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We find the spectral decimation function for the standard Laplacian on
the symmetric Vicsek set, expressed in terms of Chebyshev polynomials.
This allows us to determine the order of the eigenvalues of the Laplacian,
describe their asymptotic behavior and prove that there exist gaps in the
spectrum.

1. Introduction

The Laplacian on the Vicsek set has been studied extensively in [Barlow 1998;
Malozemov and Teplyaev 2003; Metz 1993; Shima 1996], both analytically and
probabilistically. Various problems have been studied for this fractal, including
topological rigidity [Strichartz 2006], the uniqueness of Brownian motion [Metz
1993], etc. In particular, Hambly and Metz [1998] investigated the homogenization
problem on the infinite family of the Vicsek set. In this paper, we study the spec-
trum of the Laplacian on a special case of this infinite family of fractals, the sym-
metric n-branch Vicsek set VSn . All eigenvalues of the Laplacian can be obtained
through an iterative process called spectral decimation, which was introduced by
Shima [1996]. It turns out that the spectral decimation function is associated with
the Chebyshev polynomials.

Laplacians on fractals originated in physics literature, where the Laplacian was
first defined on the Sierpiński gasket SG as the generator of a diffusion process
[Goldstein 1987; Kusuoka 1987]. Kigami constructed the Laplacian analytically,
both as a renormalized limit of difference operators and through a weak formulation
using the theory of Dirichlet forms [Kigami 1989]. Later, the theory of Laplacians
was extended to other fractals, including nested fractals and p.c.f. self-similar sets
by Lindstrøm [1990] and Kigami [1993].

The spectra of the Laplacian operators on a number of fractals have been an-
alyzed both numerically [Adams et al. 2003] and using the spectral decimation
method [Drenning and Strichartz 2009; Malozemov and Teplyaev 2003; Shima
1996; Teplyaev 1998]. One interesting result is that there can be gaps in the spectra
of the Laplacians. (For a given infinite sequence α1 ≤ α2 ≤ · · · ≤ αk ≤ · · · , we
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say that there exist gaps in the sequence if lim supk≥1(αk+1/αk) > 1.) This result,
together with a suitable heat kernel estimate, was used to show the corresponding
Riesz theorem for Fourier series on fractals and to obtain the even stronger con-
clusion that the Fourier series converges for p = 1 and converges uniformly when
the function is continuous. (See [Strichartz 2005] for details.)

The existence of gaps was proved explicitly for the standard Laplacian on the
Sierpiński gasket in [Gibbons et al. 2001] using results obtained by Fukushima and
Shima [1992]. Later it was proved for the level-3 Sierpiński gasket in [Drenning
and Strichartz 2009], and numerical data also suggested it was true for the Pen-
tagasket [Adams et al. 2003]. More general criteria were proved in [Zhou 2008]
where the Laplacians admit spectral decimation. In this paper, we show that one
criterion in [Zhou 2008] applies to the Vicsek set family and therefore there exist
gaps in the spectrum. We also determine the ordering of all the eigenvalues and
prove a Weyl-type theorem for the Vicsek set.

The paper is organized as follows. In Section 2, we briefly review the spectral
decimation method. In Section 3, we determine the spectral decimation function
and all forbidden eigenvalues for the Laplacian on the Vicsek set. In Section 4,
we check that all conditions of Theorem 13 in [Zhou 2008] are met and so there
exist gaps in the spectrum of the standard Laplacian. In Section 5, we determine
the order of the spectrum of the Laplacian for the infinite family of the Laplacian.
In Section 6, we show a Weyl-type theorem for VSn .

2. Laplacian on fractals and spectral decimation method

In this section, we briefly review the way to define a Laplacian on p.c.f. fractals
introduced by Kigami [1993], and the spectral decimation method developed by
Shima [1996] to analyze its spectrum.

Let K be a compact metrizable topological space and L = {K , S, {Fs}s∈S} a
self-similar structure, where S is a finite set and Fs is a continuous injection from
K to itself for every s ∈ S. We denote Wn(S)= Sn and W∗(S)=

⋃
n≥0 Wn(S). For

w=w1w2 · · ·wn ∈Wn(S), let Fw= Fw1 ◦Fw2 ◦· · ·◦Fwn , and Kw= FwK . Assume
that there exists a continuous surjection π : SN

→ K satisfying π ◦ s = Fs ◦π for
every s ∈ S, where s denotes the map from SN to SN defined by s(w1w2 · · · ) =

sw1w2 · · · . The critical set C and postcritical set P are defined respectively by

C= π−1
( ⋃

s,t∈S,s 6=t

(K s ∩ K t)

)
, P=

⋃
n≥1

σ n(C),

where σ : SN
→ SN is the left-shift map. A self-similar set is called postcritically

finite (abbreviation p.c.f.) if and only if the postcritical set P is finite.
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We take G0 to be the complete graph on V0, where V0 = π(P) and is thought
of as the boundary of K . Then define the set of vertices by

Vm =
⋃

s

Fs Vm−1, V∗ =
⋃
m

Vm

and define the edge relation (x, y)∈ Em (or x ∼m y) to hold if there exists a wordw
of length |w|=m such that x, y ∈ FwV0. We denote by Gm = (Vm, Em) the step-m
graph with vertices Vm and edges Em . Kigami first defines a Laplacian operator
on the vertices Vm as a difference operator. Take D to be a symmetric (Laplacian)
matrix in L(V0) with row sum zero, nonnegative off-diagonal entries and negative
diagonal entries. Choose r= (r−1

1 , r−1
2 , . . . , r−1

|S| ) ∈ `(S) and let r0 be the number
such that r−1

0 =
∑

s∈S r−1
s .

A generalized/combinatorial Laplacian with weight r on Vm , (Hm, r), is defined
as

Hm =
∑
w∈Wm

r−1
w Rt

wDRw,(2-1)

where Rw ∈ L(Vm, Fw(V0)) is the restriction map defined by Rw f = f |Fw(V0),
and rw = rw1rw2 . . . rwm for w = w1w2 . . . wm ∈ Wm [Kigami 1993]. The special
case when all off-diagonal entries of D are 1 and all ri = 1 is called the standard
Laplacian. Decompose Hm into

Hm =

[
Tm J t

m
Jm Xm

]
,(2-2)

where Tm ∈ L(V0), Jm ∈ L(V0, V 0
m) and Xm ∈ L(V 0

m). In particular, write T = T1,
J = J1 and X = X1.

A normalized Laplacian, 1̂m , can be obtained by first constructing a measure
µ̂m on Vm as

µ̂m(x)=
( ∑
w∈Wm

r−1
w Rt

w(−T )Rw

)
x,x
,

and then setting

1̂m f (x) :=
Hm f (x)
µ̂m(x)

,

for f ∈ `(Vm) [Kigami 1993].
Assume the p.c.f. fractal K is connected and

#(Fs(V0)∩ V0)≤ 1 for every s ∈ S.(2-3)
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Note the latter assumption implies that T is a diagonal matrix. Define diagonal
matrices M and W such that

Mi,i =−X i,i and W =
[
−T 0
0 M

]
.

We also denote G(λ)= (X + λM)−1 if the inverse matrix exists.

Definition 1 [Shima 1996]. The generalized Laplacian (Hm, r) is said to have a
strong harmonic structure if there exist rational functions K D(λ) and KT (λ) such
that when X + λM is invertible, then

T − J t(X + λM)−1 J = K D(λ)D+ KT (λ)T .(2-4)

K D(0)−1 is called the energy renormalization constant.
We set

F := {λ ∈ R : K D(λ)= 0 or det(X + λM)= 0}

and call elements in F the forbidden eigenvalues. Moreover, we let

Fk := {λ ∈ F : λ is an eigenvalue of − 1̂k}

and call the elements in Fk the forbidden eigenvalues at step k or initial eigenvalues
at step k. The rational function

R(λ) :=
λ− KT (λ)

K D(λ)

is called the spectral decimation function.

Suppose we are given a p.c.f. self-similar set (also satisfying our assumption
(2-3)) and the generalized Laplacian has a strong harmonic structure. Then the
normalized Laplacian has the following spectral decimation property proved by
Shima.

Proposition 2 [Shima 1996]. Suppose the generalized Laplacian has a strong har-
monic structure. We have the following collective results:

(1) If f is an eigenfunction of −1̂m+1 with eigenvalue λ, that is, −1̂m+1 f = λ f ,
and λ 6∈ F, then −1̂m f |Vm = R(λ) f |Vm .

(2) Conversely, if −1̂m f = R(λ) f , and λ 6∈ F, then there exists a unique exten-
sion f of f such that −1̂m+1 f = λ f .

The (normalized) Laplacian 1 on K can be defined as a limit of the normalized
discrete Laplacians 1̂m .
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Definition 3 [Kigami 1993]. Let ρ = 1/(K D(0)r0), called the Laplacian renor-
malization constant, and let

D=
{

u ∈ C(K ) : there exists a function f ∈ C(K ) and

lim
m→∞

ρm1̂mu(x)= f (x) uniformly for x ∈ V∗ \ V0

}
.

The (normalized) Laplacian on the fractal K , 1, is defined by 1u = f, where f
is the function appearing above.

In some cases, spectra of Laplacians can be obtained through an iterative process
called spectral decimation.

Definition 4. For a p.c.f. self-similar set K , we say that the Laplacian, −1, with
Dirichlet boundary conditions, admits spectral decimation with spectral decima-
tion function R if all eigenvalues of −1 are of the form

ρi lim
m→∞

ρmφv(x), x ∈ Fi+1 and i ∈ N∪ {0},

where v = vm · · · v1 with

v j ∈ {0, . . . , #(branches of the inverse function of R)− 1},

and φv = φvm · · ·φv1 with φk being the (k + 1)-th branch of the inverse functions
of R; that is, the φ j are ordered according to their domains, so that if x is in the
domain of φ j and y in the domain of φ j+1, then x ≤ y. In particular, φ0 is the first
branch of the inverses.

In the case when φ0(z) < z for all positive z on its domain, Shima [1996] has
shown that after a finite number of steps, only the bottom branch of the inverse
functions, φ0, can be applied. Therefore, all eigenvalues of −1 must be of the
form

ρi lim
m→∞

ρmφ
(m− j)
0 φv′(z),(2-5)

where z ∈ Fi+1, |v
′
| = j, and i ∈ N∪ {0}.

3. Spectral decimation function for VSn

We begin by recalling the definition of the Vicsek set, VS. It is a p.c.f. self-similar
set, which is constructed from the 1/3-similitudes, F1, . . . , F5 : R

2
→ R2 with

F1(x)=
x
3
, F2(x)=

x
3
+

2
3
(1, 0), F3(x)=

x
3
+

2
3
(1, 1),

F4(x)=
x
3
+

2
3
(0, 1), F5(x)=

x
3
+

2
3
(1/2, 1/2).
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P1 P2

P3P4

Figure 1. The Vicsek set VS2.

P1 P2

P3P4

Figure 2. First step graph of the Vicsek set VS3.

The Vicsek set VS is the unique compact set satisfying

VS=

5⋃
s=1

Fs(VS),

with boundary points V0 = {p1 = (0, 0), p2 = (1, 0), p3 = (1, 1), p4 = (0, 1)}. It
is an example of a postcritically finite fractal (see Example 5.15 in [Barlow 1998]).
The set of m step vertices, Vm , is defined as

⋃
w∈Wm

Fw(V0) for all m ∈N. Each Vm

is a subset of VS and V∗ :=
⋃
∞

m=1 Vm is dense in VS, so we can use the sequence
(Vm)m∈N as a set of increasingly refined “grids” to approximate VS. The fractal
and the first step graph are shown in Figure 1.

We now define the n-branch Vicsek set, VSn , with the same four boundary
points p1, p2, p3, and p4, but with n squares in each of the four directions. See
Figure 2 for the first step graph of VS3.

With this notation, VS=VS2. Let N = 4n−3 and λ= 1/(2n−1). We have N
λ-similitudes F1, . . . , FN :R

2
→R2. We define V0, Vm = Vm(n), and V∗ = V∗(n)

as in the Vicsek set with 5 replaced by N . In particular, we let

V1 \ V0 = {q1, q2, . . . , q12(n−1)}
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denote the set of vertices in V1 \ V0. The n-branch Vicsek set VSn is the unique
compact fixed point of

⋃N
s=1 Fs . It is also a p.c.f. self-similar fractal (see [Maloze-

mov and Teplyaev 2003]) with Hausdorff dimension log N/log λ.
In this section we will derive a formula for the spectral decimation function for

the standard Laplacian with Dirichlet boundary condition on the n-branch Vicsek
set VSn . To be precise, we will prove the following theorem.

Theorem 5. Define

fn(λ) : = Tn(3λ− 1)− 3Tn−1(3λ− 1),(3-1)

gn(λ) : =Un−1(3λ− 1)−Un−2(3λ− 1),(3-2)

hn(λ) : =Un−1(3λ− 1)− 3Un−2(3λ− 1),(3-3)

ln(λ) : =Un−1(3λ− 1)+Un−2(3λ− 1),(3-4)

where Tn and Un are Chebyshev polynomials of the first and the second kind defined
by the same recurrence relation

(3-5) Pn+1(x)= 2x Pn(x)− Pn−1(x),

with initial conditions T0(x) = 1, T1(x) = x and U0(x) = 1, U1(x) = 2x. Then
the spectral decimation function R is

R(λ)=
λ− KT (λ)

K D(λ)
= λgn(λ)hn(λ)(3-6)

and R satisfies

3R(λ)− 4= fn(λ)ln(λ).(3-7)

Moreover, the forbidden eigenvalues are 4/3, and zeros of fn and gn .

The proof of this theorem will require a number of preliminary results.
We use D to denote the Laplacian matrix on the complete graph G0 = (V0, E0)

and let H1 be the matrices representing the standard graph Laplacians on V1 =

V1(n). Hence

D =


−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

 .
We decompose H1 as usual:

H1 =

(
T J t

J X

)
,
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where T is a diagonal matrix with

Ti,i =−( the number of neighboring points of pi )

and J is the incidence matrix of V0 and V1 \ V0. That is, if qi is a neighboring
point of p j , then Ji, j = 1, otherwise Ji, j = 0. Hence there are 3 entries equal
to 1 on each column of J and the rest are 0. The matrix X is a square matrix with
X i,i =−(the number of neighboring points of qi ). Moreover, if qi is a neighboring
point of q j , then X i, j = 1; otherwise, X i, j = 0. Define M to be the diagonal matrix
with Mi,i =−X i,i .

It is easy to see that all diagonal entries of T − J t(X +λM)J are identical and
all the off-diagonal entries are the same. Consequently, the standard Laplacian on
the n-branch Vicsek set has a strong harmonic structure and so it admits spectral
decimation.

Notation. For any set V , we continue to denote all linear functions on V as `(V )
and all linear functions on V with zero boundary conditions `0(V ). In the case of
VSn , the values of u ∈ `0(V1) on the j-th branch of VSn (where j = 1, 2, 3 or 4)
are written as

u(xi , j) := ui, j ,

u(y′i , j) := u′i, j ,

u(y′′i , j) := u′′i, j ,

where u(xi , j) is the function value of u on the i-th vertex on the diagonal (counting
from the outside to the inside) of the j-th branch (1≤ i ≤ n), u(y′i , j) is the value
of u on the i-th vertex below the diagonal of the j-th branch (1 ≤ i ≤ n− 1), and
u(y′′i , j) is the value of u on the i-th vertex above the diagonal of the j-th branch
(1≤ i ≤ n− 1). See Figure 3 for more details.

Recall that the normalized discrete Laplacian 1̂m on the m-step graph is defined
as

1̂mu(x)=
1

deg x

∑
y∼m x

(u(y)− u(x)),

for u ∈ `(Vm \ V0). Therefore, the Dirichlet eigenvalue problem 1̂1u =−λu (that
is, (X + λM)u = 0) is given explicitly by the following system:

u1, j = 0,
ui, j + (3λ− 3)u′i, j + u′′i, j + ui+1, j = 0,
ui, j + u′i, j + (3λ− 3)u′′i, j + ui+1, j = 0,
ui−1, j + u′i−1, j + u′′i−1, j + (6λ− 6)ui, j + u′i, j + u′′i, j + ui+1, j = 0,
un−1, j + u′n−1, j + u′′n−1, j + (6λ− 6)un, j +

∑4
k=1,k 6= j un,k = 0,

(3-8)
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u1,4

u′1,4

u′′1,4 u′′1,3 u1,3

u′1,3

u′′1,2

u1,2u′1,2u′1,1u1,1

u′′1,1

u′′2,1

u2,1
u′2,1

u′′n−1,1

un−1,1
u′n−1,1

un,1

un,4 un,3

un,2

Figure 3. A function u defined on the first step graph of VSn .

where 1 ≤ j ≤ 4, the second and the third equations hold for 1 ≤ i ≤ n − 1, and
the fourth equation holds for 2≤ i ≤ n− 1.

We introduce new variables

u+i, j :=
u′i, j + u′′i, j

2
, u−i, j :=

u′i, j − u′′i, j

2

to find the equivalent system

u1, j = 0,
(3λ− 4)u−i, j = 0, 1≤ i ≤ n− 1,
ui, j + (3λ− 2)u+i, j + ui+1, j = 0, 1≤ i ≤ n− 1,
(3λ− 4)

(
u+i−1, j − 2ui, j + u+i, j

)
= 0, 2≤ i ≤ n− 1,

(3λ− 4)
(
− u+n−1, j + 2un, j

)
+
∑4

k−1 un,k = 0,

(3-9)

where 1≤ j ≤ 4.
If we assume λ 6= 4/3, then u−i, j = 0, or equivalently, u′i, j = u′′i, j , (= u+i, j ), so the

first four equations are equivalent to the following system:


u1, j = 0,
u−i, j = 0,
ui, j + (3λ− 2)u+i, j + ui+1, j = 0, 1≤ i ≤ n− 1,
u+i−1, j − 2ui, j + u+i, j = 0.

(3-10)
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If we fix j and write out the system, we will see that all occurring variables can
eventually be expressed as a product of some polynomial in λ and u+1, j . Hence we
may write

(3-11)

{
ui, j := (−1)i−1 pi−1(λ) · u+1, j , 1≤ i ≤ n,

u+i, j := (−1)i−1qi−1(λ) · u+1, j , 1≤ i ≤ n− 1,

for some polynomials pi and qi , which do not depend on j . From (3-10), we see
that pi and qi satisfy the linear recurrence relations

(3-12)
{

pi (λ)= pi−1(λ)+ (3λ− 2)qi−1(λ),

qi (λ)= 2pi (λ)+ qi−1(λ),

with initial conditions p0 = 0, q0 = 1. A straightforward induction shows:

Lemma 6. The polynomials pi and qi have the expressions{
pi (λ)= (3λ− 2)Ui−1(3λ− 1),
qi (λ)=Ui (3λ− 1)−Ui−1(3λ− 1).

Put (3-11) into (3-9) to get

(3λ− 4)(2pn−1(λ)+ qn−2(λ))u+1, j + pn−1(λ)

4∑
k=1

u+1,k = 0.

By our recurrence relation (3-12), we have the four equations

(3λ− 4)qn−1(λ)u+1, j + pn−1(λ)

4∑
k=1

u+1,k = 0, (1≤ j ≤ 4).(3-13)

Letting

gn(λ) := qn−1 =Un−1(3λ− 1)−Un−2(3λ− 1),

fn(λ) := (3λ− 4)qn−1(λ)+ 4pn−1(λ)= Tn(3λ− 1)− 3Tn−1(3λ− 1),

we see that those equations are equivalent to
gn(λ)(u+1,1− u+1,2)= 0,
gn(λ)(u+1,1− u+1,3)= 0,
gn(λ)(u+1,1− u+1,4)= 0,
fn(λ)(

∑4
k=1 u+1,k)= 0.

(3-14)

Equation (3-10) implies

u = 0 if and only if u+1,1 = u+1,2 = u+1,3 = u+1,4 = 0.
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Therefore, if λ 6= 4/3 is an eigenvalue, then fn(λ) = 0 or gn(λ) = 0 by (3-14). It
follows that

(3-15) det(X + λM)= c fn(λ)g3
n(λ)(3λ− 4)8n−9,

for some nonzero constant c.
Next we shall solve (X+λM)u = v by choosing a special v. Let u ∈ `(V1 \V0).

We perform a kind of “averaging” through the four branches by introducing another
change of coordinates: 

si,1 = ui,1+ ui,2+ ui,3+ ui,4,

si,2 = ui,1− ui,2,

si,3 = ui,1− ui,3,

si,4 = ui,1− ui,4.

We can also do the same operations for s+i, j . Then the inverse coordinate change is


ui,1 = 1/4(si,1+ si,2+ si,3+ si,4),

ui,2 = 1/4(si,1− 3si,2+ si,3+ si,4),

ui,3 = 1/4(si,1+ si,2− 3si,3+ si,4),

ui,4 = 1/4(si,1+ si,2+ si,3− 3si,4),

and similarly for u+i, j (1≤ j ≤ 4). For any function v ∈ `(V1 \ V0), we can write

j = 1 : ti,1 = vi,1+ vi,2+ vi,3+ vi,4, t+i,1 = v
+

i,1+ v
+

i,2+ v
+

i,3+ v
+

i,4,

j = 2, 3, 4 : ti, j = vi,1− vi, j , t+i, j = v
+

i,1− v
+

1, j .

We shall choose a special v, ti, j and t+i, j will then be the new changed variables.
For example, if v= v(1) is the function on V1\V0 corresponding to the first column
of J , that is, v′1,1 = v

′′

1,1 = v2,1 = 1 and the remaining entries are 0, then for all
1≤ j ≤ 4, t1, j = 0, t+1, j = 1, t2, j = 1, t+i, j = 0 (i ≥ 2), ti, j = 0 (i > 2), and v−i, j = 0
(1≤ i ≤ n− 1). See Figure 4 for the function corresponding to v(1).

Next we shall solve the equation (X+λM)u= v for v= v(1) and u ∈ `(V1\V0),
which is equivalent to the system

ui, j + (3λ− 2)u+i, j + ui+1, j = v
+

i, j , 1≤ i ≤ n− 1,
ui−1, j + 2u+i−1, j + (6λ− 6)ui, j + 2u+i, j + ui+1, j = vi, j , 2≤ i ≤ n− 1,
un−1, j + 2u+n−1, j + (6λ− 7)un, j +

∑4
k=1 un,k = vn, j ,

(3λ− 4)u−i, j = v
−

i, j , 1≤ i ≤ n− 1.



380 DENGLIN ZHOU

0

0

0 0 0

0

0

0010

1

0

1
0

0

0

0
0 0

0

0 0

0

0

0

0

0
0

0

Figure 4. A function v defined on the first step graph of VSn .

By summing together all four equations when j = 1 and subtracting two equations
when j 6= 1, and the change of coordinates, we see that it is also equivalent to

si, j + (3λ− 2)s+i, j + si+1, j = t+i, j , 1≤ i ≤ n− 1,
si−1, j + 2s+i−1, j + (6λ− 6)si, j + 2s+i, j + si+1, j = ti, j , 2≤ i ≤ n− 1,
sn−1, j + 2s+n−1, j + (6λ− 7+ 4δ1, j )sn, j = tn, j ,

(3λ− 4)u−i, j = v
−

i, j , 1≤ i ≤ n− 1.

Under the new system of coordinates, the matrix A representing X + λM is the
direct sum of the five blocks

A0 =


3λ− 4

3λ− 4
. . .

3λ− 4


4(n−1)×4(n−1)

which is a diagonal matrix of size 4(n − 1)× 4(n − 1) corresponding to the last
equation in the above system, and for j = 1, 2, 3, and 4,

A j =



3λ− 2 1 0 0 0 0 0 0 0 0
2 6λ− 6 2 1 0 0 0 0 0 0
0 1 3λ− 2 1 0 0 0 0 0 0
0 1 2 6λ− 6 2 1 0 0 0 0

. . .
. . .

. . .

0 0 0 0 0 · · · 0 1 3λ− 2 1
0 0 0 0 0 · · · 0 1 2 6λ− 7+ 4δ1, j


.
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Blocks of the augmented matrix for the equation (X + λM)u = v when j = 2, 3
and 4 are

[A j |v] =



3λ− 2 1 0 0 0 0 0 0 0 0 t+1, j
2 6λ− 6 2 1 0 0 0 0 0 0 t2, j

0 1 3λ− 2 1 0 0 0 0 0 0 t+2, j
0 1 2 6λ− 62 1 0 0 0 0 t3, j

. . .
. . .

. . .

0 0 0 0 0 · · · 0 1 3λ− 2 1 t+n−1, j
0 0 0 0 0 · · · 0 1 2 6λ− 7+ 4δ1, j tn, j


,

which can be row-reduced into the form

3λ− 2 1 0 · · · 0 0 0 t+1, j
3λ− 4−2(3λ− 4) 3λ− 4 · · · 0 0 0 t+1, j − t2, j + t+2, j

0 1 3λ− 2 · · · 0 0 0 t+2, j
0 0 3λ− 4 · · · 0 0 0 t+2, j − t3, j + t+3, j

. . .
. . .

...

0 0 0 · · · 1 3λ− 2 1 t+n−1, j
0 0 0 · · · 0 3λ− 4−2(3λ− 4)− 4δ1, j t+n−1, j − tn, j


,

and

[A0|v] =


3λ− 4 v−1, j

3λ− 4 v−2, j
. . .

...

3λ− 4 v−n−1, j

 .

In the special case when v is the function corresponding to the first column of J ,
our linear system becomes



3λ− 2 1 0 · · · 0 0 0
3λ− 4−2(3λ− 4) 3λ− 4 · · · 0 0 0

0 1 3λ− 2 · · · 0 0 0
0 0 3λ− 4 · · · 0 0 0

. . .
. . .

0 0 0 · · · 1 3λ− 2 1
0 0 0 · · · 0 3λ− 4−2(3λ− 4)− 4δ1, j





s+1, j
s2, j

s+2, j
s3, j
...

s+n−1, j
sn, j


=



1
0
0
0
...

0
0
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and 
3λ− 4

3λ− 4
. . .

3λ− 4




u−1, j
u−2, j
...

u−n−1, j

=


0
0
0
0

 ,
which implies that when λ 6= 4/3, u−i, j = 0 for all i, j. By clearing all unnecessary
factors 3λ− 4, whenever possible, we have the system

(3λ− 2)s+1, j + s2, j = 1,
s+1, j − 2s2, j + s+2, j = 0,
s2, j + (3λ− 2)s+2, j + s3, j = 0,

...

sn−1, j + (3λ− 2)s+n−1, j + sn, j = 0,
(3λ− 4)s+n−1, j −

(
2(3λ− 4)+ 4δ1, j

)
sn, j = 0.

(3-16)

The first 2n− 3 equations allow us to write all unknowns si, j and s+i, j (i > 1 and
1≤ j ≤ 4) in terms of s+1, j as

s+i, j = (−1)i−1(ai (λ)s+1, j + bi (λ)
)
,

si, j = (−1)i−1(ci (λ)s+1, j + di (λ)
)
,

for some polynomials ai , bi , ci and di .

Lemma 7. If (X + λM)u = v(1) and si, j and s+i, j are defined as above, then for
i > 1 and 1≤ j ≤ 4,

s+i, j = (− 1)i−1((Ui−1(y)−Ui−2(y))s+1, j − 2Ui−2(y)
)
,(3-17)

si, j = (− 1)i−1((y− 1)Ui−2(y)s+1, j − (Ui−2(y)−Ui−3(y))
)
,(3-18)

where y = 3λ− 1. For i = 1, we have

s+1,1 =
(2y− 2)Un−2(y)− 4Un−3(y)

(2y2− 3y− 1)Un−2(y)− (y− 3)Un−3(y)
,(3-19)

s+1, j =
2Un−2

Un−1−Un−2
(2≤ j ≤ 4).(3-20)

Proof. We rewrite the first equation in (3-16) as

(−1)+ (3λ− 2)s+1, j + s2, j = 0

and we use the fictitious unknown ŝ1, j =−1, to achieve a more symmetric equation

ŝ1, j + (3λ− 2)s+1, j + s2, j = 0.
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This, together with the other equations{
si, j + (3λ− 2)s+i, j + si+1, j = 0,
s+i, j − 2si+1, j + s+i+1, j = 0,

imply that ai , bi , ci , and di satisfy the recurrence relations
ai+1 = (6λ− 3)ai + 2ci ,

bi+1 = (6λ− 3)bi + 2di ,

ci+1 = (3λ− 2)ai + ci ,

di+1 = (3λ− 2)bi + di ,

(3-21)

with initial conditions a1 = 1, b1 = 0, c1 = 0, d1 =−1. In terms of the matrices,

A =
[

6λ− 3 2
3λ− 2 1

]
=

[
2y− 1 2
y− 1 1

]
,

X i =

[
ai bi

ci di

]
.

Hence (3-21) can be written as X i+1 = AX i with

X1 =

[
1 0
0 −1

]
.

Then the unique solution to (3-21) is clearly given by X i = Ai−1 X1. Hence our
proof will be finished once we have proved that

Ak
=

[
Uk(y)−Uk−1(y) 2Uk−1(y)
(y− 1)Uk−1(y) Uk−1(y)−Uk−2(y)

]
.

To prove this, we use induction on k≥1. When k=1, note that U0=1 and U1=2y,
so recursive formulas for Chebyshev polynomials give us U−1 = 0. Hence[

U1−U0 2U0

(y− 1)U0 U0−U−1

]
=

[
2y− 1 2
y− 1 1

]
= A.

Next we assume that our claim is true for k. Hence by the induction assumption,
we have

Ak+1
=

[
2y− 1 2
y− 1 1

] [
Uk −Uk−1 2Uk−1

(y− 1)Uk−1 Uk−1−Uk−2

]
=

[
(2yUk −Uk−1)−Uk 2(2yUk−1−Uk−2)

(y− 1)Uk (2yUk−1−Uk−2)−Uk−1

]
=

[
Uk+1−Uk 2Uk

(y− 1)Uk Uk −Uk−1

]
.
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Here we have used the recursive identity Uk+1 = 2yUk − Uk−1 for Chebyshev
polynomials in the last equality. Hence the claim is proved.

Having expressed all our unknowns in terms of the single variable s+1, j , we can
solve for s+1, j by making use of the very last equation:

(3λ− 4)s+n−1, j −
(
2(3λ− 4)+ 4δ1, j

)
sn, j = 0.

We first solve for s+1, j when j = 2, 3, 4. Since δ1, j = 0, the above equation
simplifies to s+n−1, j = 2sn, j . Substituting the expressions for s+n−1, j and sn, j from
(3-17) and (3-18), and using the identity Uk+1 = 2yUk −Uk−1, we have that for
j = 2, 3, and 4,

s+1, j =
2Un−2

Un−1−Un−2
.

Next we solve for s+1,1, starting from the equations (6λ−4)sn,1−(3λ−4)s+n−1,1= 0
or (2y − 2)sn,1 − (y − 3)s+n−1,1 = 0 as y = 3λ− 1. Again, using what we have
shown in the first part of the lemma, we find that

s+1,1 =
(2y− 2)Un−2− 4Un−3

(2y2− 3y− 1)Un−2− (y− 3)Un−3
.

Moreover, we can further simplify the denominator by the identity Tn = yUn−1−

Un−2 so that

s+1,1 =
(2y− 2)Un−2− 4Un−3

Tn − 3Tn−1
=

2(Tn−1−Un−2−Un−3)

Tn − 3Tn−1
. �

Before we compute K D and λ− KT , we derive some formulas for future use,
which can be obtained by the recursive formulas for Chebyshev polynomials and
the formula

(3-22) Tn = yUn−1−Un−2.

Lemma 8.

1+ s+1,1 = (y+ 1)
Un−1(y)− 3Un−2(y)

Tn(y)− 3Tn−1(y)
.(3-23) ∣∣∣∣ Tn−1−Un−2−Un−3 Un−2

Tn − 3Tn−1 Un−1−Un−2

∣∣∣∣= 2, for any n ≥ 1.(3-24)

s+1,1− s+1,2 =
4

fn(λ)gn(λ)
.(3-25)

Now we are ready to prove Theorem 5 about the expressions of the spectral
decimation function R(λ) and 3R(λ)− 4 at the beginning of this section.
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Proof of Theorem 5. First, note that

K D = (T − J t(X + λM)−1 J )2,1
=−〈ν(2), u〉,

where ν( j) is the j-th column of J and u = (X + λM)−1ν(1). By the definition of
ν(2), we know that

〈ν(2), u〉 = u′1,2+ u′′1,2+ u2,2

= 2u+1,2+ u2,2,

= 2[1/4(s+1,1− s+1,2)] +
1
4
(s2,1− s2,2),

where the last equality follows from the change of coordinates and a conclusion
from Lemma 7 that the values of s1, j and s+1, j do not depend on j for j = 2, 3,
and 4. Hence (3-25) implies

K D =
y−3

4
(s+1,1− s+1,2)

=
3λ−4

fn(λ)gn(λ)
.

As for λ− KT (λ), note that the diagonal entries of D and T are −3, so

3(λ− KT (λ))= 3λ− 3+ 3K D −〈ν
(1), u〉(3-26)

= 3λ− 3− 2(u+1,1+ 3u+1,2)− (u2,1+ 3u2,2).

By our change of variables and using (3-23), we have

3(λ− KT )= (3λ− 4)+ (3λ− 4)s+1,1

= (3λ− 4)
(
(y+ 1)

Un−1(y)− 3Un−2(y)
Tn(y)− 3Tn−1(y)

)
= (3λ− 4) · 3λ ·

hn(λ)

fn(λ)
.

The definition of the spectral decimation function R gives

R(λ)=
λ− KT (λ)

K D(λ)
= λ · gn(λ) · hn(λ).

Lastly, we compute 3R(λ)− 4. Equivalently, we show

3(λ− KT (λ))− 4K D(λ)= (3λ− 4)
ln(λ)

gn(λ)
.
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Together with our change of variables and Lemma 7, this holds by the equations

3(λ− KT (λ))− 4K D(λ)= 3λ− 3− K D −〈ν
(1), u〉

= 3λ− 3+〈ν(2), u〉− 〈ν(1), u〉

= 3λ− 3+ (2u+1,2+ u2,2)− (2u+1,1+ u2,1)

By definition, the forbidden eigenvalues are the zeros of K D , namely 4/3, and the
zeros of det(X + λM), which are 4/3, and the zeros of fn and gn . �

As eigenfunctions of −1̂1 corresponding to different eigenvalues are orthogo-
nal, we get an interesting corollary about properties of the Chebyshev polynomials.

Corollary 9. Suppose λ and µ are either different roots of fn or different roots
of gn . Then

n−1∑
i=1

(
pi (λ)pi (µ)+ qi−1(λ)qi−1(µ)

)
= 0,

where pi and qi are defined in Lemma 6.

4. Gaps in the spectrum of the Laplacian on VSn

In this section, we shall prove that Theorem 13 of [Zhou 2008] applies to the infinite
family of fractals VSn and so there exist gaps in the spectrum of the standard
Laplacian. Let αi , βi , ξi and γi be the roots of fn, gn, hn, and ln respectively.
Then we can prove that they are alternating. More precisely, we have:

Proposition 10. The function fn has exactly n real roots α1, α2, . . . , αn and if we
naturally order them, then αi and βi are alternating and

0< α1 < β1 < α2 < · · ·< αn−1 < βn−1 < 2/3< αn < 1.(4-1)

Similarly, we have

0< γ1 < α1 < γ2 < · · ·< γn−1 < αn−1 < 2/3< αn < 1,(4-2)

0< β1 < ξ1 < β2 < · · ·< ξn−2 < βn−1 < 2/3< ξn−1 < 1.(4-3)

Proof. Equation (4-1) can be proved by noting fn(0) = 4(−1)n , fn(1) > 0,
fn(2/3)=−2 and that for 1≤ i ≤ n− 2,

fn(βn−i )= cos n (2i−1)π
2n−1

− 3 cos(n− 1)(2i−1)π
2n−1

=


4 sin (i−1/2)π

2n−1
, if i is even,

−4 sin (i−1/2)π
2n−1

, if i is odd.

Equations (4-2) and (4-3) can be proved in a similar fashion. �
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Proposition 11. There exist gaps in the spectrum of the standard Laplacian on the
n-branch Viscek set VSn.

Proof. By Theorem 5 and Proposition 10, we can easily check that the following
four conditions for the criterion for gaps [Zhou 2008, Theorem 13] are met:

(1) R−1([0, 4/3])⊆ [0, 4/3];

(2) φ1(x) is defined and decreasing on [0, 4/3];

(3) φ0(x) is strictly convex and φ0(4/3) < φ1(4/3);

(4) there exists k0 such that for all k ≥ k0 and all x ∈ Fk , φ1(4/3)≤ x . �

Hambly and Kumagai [1999] have proved that the necessary heat kernel estimate
holds for the standard Laplacian on VSn . Hence we obtain the following immediate
corollaries using the same argument by Strichartz [2005].

Corollary 12. Let {Nm} be a sequence of integers such that λNm+1/λNm − 1 is
bounded away from zero. Then the partial sums of the Fourier series SNm f con-
verge to f as m → ∞ in L p for f ∈ L p (1 ≤ p < ∞) and uniformly if f is
continuous.

Corollary 13. Let 1< p <∞. Let

S f (x)=
( ∞∑

m=1

|Sm f (x)|2
)1/2

,

for

Sm f (x)=
Nm∑

j=Nm−1+1

c j u j (x),

where u j are either Dirichlet (or Neumann) eigenfunctions of the Laplacian and
{Nm} is the same sequence as in the above theorem. Then there exist constants Ap

and Bp such that
Ap‖ f ‖p ≤ ‖S f ‖p ≤ Bp‖ f ‖p.

5. Ordering the Dirichlet eigenvalues on VSn

In this section, we prove the ordering of the Dirichlet eigenvalues in Theorems 17
and 19.

5.1. Notation. We shall fix n from now on and always write N = 2n−2. Let R(λ)
be the spectral decimation function, with its 2n− 1 inverses

φ0, φ1, . . . , φN

listed in increasing order. Let

ρ = R′(0)= (2n− 1) (4n− 3)
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be the Laplacian renormalization constant (recall that it is the product of the energy
renormalization constant, which is K D(0)−1

= 2n − 1, and the measure factor,
which is 4n−3, the number of contraction maps for the standard Laplacian). Recall
that the list of forbidden eigenvalues is

F= {α1 < β1 < α2 < β2 < · · ·< αn−1 < βn−1 < αn < 4/3 },

where αi , β j (i = 1, . . . , n, j = 1, . . . , n− 1) are roots of fn and gn respectively.
Define the set of 2n− 1 symbols

6 = {0, 1, 2, . . . , N },

and let W = 6∗ be the set of finite words on 6 (including the empty word). For
any word w ∈ W of length j ≥ 0, where w = w j . . . w1 with w1, . . . , w j ∈6, we
set φw = φw j ◦ . . . ◦φw1 . For µ ∈ [0, 4/3], we define

λw(µ)= lim
m→∞

ρm φ
(m− j)
0 ◦φw(µ).

Then the spectral decimation tells us that the entire set of Dirichlet eigenvalues of
−1 is a subset of

3∗ = {ρk λw(µ) : k ≥ 0, w ∈W, µ ∈ F}.

Clearly, for any word w we have λw = λ0···0w. Define an equivalence relation∼ on
W as follows to reduce this redundancy: v ∼ w if and only if there exists u ∈ W
such that v = 0 · · · 0u and w = 0 · · · 0u (the number of leading 0’s need not be
equal). Note that v ∼ w implies λv = λw.

Let W∼ denote the set of equivalence classes of W under ∼, whose members
we shall call reduced words. Each member [u] of W∼ contains a unique word of
shortest length. As a rule, we shall generally denote the class [u]∼ by this shortest
word. Perhaps an occasional exception is the class [0]∼, whose shortest word is
the empty word, but we prefer to let 0 denote [0]∼. We now define the length |w|
of a class w ∈ W∼ to be the length of the shortest word in w. For example, the
class 0= 00= 000= · · · has length 0, and the class 0011= 011= 11 has length 2.

From now on, we shall work entirely on W∼. For w ∈W∼, there is no ambiguity
in writing

λw(µ)= lim
m→∞

ρm φ
(m−|w|)
0 ◦φw(µ).

5.2. The refinement of 3∗. In this section, we shall show that all αi ’s cannot be
an eigenvalue of the discrete Laplacian −1̂m for all m > 1. Therefore numbers of
the form ρk λw(αi ) with k ≥ 1 cannot be in 3∗ and the set of Dirichlet eigenvalues
of −1 must be a subset of

3 := {ρk λw(µ) : w ∈W, µ ∈ F if k = 0 and µ ∈ F \ {αi }
n
i=1 if k ≥ 1}.
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Theorem 14. For each 1≤ i ≤ n, αi is not an eigenvalue of the discrete Laplacian
−1̂m for all m> 1. In other words, αi 6∈Fm for all m> 1. Therefore, ρlλv(αi ) 6∈3

for all l > 0.

Proof. We shall use a dimension counting argument to prove this theorem. By
Proposition 4.1 in [Bajorin et al. 2008], the multiplicity of 4/3 as an eigenvalue of
−1k is

M (D)
k (4/3)= 2(4n− 3)k − 3.

At step 1, recall that |X+λM |=C fn(λ)gn(λ)(λ−4/3)8n−9. Hence the eigenvalues
of −1̂1 are α1, . . . , αn of multiplicity 1, β1, . . . , βn−1 of multiplicity 3 and 4/3 of
multiplicity 8n− 9.

We then consider possible initial eigenvalues at step m for m ≥ 2. Since the
multiplicity of 4/3 as a Dirichlet eigenvalue of −1̂k is 2(4n−3)k−3. Hence 4/3
is an initial eigenvalue of−1̂k for any k. Other initial eigenvalues are β1, . . . , βn−1

with multiplicity at least 3 since we can construct three eigenfunctions for each βi

(1≤ i ≤n−1) as follows. Indeed, for each βi , we can use one of the eigenfunctions
corresponding to −1̂1, the one which is antisymmetric on the main diagonal, as
our building block. We can think the values of this eigenfunction on the upper
main diagonal as the positive side of a battery and the lower main diagonal as the
negative side. Then at any step m ≥ 2, we can connect a chain of those batteries up
to the center square to get values of an eigenfunction on the upper main diagonal.
Then for each of the other directions, we can take minus values of the upper main
diagonal to get three independent eigenfunctions.

Therefore at step m≥2, the total number of initial eigenvalues of−1̂m is greater
than

2(4n− 3)m − 3+ 3(n− 1).

Next we investigate the continued eigenvalues at step m ≥ 2. Clearly for each
1≤ i ≤ n, any continued eigenvalue in the αi -series will have multiplicity 1. Hence
the total number of all eigenvalues in the αi -series for all i is n(2n− 1)m−1. (For
each i , there are 2n− 1 ways to extend at each step and there are n such series).

For the first 4/3-series (eigenvalues extended from 4/3 which appear as an initial
eigenvalue corresponding to −1̂1 with multiplicity 2(4n−3)−3= 8n−9), there
are n− 1 ways to extend 4/3 at step 2 and 2n− 1 ways to extend in the following
m− 2 steps, so the total number of eigenvalues in this series is

(n− 1)(2n− 1)m−2(2(4n− 3)− 3
)
.

Similarly, the second 4/3-series (eigenvalues extended from 4/3 which appears as
an initial eigenvalue corresponding to −1̂2 with multiplicity 2(4n− 3)2− 3)) has

(n− 1)(2n− 1)m−3(2(4n− 3)2− 3
)
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eigenvalues. In general, for the k-th 4/3-series (1 ≤ k ≤ m − 1), the total number
of eigenvalues in that series is

(n− 1)(2n− 1)m−1−k(2(4n− 3)k − 3
)
.

The total number of eigenvalues of this type at step m is

(n− 1)(2n− 1)m−2(2(4n− 3)− 3
)
+ (n− 1)(2n− 1)m−3(2(4n− 3)2− 3

)
+ · · ·+ (n− 1)(2n− 1)

(
2(4n− 3)m−2

− 3
)
+ (n− 1)

(
2(4n− 3)m−1

− 3
)
,

which can simplified to

(4n− 3)m − (4n− 3)(2n− 1)m−1

−
(
3(n− 1)(2n− 1)m−2

+ 3(n− 1)(2n− 1)m−3
+ · · ·+ 3(n− 1)

)
and this is the (least) total number of the continued eigenvalues in all the 4/3-series.

Notice that each βi can appear as an initial eigenvalue at any step with multi-
plicity (at least) 3. We fix i and consider the first βi -series (eigenvalues extended
from βi corresponding to−1̂1 with multiplicity 3). There are 2n−1 ways to extend
at each step, so the total number of eigenvalues in that series is 3(2n − 1)m−1.
Similarly, the second βi series (eigenvalues extended from βi which appears as
an initial eigenvalue corresponding to −1̂2 with multiplicity 3) has 3(2n− 1)m−2

eigenvalues. In general, for the k-th βi -series (1≤ k≤m−1) there are 3(2n−1)m−k

eigenvalues in that series. Summing for i from 1 to m − 1, the total number of
continued eigenvalues corresponding to each βi is

3(2n− 1)m−1
+ 3(2n− 1)m−2

+ · · ·+ 3(2n− 1).

So the number of continued eigenvalues for all βi -series is

(n− 1)
(
3(2n− 1)m−1

+ 3(2n− 1)m−2
+ · · ·+ 3(2n− 1)

)
.

Combining all results we have had above, we obtain that the total number of eigen-
values of −1̂m (m ≥ 2) is at least

2(4n− 3)m − 3+ 3(n− 1)︸ ︷︷ ︸
ini e-val of 4/3 and βi

+ n(2n− 1)m−1︸ ︷︷ ︸
ctd e-val from all αi at step 1

+ (4n− 3)m − (4n− 3)(2n− 1)m−1
−
(
3(n− 1)(2n− 1)m−2

+ · · ·+ 3(n− 1)
)︸ ︷︷ ︸

ctd e-val from 4/3

+ 3(n− 1)(2n− 1)m−1
+ 3(n− 1)(2n− 1)m−2

+ · · ·+ 3(n− 1)(2n− 1)︸ ︷︷ ︸
ctd e-val from all βi

An easy calculation shows that the above expression is 3(4n−3)m−3, which is the
same as #(Vm \ V0). Therefore we have found all Dirichlet eigenvalues for −1̂m .
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Therefore we have proved that α1, . . . , αn can only be initial eigenvalues at
step 1 with multiplicity 1. �

In the proof of the above theorem, we actually have found the multiplicities of
the Dirichlet eigenvalues of the Laplacian.

Corollary 15. The multiplicities of the Dirichlet eigenvalues are as follows:

M (D)
m (λv(αi )) = 1 for all 1≤ i ≤ n,

M (D)
m (ρlλv(β j )) = 3 for all l, v and 1≤ j ≤ n− 1,

M (D)
m (ρlλv(4/3)) =

{
2(4n− 3)l+1

− 3
0

if v1 = 1, 3, . . . , or 2n− 3,
otherwise.

In a similar vein, we can use a dimension counting argument to determine the
multiplicities of the Neumann eigenvalues, where the Neumann boundary condi-
tion means all boundary points satisfy the same type of eigenvalue equations as
other interior points. In particular, constant functions are Neumann eigenfunctions
corresponding to the eigenvalue zero, which can be extended in n ways since the
βi (i = 1, . . . , n− 1), roots of gn are forbidden eigenvalues.

Theorem 16. The multiplicities of the Neumann eigenvalues are as follows:

M (N )
m (ρlλv(αi )) = M (N )

m (ρlλv(β j ))= 0, for all i, j, l and v,

M (N )
m (ρlλv(0)) = 1, for all l and v,

M (N )
m (ρlλv(4/3)) =

{
2(4n− 3)l+1

+ 1
0

if v1 = 1, 3, . . . , or 2n− 3,
otherwise.

5.3. Ordering of the eigenvalues. In this section we shall prove a proposition
about the ordering on 3. To do this, we first define several operations on reduced
words.

We need the notion of parity of (reduced) words. A wordw=w j . . . w1 ∈W∼ is
said to be odd (respectively even) if w contains an odd (respectively even) number
of the odd symbols 1, 3, . . . , N − 1. For example, 1 and 203 are odd, while 0 and
1032 are even. The sign of w is

sgn(w) := (−1)w1+···+w j = (−1)(# of odd digits in w).

Clearly, w is even if and only if sgn(w)=+1.
We make the simple remark that φw is a strictly increasing (respectively strictly

decreasing) function on the interval [0, 4/3] if w is even (respectively odd) as the
spectral decimation function R is a polynomial.
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Fix w = w j . . . w1 ∈ W∼, where we choose w j > 0. The right shift of w is the
word w′ (or σ(w)) obtained by deleting w1:

w′ := w j · · ·w2 ∈W∼.

The most important operation on W∼ is the successor operator w → w+. For
w = w j · · ·w1, consider

s = w1+ sgn(w′) ∈6 ∪ {−1, N + 1}.

Then we define w+ ∈W∼ recursively by

w+ :=

{
w′ · s if s ∈6,

(w′)+ ·w1 if s 6∈6.

We proceed with some examples using n = 3 (and N = 4).

Example 1. Let w = 1230, so that w′ = 123 and w1 = 0. Then sgn(w′) = +1,
which tells us to increase w1 by 1, provided that the resulting digit s still lies in 6.
Since s = 1 ∈ 6, we end up with w+ = 1231. The next several successors are
1232, 1233 and 1234. We shall determine (1234)+ in Example 3.

Example 2. Let w= 1224, so that w′= 122 and w1= 4. This time sgn(w′)=−1,
so we shall decrease w1 by 1 if we can. The result is w+= 1223. The next several
successors are 1222, 1221 and 1220.

Example 3. What if s =w1+ sgn(w′) 6∈6 ? For instance, (1234)+ = (123)+ 4=
1224, whereas (1220)+ = (122)+ 0= 1210.

Example 4. Here we take n = 2. It should be clear that iterating + gives the
following list of immediate successors starting from 0:

0→ 1→ 2→ 12→ 11→ 10→ 20→ 21→ 22→ 122→ 121→ 120

→ 110→ 111→ 112→ 102→ 101→ 100→ 200→ 201→ 202→ 212

→ 211→ 210→ 220→ 221→ 222→ 1222

It is easy to see by induction that w 7→ w+ changes just one digit wi , say, of w
into wi ± 1. It follows that

sgn(w+)=−sgn(w).

Regarding length, we see that |w| ≤ |w+|. Also, inequality holds only when w =
N k
= N · · · N for some k ≥ 0; in that case, w+ = 1w and |w+| = |w| + 1.

For v, w ∈ W∼, we write v <+ w if w = (v+)··· +. For instance, in Example 4
above, we have

0<+ 1<+ 2<+ 12<+ · · ·<+ 1222.
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For two eigenvalues λ, µ ∈3, we write

λ≺ µ

if λ < µ and if there does not exist any ν ∈3 such that λ < ν < µ (that is, λ and
µ are consecutive eigenvalues.) Similarly we can define the converse �.

Recall that if i ∈ 6 and k ≥ 0, we write ik
= i · · · i (repeated k times) and if

w ∈ W∼, w1 will mean the last digit of w (except if w = 0, when we say that
w1 = 0).

The ordering of the eigenvalues is stated in the following theorem.

Theorem 17. (1) For any w ∈W∼ and µ, ν ∈ [0, 4/3],

λw(µ) < λw+(ν).

(2) Let w be even. Then

λw(α1)≺ · · · ≺ λw(αi )≺ λw(βi )≺ λw(αi+1)≺ · · · ≺ λw(αn)≺ λw(4/3).

If w is odd, then all occurrences of ≺ in the above are replaced with �.

(3) Let w be even. Then for any integers 0≤ i < k,

ρi λw·N k−i (4/3)≺ ρi+1 λw·N k−i−1(4/3).

If w is odd, then ≺ is replaced with �. In particular, for any even w where
w1 6= N , for any k 6= 0, we have ρk λw(4/3)≺ ρk λw+(4/3).

(4) For any odd w, let us write w = v · 0l , where v1 6= 0 and l ≥ 0. Define the
integer

p = dv1/2e ∈ {1, . . . , n− 1}.
Then

λw(α1)≺ ρ
l+1 λv′(βp)≺ λw+(α1).

Before proving the theorem we prove some simple facts.

Lemma 18. For any w ∈ W∼ and v ∈ W , λw is continuous and strictly monotone
on [0, 4/3] and λwv = ρ|v| λw ◦φv.

Proof. Since φ0 is strictly convex and thus by Lemma 12 in [Zhou 2008], λ0 is
convex, strictly increasing and continuous on [0, 4/3]. Then λw = ρ|w| λ0 ◦ φw is
strictly monotone being a composite of strictly monotone functions.

The fact that λwv = ρ|v| λw ◦φv is obvious. �

Now we are ready to prove Theorem 17.

Proof. (1) We prove the claim by induction on the length of w.
If |w| = 0, then w = 0 and w+ = 1. Since φ0(µ) < φ1(ν), it follows that

λ0(µ)= ρ λ0(φ0(µ)) < ρ λ0(φ1(ν))= λ1(ν).
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For |w|> 0 we shall treat two cases.

Case 1. s ∈ 6. If w′ is even, then s > w1 and hence φw1(µ) < φs(ν). As λw′ is
strictly increasing,

λw(µ)= ρ λw′(φw1(µ)) < ρ λw′(φs(ν))= λw+(ν).

Likewise, if w′ is odd, then s < w1 and φw1(µ) > φs(ν). Since λw′ is strictly
decreasing, the inequality shown above remains unchanged.

Case 2. s 6∈6. As |w′|< |w|, by induction we have λw′(φw1(µ))<λ(w′)+(φw1(ν)).
Therefore,

λw(µ)= ρ λw′(φw1(µ)) < ρ λ(w′)+(φw1(ν))= λw+(ν).

(2) This follows trivially, by the monotonicity of λw.
(3) By induction, it is enough to prove that

λwN k (4/3) < ρ λwN k−1(4/3).

The proof of this statement is easy:

λwN k (4/3)= ρ λwN k−1(φN (4/3))= ρ λwN k−1(αn) < ρ λwN k−1(4/3).

The case where w is odd is just as obvious.
(4) Given p = dv1/2e, as in the hypothesis, we write t = 2p− 1.

Claim. v ≤+ v′t ≤+ v+. (In fact, if v′ is even, then v′t = v, while if v′ is odd, then
v′t = v+.)

To see this, note that since v is odd, it follows that v′ is even if and only if v1 is
odd. If v′ is even then v1 = 2p− 1 and t = v1, so v′t = v. Alternatively, if v′ is
odd, then t = v1− 1 and v′t = v+.

Together with (1) this implies

λv(φ
(k)
0 (α1)) < λv(0)≤ λv′t(0)≤ λv+(0) < λv+(φ

(k)
0 (α1)).

Multiplying the terms above by ρk gives

ρk λv(φ
(k)
0 (α1)) < ρ

k λv′t(0) < ρk λv+(φ
(k)
0 (α1))

⇔ λv0k (α1) < ρ
k+1 λv′(φt(0)) < λv+0k (α1)

⇔ λw(α1) < ρ
k+1 λv′(βp) < λw+(α1)

where the last statement is due to the fact that βp = φ2p−1(0). �

For each even word w, write

w = uN k and w+ = v0l,
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where k, l ≥ 0 and u1 6= N , v1 6= 0. Set p = dv1/2e. Define sets 3(r)w as follows.
Let

3(1)w = {λw(αi ), λw(β j ) : i = 1, . . . , n; j = 1, . . . , n− 1},

3(3)w = {λw+(αi ), λw+(β j ) : i = 1, . . . , n; j = 1, . . . , n− 1}.

By Theorem 17 (2), the order of the elements in 3(1)w is

λw(αi ) < λw(βi ) < λw(αi+1),

and in 3(3)w is
λw+(αi ) > λw+(βi ) > λw+(αi+1),

for i = 1, . . . , n− 1. We also define

3(2)w = {ρ
iλuN k−i (4/3), ρ jλu+N k− j (4/3) : i, j = 1, . . . , k},

3(4)w = {ρ
l+1λv′(βp)}.

Since u is even, by Theorem 17 (3), the order of elements in 3(2)w is

ρiλuN k−i (4/3) < ρ jλuN k− j (4/3),

ρiλu+N k−i (4/3) > ρ jλu+N k− j (4/3)

for 0≤ i < j ≤ k, and
ρkλu(4/3) < ρkλu+(4/3).

Finally, we define the “w-subsequence”, 3w, for even words w as

3w =

4⋃
r=1

3(r)w .

For two sets S and T , we write S - T if the largest element in S is less than the
smallest element in T .

Theorem 17 implies that if i < j , then3(i)w -3
( j)
w and if u and v are even words

with u <+ v, then 3(i)u -3
( j)
v for all i and j .

Theorem 19. The set of Dirichlet eigenvalues of Laplacian on VSn is given by

3=
⋃
weven

3w.

Proof. Let w→ w− denote the inverse of w→ w+.
If µ= λv(αi ) or µ= λv(βi ), then µ ∈3(1)w or 3(3)w for some even word w.
If µ = ρk λv

(
4/3

)
and v is even, set w = vN k . If v is odd, take w = (vN k)−.

Then µ ∈3(2)w in either case.
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If µ= ρl+1 λv(βp) and v is even, choose t = 2p−1. If v is odd, choose t = 2p.
Set u = vt . In both cases, u is odd and p=dt/2e. Taking w= (u0p)−, we see that
µ ∈3w.

As these are all the possibilities for elements of3, the desired result follows. �

6. Weyl’s Theorem

In this section, we describe the asymptotic behavior of the Dirichlet spectrum.
Note that because of the existence of gaps, the Weyl counting ratio, ρ(x)/xd/2

with ρ(x) being the eigenvalue counting function, must drop by a constant factor
when x passes through a gap. Therefore it can not have a limit for any choice
of d . For VSn , as we have already completely describe the multiplicities and the
ordering of the eigenvalues, we can be more specific on the Weyl ratio.

We first consider a bottom part in the spectrum. There are 3(4n − 3)m − 3
eigenvalues corresponding to −1m for any m. If we extend those eigenvalues
by using φ0, then we will have the smallest eigenvalues for −1m+1 because the
largest of those continued eigenvalues is φ0(4/3) = γ1 < β1, the smallest initial
eigenvalue. Therefore, if we extend those 3(4n− 3)m − 3 eigenvalues by using φ0

for each m′ > m and pass to the limit, we will obtain the smallest 3(4n− 3)m − 3
eigenvalues for the Laplacian on VSn . Note that the largest of those eigenvalues
on VSn is xm := ρ

m−1λ0(4/3).
Define the Dirichlet eigenvalue counting function

π(x)= {λ : λ is a Dirichlet eigenvalue and λ≤ x}.

Recall that in the classical case, when the underlying space is a bounded domain
in Rd , then π(x) has a remarkable property shown by Weyl (see [Lapidus 1991]
and references therein):

π(x)= Cxd/2
+ o(xd/2).

In contrast, Shima [1996] proved the following theorem.

Theorem 20. Let deg R denote the degree of the spectral decimation function R.
If deg R < |S|< ρ, then

0< lim inf
λ→∞

π(λ)

λds/2
< lim sup

λ→∞

π(λ)

λds/2
<∞,(6-1)

where ds = 2(log |S|/ log ρ) and ρ is the Laplacian renormalization constant.

The number ds is called the spectral dimension and it is not necessarily the same
as the Hausdorff dimension. Indeed, in our problem,

ds = 2
log(4n− 3)

log(2n− 1)(4n− 3)
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while the Hausdorff dimension is log(4n− 3)/log(2n− 1).
Since π(xm)= 3(4n− 3)m − 3,

3(4n− 3)
(λ0(4/3))ds/2

= lim
m→∞

π(xm)

xds/2
m
≤ lim sup

x→∞

π(x)
xds/2

.

On the other hand, since the multiplicity of xm is 2(4n− 3)m − 3,

lim
x→x−m

π(x)= (4n− 3)m .

Hence

lim inf
x→∞

π(x)
xds/2

≤
(4n− 3)

(λ0(4/3))ds/2

and therefore limx→∞ π(x)/xds/2 does not exist. Moreover, given any x , choose m
such that x ∈ [xm−1, xm]. As xm/xm−1 = ρ,

π(xm−1)

(4n− 3)xds/2
m−1

≤
π(x)
xds/2

≤
(4n− 3)π(xm)

xds/2
m

.

Letting x→∞, we obtain an alternative proof of the inequalities (6-1) for VSn .

Acknowledgements

The author thanks Kai-Cheong Chan for many interesting and fruitful discussions
on this paper and other related work. He would also like to express his sincere
gratitude to Professor Kathryn Hare for her supervision and valuable suggestions
on this project.

References

[Adams et al. 2003] B. Adams, S. A. Smith, R. S. Strichartz, and A. Teplyaev, “The spectrum of
the Laplacian on the pentagasket”, pp. 1–24 in Fractals in Graz 2001, edited by P. Grabner and W.
Woess, Birkhäuser, Basel, 2003. MR 2006g:28017 Zbl 1037.31010

[Bajorin et al. 2008] N. Bajorin, T. Chen, A. Dagan, C. Emmons, M. Hussein, M. Khalil, P. Mody,
B. Steinhurst, and A. Teplyaev, “Vibration modes of 3n-gaskets and other fractals”, J. Phys. A 41:1
(2008), 015101, 21. MR 2450694 Zbl 05231786

[Barlow 1998] M. T. Barlow, “Diffusions on fractals”, pp. 1–121 in Lectures on probability theory
and statistics (Saint-Flour, 1995), edited by P. Bernard, Lecture Notes in Math. 1690, Springer,
Berlin, 1998. MR 2000a:60148 Zbl 0916.60069

[Drenning and Strichartz 2009] S. Drenning and R. Strichartz, “Spectral decimation on Hambly’s
homogeneous hierarchical gaskets”, Preprint, 2009.

[Fukushima and Shima 1992] M. Fukushima and T. Shima, “On a spectral analysis for the Sierpiński
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