ2ρ3(ρ1+ ρ3), ρ2(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(RP3, T3) ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3), ρ1ρ2(ρ1+ ρ3),
ρ1ρ3(ρ1+ ρ2), ρ3(ρ1+ ρ3)(ρ1+ ρ2+ ρ3)

(RP3, T4) ρ1(ρ1+ ρ2)(ρ2+ ρ3), ρ1ρ2(ρ1+ ρ2+ ρ3),
ρ2(ρ1+ ρ2)(ρ1+ ρ3), (ρ1+ ρ3)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(RP3, T5) ρ1(ρ1+ ρ3)(ρ2+ ρ3), ρ1ρ3(ρ1+ ρ2+ ρ3),
ρ3(ρ1+ ρ2)(ρ1+ ρ3), (ρ1+ ρ2)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(RP3, T6) ρ2(ρ1+ ρ3)(ρ2+ ρ3), ρ2ρ3(ρ1+ ρ2+ ρ3),
(ρ1+ ρ2)(ρ1+ ρ3)(ρ1+ ρ2+ ρ3), ρ3(ρ1+ ρ2)(ρ2+ ρ3)

Table I

Example 4.2 (small covers over a prism P3). There exists only one simple convex
3-polytope with six vertices (that is, a prism P3); see [Ewald 1996]. Let F1, F2, F4

denote the three square facets, and F3, F5 the two triangular facets in P3. From
[Cai et al. 2007] we know that essentially there are five different characteristic
functions λ1, λ2, λ3, λ4, λ5 under the action of GL(3,Z2) on 3(P3), which are
defined by this table:

F1 F2 F3 F4 F5

λ1 ρ∗1 ρ∗2 ρ∗3 ρ∗1 + ρ
∗

2 ρ∗1 + ρ
∗

2 + ρ
∗

3

λ2 ρ∗1 ρ∗2 ρ∗3 ρ∗1 + ρ
∗

2 ρ∗1 + ρ
∗

3

λ3 ρ∗1 ρ∗2 ρ∗3 ρ∗1 + ρ
∗

2 ρ∗2 + ρ
∗

3

λ4 ρ∗1 ρ∗2 ρ∗3 ρ∗1 + ρ
∗

2 ρ∗3
λ5 ρ∗1 ρ∗2 ρ∗3 ρ∗1 + ρ

∗

2 + ρ
∗

3 ρ∗3

It is easy to check that for any σ ∈GL(3,Z2), every one of M(σ ◦λ4) and M(σ ◦λ5)

always bounds equivariantly. A direct calculation shows that

NM(σ◦λ1) =

NM(λ2) if σ =
(

1
1 1

1

)
,

NM(λ3) if σ =
(

1 1
1

1

)
.

Since NM(λ1) is prime, we know by Corollary 2.2 that if β ∈M3 is represented by
a small cover over P3, then β belongs to the set of equivariant cobordism classes
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coming from the set {M(σ ◦ λ1) | σ ∈ GL(3,Z2)}. By further computations, one
obtains that there are only four matrices,

τ1 =

(
1

1
1

)
, τ2 =

(
1
1 1

1

)
, τ3 =

(
1

1 1
1

)
, τ4 =

(
1
1 1 1

1

)
,

such that τi NM(λ1) = NM(λ1) for i = 1, 2, 3, 4, and these four matrices form a sub-
group of GL(3,Z2). Thus, up to equivariant cobordism, there are |GL(3,Z2)|/4=
42 different nonbounding small covers over P3. We can even construct such small
covers as follows. Consider the (Z2)

3-action 80 on S1
×RP2

= S1
×RP(C⊕R)

defined by the three commutative involutions

t1 : (z, [v,w]) 7→ (z̄, [z̄v,w]),

t2 : (z, [v,w]) 7→ (z, [zv̄, w]),

t3 : (z, [v,w]) 7→ (z, [−zv̄, w]).

This action fixes the six isolated points (±1, [0, 1]), (±1, [1, 0]), (±1, [
√
−1, 0]),

and its orbit space is just a prism P3. A direct calculation shows that N(S1×RP2,80)

consists of the six distinct monomials

ρ1ρ2ρ3, ρ1ρ2(ρ2+ ρ3), ρ1ρ3(ρ2+ ρ3),

ρ1(ρ1+ ρ2)(ρ1+ ρ3), ρ1(ρ1+ ρ2)(ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ2+ ρ3)

of Z2[ρ1, ρ2, ρ3], so (S1
× RP2,80) is nonbounding. Further, up to equivari-

ant cobordism, 42 different nonbounding small covers over P3 can be given by
applying automorphisms of (Z2)

3 on (S1
× RP2,80), and they are denoted by

(S1
×RP2,80), (S1

×RP2,81), . . . , (S1
×RP2,841).

5. Graphs of actions

Given a nonzero element β in Mn , let (Mn, φ) be a representative of β such that
N(M,φ) is prime. For a nontrivial irreducible representation ρ in Hom((Z2)

n,Z2),
let C be a component of the fixed point set of ker ρ (∼= (Z2)

n−1) acting on M , such
that dim C > 0 and the action of (Z2)

n/ ker ρ on C has a nonempty fixed point
set. Then the dimension of C must be 1 since the action is effective, and thus
C is equivariantly diffeomorphic to the circle S1 with a reflection fixing just two
fixed points. Then one has an edge joining these two fixed points, which is labeled
by ρ. Furthermore, one can obtain a graph 0(M,φ), which is the union of all those
edges chosen for each ρ and C . Clearly, the set of vertices of 0(M,φ) is just the
fixed point set of (Z2)

n acting on M . Since the tangent representation at a fixed
point p has n irreducible summands, the number of edges in 0(M,φ) meeting at p
is exactly n, so 0(M,φ) is a regular graph of valence n. It should be pointed out
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that, generally, 0(M,φ) is not determined by β uniquely, and it depends upon the
choice of representatives of β.

Let E(0(M,φ)) denote the set of all edges in 0(M,φ), and let V (0(M,φ)) denote the
vertices in 0(M,φ). Given a vertex p in V (0(M,φ)), let E p denote the set of n edges
joining to p. Then there is a natural map α : E(0(M,φ))→Hom((Z2)

n,Z2), called
an axial function or a (Z2)

n-coloring; see [Guillemin and Zara 2001; 2003; Bao
and Lü 2008]. One knows from [Lü 2008] that α satisfies the following properties:

(1) α(E p) spans Hom((Z2)
n,Z2) for each vertex p in V (0(M,φ)),

(2) for each edge e in E0(M,φ) ,∏
x∈E p−Ee

α(x)≡
∏

y∈Eq−Ee

α(y) mod α(e),

where p and q are the two endpoints of e, and Ee denotes the set of all edges
joining the two endpoints of e. The pair (0(M,φ), α) is called the moment graph
of (Mn, φ). Since N(M,φ) is prime, one has from [Lü 2008] that |Ee| = 1 for
each edge e in 0(M,φ).

Note. If M is a small cover over a simple convex polytope Pn , then 0(M,φ) is
just the 1-skeleton of Pn . In this case, it is easy to see that the map α : E0(M,φ)→
Hom((Z2)

n,Z2) is dual to the characteristic function λ :F(Pn)→Hom(Z2, (Z2)
n).

In other words, both α and λ are determined by each other.

By [Bao and Lü 2008] we know that (0(M,φ), α) is a “good” (Z2)
n-coloring,

so that each k-nest 1k of (0(M,φ), α) is a connected regular k-valent subgraph
of 0(M,φ) with dim Spanα(1k) = k, where Spanα(1k) denotes the linear space
spanned by all colors of edges in 1k . By K(0(M,φ),α) one denotes the set of all nests
of (0(M,φ), α). Since each k-nest (k > 0) determines a k-dimensional subspace
of Hom((Z2)

n,Z2), it corresponds to an (n− k)-dimensional subspace in the dual
space Hom(Z2, (Z2)

n). This actually gives a dual map η from K(0(M,φ),α) to the set
of all subspaces of Hom(Z2, (Z2)

n), which is just the characteristic function when
M is a small cover. Obviously, η maps each (n−1)-dimensional nest of K(0(M,φ),α)

to a nonzero element in Hom(Z2, (Z2)
n). Since each vertex p is the intersection of

n (n−1)-nests of K(0(M,φ),α), it corresponds to a basis of Hom(Z2, (Z2)
n), which

is just the dual basis of the basis α(E p) in Hom((Z2)
n,Z2).

Proposition 5.1 [Bao and Lü 2008]. If dim M = 3, then (0(M,φ), α) admits a 2-
skeletal expansion (N , K ) such that N is a closed surface.

We will use this result to study the group structure of M3. Note that if dim M > 4,
under what condition (0(M,φ), α) admits a skeletal expansion is still open.
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6. Determination of M3

By Proposition 3.2, the structure of M3 is determined by the essential generators
of M3.

Lemma 6.1. Let β ∈M3. Then |Nβ | is even.

Proof. The Euler characteristic of any 3-dimensional closed manifold is always
zero. The lemma then follows from the classical Smith theorem. �

The following proposition characterizes the essential generators of M3.

Proposition 6.2. A nonzero element β ∈M3 is an essential generator if and only
if |Nβ | ≤ 6. In this case β is represented by a small cover either of the type
(RP3, σT0), or of the type (S1

×RP2, σ80), for some σ ∈ GL(3,Z2).

The lemma below proves part of this proposition.

Lemma 6.3. Let β ∈M3 be nonzero. If |Nβ | ≤ 6, then β is an essential generator.

Proof. If |Nβ | = 4, then β is an essential generator because the lower bound for
|Nβ | is 4. Thus, by Lemma 6.1, it suffices to consider the case |Nβ | = 6. From
Example 4.1, we see that the sets N(RP3,Ti ) for i = 0, 1, . . . , 6 are disjoint. We first
claim that any intersection Nβ ∩N(RP3,Ti ) cannot contain four elements. If one did,
then there would exist some i ′ such that |Nβ+[(RP3,Ti ′ )]

| = 2. By [Kosniowski and
Stong 1979], β + [(RP3, Ti ′)] would then be zero in M3, which is impossible.
Next, we prove that any intersection Nβ ∩N(RP3,Ti ) cannot contain three elements.
If one did, then there would be some i ′′ such that |Nβ+[(RP3,Ti ′′ )]

| = 4, and so
β + [(RP3, Ti ′′)] would be the equivariant cobordism class of another (RP3, T j )

with j 6= i ′′. Then β would be the sum [(RP3, Ti ′′)]+ [(RP3, T j )], so |Nβ | would
be 8 rather than 6. This is a contradiction, and thus |Nβ ∩N(RP3,Ti )| is less than 3.
The lemma follows. �

The following lemma indicates the connection between

A= {(RP3, Ti ) | i = 0, 1, . . . , 6} and B= {(S1
×RP2,8 j ) | j = 0, 1, . . . , 41}.

Lemma 6.4. Each (RP3, Ti ) of A corresponds to six small covers (S1
×RP2,8i1),

. . . , (S1
×RP2,8i6) of B in such a way that these six small covers are not cobor-

dant to each other, and |N(RP3,Ti ) ∩N(S1×RP2,8iu )
| = 2 for u = 1, . . . , 6.

Proof. Since all N(RP3,Ti ) for i = 0, 1, . . . , 6 are distinct and since all (RP3, Ti )

for i = 0, 1, . . . , 6, can be translated to each other up to cobordism by applying
automorphisms of (Z2)

3, it suffices to consider the case of (RP3, T0). We see from
Table I that N(RP3,T0) is equal to

{ρ1ρ2ρ3, ρ1(ρ1+ ρ2)(ρ1+ ρ3), ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ3(ρ1+ ρ3)(ρ2+ ρ3)}.
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ρ2

ρ1

ρ1

ρ1

ρ3

ρ2+ ρ3

ρ1+ ρ2

ρ2+ ρ3

ρ1+ ρ3

Figure 1. An axial function α on the 1-skeleton of a prism P3.

Obviously, any two monomials of N(RP3,T0) give five elements of Hom((Z2)
3,Z2),

and there are exactly six such pairs in N(RP3,T0). Considering two monomials
ρ1ρ2ρ3 and ρ1(ρ1 + ρ2)(ρ1 + ρ3) of N(RP3,T0), we get five elements ρ1, ρ2, ρ3,
ρ1+ ρ2 and ρ1+ ρ3 of Hom((Z2)

3,Z2). Using these five elements, we can define
an axial function α on the 1-skeleton of a prism P3 as shown in Figure 1.

Since α uniquely determines a characteristic function on P3, we obtain a small
cover (S1

×RP2,801) with six fixed points over P3 such that its tangent represen-
tation set N(S1×RP2,801 )

consists of six monomials ρ1ρ2ρ3, ρ1(ρ1 + ρ2)(ρ1 + ρ3),
ρ1ρ2(ρ2+ρ3), ρ1ρ3(ρ2+ρ3), ρ1(ρ1+ρ2)(ρ2+ρ3) and ρ1(ρ1+ρ3)(ρ2+ρ3). Sim-
ilarly, for other five pairs in N(RP3,T0), we can obtain small covers (S1

×RP2,80u )

for u = 2, . . . , 6 with their tangent representation sets as follows:

u N(S1×RP2,80u )

2 {ρ1ρ2ρ3, ρ1ρ2(ρ1+ ρ3), ρ2ρ3(ρ1+ ρ3), ρ2(ρ1+ ρ2)(ρ2+ ρ3),

ρ2(ρ1+ ρ2)(ρ1+ ρ3), ρ2(ρ1+ ρ3)(ρ2+ ρ3)}

3 {ρ1ρ2ρ3, ρ1ρ3(ρ1+ ρ2), ρ2ρ3(ρ1+ ρ2), ρ3(ρ1+ ρ3)(ρ2+ ρ3),
ρ3(ρ1+ ρ2)(ρ1+ ρ3), ρ3(ρ1+ ρ2)(ρ2+ ρ3)}

4 {ρ1(ρ1+ ρ2)(ρ1+ ρ3), ρ1ρ3(ρ1+ ρ2), ρ3(ρ1+ ρ2)(ρ1+ ρ3),
ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ2ρ3(ρ1+ ρ2), ρ3(ρ1+ ρ2)(ρ2+ ρ3)}

5 {ρ1(ρ1+ ρ2)(ρ1+ ρ3), ρ1ρ2(ρ1+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ3),
ρ3(ρ1+ ρ3)(ρ2+ ρ3), ρ2ρ3(ρ1+ ρ3), ρ2(ρ1+ ρ3)(ρ2+ ρ3)}

6 {ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ1ρ2(ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ2+ ρ3),
ρ3(ρ1+ ρ3)(ρ2+ ρ3), ρ1ρ3(ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ2+ ρ3)}

Then the lemma follows from the argument above and Corollary 2.2. �

Remark 6.1. Lemma 6.4 also gives the method for constructing 42 different small
covers (up to equivariant cobordism) with 6 fixed points. In particular, we easily
see the property that for each (S1

×RP2,8 j ), two elements of N(S1×RP2,8 j ) are
in some N(RP3,Ti ), and the remaining elements are just distributed in four different
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N(RP3,Ti1 )
, N(RP3,Ti2 )

, N(RP3,Ti3 )
, N(RP3,Ti4 )

with iv 6= i and v=1, 2, 3, 4. In addition,
we also see from the argument of Lemma 6.4 that

δ3([(S1
×RP2,801)] + [(S

1
×RP2,806)] + [(RP3, T0)])= 0,

δ3([(S1
×RP2,802)] + [(S

1
×RP2,805)] + [(RP3, T0)])= 0,

δ3([(S1
×RP2,803)] + [(S

1
×RP2,804)] + [(RP3, T0)])= 0,

where δ3 is the monomorphism of Theorem 2.1. This means that actually we
need only to consider the half of the 42 small covers (S1

× RP2,8 j ) for j =
0, 1, . . . , 41, because up to equivariant cobordism the union of any two of them
is not one of the (RP3, Ti ) for i = 0, 1, . . . , 6. With no loss we may assume that
such 21 different small covers are just (S1

×RP2,8 j ) for j = 0, 1, . . . , 20, with
their tangent representation sets as stated in Table II.

Now let β∈M3 be an essential generator. By Lemma 3.1, one has that |Nβ |≤14.

Claim 1. |Nβ | must be less than 12.

Proof. If |Nβ | = 14, then for each i = 0, 1, . . . , 6, there must be two mono-
mials δ(i)1 and δ(i)2 in N(RP3,Ti ) that are contained in Nβ . By Lemma 6.4 and
Remark 6.1, an easy argument shows that there must be some (S1

×RP2,8 j ) such
that N(S1×RP2,8 j ) ⊂ Nβ . Then 8= |Nβ+[(S1×RP2,8 j )]|< |Nβ | = 14. However, this
is a contradiction since β is an essential generator. Thus |Nβ | = 14 is impossible.

If |Nβ | = 12, since each N(RP3,Ti ) contains at most two monomials in Nβ , the set
Nβ={δ1, δ2, . . . , δ11, δ12} splits into two possible cases: (i) Nβ is the disjoint union
of the subsets {δ1, δ2}, . . . , {δ11, δ12} that are distributed in six different N(RP3,Ti ) or
(ii) Nβ is the disjoint union of seven subsets {δ1, δ2}, . . . , {δ9, δ10}, {δ11}, {δ12} that
are just distributed in N(RP3,T0), . . . ,N(RP3,T6), respectively. A similar argument
also shows that there must be some (S1

× RP2,8 j ) such that for the case (i),
at least five elements of N(S1×RP2,8 j ) are contained in Nβ , and for the case (ii), at
least four elements of N(S1×RP2,8 j ) are contained in Nβ . Then |Nβ+[(S1×RP2,8 j )]|≤

10 < |Nβ | = 12. This contradicts the fact that β is an essential generator. Thus
|Nβ | = 12 cannot occur. �

Let (M, φ) be a representative of β such that N(M,φ) is prime, and let (0(M,φ), α)
be the moment graph of (M, φ).

Claim 2. 0(M,φ) is connected.

Proof. Suppose the contrary. Let 0′ be a connected component of 0(M,φ). Then the
restriction α|0′ is still an axial function of 0′. By Claim 1, one has |N(M,φ)| ≤ 10,
so the number of vertices of 0M is at most 10. If |V0′ | = 2, then obviously
α(E p1)= α(E p2) for p1, p2 ∈ V0′ , but this is impossible since N(M,φ) is prime.
If |V0′ | = 4, then 0′ must be the 1-skeleton of a 3-simplex, and thus (0′, α|0′) is
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small cover M tangent representation set NM

(S1
×RP2,80) ρ1ρ2ρ3, ρ1ρ2(ρ2+ ρ3), ρ1ρ3(ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ1+ ρ3),

ρ1(ρ1+ ρ2)(ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ2+ ρ3)

(S1
×RP2,81) ρ1ρ2ρ3, ρ1ρ2(ρ1+ ρ3), ρ2ρ3(ρ1+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ3),

ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ2(ρ1+ ρ3)(ρ2+ ρ3)

(S1
×RP2,82) ρ1ρ2ρ3, ρ1ρ3(ρ1+ ρ2), ρ2ρ3(ρ1+ ρ2), ρ3(ρ1+ ρ2)(ρ1+ ρ3),

ρ3(ρ1+ ρ2)(ρ2+ ρ3), ρ3(ρ1+ ρ3)(ρ2+ ρ3)

(S1
×RP2,83) ρ1ρ2ρ3, ρ1ρ2(ρ1+ ρ3), ρ2ρ3(ρ1+ ρ2), ρ2ρ3(ρ1+ ρ3),

ρ2ρ3(ρ1+ ρ2+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3)

(S1
×RP2,84) ρ1ρ2(ρ1+ ρ2+ ρ3), ρ1ρ3(ρ1+ ρ2+ ρ3),

ρ1(ρ1+ ρ2)(ρ1+ ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ1+ ρ2+ ρ3),
ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3), ρ3(ρ1+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,85) ρ1ρ3(ρ1+ ρ2), ρ1(ρ1+ ρ2)(ρ1+ ρ3),

ρ2(ρ1+ ρ2)(ρ1+ ρ3), ρ3(ρ1+ ρ2)(ρ1+ ρ3),
ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3), (ρ1+ ρ2)(ρ1+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,86) ρ1ρ2ρ3, ρ1ρ2(ρ2+ ρ3), ρ1ρ3(ρ1+ ρ2), ρ1ρ3(ρ2+ ρ3),

ρ1ρ3(ρ1+ ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ1+ ρ2+ ρ3)

(S1
×RP2,87) ρ1ρ2(ρ1+ ρ2+ ρ3), ρ2ρ3(ρ1+ ρ2+ ρ3),

ρ1(ρ1+ ρ2)(ρ1+ ρ2+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3),
ρ2(ρ2+ ρ3)(ρ1+ ρ2+ ρ3), ρ3(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,88) ρ2ρ3(ρ1+ ρ2), ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ2+ ρ3),

ρ3(ρ1+ ρ2)(ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ1+ ρ2+ ρ3),
(ρ1+ ρ2)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,89) ρ1ρ2ρ3, ρ1ρ2(ρ1+ ρ3), ρ1ρ2(ρ2+ ρ3),

ρ1ρ2(ρ1+ ρ2+ ρ3), ρ1ρ3(ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,810) ρ1ρ3(ρ1+ ρ2+ ρ3), ρ2ρ3(ρ1+ ρ2+ ρ3),

ρ1(ρ1+ ρ3)(ρ1+ ρ2+ ρ3), ρ2(ρ2+ ρ3)(ρ1+ ρ2+ ρ3),
ρ3(ρ1+ ρ3)(ρ1+ ρ2+ ρ3), ρ3(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,811) ρ2ρ3(ρ1+ ρ3), ρ1(ρ1+ ρ3)(ρ2+ ρ3),

ρ1(ρ1+ ρ3)(ρ1+ ρ2+ ρ3), ρ2(ρ1+ ρ3)(ρ2+ ρ3),
ρ3(ρ1+ ρ3)(ρ2+ ρ3), (ρ1+ ρ3)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

Table II

the moment graph of some (RP3, Ti ). Further, the disjoint union of (M, φ) and
(RP3, Ti ) forms a (Z2)

3-action with at most six fixed points. This contradicts the
assumption that β is an essential generator. If |V0′ | = 6, then, since the number of
vertices of 0(M,φ) is at most 10, 0(M,φ) must have another connected component
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(S1
×RP2,812) ρ1ρ2(ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ2+ ρ3),

ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ2(ρ1+ ρ3)(ρ2+ ρ3),
ρ2(ρ2+ ρ3)(ρ1+ ρ2+ ρ3),
(ρ1+ ρ3)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,813) ρ1ρ2(ρ1+ ρ3), ρ1ρ2(ρ1+ ρ2+ ρ3),

ρ1(ρ1+ ρ2)(ρ1+ ρ3), ρ1(ρ1+ ρ2)(ρ2+ ρ3),
ρ1(ρ1+ ρ3)(ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,814) ρ1(ρ1+ ρ2)(ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ1+ ρ2+ ρ3),

ρ2(ρ1+ ρ2)(ρ1+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3),
(ρ1+ ρ2)(ρ1+ ρ3)(ρ1+ ρ2+ ρ3),

(ρ1+ ρ2)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,815) ρ1ρ3(ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ2+ ρ3),

ρ3(ρ1+ ρ2)(ρ2+ ρ3), ρ3(ρ1+ ρ3)(ρ2+ ρ3),
ρ3(ρ2+ ρ3)(ρ1+ ρ2+ ρ3),
(ρ1+ ρ2)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,816) ρ1ρ3(ρ1+ ρ2), ρ1(ρ1+ ρ2)(ρ1+ ρ3),

ρ1(ρ1+ ρ2)(ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ1+ ρ2+ ρ3),
ρ3(ρ1+ ρ2)(ρ1+ ρ3), (ρ1+ ρ2)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,817) ρ1ρ3(ρ1+ ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ1+ ρ2+ ρ3),

(ρ1+ ρ2)(ρ1+ ρ3)(ρ1+ ρ2+ ρ3),
ρ3(ρ1+ ρ3)(ρ1+ ρ2+ ρ3),
(ρ1+ ρ2)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3),
(ρ1+ ρ3)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,818) ρ2ρ3(ρ1+ ρ3), ρ2(ρ1+ ρ3)(ρ2+ ρ3),

ρ3(ρ1+ ρ2)(ρ1+ ρ3), ρ3(ρ1+ ρ3)(ρ1+ ρ2+ ρ3),
ρ3(ρ1+ ρ3)(ρ2+ ρ3), (ρ1+ ρ2)(ρ1+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,819) ρ2ρ3(ρ1+ ρ2), ρ2(ρ1+ ρ2)(ρ1+ ρ3),

ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3),
ρ3(ρ1+ ρ2)(ρ2+ ρ3), (ρ1+ ρ2)(ρ1+ ρ3)(ρ1+ ρ2+ ρ3)

(S1
×RP2,820) ρ2ρ3(ρ1+ ρ2+ ρ3), ρ2(ρ2+ ρ3)(ρ1+ ρ2+ ρ3),

(ρ1+ ρ2)(ρ1+ ρ3)(ρ1+ ρ2+ ρ3),
ρ3(ρ2+ ρ3)(ρ1+ ρ2+ ρ3),
(ρ1+ ρ2)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3),

(ρ1+ ρ3)(ρ2+ ρ3)(ρ1+ ρ2+ ρ3)

Table II continued.

with 2 or 4 vertices. This reduces the problem to the case |V0′ | = 2 or 4 and
completes the proof. �
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By Proposition 5.1 and Claim 2, the 2-skeletal expansion N of (0(M,φ), α) is
a connected closed surface. Write F0(M,φ) for the set of all 2-nests in K(0(M,φ),α).
Then one has the formula

(6-1) χ(N )= |V0(M,φ) | − |E0(M,φ) | + |F0(M,φ) |,

where χ(N ) is the Euler characteristic of N . Note that |V0(M,φ) | = |Nβ | and
3|V0(M,φ) | = 2|E0(M,φ) |.

Claim 3. The 2-skeletal expansion N of (0(M,φ), α) is a sphere of dimension 2.

Proof. It suffices to show that the Euler characteristic χ(N ) is 2. By Claim 1, one
has |N(M,φ)| ≤ 10, so one needs to consider the cases |N(M,φ)| = 4, 6, 8, 10.

First, the case |N(M,φ)| = 4. If χ(N ) is not 2, we have from (6-1) |F0(M,φ) | ≤ 3,
so all 2-nests in (0(M,φ), α) correspond to no more than three nonzero elements
in Hom(Z2, (Z2)

3). However, any three nonzero elements therein cannot produce
four different bases therein. Thus, χ(N ) must be 2.

Next, the case |N(M,φ)|=6. Since any four nonzero elements in Hom(Z2, (Z2)
3)

cannot produce six different bases there, |F0(M,φ) | must be 5 and so χ(N ) is 2.
The case |N(M,φ)| = 8. If N is not a sphere of dimension 2, then the argument

above insures that |F0(M,φ) | must be 5, and the dual map η of α maps five 2-nests of
K(0(M,φ),α) to five different nonzero elements of Hom(Z2, (Z2)

3). An easy argument
shows that any five such nonzero elements can be translated into five given nonzero
elements by applying an automorphism of Hom(Z2, (Z2)

3). Thus we may choose
five special elements ρ∗1 , ρ

∗

2 , ρ
∗

3 , ρ
∗

1 +ρ
∗

2 , ρ
∗

1 +ρ
∗

3 as being the images of η on five
2-nests of K(0(M,φ),α), where {ρ∗1 , ρ

∗

2 , ρ
∗

3 } is the standard basis of Hom(Z2, (Z2)
3),

dual to the standard basis {ρ1, ρ2, ρ3} of Hom((Z2)
3,Z2). Then from these five

chosen elements, one may produce just 8 bases of Hom(Z2, (Z2)
3), given by

{ρ∗1 , ρ
∗

2 , ρ
∗

3 }, {ρ
∗

1 , ρ
∗

2 , ρ
∗

1 + ρ
∗

3 }, {ρ
∗

1 , ρ
∗

3 , ρ
∗

1 + ρ
∗

2 }, {ρ
∗

1 , ρ
∗

1 + ρ
∗

2 , ρ
∗

1 + ρ
∗

3 },

{ρ∗2 , ρ
∗

3 , ρ
∗

1+ρ
∗

2 }, {ρ
∗

2 , ρ
∗

3 , ρ
∗

1+ρ
∗

3 }, {ρ
∗

2 , ρ
∗

1+ρ
∗

2 , ρ
∗

1+ρ
∗

3 }, {ρ
∗

3 , ρ
∗

1+ρ
∗

2 , ρ
∗

1+ρ
∗

3 }.

So, N(M,φ) consists of 8 monomials

ρ1ρ2ρ3, ρ2ρ3(ρ1+ ρ3), ρ2ρ3(ρ1+ ρ2), ρ2ρ3(ρ1+ ρ2+ ρ3),

ρ1ρ3(ρ1+ρ2), ρ1ρ2(ρ1+ρ3), ρ3(ρ1+ρ3)(ρ1+ρ2+ρ3), ρ2(ρ1+ρ2)(ρ1+ρ2+ρ3).

Further, we see from Table I that N(RP3,T3) ⊂ N(M,φ), so |Nβ+[(RP3,T3)]| < 8. This
means that β is not an essential generator, which gives a contradiction. Thus
|F0(M,φ) | must be 6 when |N(M,φ)| = 8, and so χ(N ) is still 2.

When |N(M,φ)| = 10, suppose that χ(N ) is not 2. As shown above, any five
nonzero elements in Hom(Z2, (Z2)

3) cannot produce ten different bases in it, and
thus the only possibility of |F0(M,φ) | is 6. Further, one has from (6-1) that χ(N )must
be 1. To ensure that |N(M,φ)| = 10, six 2-nests in K(0(M,φ),α) must then correspond
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via the dual map η to six different nonzero elements in Hom(Z2, (Z2)
3). It is easy

to check that any six different nonzero elements there can still be translated into the
given six different nonzero elements by an automorphism. Thus, as in the argument
of the case |N(M,φ)|=8, one needs to merely consider six special nonzero elements
of Hom(Z2, (Z2)

3). Take six nonzero elements ρ∗1 , ρ∗2 , ρ∗3 , ρ∗1 + ρ
∗

2 , ρ∗1 + ρ
∗

3 and
ρ∗1 + ρ

∗

2 + ρ
∗

3 that are the images by η on six 2-nests. One then may produce 16
different bases of Hom(Z2, (Z2)

3), given by

{ρ∗1 , ρ
∗

2 , ρ
∗

3 }, {ρ
∗

2 , ρ
∗

3 , ρ
∗

1+ρ
∗

2+ρ
∗

3 }, {ρ
∗

1 , ρ
∗

3 , ρ
∗

1+ρ
∗

2+ρ
∗

3 }, {ρ
∗

1 , ρ
∗

2 , ρ
∗

1+ρ
∗

2+ρ
∗

3 },

{ρ∗3 , ρ
∗

1 + ρ
∗

2 , ρ
∗

1 + ρ
∗

3 }, {ρ
∗

2 , ρ
∗

3 , ρ
∗

1 + ρ
∗

3 }, {ρ
∗

2 , ρ
∗

1 + ρ
∗

2 , ρ
∗

1 + ρ
∗

3 },

{ρ∗2 , ρ
∗

3 , ρ
∗

1 +ρ
∗

2 }, {ρ
∗

1 +ρ
∗

2 , ρ
∗

1 +ρ
∗

3 , ρ
∗

1 +ρ
∗

2 +ρ
∗

3 }, {ρ
∗

1 , ρ
∗

1 +ρ
∗

3 , ρ
∗

1 +ρ
∗

2 +ρ
∗

3 },

{ρ∗1 , ρ
∗

1 + ρ
∗

2 , ρ
∗

1 + ρ
∗

2 + ρ
∗

3 }, {ρ
∗

1 , ρ
∗

1 + ρ
∗

2 , ρ
∗

1 + ρ
∗

3 }, {ρ
∗

1 , ρ
∗

3 , ρ
∗

1 + ρ
∗

2 },

{ρ∗1 , ρ
∗

2 , ρ
∗

1 + ρ
∗

3 }, {ρ
∗

3 , ρ
∗

1 + ρ
∗

3 , ρ
∗

1 + ρ
∗

2 + ρ
∗

3 }, {ρ
∗

2 , ρ
∗

1 + ρ
∗

2 , ρ
∗

1 + ρ
∗

2 + ρ
∗

3 }.

These 16 bases are dual to these 16 bases in Hom((Z2)
3,Z2):

ρ1ρ2ρ3, ρ1(ρ1+ ρ2)(ρ1+ ρ3), ρ2(ρ1+ ρ2)(ρ2+ ρ3), ρ1ρ2(ρ1+ ρ2+ ρ3),

ρ2(ρ1+ρ2)(ρ1+ρ2+ρ3), ρ1ρ2(ρ1+ρ3), ρ3(ρ1+ρ3)(ρ1+ρ2+ρ3), ρ1ρ3(ρ1+ρ2),

(ρ1+ ρ2)(ρ1+ ρ3)(ρ1+ ρ2+ ρ3), ρ2(ρ1+ ρ3)(ρ2+ ρ3), ρ3(ρ1+ ρ2)(ρ2+ ρ3),

ρ2ρ3(ρ1+ ρ2+ ρ3),

ρ2ρ3(ρ1+ ρ2), ρ2ρ3(ρ1+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ3), ρ3(ρ1+ ρ2)(ρ1+ ρ3).

One sees that the first row above is just N(RP3,T0), the second row is N(RP3,T3), and
the third row is N(RP3,T6), but ρ2ρ3(ρ1+ρ2), ρ2ρ3(ρ1+ρ3), ρ2(ρ1+ρ2)(ρ1+ρ3),
ρ3(ρ1 + ρ2)(ρ1 + ρ3) belong to N(RP3,T1), N(RP3,T2), N(RP3,T4), N(RP3,T5), respec-
tively. Then N(M,φ) must contain ρ2ρ3(ρ1+ρ2), ρ2ρ3(ρ1+ρ3), ρ2(ρ1+ρ2)(ρ1+ρ3),
ρ3(ρ1+ ρ2)(ρ1+ ρ3), and |N(M,φ) ∩N(RP3,Ti )| = 2 for i = 0, 3, 6.

Now choose any two γ1, γ2 of ρ2ρ3(ρ1+ρ2), ρ2ρ3(ρ1+ρ3), ρ2(ρ1+ρ2)(ρ1+ρ3),
ρ3(ρ1+ρ2)(ρ1+ρ3). Then it is easy to show that there is always one (S1

×RP2,8 j )

such that N(S1×RP2,8 j ) contains γ1, γ2. Without loss of generality, we may let
γ1 = ρ2ρ3(ρ1+ ρ2) and γ2 = ρ2ρ3(ρ1+ ρ3). Then one has that

N(S1×RP2,8 j ) = {ρ2ρ3(ρ1+ ρ2), ρ2ρ3(ρ1+ ρ3), ρ1ρ2ρ3, ρ1ρ2(ρ1+ ρ3),

ρ2ρ3(ρ1+ ρ2+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3)}

with ρ1ρ2ρ3 ∈ N(RP3,T0), ρ1ρ2(ρ1 + ρ3), ρ2(ρ1 + ρ2)(ρ1 + ρ2 + ρ3) ∈ N(RP3,T3),
ρ2ρ3(ρ1 + ρ2 + ρ3) ∈ N(RP3,T6). If N(M,φ) contains at least two of the monomials
ρ1ρ2ρ3, ρ1ρ2(ρ1+ρ3), ρ2ρ3(ρ1+ρ2+ρ3), ρ2(ρ1+ρ2)(ρ1+ρ2+ρ3), we get that

|Nβ+[(S1×RP2,8 j )]|< 10,
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P1 P2

Figure 2. Two simple 3-polytopes with eight vertices.

which contradicts that β is an essential generator. Thus, this case cannot occur. If
N(M,φ) contains only one (say ω) of ρ1ρ2ρ3, ρ1ρ2(ρ1 + ρ3), ρ2ρ3(ρ1 + ρ2 + ρ3),
ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3), form the union (M, φ) t (S1

×RP2,8 j ) t (RP3, Tl)

where l is chosen in {0, 3, 6} so that ω 6∈ N(RP3,Tl ). Then∣∣Nβ+[(S1×RP2,8 j )]+[(RP3,Tl )]

∣∣< 10,

which leads to a contradiction (note that |N[(S1×RP2,8 j )]+[(RP3,Tl )]| < 10). Finally,
if N(M,φ) does not contain any one of ρ1ρ2ρ3, ρ1ρ2(ρ1+ ρ3), ρ2ρ3(ρ1+ ρ2+ ρ3),
ρ2(ρ1+ρ2)(ρ1+ρ2+ρ3), the disjoint union (M, φ)t(S1

×RP2,8 j )t(RP3, T3)

leads to the same type of contradiction. Therefore, χ(N ) must be 2.
Combining the above arguments, we complete the proof. �

Lemma 6.5. Let β ∈M3. If β is an essential generator, then |Nβ | ≤ 6.

Proof. By Claim 1 it suffices to show that |Nβ | is not equal to 8 and 10. One knows
by Claim 3 that the 2-skeletal expansion N is a sphere of dimension 2, so 0(M,φ)
is planar and, in particular, it is the 1-skeleton of a simple convex 3-polytope P3.
In this case, M is a small cover over P3, so the axial function α on 0(M,φ) is dual
to the characteristic function λ on P3.

The argument proceeds as follows.

Case (i): |Nβ | = 8. If |Nβ | = 8, then 0(M,φ) is the 1-skeleton of a simple convex
polytope with 8 vertices. From [Grünbaum 2003] one knows that there are only two
different combinatorial types of simple 3-polytopes with eight vertices, as shown
in Figure 2.

If 0(M,φ) is the 1-skeleton of a 3-dimensional cube P1, then it is easy to check
that P1 does not admit any characteristic function that maps six 2-faces into six
different nonzero elements in Hom(Z2, (Z2)

3), but this is impossible. Thus, 0(M,φ)
cannot be the 1-skeleton of P1. If 0(M,φ) is the 1-skeleton of P2, taking a triangular
facet F of P2, then, up to automorphisms of Hom(Z2, (Z2)

3), it is easy to see that
the characteristic function λ on P2 maps F with its 3 adjacent 2-faces into one of ρ∗1 ,
ρ∗2 , ρ∗3 , ρ∗1 +ρ

∗

2 +ρ
∗

3 or ρ∗1 , ρ
∗

2 , ρ
∗

3 , ρ
∗

1 +ρ
∗

2 . In the first case, obviously there must
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P4 P5P3

P6 P7

Figure 3. Simple 3-polytopes with ten vertices.

be some (RP3, Ti ) such that |Nβ+[(RP3,Ti )]| = 6 < 8. This contradicts that β is an
essential generator, and thus this case cannot occur. In the second case, it is easy to
check that there must be some (S1

×RP2,8 j ) such that |Nβ+[(S1×RP2,8 j )]|=6<8.
This also is impossible, so 0(M,φ) cannot be the 1-skeleton of P2. Thus, if β is an
essential generator, |Nβ | = 8 is impossible.

Case (ii): |Nβ | = 10. If |Nβ | = 10, then 0(M,φ) is the 1-skeleton of a simple convex
polytope with 10 vertices. From [Grünbaum 2003] one knows that there are only
five different combinatorial types of simple 3-polytopes with ten vertices, as shown
in Figure 3. An easy argument shows that 0(M,φ) cannot be the 1-skeleton of P3.
Since each of P4, P5, P6, P7 has at least one triangular facet, similarly to the proof
of Case (i), one may prove that 0(M,φ) cannot be the 1-skeleton of P4, P5, P6, P7.
Therefore, |Nβ | = 10 is impossible, which ends the proof. �

Together with Lemmas 6.3 and 6.5 and Remark 6.1, we complete the proof of
Proposition 6.2.

Theorem 6.6. As a vector space over Z2, M3 has dimension 13, and it is generated
by

(RP3, T0), (RP3, T1), . . . , (RP3, T6),

(S1
×RP2,80), (S1

×RP2,81), . . . , (S1
×RP2,84), (S1

×RP2,86).

Proof. By Propositions 3.2 and 6.2, any element of M3 is a sum of elements of the
set {

(RP3, Ti ) | i = 0, 1, . . . , 6
}
∪
{
(S1
×RP2,8 j ) | j = 0, 1, . . . , 20

}
.
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To calculate the dimension of M3, one needs to determine a maximal linearly
independent subset of this set. Let

6∑
i=0

li [(RP3, Ti )] +

20∑
j=0

k j [(S1
×RP2),8 j )] = 0, where li , k j ∈ Z2.

Using the Stong homomorphism δ3 in Theorem 2.1, one has that

(6-2)
6∑

i=0

liδ3([(RP3, Ti )])+

20∑
j=0

k jδ3([(S1
×RP2),8 j )])= 0.

Since Hom((Z2)
3,Z2) has 28 different bases, from (6-2) and Tables I and II, one

obtains system of 28 linear equations, whose coefficient matrix A is shown in
Table III. By doing elementary row operations, A is changed into the matrix A′

whose first 13 rows are given in Table IV and whose last 15 rows are zero. Thus
the rank of A is 13, which is just the dimension of M3. Theorem 6.6 then follows
from this. �

7. Representatives of equivariant cobordism classes of M3

Given two small covers πi :Mn
i → Pn

i for i = 1, 2, their equivariant connected sum
along fixed points can be proceeded as follows: Take a vertex vi of Pn

i and let pi be
its preimage in Mi for i = 1, 2. With no loss one may assume that the underlying
(Z2)

n-actions are equivalent in a neighborhood of pi (actually, if necessary, one
can change the action by using an automorphism of (Z2)

n). Then one can perform
the connected sum equivariantly near the fixed points p1 and p2. The result is a
2-torus manifold Mn

1 ] Mn
2 , and its orbit space Pn

1 ] Pn
2 is given by removing a

small ball around vi from Pn
i and gluing the results together. As pointed out in

[Davis and Januszkiewicz 1991], generally Pn
1 ] Pn

2 is not canonically identified
with a simple polytope but is almost as good in the sense that its boundary complex
is dual to some PL triangulation of Sn−1. However, it is easy to see that if n = 3,
Pn

1 ] Pn
2 is also a simple polytope, so Mn

1 ] Mn
2 is a small cover over Pn

1 ] Pn
2 .

Lemma 7.1. There exists a 3-dimensional small cover π : M3
→ P3 such that

M3 is equivariantly cobordant to a 2-torus 3-manifold N 3 with NN 3 prime and
|NN 3 | = 28.

Proof. Consider the two small covers (S1
×RP2,80) and (S1

×RP2,81) and P3

the corresponding prism. One sees from Table II that they have fixed points with
the same representation ρ1ρ2ρ3. Then one can make an equivariant connected sum
along these fixed points so that (S1

×RP2,80) ] (S1
×RP2,81) is also a small

cover over a simple 3-polytope with 10 vertices, and its tangent representation set
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A =



1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1



.

Table III. The coefficient matrix A.

is just equal to N[(S1×RP2,80)]+[(S1×RP2,81)], consisting of

ρ1ρ2(ρ2+ ρ3), ρ1ρ3(ρ2+ ρ3), ρ1(ρ1+ ρ2)(ρ1+ ρ3),

ρ1(ρ1+ ρ2)(ρ2+ ρ3), ρ1(ρ1+ ρ3)(ρ2+ ρ3), ρ1ρ2(ρ1+ ρ3),

ρ2ρ3(ρ1+ρ3), ρ2(ρ1+ρ2)(ρ1+ρ3), ρ2(ρ1+ρ2)(ρ2+ρ3), ρ2(ρ1+ρ3)(ρ2+ρ3).

From Table I one sees the following properties:

(a) N[(S1×RP2,80)]+[(S1×RP2,81)] and N[(RP3,Ti )] have nonempty intersection for any
(RP3, Ti ).
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1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0


Table IV. The first 13 rows of the row reduction of A.

(b) N[(RP3,T0)] contains the elements ρ1(ρ1+ρ2)(ρ1+ρ3) and ρ2(ρ1+ρ2)(ρ2+ρ3)

of N[(S1×RP2,80)]+[(S1×RP2,81)]

Next, one performs an equivariant connected sum of two copies of (S1
×RP2,80)]

(S1
× RP2,81) along the fixed point with representation ρ1(ρ1 + ρ2)(ρ1 + ρ3).

Then the resulting (Z2)
3-manifold M ′ fixes 18 isolated points and is also a small

cover over a simple polytope with 18 vertices. Obviously, the representations
at the 18 fixed points of M ′ appear in pairs, so M ′ bounds equivariantly. Since
N[(S1×RP2,80)]+[(S1×RP2,81)] \{ρ1(ρ1+ρ2)(ρ1+ρ3)} ⊂NM ′ , we have by properties
(a) and (b) that for any (RP3, Ti ), the intersection NM ′∩N[(RP3,Ti )] is nonempty, and
thus we can make an equivariant connected sum of M ′ with each (RP3, Ti ) along
the fixed points with the same representation. Let M be the equivariant connected
sum of M ′ with all (RP3, Ti ) as above. Then M is just the desired small cover. �

Theorem 7.2. Any element β in M3 contains a small cover as its representative.

Proof. If β = 0, then the bounding small cover M ′ of the proof of Lemma 7.1 can
be chosen as a representative of β.

If β 6= 0, then β is a sum of elements of the basis given in Theorem 6.6. Con-
sider the small cover M3 constructed in Lemma 7.1. Since M3 is equivariantly
cobordant to a 2-torus 3-manifold N 3 with NN 3 prime and |NN 3 | = 28, we can
take a fixed point p of M3 with representation ρ1ρ2ρ3. First one performs an
equivariant connected sum M3 ] M3 of two copies of M3 along the fixed point p,
so that M3 ] M3 is also a small cover and bounds equivariantly. Thus, all tangent
representations in NM3 ]M3 appear in pairs. On the other hand, Hom((Z2)

3,Z2) has
28 different bases, which gives 28 monomials of degree 3 in Z2[ρ1, ρ2, ρ3]. Let T
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denote the set of these 28 monomials of degree 3 in Z2[ρ1, ρ2, ρ3]. Then we have
that NM3 ]M3 must contain the 27 monomials of T \ {ρ1ρ2ρ3}. Next, we see from
Tables I and II that we can choose a fixed point from each of the 13 small covers
listed in Theorem 6.6 such that the tangent representations at those 13 chosen fixed
points are not isomorphic to each other, and they are all in NM3 ]M3 . For example,
we can choose the required tangent representations as

ρ1(ρ1+ ρ2)(ρ1+ ρ3), ρ1ρ2(ρ2+ ρ3), ρ1ρ3(ρ2+ ρ3), ρ1ρ3(ρ1+ ρ2),

ρ1ρ2(ρ1+ ρ2+ ρ3), ρ1ρ3(ρ1+ ρ2+ ρ3), ρ2ρ3(ρ1+ ρ2+ ρ3),

ρ2(ρ1+ ρ2)(ρ1+ ρ3), ρ3(ρ1+ ρ2)(ρ1+ ρ3), ρ2(ρ1+ ρ2)(ρ1+ ρ2+ ρ3),

ρ3(ρ1+ρ3)(ρ1+ρ2+ρ3), (ρ1+ρ2)(ρ1+ρ3)(ρ1+ρ2+ρ3), ρ1(ρ1+ρ2)(ρ1+ρ2+ρ3).

Furthermore, in the same way as in the proof of Lemma 7.1, we can perform
an equivariant connected sum of M3 ] M3 with the 13 small covers listed in
Theorem 6.6 along those 13 chosen fixed points such that the resulting 2-torus
manifold is a small cover. In particular, this can still be carried out between
M3 ] M3 with some small covers chosen arbitrarily from the 13 small covers listed
in Theorem 6.6. Now choose a representative of β as a disjoint union of some
small covers M1, . . . ,Mt of the 13 small covers listed in Theorem 6.6. Then one
can perform an equivariant connected sum of M3 ] M3 with M1, . . . ,Mt such that
M3 ] M3 ] M1 ] · · · ] Mt is a small cover. Since M3 ] M3 equivariantly bounds,
by Corollary 2.2 one has that

β = [M1] + · · · + [Mt ] = [M1 t · · · tMt ] = [M3 ] M3 ] M1 ] · · · ] Mt ].

Thus, β contains a small cover as its representative. �
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