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We prove that the ∂ and ∂̄ operators introduced by Gualtieri for a general-
ized complex structure coincide with the d̆∗ and ∂̆ operators introduced by
Alekseev and Xu for Evens–Lu–Weinstein modules of a Lie bialgebroid.

Introduction

Generalized complex structures [Hitchin 2003; Gualtieri 2003; Cavalcanti 2007]
have been extensively studied recently due to their close connection with mirror
symmetry. They include both symplectic and complex structures as extreme cases.
Gualtieri [2003; 2007] defined the ∂ and ∂ operators for any twisted generalized
complex structure in the same way that these operators are defined in complex
geometry. In fact, he proved that an H -twisted generalized complex structure J

determines an alternative grading of differential forms and a splitting d H
= ∂ + ∂ ,

where d H
= d−H∧ is the de Rham differential twisted by a closed three-form H .

A Lie bialgebroid, as introduced by Mackenzie and Xu [1994], is a pair of Lie
algebroids (A, A∗) satisfying some compatibility condition; see also [Kosmann-
Schwarzbach 1995]. They appear naturally in many places in Poisson geometry.
In [Alekseev and Xu 2001], two differential operators d̆∗ and ∂̆ were introduced
for Evens–Lu–Weinstein modules of a Lie bialgebroid, as follows.

We consider a pair of (real or complex) Lie algebroid structures on a vector
bundle A and its dual A∗, and we assume that the (real or complex) line bundle
L= (

∧top A∗⊗
∧topT ∗M)1/2 exists. Then L is a module over A∗, as discovered by

Evens, Lu and Weinstein [Evens et al. 1999]. The Lie algebroid structures of A∗

and A induce two natural differential operators d̆∗ :0(
∧k A⊗L)→0(

∧k+1 A⊗L)

and ∂̆ : 0(
∧k A⊗L)→ 0(

∧k−1 A⊗L); see Equations (2-1) through (2-7).
Since a generalized complex structure J induces a (complex) Lie bialgebroid

(L , L), where L and L are respectively the +i and −i eigenspaces of J, it is
tempting to investigate the relations between the operators ∂ , ∂ , d̆∗ and ∂̆ . In this
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note, we show that ∂ and ∂ essentially coincide with d̆∗ and ∂̆ respectively, under
some natural isomorphisms.

1. Courant algebroids and Lie bialgebroids

In this article, all vector bundles are complex vector bundles. Likewise, Lie alge-
broids are always complex Lie algebroids.

A (complex) Courant algebroid consists of a vector bundle π : E→ M , a non-
degenerate pseudometric 〈 · , · 〉 on the fibers of π , a bundle map ρ : E → TC M ,
called the anchor, and a C-bilinear operation ◦ on0(E) called the Dorfman bracket,
which for all f ∈ C∞(M,C) and z1, z2, z3 ∈ 0(E) satisfy the relations

z1 ◦ (z2 ◦ z3)= (z1 ◦ z2) ◦ z3+ z2 ◦ (z1 ◦ z3),(1-1)

ρ(z1 ◦ z2)= [ρ(z1), ρ(z2)],(1-2)

z1 ◦ f z2 = (ρ(x) f )z2+ f (z1 ◦ z2),(1-3)

z1 ◦ z2+ z2 ◦ z1 = 2D〈z1, z2〉,(1-4)

D f ◦ z1 = 0,(1-5)

ρ(z1)〈z2, z3〉 = 〈z1 ◦ z2, z〉+ 〈z2, z1 ◦ z3〉,(1-6)

where D :C∞(M,C)→0(E) is the C-linear map defined by 〈D f, z1〉=
1
2ρ(z1) f .

The symmetric part of the Dorfman bracket is given by (1-4). The Courant
bracket is defined as the skew-symmetric part Jz1, z2K= 1

2(z1 ◦ z2− z2 ◦ z1) of the
Dorfman bracket. Thus we have the relation z1 ◦ z2 = Jz1, z2K+D〈z1, z2〉.

The definition of a Courant algebroid can be rephrased using the Courant bracket
instead of the Dorfman bracket [Roytenberg 1999].

A Dirac structure is a smooth subbundle A→ M of the Courant algebroid E ; it
is maximally isotropic with respect to the pseudometric and its space of sections is
closed under (necessarily both) brackets. Thus a Dirac structure inherits a canonical
Lie algebroid structure [Liu et al. 1997].

Let A→ M be a vector bundle. Assume that A and its dual A∗ both carry a Lie
algebroid structure with anchor maps a : A→ TC M and a∗ : A∗→ TC M , brackets
on sections

0(A)⊗C 0(A)→ 0(A) : X ⊗ Y 7→ [X, Y ],

0(A∗)⊗C 0(A∗)→ 0(A∗) : θ ⊗ ξ 7→ [θ, ξ ]∗,

and differentials d : 0(
∧
• A∗)→ 0(

∧
•+1 A∗) and d∗ : 0(

∧
• A)→ 0(

∧
•+1 A).

By [Kosmann-Schwarzbach 1995; Mackenzie and Xu 2000; 1994], this pair
(A, A∗) of Lie algebroids is a Lie bialgebroid (or Manin triple) if d∗ is a derivation
of the Gerstenhaber algebra (0(

∧
• A),∧ , [ · , · ]) or, equivalently, if d is a deriva-

tion of the Gerstenhaber algebra (0(
∧
• A∗),∧ , [ · , · ]∗). The link between Courant

and Lie bialgebroids is as follows.
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Theorem 1.1 [Liu et al. 1997]. There is a one-to-one correspondence between Lie
bialgebroids and pairs of transversal Dirac structures in a Courant algebroid.

More precisely, if the pair (A, A∗) is a Lie bialgebroid, then the vector bundle
A⊕ A∗→ M , together with the pseudometric

(1-7) 〈X1+ ξ1, X2+ ξ2〉 =
1
2(ξ1(X2)+ ξ2(X1)),

the anchor map ρ = a + a∗ (whose dual is given through D f = d f + d∗ f for
f ∈ C∞(M,C)), and the Dorfman bracket

(1-8) (X1+ ξ1) ◦ (X2+ ξ2)=

([X1, X2] +Lξ1 X2− ιξ2(d∗X1))+ ([ξ1, ξ2]∗+LX1ξ2− ιX2(dξ1)),

is a Courant algebroid of which A and A∗ are transverse Dirac structures. It is
called the double of the Lie bialgebroid (A, A∗). Here X1 and X2 denote arbitrary
sections of A, and ξ1 and ξ2 arbitrary sections of A∗.

An important example is when A= TC M is the tangent bundle of a manifold M
and A∗ = T ∗

C
M takes the trivial Lie algebroid structure. Then T

C
M ⊕ T ∗

C
M has

the standard Courant algebroid structure. Severa and Weinstein [2001] observed
that the Dorfman bracket on T

C
M ⊕ T ∗

C
M can be twisted by a closed three-form

H ∈ Z3(M):

(x1+ η1) ◦H (x2+ η2)= (x1+ η1) ◦ (x2+ η2)+ ιx2 ιx1 H

= [x1, x2] +Lx1η2−Lx2η1+
1
2 d〈η1 |x2〉+ ιx2 ιx1 H.

And ◦H defines a Courant algebroid structure on T
C

M ⊕ T ∗
C

M , using the same
inner product and anchor. The corresponding Courant bracket is also twisted:

(1-9)

Jx1+ η1, x2+ η2KH

= Jx1+ η1, x2+ η2K+ ιx2 ιx1 H

= [x1, x2] +Lx1η2−Lx2η1+
1
2 d(〈η1 |x2〉− 〈η2 |x1〉)+ ιx2 ιx1 H.

2. Clifford modules and Dirac generating operators

Let V be a vector space of dimension r endowed with a nondegenerate symmetric
bilinear form 〈 · , · 〉. Its Clifford algebra C(V ) is defined as the quotient of the
tensor algebra

⊕r
k=0 V⊗r by the relations x⊗ y+ y⊗ x = 2〈x, y〉, with x, y ∈ V .

It is naturally an associative Z2-graded algebra. Up to isomorphisms, there exists a
unique irreducible module S of C(V ), called spin representation [Chevalley 1997].
The vectors of S are called spinors.

Example 2.1. Let W be a vector space of dimension r . We can endow V =W⊕W ∗

with the nondegenerate pairing defined in the same fashion as in Equation (1-7).
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The representation of C(V ) on S =
⊕r

k=0
∧k W defined by u · w = u ∧ w and

ξ ·w = ιξw, where u ∈ W , ξ ∈ W ∗ and w ∈ S, is the spin representation. Note
that S is Z-graded and thus also Z2-graded.

Now let π : E→ M be a vector bundle endowed with a nondegenerate pseudo-
metric 〈 · , · 〉 on its fibers, and let C(E)→ M be the associated bundle of Clifford
algebras. Assume there exists a smooth vector bundle S → M whose fiber Sm

over a point m ∈ M is the spin module of the Clifford algebra C(E)m . Assume
furthermore that S is Z2-graded, that is, S = S0

⊕ S1.
An operator O on 0(S) is called even (or of degree 0) if O(Si ) ⊂ Si and odd

(or of degree 1) if O(Si )⊂ Si+1. Here i ∈ Z2.

Example 2.2. If the vector bundle E decomposes as the direct sum A ⊕ A∗ of
two transverse Lagrangian subbundles as in Example 2.1, then S =

∧
A. The

multiplication by a function f ∈C∞(M,C) is an even operator on 0(S), while the
Clifford action of a section e ∈ 0(E) is an odd operator on 0(S).

If O1 and O2 are operators of degree d1 and d2 respectively, then their commu-
tator is the operator [O1, O2] = O1 ◦ O2− (−1)d1d2 O2 ◦ O1.

Definition 2.3 [Alekseev and Xu 2001]. A Dirac generating operator for (E, 〈 , 〉)
is an odd operator D on 0(S) satisfying the following properties:

(1) [D, f ] ∈ 0(E) for all f ∈C∞(M,C). This means that the operator [D, f ] is
the Clifford action of some section of E .

(2) [[D, z1], z2] ∈ 0(E) for all z1, z2 ∈ 0(E).

(3) The square of D is multiplication by some function on M , that is, D2 is in
C∞(M,C).

Note that “deriving operators” of [Kosmann-Schwarzbach 2005] do not require
assumption (3).

Theorem 2.4 [Alekseev and Xu 2001]. Let D be a Dirac generating operator for
a vector bundle π : E→M. Then there is a canonical Courant algebroid structure
on E. The anchor ρ : E→ T

C
M is defined by ρ(z) f = 2〈[D, f ], z〉 = [[D, f ], z],

while the Dorfman bracket reads z1 ◦ z2 = [[D, z1], z2].

We follow the same setup as in [Alekseev and Xu 2001; Chen and Stiénon 2009].
Let (A, [ · , · ], a) and (A∗, [ · , · ]∗, a∗) be a pair of Lie algebroids, where A

is of rank r and the base manifold M is of dimension m. Then the line bundle∧r A∗ ⊗
∧m T ∗

C
M is a module over the Lie algebroid A∗ [Evens et al. 1999]: A
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section α ∈ 0(A∗) acts on 0(
∧r A∗⊗

∧m T ∗
C

M) by

(2-1) ∇α(α1 ∧ · · · ∧αr ⊗µ)

=

r∑
i=1

(
α1 ∧ · · · ∧ [α, αi ]∗ ∧ · · · ∧αr ⊗µ

)
+α1 ∧ · · · ∧αr ⊗La∗(α)µ.

If it exists, the square root L= (
∧r A∗⊗

∧m T ∗
C

M)1/2 of this line bundle is also a
module over A∗. Here L is a (complex) vector bundle whose square, L2

=L⊗L,
is isomorphic to

∧r A∗⊗
∧m T ∗

C
M . The A∗-module structure of L is illustrated in

[Evens et al. 1999, Proposition 4.3].
One can thus define a differential operator

(2-2) d̆∗ : 0(
∧k A⊗L)→ 0(

∧k+1 A⊗L).

Similarly, (
∧r A⊗

∧m T ∗
C

M)1/2 is — provided it exists — a module over A. Hence
we obtain a differential operator

(2-3) 0(
∧k A∗⊗ (

∧r A⊗
∧m T ∗C M)1/2)→ 0(

∧k+1 A∗⊗ (
∧r A⊗

∧m T ∗C M)1/2).

But the isomorphisms of vector bundles

(2-4)
∧k A∗ ∼=

∧k A∗⊗
∧r−k A∗⊗

∧r−k A ∼=
∧r−k A⊗

∧r A∗

and

(2-5)
∧r A∗⊗ (

∧r A⊗
∧m T ∗C M)1/2 ∼= (

∧r A∗⊗
∧m T ∗C M)1/2

imply that

(2-6)
∧k A∗⊗(

∧r A⊗
∧m T ∗C M)1/2 ∼=

∧r−k A⊗
∧r A∗⊗(

∧r A⊗
∧m T ∗C M)1/2

∼=
∧r−k A⊗(

∧r A∗⊗
∧m T ∗C M)1/2.

Therefore, one ends up with a differential operator

(2-7) ∂̆ : 0(
∧k A⊗L)→ 0(

∧k−1 A⊗L).

Theorem 2.5 [Chen and Stiénon 2009]. The pair of Lie algebroids (A, A∗) is a
Lie bialgebroid if and only if D̆2

∈ C∞(M,C), that is, the square of the operator

D̆ = d̆∗+ ∂̆ : 0(
∧

A⊗L)→ 0(
∧

A⊗L)

is multiplication by some function f̆ ∈ C∞(M,C). Moreover D̆2
∗
= f̆ , where

D̆∗ = d̆ + ∂̆∗ is defined analogously to D̆ by exchanging the roles of A and A∗.
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3. Generalized complex geometry

In this section, we fix a real 2n-dimensional manifold M and denote the tangent and
cotangent bundle of M by T and T ∗, respectively. Let T

C
and T ∗

C
be respectively

the complexification of T and T ∗. The first vital ingredient in T
C
⊕T ∗

C
is the natural

pairing:

(3-1) 〈x1+ η1, x2+ η2〉 =
1
2(〈x1 |η2〉+ 〈x2 |η1〉) for all xi ∈ TC and ηi ∈ T ∗C .

Here on the right side, 〈x |η〉 is the natural pairing between T
C

and T ∗
C

.
Thus we have the Clifford algebra C(T

C
⊕T ∗

C
), which acts on the spinor bundle

M,
⊕2n

i=0
∧i T ∗

C
via (x + η) · ρ = ιxρ+ η∧ ρ for all ρ ∈M.

Introduce a C-linear map ( ·)T :M→M by (η1∧· · ·∧η j )
T
= η j ∧· · ·∧η1. The

Mukai pairing ( , ) :M×M→
∧2n(T ∗

C
) is defined by (χ, ω)= [χT

∧ω]2n , where
[ ]

2n indicates the top degree component of the product. Explicitly, if χ =
∑2n

i=0 χi

and ω =
∑2n

i=0 ωi , where χi , ωi ∈
∧i T ∗

C
, then

(χ, ω)=

2n∑
i=0

(−1)i(i−1)/2χi ∧ω2n−i .

For all χ,ω ∈M and φ ∈
∧2T ∗

C
, these properties are standard [Gualtieri 2003]:

(χ, ω)= (−1)n(ω, χ),(3-2)

(φ ∧χ,ω)+ (χ, φ ∧ω)= 0.(3-3)

Consider a real, closed 3-form H ∈ Z3(M) and the twisted differential operator
d H
= d + H ∧ ( · ) it induces.

Definition 3.1 [Gualtieri 2003; Cavalcanti 2006]. A twisted generalized complex
structure with respect to H is determined by any of the following three equivalent
objects:

(i) A real automorphism J of T⊕T ∗ that squares to−1, is orthogonal with respect
to the natural pairing (3-1), and has vanishing Nijenhuis tensor, meaning that
for all z1, z2 ∈ 0(T ⊕ T ∗),

N (z1, z2),−JJz1, Jz2KH + JJJz1, z2KH + JJz1, Jz2KH + Jz1, z2KH = 0.

Here J , KH is the twisted Courant bracket defined in (1-9).

(ii) A Dirac structure L ⊂ T
C
⊕ T ∗

C
that is twisted with respect to H and satisfies

L ∩ L = {0}.

(iii) A line subbundle N of M=
∧
•

(T ∗
C
) generated at each point by a form u, such

that L = {X ∈ T
C
⊕ T ∗

C
| X · u = 0} is maximally isotropic, (u, ū) 6= 0, and

d H u = e · u for some e ∈ 0(T ⊕ T ∗).
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The line bundle in (iii) is called the pure spinor line bundle corresponding to L .

Remark 3.2. See also [Alekseev and Xu 2001] for the relation between Dirac
structures and Dirac generating operators.

To generalize the usual ∂ and ∂ operators in complex geometry, Gualtieri [2003]
introduced ∂ and ∂ operators for any twisted generalized complex structure. We
recall its construction briefly below.

Let J be a twisted generalized complex structure, and let L ⊂ T
C
⊕ T ∗

C
be its

+i eigenspace. L is a twisted Dirac structure and satisfies L ∩ L = {0}. We will
regard L = L∗ by defining the canonical pairing between L and L by

(3-4) 〈X |θ〉 = 2〈X, θ〉 for all X ∈ L and θ ∈ L.

The coefficient 2 is due to the natural pairing; see Equation (3-1).
Set N0 = N and Nk =

∧k L · N for k = 1, . . . , 2n. Then N k = N2n−k and
specifically N2n = N is the pure spinor of L . We have a decomposition

M= N0⊕ N1⊕ · · ·⊕ N2n.

Gualtieri [2003] proves that one can decompose d H
= ∂ + ∂ . Here

∂ : 0(N•)→ 0(N•−1), ∂ : 0(N•)→ 0(N•+1)

(or 0(N •)→ 0(N •−1) ) are defined by

∂(nk), prNk−1
(d H nk), ∂(nk), prNk+1

(d H nk) for all nk ∈ 0(Nk).

Using the identification Nk = (
∧k L)⊗ N (see (4-5)), Gualtieri observed that ∂

is determined by the rule

∂(W ⊗ s)= (dL W )⊗ s+ (−1)k W ⊗ d H s,

where W ∈ 0(
∧k L) and s is a local nonvanishing section of N . It is clear from

this description that N must be a module of the Lie algebroid L . Moreover, under
the additional assumption that N admits a global nowhere vanishing section s,
Gualtieri showed that d H s = ∂s = e · s, where e ∈ C∞(L), and e actually defines
a cohomology class in the Lie algebroid cohomology H 1(L).

4. The main theorem

Given a generalized complex structure J as above, it is clear that (L , L) is a Lie
bialgebroid (regarding L∗ = L by (3-4)). We prove in Theorem 4.3 that the oper-
ators d̆∗ and ∂̆ for this particular situation are essentially ∂ and ∂ .

We continue the notations in Section 3. The following lemma is easy.
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Lemma 4.1. For all W ∈
∧j L and X ∈

∧i L , and for i ≤ j ≤ 2n, one has

(4-1) X ·W · u = (−1)i(i−1)/2(ιX W ) · u.

Here ι denotes the generalized interior product defined by

(4-2) 〈ιX W |Y 〉 = 〈W |X ∧ Y 〉 for all Y ∈
∧j−i L .

Let u be a nowhere vanishing local section of N . Assume that V ∈ 0(
∧2n L)

satisfies V · u = u. Hence V · u = u and by (4-1),

(4-3)

〈V |V 〉u = (ιV V )u = (−1)nV · V · u = (−1)nu,

〈V |V 〉 = (−1)n.

Here 〈V |V 〉 is the natural pairing. Therefore the dual section of V is given by
�= (−1)nV ∈ 0(

∧2n L).

Proposition 4.2 [Gualtieri 2003, Proposition 2.22]; also [Chevalley 1997, III.3.2].
The line bundle L= (

∧2n L⊗
∧2nT ∗

C
)1/2 and N2n = N are canonically isomorphic.

The isomorphism can be explicitly described by

(4-4)
N ⊗ N → L2

=
∧2n L ⊗

∧2nT ∗C ,

ω1⊗ω2 7→�⊗ (V ·ω1, ω2).

This isomorphism does not depend on the choice of u and V .

From now on we will identify N with (
∧2n L ⊗

∧2nT ∗
C
)1/2. As a consequence

of the L-module structure on the latter, we have two differential operators (see
Equations (2-2) and (2-7))

d̆∗ : (
∧
•L)⊗ N → (

∧
•+1L)⊗ N and ∂̆ : (

∧
•L)⊗ N → (

∧
•−1L)⊗ N .

It is also shown in [Gualtieri 2003] that (
∧k L)⊗N ∼= Nk and (

∧k L)⊗N ∼= N k

respectively by the two isomorphisms

I : (
∧k L)⊗ N → Nk, W ⊗ p 7→W · p for all W ∈

∧k L, p ∈ N ,(4-5)

Ī : (
∧k L)⊗ N → N k, X ⊗ p 7→ X · p for all X ∈

∧k L , p ∈ N .(4-6)

We now give our main theorem, whose proof is in Section 6.

Theorem 4.3. The following two diagrams are commutative.

(
∧k L)⊗ N

d̆∗ //

I
��

(
∧k+1L)⊗ N

I
��

N k
∂

// N k+1

(4-7)
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(
∧k L)⊗ N ∂̆ //

Ī
��

(
∧k−1L)⊗ N

Ī
��

N k
∂

// N k−1

(4-8)

In retrospect, the existence of such a result has likely been suggested by earlier
works of Gualtieri. In [2007], he constructed an L-module structure on N and an
L-module structure on N , respectively by

∇X p , X · d H p = X · ∂ p,(4-9)

∇W p ,W · d H p =W · ∂ p,(4-10)

for all p ∈ 0(N ), X ∈ 0(L) and W ∈ 0(L).
Here is a special situation of k = 0 in diagram (4-7):

Proposition 4.4. The above L-module structure defined by (4-10) coincides with
the L-module structure defined by (2-1), under the isomorphism (4-4).

5. Modular cocycles of Lie algebroids

In this section we establish a list of important identities valid in any Lie bialgebroid
(A, A∗) and generalized complex structure; we use these in Section 6 to prove the
statements of Section 4.

We continue the setup of Section 2: Let (A, [ · , · ], a) and (A∗, [ · , · ]∗, a∗) be a
pair of rank-r Lie algebroids over dimension-m base manifold M .

Assume there exists a volume form s ∈ 0(
∧m T ∗

C
M) and a nowhere vanishing

section �∈0(
∧r A∗), so that L is the trivial line bundle over M . Let V ∈0(

∧r A)
be the section dual to �, that is, 〈�|V 〉 = 1. These induce bundle isomorphisms

�] :
∧k A →

∧r−k A∗ : X 7→ ιX�,(5-1)

V ]
:
∧k A∗→

∧r−k A : ξ 7→ ιξV .(5-2)

Here we adopt similar conventions as that of Equation (4-2). These two operations
are essentially inverse to each other:

(V ]
◦�])(X)= (−1)k(r−1)X for all X ∈

∧k A;(5-3)

(�] ◦ V ])(ϕ)= (−1)k(r−1)ϕ for all ϕ ∈
∧k A∗.(5-4)



62 ZHUO CHEN

Consider the operator d dual to d with respect to V ], as defined by the diagram

(5-5)

0(
∧k A∗) V ]

//

−(−1)kd
��

0(
∧r−k A)

d
��

0(
∧k+1 A∗)

V ]

// 0(
∧r−k−1 A),

or by the relation

(5-6) −V ]dα = (−1)kdV ]α for all α ∈ 0(
∧k A∗),

which, due to (5-3) and (5-4), can be rewritten as

(5-7) �]dβ = (−1)ld�]β for all β ∈ 0(
∧l A).

The operator d is a Batalin–Vilkovisky operator for the Lie algebroid A; see
[Kosmann-Schwarzbach 2000; Koszul 1985; Xu 1999; Michéa and Novitchkov
2005]. Similarly, we have the operator d∗ dual to d∗, as defined by

0(
∧r−k A)

(−1)kd∗
��

0(
∧k A∗)V ]

oo

d∗
��

0(
∧r−k+1 A) 0(

∧k−1 A∗),
V ]

oo

or by the relation

d∗V ]α = (−1)k V ]d∗α for all α ∈ 0(
∧k A∗).

According to [Evens et al. 1999], there exists a unique X0 ∈ 0(A) such that

(5-8) Lθ (�⊗s)= (Lθ�)⊗s+�⊗(La∗(θ)s)=〈X0 |θ〉�⊗s for all θ ∈0(A∗).

Similarly, there exists a unique ξ0 ∈ 0(A∗) such that

(5-9) LX (s⊗V )= (La(X)s)⊗V+s⊗(LX V )=〈ξ0 |X〉s⊗V for all X ∈0(A).

These sections X0 and ξ0 are called modular cocycles, and their cohomology
classes are called modular classes [Evens et al. 1999].

A simple computation yields the following formulas, which are also given in
[Alekseev and Xu 2001].

Proposition 5.1. With the above notations, the differential operators defined by
Equations (2-2) and (2-7) are given respectively by

(5-10) d̆∗(X ⊗ l)= (d∗X + 1
2 X0 ∧ X)⊗ l
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and

(5-11) ∂̆(X ⊗ l)= (−dX + 1
2 ιξ0 X)⊗ l

for all X ∈ 0(∧A) and l ∈ 0(L).

Hence the operator D̆ in Theorem 2.5 reads

D̆ = d̆∗+ ∂̆ = d∗− d+ 1
2(X0 ∧ · + ιξ0).

This construction of Dirac generating operators using modular cocycles appeared
in [Alekseev and Xu 2001] and [Chen and Stiénon 2009].

Now we consider a twisted generalized complex structure J on a 2n-dimensional
manifold M and let L and L be respectively the +i and −i eigenspace of J. Again
we assume that u is a nowhere vanishing local section of N , the pure spinor bundle
of L .

Lemma 5.2 [Gualtieri 2007]. There exists some e = x + η ∈ 0(L) such that

d H u = ∂u = du+ H ∧ u = e · u = ιx u+ η∧ u,(5-12)

d H u = ∂u = du+ H ∧ u = e · u = ιx u+ η∧ u.(5-13)

The main result in this section is the following.

Proposition 5.3. Let V ∈ 0(
∧2n L) such that V ·u = u. Then the modular cocycle

of L with respect to the top form V and the volume form s = (u, u) is 2e, where
e ∈ 0(L) is given by Lemma 5.2.

Similarly, the modular cocycle of L with respect to � = (−1)nV ∈ 0(
∧2n L)

and s is 2e.

Before the proof, we need a couple of identities and lemmas. Since L is a Lie
algebroid and L∗ = L , we have the differential

dL : 0(
∧
•L)→ 0(

∧
•+1L).

We also have the equality

(5-14)

∂(W · u)= (dL W ) · u+ (−1)k W · ∂u

= (dL W ) · u+ (−1)k(W ∧ e) · u

= (dL W + e∧W ) · u for all W ∈ 0(
∧k L),

which encodes the L-module structure on N defined by Equation (4-9).
Similarly, one has

(5-15)

∂(X · u)= (dL X) · u+ (−1)i X · ∂u

= (dL X + e∧ X) · u for all X ∈ 0(
∧i L).
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Lemma 5.4. For any X = a+ ζ ∈ 0(L), we have

(LX V ) · u = ∂(X · u)−〈e |X〉u,(5-16)

Lau = 〈e |X〉u− (dζ + ιa H)∧ u,(5-17)

Lau = ∂(X · u)+ (dL X) · u− (dζ + ιa H)∧ u.(5-18)

Proof. A basic fact is that

(5-19) 0= X · u = ιau+ ζ ∧ u

for any X = a+ ζ ∈ 0(L). Hence

∂(X · u)= ∂(X · V · u)= ∂((ιX V ) · u)

= (dL ιX V ) · u− (ιX V ∧ e) · u (by (5-14))

= (dL ιX V + ιX dL V ) · u+ (〈e |X〉V ) · u

= (LX V ) · u+〈e |X〉u.

This proves (5-16). For (5-17), we have

Lau = ιadu+ dιau

= ιa(ιx u+ η∧ u− H ∧ u)− d(ζ ∧ u) (by (5-12) and (5-19))

=−ιx ιau+〈a |η〉u− η∧ ιau− ιa H ∧ u+ H ∧ ιau− dζ ∧ u+ ζ ∧ du

= ιx(ζ ∧ u)+〈a |η〉u+ (η− H)∧ (ζ ∧ u)

− ιa H ∧ u− dζ ∧ u+ ζ ∧ (ιx u+ η∧ u− H ∧ u) (by (5-12) and (5-14))

= (〈x |ζ 〉+ 〈a |η〉)u− ιa H ∧ u− dζ ∧ u.

To prove (5-18), we observe that, on one hand

d H (X · u)= ∂(X · u)+ ∂(X · u)

= ∂(X · u)+ (dL X) · u− (X ∧ e) · u (by (5-15)).

On the other hand, we have

d H (X ·u)= d(ιau+ ζ ∧u)+ H ∧ (X ·u)

= dιau+dζ ∧ u− ζ ∧ du+ H ∧ (X ·u)

= (dιau+ ιadu)+dζ ∧ u− (ιa+ ζ ∧ )du+ H ∧ (X ·u)

= Lau+ dζ ∧u− X · (e ·u− H ∧ u)+ H ∧ (X ·u) (by (5-13))

= Lau+ dζ ∧u− (X ∧ e) ·u+ X · (H ∧ u)+ H ∧ (X ·u)

= Lau+ dζ ∧u− (X ∧ e) ·u+ (ιa+ ζ ∧ )(H ∧ u)+ H ∧ (ιau+ ζ ∧ u)

= Lau+ dζ ∧u− (X ∧ e) ·u+ (ιa H)∧ u. �
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Lemma 5.5 [Cavalcanti 2006]. The Mukai pairing vanishes in Ni × Nk , unless
i + k = 2n, in which case it is nondegenerate.

Proof of Proposition 5.3. For an X = a+ ζ ∈ 0(L), we assume that ∂(X · u)= f u
for some function f ∈C∞(M,C). Then (5-16) implies that LX V = ( f −〈e |X〉)V .
Since the paring between V and V is a constant (see (4-3)),

(5-20) LX V = (〈e |X〉− f )V .

According to (5-17) and (5-18), we also have

LρL (X)s = La(u, u)= (Lau, u)+ (u,Lau)

= (〈e |X〉u− (dζ + ιa H)∧u, u)+ (u, f u+ (dL X) ·u− (dζ + ιa H)∧u)

= (〈e |X〉+ f )(u, u)= (〈e |X〉+ f )s.

In the last step, we have applied (3-3) and Lemma 5.5. In turn, we get

LX V ⊗ s+ V ⊗LρL (X)s = 2〈e |X〉V ⊗ s.

This proves the first claim. By symmetry, we also have

LW V ⊗ s̄+ V ⊗LρL (W )s̄ = 2〈e |W 〉V ⊗ s̄

for all W ∈ 0(L). By (3-2), we know s̄ = (u, u)= (−1)n(u, u)= (−1)ns. Thus

LW�⊗ s+�⊗LρL (W )s = 2〈e |W 〉�⊗ s,

which implies that 2e is the modular cocycle of L with respect to � and s. �

6. Proof of the main theorem

Proof of Proposition 4.4. N has an induced L-module structure arising from the
L-module L; see (2-1). According to the second statement of Proposition 5.3, we
know that this module structure is determined by the equation

LW u = 〈e |W 〉u for all W ∈ 0(L).

This coincides with the standard L-module structure defined by (4-10) because

W · ∂u =W · e · u = 〈e |W 〉u,

by Lemma 4.1. �

Proof of Theorem 4.3. By Proposition 5.3 and Equations (5-10) and (5-11), we
conclude that

d̆∗(X ⊗ u)= (dL X + e∧ X)⊗ u,

∂̆(X ⊗ u)= (−dX + ιe X)⊗ u

for all X ∈ 0(
∧i L) .
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Comparing with the expression for ∂ in (5-15), we immediately know that dia-
gram (4-7) is commutative. To prove the commutativity of diagram (4-8), it suffices
to prove that

(6-1) ∂(X · u)= (−dX + ιe X) · u for all X ∈ 0(
∧i L).

In fact, by (5-14),

left side of (6-1) = ∂(X · V · u)= (−1)i(i−1)/2∂((ιX V ) · u)

= (−1)i(i−1)/2 (dL ιX V + e∧ ιX V ) · u.

We also have

(ιe X) · u = e · X · V · u = (−1)i(i−1)/2 e · (ιX V ) · u = (−1)i(i−1)/2 (e∧ ιX V ) · u.

By (5-3) and (5-7),

dX = (−1)(i−1)(2n−1)V ]�]dX

= (−1)(i−1)(2n−1)+i V ]dL�
]X =−V ]dL�

]X.

Hence

−(dX) · u = (V ]dL�
]X) · u

= (−1)(2n−i+1)(2n−i)/2(dL ιX�) · V · u = (−1)i(i−1)/2(dL ιX V ) · u.

This proves (6-1), and the proof of Theorem 4.3 is thus completed. �

7. Some corollaries

The first obvious result is that, by the isomorphisms∧k L ⊗L∼= (
∧k L) · N = N k = N2n−k,

the Dirac generating operator constructed by Theorem 2.5 for E = L⊕L is exactly

D̆ = d̆∗+ d̆ = ∂ + ∂ = d H ,

and specifically f̆ = D̆2
= 0.

In Section 5, we defined for any Lie bialgebroid (A, A∗) a pair of operators
d∗ and d on 0(

∧
A), and similarly d and d∗ on 0(

∧
A∗). Let D = d∗ + d and

D∗ = d + d∗. Their squares yield the pair of Laplacian operators

1= D2
= d∗d+ dd∗ : 0(

∧k A)→ 0(
∧k A),(7-1)

1∗ = D2
∗
= dd∗+ d∗d : 0(

∧k A∗)→ 0(
∧k A∗).(7-2)

See [Alekseev and Xu 2001].
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Theorem 7.1 [Chen and Stiénon 2009, Theorem 3.4]. If (A, A∗) is a Lie bialge-
broid, then

1= 1
2(LX0 +Lξ0) : 0(

∧
A)→ 0(

∧
A),

1∗ =
1
2(LX0 +Lξ0) : 0(

∧
A∗)→ 0(

∧
A∗),

where X0 and ξ0 are modular cocycles defined by (5-8) and (5-9).

As an immediate corollary, we have:

Corollary 7.2. Let (L , L) be the Lie bialgebroid coming from a twisted general-
ized complex structure J. The Laplacian operators 1 and 1∗ defined by (7-1) and
(7-2) are given by

1 f =1∗ f = 1
2 prT (e+ e)( f ) for all f ∈ C∞(M,C),

1X = (e+ 1
2 e) ◦H X − i

2 J(e ◦H X) for all X ∈ 0(L),

1∗W = (e+ 1
2 e) ◦H W + i

2 J(e ◦H W ) for all W ∈ 0(L).

Proof. For e ∈ 0(L) and e ∈ 0(L), the Lie derivations Le and Le on 0(L) are
given by

Le X = prL(e ◦H X) and Le = e ◦H X for all X ∈ 0(L).

The projections of T
C
⊕ T ∗

C
to L and L are given respectively by

prL(z)=
1
2(z− iJz) and prL(z)=

1
2(z+ iJz) for all z ∈ TC⊕ T ∗C .

The claim then follows directly from Theorem 7.1. �

It is well known [Mackenzie and Xu 1994] that, if a and a∗ denote the anchor
maps of a Lie bialgebroid (A, A∗), the bundle map

(7-3) π ] = a ◦ (a∗)∗ : T ∗C M→ TC M

defines a (complex) Poisson structure on M .
In particular, for the Lie bialgebroid (L , L) coming from the twisted generalized

complex structure J, the map−iπ is a real Poisson structure. In fact, up to a factor
of 2, it is given by [Barton and Stiénon 2008; Gualtieri 2007]

(7-4) P(ξ, η)= 〈Jξ, η〉.

Let us briefly recall the definition of the modular vector field of a Poisson
manifold (M, π) from [Weinstein 1997]. Let ω ∈ �top(M) be a volume form.
The modular vector field with respect to ω is the derivation Xω of the algebra of
functions C∞(M) characterized by

(7-5) Lπ](d f )ω = Xω( f )ω.



68 ZHUO CHEN

For the Poisson structure induced from a Lie bialgebroid, the relation between
modular cocycles and modular vector fields is as follows.

Lemma 7.3 [Chen and Stiénon 2009, Corollary 3.8]. Suppose M is an orientable
manifold with volume form s ∈�top(M), and let (A, A∗) be a real Lie bialgebroid
over M with associated Poisson bivector π defined by (7-3). Then the modular
vector field of the Poisson manifold (M, π) with respect to s is

(7-6) Xs =
1
2(a∗(ξ0)− a(X0)),

where ξ0 and X0 are modular cocycles defined by (5-8) and (5-9) (choosing arbi-
trary V and �).

As an immediate consequence, we obtain [Gualtieri 2007, Proposition 3.27].

Corollary 7.4. The modular vector field of the Poisson structure P defined in (7-4)
is given by i

2 prTC
(e− e) with respect to the volume form s = (u, u).
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