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We study the ∂̄b-Neumann problem for domains � contained in a strictly
pseudoconvex manifold M2n+1 whose boundaries are noncharacteristic and
have defining functions depending solely on the real and imaginary parts of
a single CR function w. When the Kohn Laplacian is a priori known to have
closed range in L2, we prove sharp regularity and estimates for solutions.
We establish a condition on the boundary ∂� that is sufficient for �b to be
Fredholm on L2

(0,q)(�) and show that this condition always holds when M
is embedded as a hypersurface in Cn+1. We present examples where the
inhomogeneous ∂̄b equation can always be solved in C∞(�) on ( p, q)-forms
with 1≤ q ≤ n− 2.

1. Introduction

In this paper we explore the boundary regularity of solutions to the ∂b-Neumann
problem on compact domains inside strictly pseudoconvex pseudohermitian man-
ifolds. We shall require that our domain � be noncharacteristic and satisfy the
following condition:

Condition (A1). � possesses a defining function % depending upon the real and
imaginary parts of a particular CR function w.

The defining function part of this condition is typical for most discussions of
solvability for either the Kohn Laplacian �b or the ∂b-complex on domains in CR
manifolds. The study of the ∂b-Neumann problem started with Kuranishi [1982a;
1982b; 1982c], who established existence for a weighted Neumann problem on
small balls, as part of his study of the embeddability of strictly pseudoconvex CR
structures. More recently, Shaw has established unweighted L2-existence results
for small sets of CR manifolds embedded in Cn whose defining function satisfies
(A1) and is convex in w; see [Chen and Shaw 2001; Shaw 1991]. With the added

MSC2000: primary 32V10, 32V20, 32V40, 32W10; secondary 35H20.
Keywords: CR manifold, Kohn Laplacian, subelliptic, boundary regularity, tangential

Cauchy–Riemann equation.
This work was done while the author was a Visiting Assistant Professor at the University of
Rochester.

71

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2009.242-1


72 ROBERT K. HLADKY

simplifying condition that the boundary has no characteristic points, Diaz [1991]
has refined the techniques first employed by Kuranishi. Diaz established that under
the assumption of particular pointwise curvature bounds, L2 solutions exist with
exact Sobolev regularity for a problem closely related to the ∂b-Neumann prob-
lem. His solutions are only guaranteed to meet the second Neumann boundary
condition. Exact regularity refers to estimates of the type ‖ϕ‖H k ≤c ‖�bϕ‖H k .
Diaz was interested in the tangential Cauchy–Riemann equations, and his results
are sufficient to show the existence of smooth solutions. However, in general the
solutions exhibit a loss of Sobolev regularity.

The analysis of the ∂b-Neumann problem is intricate since the operator �b is
only subelliptic rather than elliptic. In addition the boundary conditions for the
Neumann problem are noncoercive in that the interior subelliptic estimates do not
extend to the boundary of the domain �. The presence of characteristic points
on the boundary also complicates L2 arguments enormously — the dimension of
the horizontal space tangent to the boundary jumps. Both Kuranishi’s and Diaz’s
argument for regularity involved the use of a subelliptic gain in directions tangent
to the foliation by level sets of w.

Improvements on these results were obtained by the author in some special
cases. Existence and sharp regularity were proved in [Hladky 2006a] assuming
Condition (A1) and that the level sets of w were all CR diffeomorphic to the same
compact normal pseudohermitian manifold. This work was extended in [2006b]
to include the homogeneous unit ball in the Heisenberg group. Additionally, some
new negative results were obtained. The Kohn Laplacian can have infinite dimen-
sional kernel, its partial inverse is noncompact, and the Kohn Laplacian need not
be hypoelliptic.

On compact manifolds, however, the Kohn Laplacian is well understood. In
[1974], Folland and Stein introduced a new class of function spaces Sk and proved
sharp estimates for the Kohn Laplacian in terms of these. The author’s previous
work involved decomposing the operator �b into pieces tangential and transverse
to the foliation. Then it was possible to use global estimates on the compact leaves
of the foliation and local elliptic estimates in the transverse directions to obtain
sharp regularity and existence results.

In this paper, we shall extend the results of the first author’s previous work to
more general spaces. Namely, we shall establish sharp regularity for any non-
characteristic domain satisfying (A1) on which �b has closed range on L2. In
particular, this means that our results will apply to the cases studied in [Shaw 1991]
or [Diaz 1991]. The lack of uniformity of the foliating leaves is the main issue with
the generalization. Especially note that there may be jumps in the cohomology of
the leaves, which complicates estimates enormously. Additionally, this lack of uni-
formity means that we cannot decompose �b into elliptic operators on hyperbolic
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space as in [Hladky 2006a; 2006b], so instead we employ the technique of elliptic
regularization. The key step in establishing the required a priori estimates is to
adapt the interpolation techniques of [Shaw and Wang 2008] to work simultane-
ously on all leaves.

For technical reasons, the regularity results for the Kohn Laplacian will require
an extra condition.

Condition (A2). Near the boundary ∂�, Hww is constant on leaves of the foliation
by w.

Here Hw is the pseudo-Hamiltonian of w with respect to the pseudohermitian
form η defined in Section 3. This condition is nongeneric, but if � has noncharac-
teristic boundary, there is a guaranteed pseudohermitian form on M such that (A2)
holds.

Here is our main theorem:

Theorem A. Let � be a smoothly bounded domain in a strictly pseudoconvex
pseudohermitian manifold (M, η) of dimension 2n + 1 with n ≥ 3 such that �
has noncharacteristic boundary and (�,w, η) satisfies (A1) and (A2). Let 1 ≤
q ≤ n − 2. If the Kohn Laplacian on � can be shown to have closed range as an
unbounded operator on L2

(0,q)(�), then following holds:
For any (0, q)-form f , there exists a unique solution u ⊥ Ker(�b) to �bu = f

if and only if f⊥Ker(�b). Furthermore if f ∈ Sk , then u ∈ Sk;2 and there is a
uniform estimate

‖u‖k;2≤c ‖ f ‖k .

Alternatively phrased, Range(�b)= Ker(�b)
⊥ and for all k

�b : Sk;2
∩Ker(�b)

⊥
∩Dom(�b)→ Ker(�b)

⊥
∩ Sk

is an isomorphism.

Section 8 gives precise definitions of the spaces and norms used here, but we
mention now that this theorem encodes exact regularity of solutions in the Folland–
Stein spaces in all directions. Furthermore we obtain a full gain of two Folland–
Stein derivatives for all directions in the interior and in directions tangent to the
foliation at the boundary. In particular, hypoellipticity at the boundary for the
canonical solution to �b is implied.

An important application of the ∂b-Neumann problem is to solving the inhomo-
geneous tangential Cauchy–Riemann equation. Fortunately, in this instance we
can partially remove condition (A2). Our main theorem yields an existence and
regularity theory for this problem. Our result is as follows:

Theorem B. Let � be a smoothly bounded domain in a strictly pseudoconvex
pseudohermitian manifold (M, η) of dimension 2n + 1 with n ≥ 3 such that �
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has noncharacteristic boundary and (�,w, η) satisfies (A1). Then when the Kohn
Laplacian is known to have closed range, the system

∂bϕ = ς, ∂bς = 0

is solvable for ϕ ∈ L2(�) if and only if ς ⊥Ker(�b). Furthermore there is a closed
complement L to Ker(∂b) in L2(�) such that if ς ∈ Sk , then ϕ can be uniquely
chosen to lie within Sk;1

∩ L and there is a uniform estimate

‖ϕ‖k;1≤c ‖ς‖k .

Equivalently, for k ≥ 0,

∂b : L ∩ Sk;1
→ Ker(∂b)∩Ker(�b)

⊥

is an isomorphism.
If (A2) also holds, then we may choose L = Ker(∂b)

⊥.

Again the precise definition of the spaces involved is put off until Section 8.
However we note that this encodes exact regularity in the weighted Folland–Stein
spaces with a slight gain in directions tangential to the foliation. This is sufficient
to establish solutions globally smooth up the boundary when ς is itself smooth.

Considering the conditions of Theorem A, it becomes important to understand
when the Kohn Laplacian has closed range as an unbounded operator on L2. We
have a partial answer to this question:

Theorem C. If 1 ≤ q ≤ n− 2, (�, η,w) satisfies (A1), � has noncharacteristic
boundary, and all boundary leaves of the foliation by w have zero Kohn–Rossi co-
homology in degree (0, q), then�b is a Fredholm operator on L2(�). Furthermore
if (A2) holds, then �b is hypoelliptic up to the boundary.

We can combine this with the following known result.

Theorem 1.1. If M is a compact strictly pseudoconvex (2n−1)-dimensional mani-
fold with n≥ 3 such that M is embedded in Cn or Cn+1, then M has no Kohn–Rossi
cohomology in degrees (0, q) for 1≤ q ≤ n− 2.

For the Cn case, pseudoconvexity is sufficient and the result is easily derived
from [Chen and Shaw 2001, Theorem 9.4.2]. For the other case, [Harvey and
Lawson 1975] shows that M bounds a variety in Cn+1 with isolated singular points.
By dimension count these singularities are of hypersurface type. Yau [1981] then
computed the Kohn–Rossi cohomology explicitly in terms of the moduli spaces
of the singularities, in particular showing that it vanishes in degrees (0, q) with
1≤ q ≤ n− 2.

As a corollary of these results, we establish the following theorem:
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Theorem D. If M is a strictly pseudoconvex hypersurface in Cn+1 with n ≥ 3 and
� is a smooth compact domain with noncharacteristic boundary satisfying (A1),
then �b is a Fredholm operator on L2

(p,q)(�) for 1≤ q ≤ n− 2.

However, Theorem B is of greatest practical use in circumstances when �b is
not only Fredholm but actually injective. Then we have a very simple criteria to
check for solvability of ∂b. We can combine our results with those of [Shaw 1991]:

Theorem E. Let M be a strictly pseudoconvex pseudohermitian manifold embed-
ded as a hypersurface in Cn+1 with defining function r . Let �= M ∩ {% < 0} be a
bounded domain in M with smooth, strictly convex defining function %= %(z1, z̄1).
Suppose also that 1 ≤ q ≤ n − 2 and dr ∧ dz1

∧ dz̄1
6= 0 on ∂� (that is, �

has noncharacteristic boundary). Then for any (p, q)-form ϕ ∈ C∞(�) such that
∂bϕ = 0, there exists a (p, q − 1)-form u ∈ C∞(�) such that ∂bu = ϕ.

2. Basic definitions

A pseudohermitian manifold is a triple (M, η, J ), where M is a smooth, (2n+1)-
dimensional real manifold, η is a nonvanishing 1-form on M , and J : H → H is
a smooth bundle map on H := ker η with J 2

=−1 and the integrability condition
that oT ′ and oT ′′, the +i and −i eigenspaces of J in the complexification of H
respectively, are involutive. Thus a pseudohermitian manifold can be considered
as a codimension 1 CR manifold together with a fixed, global contact form.

The Levi form for M is the bilinear form (X, Y ) 7→ dη(X, JY ) on H . The
structure is said to be strictly pseudoconvex if the Levi form is positive definite
everywhere. In this case, there is a unique global vector field T known as the
characteristic field satisfying T y η = 1 and T y dη = 0. Thus for strictly pseudo-
convex pseudohermitian manifolds, we can naturally extend J by setting J T = 0
and create a canonical metric

hη(X, Y )= dη(X, JY )+ η(X)η(Y ),

which is Riemannian on TM and Hermitian on CTM . The complexified tangent
bundle then orthogonal decomposes as

CTM = oT ′⊕ oT ′′⊕CT .

On a strictly pseudoconvex pseudohermitian manifold there is a canonical con-
nection. This allows us to intrinsically define a variety of Sobolev-type spaces in
addition to providing a useful computational tool.

Lemma 2.1. If (M, J, η) is strictly pseudoconvex, there is a unique connection ∇
on (M, J, η) that is compatible with the pseudohermitian structure in the sense
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that H , T , J and dη are all parallel and the torsion satisfies

Tor(X, Y )= dη(X, Y )T and Tor(T, J X)=−J Tor(T, X).

This formulation of the connection was developed by Tanaka [1975]. An alternative
formulation in terms of a coframe was independently derived by Webster [1978].
Tanaka’s proof is constructive and is based upon the useful formula

(1) ∇X ′′Y ′ = [X ′′, Y ′]′,

where X ′ and X ′′ respectively denote the orthogonal projection of a vector field X
onto oT ′ and oT ′′. Since the connection and metric naturally extend to other tensor
bundles over M , we can intrinsically define L2-Sobolev spaces via the norms

(2) ‖ϕ‖H j =

∑
k≤ j

‖∇
kϕ‖L2

η
.

Unfortunately, these spaces do not provide optimal results for the analysis of the
Kohn Laplacian as it is not fully elliptic — it’s only first order in the characteristic
direction. Folland and Stein [1974] introduced new, intrinsically defined spaces to
provide more refined regularity results. For a differential form ϕ, we can decom-
pose

∇ϕ =∇ ′ϕ+∇ ′′ϕ+∇Tϕ⊗ η.

Here we define∇ ′ by∇ ′ϕ( · , X)=∇ϕ( · , X ′) and∇ ′′ by∇ ′′ϕ( · , X)=∇ϕ( · , X ′′).
Now set

∇Hϕ := ∇
′ϕ+∇ ′′ϕ =∇ϕ−∇Tϕ⊗ η.

The Folland–Stein spaces S j are now defined from the norms with norms

(3) ‖ϕ‖ j =
∑
k≤ j

∥∥(∇H )
k ϕ
∥∥

L2
η
.

For the rest of this section we suppose (M, J, η) is a strictly pseudoconvex
pseudohermitian manifold. Set30,1

η M ={ϕ ∈CT ∗M : ϕ= 0 on oT ′⊕CT }, and let
31,0
η M be the orthogonal complement to 30,1

η M in CT ∗M . We extend to higher
degree forms by setting 3p,q

η M =3p(31,0
η M)⊗3q(30,1

η M). We stress that these
definitions are asymmetric, and in particular nontrivial spaces occur for the ranges
0≤ p≤ n+1 and 0≤ q ≤ n. The space of degree k complex covector fields on M
then admits the orthogonal decomposition C3k M =

⊕
p+q=k 3

p,q
η M . Denote the

orthogonal projection C3p+q M→3
p,q
η M by π p,q

η and define

(4) ∂b = π
p,q+1
η ◦ d.

Then ∂b maps C∞(3p,q
η ) to C∞(3p,q+1

η ). It should be remarked that this definition
depends upon the pseudohermitian structure and is not canonical for the underlying
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CR structure. Using the language of holomorphic vector bundles and quotients, it is
possible to construct an operator depending solely on the CR structure that reduces
to our definition once a pseudohermitian form is chosen. However, for the purposes
of this paper the concrete version offered here will suffice. It is also easy to see
that for a smooth (0, q)-form ϕ,

(5) ∂bϕ = (−1)q(q + 1)Alt(∇ ′′ϕ).

It follows immediately from the definitions that ∂b ◦ ∂b = 0. Thus ∂b defines
a complex of differential forms on M . The associated cohomology is known as
the Kohn–Rossi cohomology and is denoted by Hp,q(M). A key tool for studying
these groups is the Kohn Laplacian.

Definition 2.2. If (M, J, η) is a strictly pseudoconvex structure, then the formal
Kohn Laplacian is defined by �b = ∂bϑb + ϑb∂b, where ϑb denotes the formal
adjoint of ∂b with respect to the canonical L2 inner product on (M, J, η).

On compact manifolds this operator is well understood.

Theorem 2.3 [Kohn 1965]. Let (M, J, η) be a compact, strictly pseudoconvex
pseudohermitian manifold of dimension 2n− 1.

(a) If 1 ≤ q ≤ n− 2, then �b is a selfadjoint, Fredholm operator on L2(3
p,q
η M)

and there is an orthogonal decomposition

L2(3p,q
η M)= Range(�b)⊕Ker(�b)

= Range(∂b)⊕Range(ϑb)⊕Ker(�b).

The operator �b is subelliptic. Therefore Ker(�b) is finite dimensional and
(1+�b)

−1 is a compact, bounded operator on L2. The cohomology group
Hp,q(M) ∼= Ker(�b). Furthermore the operator 1+�b is an isomorphism
from Sk+2(3

p,q
η M) to Sk(3

p,q
η M) for all k ≥ 0.

(b) If q = 0, then �b is selfadjoint and has closed range as an operator on
L2(3

p,0
η M) and there is an orthogonal decomposition

L2(3p,0
η M)= Range(�b)⊕Ker(�b).

Remark 2.4. The dimension assumed in the theorem is 2n − 1 rather than the
2n + 1 used earlier. When we additionally suppose that the manifold is compact
we shall always adopt this drop of dimension, whereas if we are not presupposing
compactness we shall continue to use 2n + 1. This is to ensure compatibility of
results when we are working with a foliation of a domain by compact CR manifolds
of codimension 2.
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Remark 2.5. In the literature, most computations and arguments concerning ∂b

are conducted under the assumption that p = 0. When the bundle 31,0
η M is holo-

morphically trivial, it is easy to pass to the general case. Since CTM/oT ′′ is a
holomorphic bundle, local results always extend simply to the case p > 0. If
M2n−1 is globally CR embeddable as a hypersurface in Cn , then the embedding
functions provide a global trivialization.

For a compact manifold, the formal and actual L2 adjoints of ∂b are equal.
However for manifolds with boundaries the issue of boundary conditions arises,
and we must make a subtly different definition to recover selfadjointness for the
operator.

Suppose � is a bounded open set in M with smooth boundary. We can restrict
our complexes to forms defined on �. We extend ∂b to its maximal L2 closure,
also denoted ∂b, and define ∂

∗

b to be the L2-adjoint of this extended operator. We
then define the Kohn Laplacian for � by

Dom(�b)=
{
ϕ ∈ Dom(∂b)∩Dom(∂

∗

b) : ∂bϕ ∈ Dom(∂
∗

b) and ∂
∗

bϕ ∈ Dom(∂b)
}

and for ϕ ∈ Dom(�b)

�bϕ = ∂b∂
∗

bϕ+ ∂
∗

b∂bϕ.

This operator is selfadjoint as an operator on L2(3
p,q
η �) [Chen and Shaw 2001].

For forms contained in Dom(�b), the operator agrees with the formal version de-
fined above. The ∂b-Neumann problem on � is then to decide when the equation
�bu = f on � can be solved for u ∈ Dom(�b) and to obtain optimal regularity
results. Note that there are boundary constraints on any solution u for it to lie in
Dom(�b). From the view point of CR geometry as opposed to pseudohermitian
geometry, we would also be free to choose an appropriate η.

The analysis of this problem is difficult for several reasons. The operator is not
elliptic as it has only limited control over the characteristic direction. However, the
Folland–Stein spaces were constructed to address precisely this. The characteristic
vector field T can be written as a commutation of vector fields from H . Thus T
is second order as an operator in the Folland–Stein setting. Although �b is only
subelliptic [Chen and Shaw 2001], it is fully elliptic in the Folland–Stein directions.
A second problem is that the boundary conditions are noncoercive in a sense to be
made more precise later. There is also a third problem related to the geometry of
the boundary ∂�.

Definition 2.6. A point x ∈ ∂� is a characteristic point for � if the boundary is
tangent to the distribution H at x , that is, Tx∂�= Hx .

At all noncharacteristic points the tangent space to ∂� intersects H transversely
with codimension 1. Thus at characteristic points there is a jump in the dimension
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of this intersection. This phenomenon makes obtaining L2 estimates difficult near
these points.

All positive results for this problem have required strict conditions on the ge-
ometry of the boundary of � and have returned nonsharp boundary regularity. See
for example [Diaz 1991] or [Shaw 1991]. In particular very little is known about
regularity when the domain possesses characteristic points.

At times throughout this paper we shall impose various conditions on the do-
main �, the pseudohermitian form η and a CR function w. In particular, we shall
always be supposing (A1).

(A1) � is a precompact open set open set with smooth defining function % de-
pending solely on the real and imaginary parts of w.

(A2) Near the boundary ∂�, the function Hww is constant on the level sets of w.

(A3) The function Hww is globally constant on the level sets of w.

(B) dw∧ dw 6= 0 on �.

The pseudohamiltonian vector field Hw is defined in Section 3. We note here
that whenever � satisfies (A1) and is noncharacteristic, we can choose a pseudo-
hermitian form such that (A2) holds. Condition (B) is a more stringent requirement
than noncharacteristic boundary, forcing the level sets of w to be nondegenerate
globally on �. If (B) holds, then the pseudohermitian form can be chosen so that
(A3) holds.

3. Normalization

Frequently, we are interested in the underlying CR manifold rather than the specific
pseudohermitian structure. In this case we can scale the pseudohermitian form to
simplify computations. Throughout this section we assume that (M, J, η) is a
(2n+ 1)-dimensional strictly pseudoconvex pseudohermitian manifold and that w
is a CR function on M .

Definition 3.1. The pseudohamiltonian field Hx for a smooth function x is defined
by

η(Hx)= 0, Hx y dη = dbx := dx − (T x)η.

We note in passing that

Hxv = dη(Hv, Hx)=−dη(Hx , Hv)=−Hvx .

Pseudohamiltonian fields are the key to understanding how the nonhorizontal vec-
tor field bracket structure changes as we rescale the pseudohermitian form.

Lemma 3.2. The characteristic field for the pseudohermitian form η(x) = exη is

T (x)
= e−x(T + Hx).
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Proof. This is just a matter of computation:

T y dη(x) = Tyex du ∧ η+ ex T y dη =−ex dbx .

Hx y dη(x) = ex(Hx u)η+ ex Hx y dη = ex dbx . �

One complication that arises when comparing operators on rescaled pseudo-
hermitian structures is in the differing presentations of (p, q)-forms. Since the
spaces 3p,q

η depended on orthogonal projections for the metric induced by η, we
get a different space for η(x) = exη whenever the smooth real-valued function x is
not identically zero. However we can introduce operators µx : 3

0,1
η →30,1

η(x)
by

(6) µxϕ = ϕ−ϕ(T (x))η(x).

We can extend this to (0, q)-forms by declaring µx(ϕ ∧ψ)= µxϕ ∧µxψ .

Lemma 3.3. d(x)b f = db f − (Hx f )η and H (x)
f = e−x H f .

Proof. Again, we compute

d(x)b f = d f − (T (x) f )η(x) = d f − (T f )η− (Hx f )η = db f − (Hx f )η,

H f y dη(x) = ex(H f x)η+ ex db f = ex (d f − (T f )η− (Hx f )η)= ex d(x)b f. �

The heart of method presented in this paper is understanding how the Laplacian
behaves with respect to a foliation by level sets of the CR function, w. A key
step shall be decomposing the operator into pieces tangent and transverse to the
foliation. So, we shall now describe the canonical vector fields from which the
transverse pieces will be constructed.

Definition 3.4. Y = Hw and Y (x) = H (x)
w .

Lemma 3.5. 〈Y (x), Y (x)〉(x) =−iY (x)w =−ie−x Yw.

Proof. We compute

〈Y (x), Y (x)〉(x) = dη(x)(Y (x), JY (x))

=−i(∂(x)b w)(Y (x))=−iY (x)w =−ie−x Yw. �

From this we see that away from the characteristic locus of w

Ew =
{

p ∈ M : ∂bw(p)= 0
}
=
{

p ∈ M : (dw∧ dw)|p = 0
}
.

We can then fix a canonical pseudohermitian form for w by fixing 2= η(x) to be
the form such that

〈Y (x), Y (x)〉(x) = 1 or equivalently Y (x)w = i.
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It should be noted that for a smooth domain� satisfying (A1), the characteristic set
of ∂� is exactly ∂�∩Ew. Therefore on a noncharacteristic domain we can normal-
ize the pseudohermitian form so that (A2) holds. If (B) holds, then Ew ∩�=∅
and the pseudohermitian form can be normalized so that (A3) holds.

4. Decomposition of the Kohn Laplacian

In this section we shall construct the decomposition of the Kohn Laplacian on
which we shall base our regularity results. We suppose w is a fixed CR function
on the strictly pseudoconvex pseudohermitian manifold (M2n+1, η, J ) and � is a
smoothly bounded precompact open set such that (�, η,w) satisfies (A1) and (A3).
Thus the pseudohermitian form η has the property that

|Y |2 =−iYw = e2ν > 0, where ν = ν(w,w).

We shall adopt the convention that Latin indices run from 0 to n− 1 and Greek
indices run from 1 to n− 1. To fit in with this convention, we set

Z0 = e−νY.

We shall work with a local orthonormal frame Z0, Z1, . . . , Zn−1 for oT ′ with the
property that each Zα is tangent to the level sets of w and Z0 is defined as above.
The dual frame will be denoted θ0, θ1, . . . , θn−1. Note this implies Zαν=0= Zαν.

If p̂ is the leaf of the foliation by w containing p, we let ι : p̂ ↪→ M be the
inclusion map and consider the pseudohermitian form η̂ = ι∗η with Ĵ = J |T p̂.

Definition 4.1. Let ωk
m and ω̂αβ be the connection 1-forms for the Tanaka–Webster

connections for (M, η, J ) and ( p̂, η̂, Ĵ ) respectively associated to the frames {Z j }

and {Zα}. Thus

∇Zk = ω
m
k ⊗ Zm and ∇̂Zα = ω̂βα ⊗ Zβ .

We also use 0m
jk = ω

m
k (Z j ) and 0̂αβγ = ω̂

α
γ (Zβ).

Important computational tools are the following structural equations for the
Tanaka–Webster connection [Webster 1978].

(7)

dη = ih jkθ
j
∧ θ k
= iθα ∧ θα + iθ0

∧ θ0,

dh jk = hmkω
m
j + h jmω

m
k
= ωk

j +ω
j̄
k
,

dθ k
= θm

∧ωk
m + η∧ Ak

mθ
m,

where h jk are the components of the Levi metric. Our chosen frame is orthonormal,
so h jk is 1 if j = k and is 0 otherwise.

Using these we can now start to explore the relationships between the connection
on M and those on the foliating leaves p̂.
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Lemma 4.2. The characteristic vector field for ( p̂, η̂, Ĵ ) is

T̂ = T + aY + aY , where a =−ie−2νTw.

Proof. Clearly T̂ y η̂ = 1. Now since dη = iθα ∧ θα + iθ0
∧ θ0, we have dη̂ =

ι∗dη = iθα ∧ θα. Thus T̂ y dη̂ = 0. The final requirement is that T̂ is real and is
tangent to p̂. But T̂ is clearly real and the tangency condition follows from

T̂w = Tw+ aYw = Tw− ia = 0 and T̂w = T̂w = 0. �

Corollary 4.3. ι∗θ0
= aη̂ and ι∗θ0

= aη̂.

Lemma 4.4. The Christoffel symbols 0m
jk satisfy the properties

0k
· j =−0

j̄
· k
, 0

j
· k
= 0, 00

β̄α
= iaδαβ̄, 00

jk = 0
0
k j ,

00
α0
= 0α

00
= 0α00 = 0

0
0α = 0.

Proof. The first is just a defining property of the Tanaka–Webster connection

dh jk = h jmω
m
k
+ hmkω

m
j .

The second is just that oT ′′ is parallel.
For the third we note

00
β̄α
= 00

β̄α
−00

αβ̄
= θ0([Z β̄, Zα]).

Now [Zα, Z β̄] must be tangent to p̂ and η([Zα, Z β̄]) = −iδαβ̄ . Lemma 4.2 then
implies that θ0([Z β̄, Zα])= iaδαβ̄ .

For the fourth, note that an easy consequence of |Y | = eν depending on w and w
alone is that all Lie brackets of the form [Z j , Zα] and [Z0, Zα] and their conjugates,
while horizontal, have no Z0 or Z0 components. Therefore

00
jk = dθ0(Z j , Zk)= θ

0([Z j , Zk])= 0.

For the fifth, again we note

0α
00
=−00

0α =−0
0
α0 = 0

0
α0
= θ0([Zα, Z0])= 0,

0α
00
=−00

0α =−θ
0([Z0, Zα])= 0. �

Proposition 4.5. The connection and torsion forms for the connections ∇ and ∇̂
are related as follows:

0̂αγβ = 0
α
γβ,

0̂αγ̄ β = 0
α
γ̄ β,

Âα
β̄
= Aα

β̄
+ a0α

β̄0,

0̂αTβ = 0
α
Tβ + a0α0β + a0α

0β
− a0αβ0

= 0αTβ + a0α0β + a0α
0β
− i |a|2δαβ .
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Proof. All that is required is to check that these forms obey the structural equations.
This routine computation is left to the reader. �

When acting on (0, q)-forms, it follows easily from the definitions that the
tangential CR operator and its formal adjoint can be expressed in terms of the
Tanaka–Webster connection as

(8) ∂bϕ = θ
k
∧∇kϕ, ϑbϕ =−θ

k
∨∇kϕ.

Thus we can use our comparison of the connections ∇ and ∇̂ to break these oper-
ators down into pieces tangent and transverse to the foliation.

Lemma 4.6. (∇ − ∇̂)β̄θ
α
= iaδαβ̄θ

0,

(∇ − ∇̂)βϕ = 0
0
βαθ

0
∧ θα ∨ϕ,

θ0
∨∇0θ

α
= 0.

Proof. Again, we just compute:

(∇ − ∇̂)β̄θ
α
=−0α

β̄kθ
k
+ 0̂α

β̄γ̄
θ γ̄ =−0α

β̄0
θ0
= 00

β̄α
θ0
= iaδαβ̄θ

0,

(∇ − ∇̂)βθ
α
=−0α

βkθ
k
+ 0̂αβγ̄ θ

γ̄
=−0α

β0
θ0
= 00

βαθ
0
=−00

βαθ
α
∨ θ0
∧ θα,

θ0
∨∇Y θ

α
= θ0
∨ (−0α0kθ

k)=−0α
00
= 0. �

Definition 4.7. For nonnegative integers q , we define Dq on smooth (0, q)-forms ϕ
by Dqϕ =∇0ϕ− iaqϕ and extend as a maximal closed operator on L2.

Lemma 4.8. The formal adjoint D#
q of Dq is given by

D#
qϕ = 0

0
00
ϕ− ia(n− q − 1)ϕ−∇0ϕ.

Proof. From a standard divergence theorem argument ∇∗
0
=− div Y −∇0. Now

div Y = 0·
· 0 = 0

k
k0 = 0

0
kk
=−00

00
+ ia(n− 1). �

Definition 4.9. We define the operators ∂̂ , ϑ̂ and �̂b by

∂̂ϕ = θα ∧ ∇̂αϕ, ϑ̂ϕ =−θα ∨ ∇̂αϕ, �̂bϕ = ∂̂ ϑ̂ϕ+ ϑ̂ ∂̂ϕ.

Thus ϑ̂ is the formal adjoint of ∂b, and �̂b acts as the Kohn Laplacian on each
foliating leaf.
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Lemma 4.10. Suppose ϕ ∈ C∞ is a (0, q)-form such that Y yϕ = 0. Then

∂bϕ = ∂̂ϕ+ θ
0
∧ Dqϕ, ϑbϕ = ϑ̂ϕ,

∂b(θ
0
∧ϕ)=−θ0

∧ ∂̂ϕ, ϑb(θ
0
∧ϕ)= D#

qϕ− θ
0
∧ ∂̂ϕ.

Proof. Once more the proof is by computation. Since Y yϕ = 0, the (0, q)-form ϕ

can be written as a linear combination of wedge products of the forms θα. Thus

∂bϕ = θ
k
∧∇k(ϕ)= θ

α
∧∇α(ϕ)+ θ

0
∧∇0(ϕ)

= ∂̂ϕ+ θα ∧ (∇ − ∇̂)α(ϕ)+ θ
0
∧∇0ϕ

= ∂̂ϕ+ θ0
∧ (∇0− iaq)ϕ.

Now from the structural equations (7), we see dθ0
= θ k
∧ω0

k
+ η∧ A0

kθ
k , and so

∂bθ
0(Zα, Z β̄)= 0

0
β̄α
−00

αβ̄
= 0,

whereas

∂bθ
0(Z0, Zα)= 00

α0
−00

0α
= 00

α0−0
α
00
= 0.

Thus ∂bθ
0
= 0. The second identity easily follows from this and the first. To prove

the third, we compute similarly

ϑbϕ =−θ
k
∨∇kϕ =−θ

0
∨∇0ϕ− θ

α
∨ (∇ − ∇̂)αϕ+ ϑ̂ϕ

= 0+00
βαθ

β
∨ θα ∨ θ0

∧ϕ+ ϑ̂ϕ = ϑ̂ϕ.

The fourth follows another similar computation:

ϑb(θ
0
∧ϕ)=−θ k

∨∇k(θ
0
∧ϕ)

=−θ k
∨∇k(θ

0)∧ϕ− θ k
∨ θ0
∧∇kϕ

= 00
kmθ

k
∨ θm
∧ϕ− θ0

∨ θ0
∧∇0ϕ− θ

α
∨ θ0
∧∇αϕ

= 00
00
ϕ+ θ0

∧ (ναθ
α)∨ϕ− iaθα ∨ θa

∧ϕ

− (∇0ϕ)
>
+ θ0
∧ θα ∨ (∇ − ∇̂)αϕ− θ

0
∧ ϑ̂ϕ

= 00
00
ϕ− i(n− 1− q)aϕ−∇0ϕ− θ

0
∧−ϑ̂ϕ. �

Corollary 4.11. For smooth (0, q)-forms ϕ in the domain of �b, we have

�bϕ = (�̂b+ D#
q Dq)ϕ

>
+ [∂̂, D#

q−1]ϕ
⊥

+ θ0
∧ (�̂b+ Dq−1 D#

q−1)ϕ
⊥
+ θ0
∧ [Dq , ϑ̂]ϕ

>.
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This decomposition is dependent on condition (A3), which greatly simplified the
computations above. This condition will also aid commutation arguments in later
sections. To express this concisely, we shall introduce some further terminology
to be used throughout the paper.

Definition 4.12. • 9k shall denote the set of all operators formed as the smooth
compositions of m with 0≤m ≤ k covariant derivatives taken with respect to
horizontal vector fields tangent to the foliating leaves. If m = 0, the operator
should be viewed as multiplication by a smooth function.

• 9 j,k refines this to the composition of at most j (1, 0) vector fields and at
most k (0, 1) vector fields.

• ψk and ψ j,k will respectively indicate elements 9k and 9 j,k .

• We shall use Sk and S j,k in a fashion analogous to ψk and ψ j,k but without
the restriction that the vector fields be tangent to the foliating leaves.

• Tk will likewise denote a generic k-th order operator built out of T̂ and zero
order operators.

• If q is understood, we shall simply write D and D in place of Dq and D#
q .

For example we might express [Zα, Z β̄] as any of ψ2, T1+ S1 or T1+ψ1.

Lemma 4.13. Under conditions (A1) and (A3) the following properties hold:

(a) [D, ∂̂], [D, ϑ̂] ∈91.

(b) [ψ0,1, D] ∈90,1 and [ψ1,0, D] ∈91,0.

(c) [ψ1, D], [ψ1, D] ∈91.

(d) [�̂b, D], [�̂b, D] ∈92.

Proof. We’ll prove the first part of (a). The others are very similar.
Since D =−∇0+ψ0, it suffices to compute

[∇0, ∂̂] = [∇0, θ
α
∧∇α] = ψ1+ θ

α
∧ [∇0,∇α]

= ψ1+ e−νθα ∧∇[Y,Zα]+ e−νθα ∧ R(Y, Zα)= ψ1,

where last equality uses that [Y, Zα] is a horizontal vector field that annihilates w
andw by (A3). Here R represents the curvature endomorphism associated to ∇. �

Remark 4.14. Formally, we could now define operators

�⊥
4
= �̂b+ DD and �>

4
= �̂b+ DD,

so that
�bϕ =�

>

4
ϕ>+ψ1ϕ

⊥
+ θ0
∧ (�⊥

4
ϕ⊥+ψ1ϕ

>).
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The plan is to study the properties of the subelliptic operators �>
4

and �⊥
4

, then to
absorb the error terms to obtain results for �b itself. To do this however, we shall
in subsequent sections more carefully define these operators to take into account
boundary conditions.

5. Analysis on the foliation

In this section, we shall outline the properties of the Kohn Laplacians associated
to the underlying foliation by compact CR manifolds. Throughout this section we
shall assume that δ > 0 and (�,w, η) satisfy (A1), (A3) and (B).

For convenience of notation we shall use ≤c to indicate an inequality that holds
up to multiplication by a positive constant that is independent of any function
choices. For example ‖u‖≤c‖Pu‖would indicate that there is a positive constant C
such that ‖u‖ ≤ C‖Pu‖ for all u. If we wish to emphasize that the constant may
depend on a parameter such as δ, we will use the notation ≤δ instead.

Since we shall be distinguishing between transverse and tangential directions,
we define for (0, q)-forms the space of tangential smooth forms

C∞,>(�)= {u ∈ C∞(�) : Y y u = 0}

with similar definitions for L2,>(�) and other functions spaces. We note that one
consequence of condition (A3) is that ∇0 preserves C∞,>(�).

Definition 5.1. For δ > 0, we define the operator P̂δ on C∞,>(�) by

P̂δu =
{
δ+ �̂b if q > 0,

δ+ �̂b+ �̂b if q = 0,
where �̂bu = �̂bu.

Now for δ > 0, P̂δ is strictly positive and symmetric with respect to the L2 inner
product. Therefore we can create a new inner product

(u, v)P := (P̂δu, v)

and define Ŝ1 to be the closure of C∞,>(�) under the norm u 7→ (u, u)1/2P .
We define

Dom(32
δ)=

{
u ∈ Ŝ1

: |(u, v)P | ≤c ‖v‖L2(�) for all v ∈ Ŝ1}.
and for u ∈ Dom(32

δu) we define 32u by

(u, v)P = (3
2
δu, v) for v ∈ Ŝ1.

Then 32
δ is a selfadjoint, strictly positive extension of P̂δ. Thus we can define

3δ = (3
2
δ)

1/2, a selfadjoint, strictly positive operator with Dom(3δ)= Ŝ1 and

(u, v)P = (3δu,3δv).
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Remark 5.2. For the case δ = 1, we may simplify notation by setting 3=31.

Since 3δ is selfadjoint and strictly positive, we can define 3s
δ for all s ∈ R.

Definition 5.3. For k > 0, we define Ŝk to be the closure of C∞,>(�) in L2,>(�)

under the inner product (u, v)k := (3ku,3kv).
For k = −1, we define Ŝ−1 to be the closure in H−1,>(�) of C∞,>(�) under

the inner product (u, v)−1.

Our first important result using these spaces is an interpolation theorem.

Lemma 5.4. If N : C∞,>(�)→ C∞,>(�) satisfies the estimates

‖N f ‖Ŝ3 ≤ α‖ f ‖Ŝ1 and ‖N f ‖Ŝ1 ≤ β‖ f ‖Ŝ−1

then it also satisfies the estimate

‖N f ‖Ŝ2 ≤max{α, β}‖ f ‖L2,>(�).

Proof. This follows from classical interpolation results. The operator N extends to
a bounded operator Ŝ1

→ Ŝ3 and Ŝ−1
→ Ŝ1. Thus by interpolation (following the

method and notation of [Lions and Magenes 1972, Theorem 5.1]), N is bounded
from [Ŝ−1, Ŝ1

]1/2→[Ŝ1, Ŝ3
]1/2 with constant max{α, β}. However, it is clear that

C∞,>(�) is densely contained in both these midpoint interpolation spaces and
that on C∞,>(�) the interpolation norms are equivalent to those of L2,>(�) and
Ŝ2 respectively. �

We shall also need a regularity result.

Lemma 5.5. If 32
δu ∈ Sk,> and u ∈ Sk−1,>, then u ∈ Sk,>.

Proof. On C∞(�), we have 32
δ = P̂ . Thus [32

δ, Y ], [3δ, Y ] = ψ2. Now from
standard regularity results on the foliating leaves, coupled with the smoothness of
estimate coefficients in w, we see that if 32

δu ∈ L2 then all ψ2u ∈ L2,>(�). Now,
since we are assuming (A1), (A3) and (B), we see from Lemma 4.13 that formally

pk(Y, Y )32
δ =3

2
δ pk(Y, Y )+ψ2 pk−1(Y, Y ).

Therefore an easy induction argument shows that 32
δ pk(Y, Y )u ∈ L2,>(�). But

this implies that pk(Y, Y )u ∈ L2,>(�). Derivatives tangent to the leaves are easily
controlled using the regularity results of the leaves. �

6. Transverse regularity and estimates

Throughout this section we shall assume that 0 ≤ q ≤ n − 2 and that (�,w, η)
satisfy (A1), (A3) and (B). The set C∞,>v (�) denotes the space of tangential smooth
(0, q) forms on � that vanish identically at all points of the boundary ∂�. We also
restrict the operators ∂̂ and ϑ̂ to tangential forms and extend to closed operators
on L2,>(�).
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Lemma 6.1. The space C∞,>0 (�) of compactly supported smooth forms is dense
in

D= Dom(∂̂)∩Dom(ϑ̂)∩Dom(D∗)∩ L2,>(�).

in the graph norm. Note that if q = 0 then we define Dom(ϑ̂)= L2,>(�).

Proof. Since the vector field derivatives in ∂̂ and ϑ̂ are tangent to the boundary, the
method of [Chen and Shaw 2001, Lemma 4.3.2(ii)] can be applied. �

Definition 6.2. For u ∈ C∞,>v (�) we define

Q⊥ε,δ(u, u)= (∂̂u, ∂̂u)+ (ϑ̂u, ϑ̂u)+ (Du, Du)+ δ‖u‖2+ ε2(T̂ u, T̂ u)

and set Dε to be the closure of C∞,>v (�) under the Q⊥ε,1-norm. Note that the density
lemma implies that D0

= D.

Lemma 6.3. For δ > 0, ε ≥ 0 and u ∈ Dε there are uniform estimates

‖u‖21+ ε
2
‖u‖2H1 ≤δ Q⊥ε,δ(u, u) and ‖u‖21+ ε

2
‖u‖2H1 ≤c Q⊥ε,δ(u, u)+‖u‖.

Proof. We’ll prove q = 0; the other case q > 0 is easier as the estimate

‖ψ1u‖2≤c ‖∂̂u‖2+‖ϑ̂u‖2+‖u‖2

follows from standard estimates for the Kohn Laplacian on compact CR manifolds
together with continuity of estimates in the parameter w.

Assume q = 0. Note that in this case D = e−νY . Now, essentially by definition
‖ψ0,1u‖≤c ‖∂̂u‖. Next note that

|(ψ1u, u)| ≤c |(ψ0,1u, u)| + |(u, ψ0,1u)| ≤c ‖∂̂u‖2+‖u‖2.

Now since [Y, Y ] = −i T̂ + S1,

‖Y ∗u‖2 = (Y Y ∗u, u) = (Y ∗Y u, u)+ ([Y , Y ∗]u, u)

= ‖Y u‖2+ (i T̂ u, u)+ ((ψ0Yψ0Y ∗+ψ1)u, u)

= i(T̂ u, u)+‖Y u‖2+ (ψ1u, u)+ (u, ψ0Y ∗u).

So
i(T̂ u, u)+‖Y 2u‖≤c ‖Y

∗u‖2+‖u‖2≤c Q⊥ε,δ(u, u)+‖u‖2

Now for a length one, tangential (1, 0) vector field Z ,

‖Zu‖2 = (Z∗Zu, u) = ‖Z∗u‖2+ ([Z∗, Z ]u, u)

= ‖Z∗u‖2+ (i T̂ u, u)+ (ψ1u, u)

≤c Q⊥ε,δ(u, u)+‖u‖2.

Thus we have established ‖ψ1,0u‖2≤c Q⊥ε,δ(u, u)+‖u‖2.
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All that remains to be shown is that

‖Du‖2≤c Q⊥ε,δ(u, u)+‖u‖2.

But for u ∈ C∞,>v (�),

‖Du‖2 = (Du, Du) = (DDu, u)

= (DDu, u)+ ([D, D]u, u)

= (Du, Du)+ ([D, D]u, u)

≤c ‖Du‖2+ (32u, u)+‖u‖1‖u‖

≤c ‖Du‖2+‖3u‖2+ 1
ζ ‖u‖

2
+ ζ‖u‖21,

where ζ is chosen so 0 < ζ � 1. Absorbing this term yields the estimate for
C∞,>v (�). Density then implies the result. �

Definition 6.4. We define the unbounded operators �⊥
4,ε on L2,>(�) by setting

Dom(�⊥
4,ε)=

{
u ∈ Dε

: there exists f ∈ L2,>(�) such that

Q⊥ε,0(u, v)= ( f, v) for all v ∈ D
}

and defining �⊥
4,εu = f for u ∈ Dom(�⊥

4,ε). We set �⊥
4
=�⊥

4,0.

From Lemma A.1 in the appendix, we can immediately deduce:

Lemma 6.5. For δ > 0 and ε ≥ 0, the unbounded operators δ+�⊥
4,ε are closed,

densely-defined, bijective and selfadjoint. Therefore there are bounded solution
operators N ε,δ.

Lemma 6.6. For 0 < δ < 1 and ε ≥ 0, if u ∈ Dom(�⊥
4,ε) and �⊥

4,εu = f − δu,
then these estimates hold independent of δ:

‖32u‖1+ ε‖32u‖H1 ≤c ‖ f ‖1+‖u‖,(9)

‖32u‖≤c ‖ f ‖+‖u‖.(10)

Proof. First suppose that δ = 1, f ∈ C∞,>(�) and u ∈ C∞,>v (�). We note that

‖3u‖2≤c Q⊥ε,1(u, u)= ( f, u) = (3−1 f,3u)

so

(11) ‖3u‖≤c ‖3
−1 f ‖.

Now by the useful commutation properties that

[�̂b,3
2
] = 0, [T̂ ,32

] = ψ2, [D,32
] = ψ2,
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we have

Q⊥ε,1(3
2u,32u)= Q⊥ε,1(u,3

4u)+ (ψ2u, D32u)+ (Du, ψ23
2u)

+ ε2(ψ2u, T̂32u)+ ε2(T̂ u, ψ23
2u)

= ( f,34u)+ (ψ2u, D32u)+ (ψ2u, D32u)+ ε2(ψ2u, T̂32u),

where the integration-by-parts in the last line works because if u ∈C∞,>v (�), then
32u ∈ C∞,>v (�).

From the basic estimate of Lemma 6.3 we therefore see that

‖32u‖21+ ε
2
‖32u‖H1 ≤c ‖3 f ‖ ‖33u‖+‖32u‖‖32u‖1+ ε2

‖32u‖‖32u‖H1

and so ‖32u‖1+ ε‖3u‖H1 ≤c ‖3 f ‖+‖32u‖. Now for 0< ζ � 1 we have

‖32u‖ = (33u,3u)1/2≤c ζ‖3
3u‖+ 1

ζ ‖3u‖,

which allows us see that ‖32u‖1 ≤c ‖3 f ‖ + ‖3u‖ ≤c ‖3 f ‖. In particular this
implies that

‖33u‖≤c ‖3 f ‖.(12)

Thus we can apply the interpolation result of Lemma 5.4 to the solution operator
N ε,1 to see that ‖32u‖≤c ‖ f ‖.

Now for 0<δ<1 there must be some f ∈C∞,>(�) for which any u ∈C∞,>v (�)

is the (ε, δ)-weak solution. But then u is the (ε, 1)-weak solution for f + (1−δ)u,
and so

‖32u‖≤c ‖ f ‖+ |1− δ|‖u‖≤c ‖ f ‖+‖u‖.

To move from a priori estimates to genuine estimates, we invoke elliptic regularity
if ε > 0 and Proposition A.4 from the appendix otherwise. �

The remaining estimates depend heavily on the following integration-by-parts
computation. Suppose Z j for j = 1, . . . , k + 1 are smooth vector fields that are
tangent to ∂� at the boundary and Z = Z1 . . . Zk+1. We’ll use Zi to denote the
generic Z with k < i . Then if u ∈ C∞v (�) is a weak solution for f ∈ C∞(�),

(13) Q⊥ε,δ(Zu, Zu)= Q⊥ε,δ(u, Z∗Zu)+ ([S1, Z ]u, S1 Zu)+ (S1u, [Z∗, S1]Zu)

+ ε2([T̂ , Z ]u, T̂ Zu)+ ε2(T̂ u, [Z∗, T̂ ]Zu)

= ( f, Z∗Zu)+(Zk(S1+ T̂ )u, S1 Zu)+(Zk S1u, (S1+ T̂ )Zu)

+ ε2(Zk(S1+ T̂ )u, T̂ Zu)+ ε2(Zk T̂ u, (S1+ T̂ )Zu).

The last term without the epsilon factors must be dealt with differently, depend-
ing on the value of k. If k = 0, then

(14) (S1u, (S1+ T̂ )Zu) = (S1u, S1 Zu)+ (∇u, S1 Zu).
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If k = 1, then

(15) (Z1S1u, (S1+ T̂ )Zu) = (Z1S1u, S1 Zu)+ ((S1T̂ + S2)u, Z1 Zu).

If k > 1, then

(16) (Zk S1u, (S1+ T̂ )Zu) = (Zk−1S1T̂ u+ Zk−1S1u+ Zk−2S2u, Z1 Zu)

= (Zk f, Z1 Zu)+ (Zk(S1+ T̂ )u, S1 Zu)+ (Zk S1u, S1 Zu)

+ (Zk−1S1T̂ u+ Zk−1S1u+ Zk−2S2u, Z1 Zu)

+ ε2(Zk(S1+ T̂ )u, T̂ Zu)+ ε2(Zk T̂ u, (S1+ T̂ )Zu).

Lemma 6.7. If 0 ≤ ε � 1 and 0 < δ < 1 and u = N ε,δ f ∈ C∞,>v (�) for some
f ∈ C∞,>(�), then we get a priori estimates independent of δ:

‖u‖k+2≤c ‖ f ‖k +‖u‖+ ε‖u‖H k+2 .

Proof. The proof is by induction. To prove the case k = 0, we apply (13) together
with the relevant (14) with each Z = Z1 being a Folland–Stein vector field. Since
[T̂ , Z1] = ∇, we see from the basic estimate that

‖Zu‖21≤c ‖Zu‖1(‖ f ‖+‖u‖1+‖32u‖)+ ε2
‖u‖2H2,

and so by Lemma 6.6, ‖Zu‖1≤c ‖ f ‖+‖u‖+ε‖u‖H2 . We note that DρD+DρD
is tangent to the boundary, so we can express

D2
= Z1 D+ψ0�4+ Z2+ S1+ ε

2ψ0T̂ ∗T̂ ,(17)

D2
= DZ1+ψ0�4+ Z2+ S1+ ε

2ψ0T̂ ∗T̂ .(18)

In both cases all terms on the right side are already controlled. This completes the
case k = 0.

Now set k > 0 and suppose the result is true for j < k. First we note for
2≤ m < k+ 2 and u ∈ C∞,>v (�) that

‖32u‖m ≤c ‖(δ+�
⊥

4
+ ε2T̂ ∗T̂ )32u‖m−2+‖3

2u‖+ ε‖32u‖Hm

≤c ‖3
2 f ‖m−2+‖ψ2S1u‖m−2+‖�

⊥

4
u+ δu‖1+‖u‖+ ε‖u‖Hm+2

≤c ‖�
⊥

4
u+ δu‖m +‖u‖m+1+ ε‖u‖Hm+2 .

Now we apply (13) together with the relevant (15) or (16) with each Z j being a
Folland–Stein vector field. Since [T̂ , Z j ] = ∇, we see from the basic estimate that

‖Zu‖21≤c ‖Zu‖1(‖ f ‖k +‖u‖k+1+‖3
2u‖k)+ ε2

‖u‖2H k+2

and so by induction

‖Zu‖1≤c ‖ f ‖k +‖u‖k+1+‖3
2u‖k + ε‖u‖H k+2 ≤c ‖ f ‖k +‖u‖+ ε‖u‖H k+2 .
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For general derivatives we repeatedly invoke (17) and (18). �

Lemma 6.8. Let 0 < δ < 1 and 0 ≤ ε � 1. If u ∈ C∞,>v (�) is the (ε, δ)-weak
solution for f ∈ C∞,>(�), then we have the uniform a priori estimate

‖u‖H k+1 ≤c ‖ f ‖H k +‖u‖ for all k ≥ 0.

The allowable upper bound on ε may depend on k.

Proof. Again the proof is by induction. The case k = 0 follows immediately from
the basic estimate and the second part of Lemma 6.6.

We note that from Lemma 6.7, we get

(19) ‖u‖2≤c ‖ f ‖+‖u‖+ ε‖u‖H2,

with constants independent of ε and δ. Additionally from Lemma 6.6, we see that

(20)
‖32T̂ mu‖≤c ‖PT̂ mu‖+‖T̂ mu‖

≤c ‖T̂
m f ‖+‖S1Tmu‖+ ε2

‖u‖Hm+1 .

Now since T̂ ∗ = T̂ +ψ0, we have

Q⊥ε,δ(T̂
mu, T̂ mu)= Q⊥ε,δ(u, (T̂

∗)m T̂ mu)+ ([T̂ m, S1]u, S1T̂ mu)

+ (S1u, [(T̂ ∗)m, S1]T̂ mu)

+ ε2([T̂ m,∇]u,∇ T̂ mu)+ ε2(∇u, [(T̂ ∗)m,∇]T̂ mu)

= ( f, (T̂ ∗)m T̂ u)+ ((S1Tm−1+ Tm)u, S1T̂ mu)

+ (S1u, (Tm + Tm−1S1)T̂ mu)

+ ε2(∇mu,∇ T̂ mu)+ ε2(∇u, Tm−1∇ T̂ mu)

= (T̂ m f, T̂ mu)+ (∇mu, S1T̂ mu)+ (S1u, Tm T̂ mu)

+ ε2(∇mu,∇ T̂ mu).

Now the problem term is dealt with as follows:

(S1u, Tm T̂ mu) = (S1u, T̂ m Tmu+ T2m−1u) = (S1u, (T̂ ∗)m Tmu+ T2m−1u)

= (S1T̂ m
+∇

mu, Tmu)+ (∇mu,∇mu).

Therefore from the basic estimate and induction we get

‖T̂ mu‖21+ ε
2
‖T̂ mu‖2H1 ≤c (‖ f ‖Hm +‖u‖Hm )(‖u‖Hm +‖T̂ mu‖1)

+ ε2
‖u‖Hm‖T̂ mu‖H1 .

and so

(21) ‖T̂ mu‖1+ ε‖T̂ mu‖H1 ≤c ‖ f ‖Hm +‖u‖Hm .
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The case k = 1 now follows from Equation (21) with m = 1, Equation (19), the
first part of Lemma 6.6, Equation (20), and the fact that

‖u‖H2 ≤c ‖T̂ u‖1+‖u‖2+‖32T̂ u‖,

combined with the observation that for 0 ≤ ε� 1, we can absorb the last term in
Equation (19).

We now proceed by induction and suppose k ≥ 1 with the result being true for
all j ≤ k. Set P = �4 + δ + ε2T̂ ∗T̂ . If Z denotes any k-th order operator that
maps C∞,>v (�) to C∞,>v (�), then by Lemma 6.7

‖Zu‖2≤c‖P Zu‖+‖Zu‖+ε‖u‖H k+2≤c‖Z f ‖+‖u‖H k+1≤c‖ f ‖k+‖u‖+ε‖u‖H k+2 .

We can improve this to any k-th order differential operator by the now standard
decomposition argument.

The result is then proved by noting that by (20) and (21),

‖u‖H k+2 ≤c ‖∇
ku‖2+‖T̂ k+1u‖1+‖32T̂ k+1u‖,

using induction and absorbing the ε‖u‖H k+2 term that occurs when these terms are
bounded. �

Theorem 6.9. Let 0 < δ < 1. For f ∈ L2,>(�) there is a unique u ∈ Dom(�⊥
4
)

such that �⊥
4

u = f − δu. If f ∈ Sk (respectively H k), then u ∈ Sk+2 (respectively
H k+1) and the estimates

‖u‖k+2≤c ‖ f ‖k +‖u‖‖u‖H k+1 ≤c ‖ f ‖H k +‖u‖

hold independent of δ.

Proof. Hypoellipticity of the solution operators follows from Proposition A.4 and
Lemma 6.8. This also implies the Sobolev estimates. Now we have hypoelliptic-
ity, the Folland–Stein estimates follow immediately from the a priori estimates of
Lemma 6.7. �

Corollary 6.10. Let δ = 0. If �⊥
4

u ∈ Sk , then u ∈ Sk+2, and there is a uniform
estimate

‖u‖k+2≤c ‖�
⊥

4
u‖+‖u‖.

Remark 6.11. The upper bound δ < 1 was chosen fairly arbitrarily. The reason
for choosing a bound is to ensure uniformity across choice of δ. However, for any
δ > 0 the arguments above can be used to show that δ +�⊥

4
is hypoelliptic and

satisfies the estimates of Theorem 6.9.
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7. Tangential regularity and estimates

The goal of this section is to prove a priori estimates for the operators δ+�>
4

with
δ ≥ 0. Unfortunately, these operators are not globally subelliptic, and the possible
presence of cohomology on the leaves plays havoc on the delicate estimates ob-
tained in earlier work. In fact, to prove the estimates for �>

4
we shall first have to

establish hypoellipticity for the operators δ+�>
4

with 0< δ < 1.
Once more, throughout this section we shall suppose that (�,w, η) satisfies

(A1), (A3) and (B).

Definition 7.1. We define the sesquilinear forms

Q>δ,ε(u, v)= (∂̂u, ∂̂v)+ (ϑ̂u, ϑ̂v)+ (Du, Dv)+ δ(u, v)+ ε2(∇u,∇v)

with Q> = Q>0,0. Then set Eε to be the closure of C∞,>(�) in the Q>1,ε-norm.

Definition 7.2. We define

Dom(�>
4,ε)=

{
u ∈ Eε : there exists f ∈ L2,>(�) such that

Q>ε,0(u, v)= ( f, v) for all v ∈ E
}

and set �>
4,εu = f . We set �>

4
=�>

4,0.

From Lemma A.2 we can immediately deduce this:

Lemma 7.3. For δ > 0, the operator δ+�>
4,ε is densely-defined, closed, bijective

and selfadjoint as an unbounded operator on L2,>(�). Thus there exists a bounded
solution operator N ε,δ.

Lemma 7.4. Let δ > 0 and ε≥ 0. Suppose f and u= N ε,δ f are both in C∞,>(�).
Then ‖32u‖+‖3Du‖+ ε‖3u‖H1 ≤c ‖ f ‖, with the constant independent of ε.

Proof. We clearly have the basic estimate that

‖3u‖2+‖Du‖2+ ε2
‖u‖2H1 ≤c

1
δ Q>δ,ε(u, u)≤c

1
δ ‖ f ‖‖u‖ ≤ 1

δ2 ‖ f ‖2.

Repeating the arguments of Lemma 6.6 establishes that

(22) ‖32u‖≤c ‖ f ‖+‖u‖,

with constant independent of δ. Now we make an integration by parts argument
with any vector field X ∈91:

Q>δ,ε(Xu, Xu)= ( f, X∗Xu)+ ([∂b, X ]u, ∂b Xu)+ (u, [X, ∂b]Xu)

+ ([∂
∗

b, X ]u, ∂
∗

b Xu)+ (u, [X, ∂
∗

b]Xu)

+ ([D, X ]u, DXu)+ (Du, [X, D]Xu)

+ ε2([∇, X ]u,∇Xu)+ ε2(∇u, [∇, X ]Xu)
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≤δ ‖ f ‖‖32u‖+‖32u‖2+‖3u‖‖3Du‖+‖3u‖2+ ε2
‖3u‖‖Xu‖H1

≤δ

(
‖32u‖+‖3Du‖+ ε‖Xu‖H1

)
‖ f ‖.

Applying the basic estimate and summing over a spanning set of such X yields the
result. �

Corollary 7.5. Dom(�>
4
)⊂ Ŝ2.

Proof. Apply the elliptic regularization argument of Proposition A.4. �

Unfortunately, Lemma 7.4 does not give a coercive basic estimate in this case.
In [Hladky 2006a], we constructed counterexamples to the existence of such an
estimate. However, we make the key observation that formally ∂b�b = �b∂b.
The implication is that after using the decomposition of Corollary 4.11, we can
essentially then use the regularity and estimates of Section 6 to control certain
derivatives of the solutions.

Lemma 7.6. Let u ∈ Dom(�>
4
) and �>

4
u ∈ Dom(D). Then Du ∈ Dom(�⊥

4
).

Proof. From the definition of �>
4

, we see that there is some f ∈ L2,>(�) such that
Q>0,0(u, v)= ( f, v) for all v ∈C∞,>(�). Now suppose instead that v ∈C∞,>v (�).
Then by repeated integration by parts

Q⊥0,0(Du, v)= Q>0,0(u, Dv)+ (ψ1u, ψ1v).

Now by Corollary 7.5, we see that u ∈ Ŝ2 for all X ∈ 92. So we can integrate by
parts one more time to see that

Q⊥0,0(Du, v)= ( f, Dv)+ (ψ2u, v) = (D f +ψ2u, v).

But this implies that Du ∈ Dom(�⊥
4
). �

Lemma 7.7. Suppose u ∈ C∞,>(�)∩Dom(�>
4
) and δ ≥ 0. Then

‖Du‖1≤c ‖�
>

δ u‖+‖3u‖,

and for k > 0
‖Du‖k+1≤c ‖�

>

δ u‖k +‖32u‖k−1.

Proof. We’ll prove it for δ = 0; the case δ > 0 is almost identical.
From Lemma 4.13 we see that, applied to smooth forms, D�>

4
−�⊥

4
D = ψ2.

If u ∈ Dom(�>
4
), then Du ∈ Dom(�⊥

4
), but this implies that by Theorem 6.9

‖Du‖ j+2 ≤ ‖�
⊥

4
Du‖ j +‖Du‖.

Therefore for k > 0

‖Du‖k+1 ≤ ‖D�>4u‖k−1+‖3
2u‖k−1.
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Now for k = 0, we note that

‖Du‖21 ≤ Q⊥(Du, Du)+‖Du‖2

= (�̂b Du, Du)+ (D∗Du, D∗Du)+‖Du‖2

= (�̂bu, D∗Du)+ ([�̂b, D]u, Du)+ (D∗Du, D∗Du)+‖Du‖2

= (�>
4

u, D∗Du)+ (ψ2u, Du)+‖Du‖2

≤c ‖�
>

4
u‖‖Du‖1+‖3u‖‖Du‖1+‖Du‖2,

so ‖Du‖1≤c ‖�
>

4
u‖+‖3u‖. �

Lemma 7.8. For δ > 0, the operator δ+�>
4

is hypoelliptic and satisfies

‖32u‖k +‖Du‖k+1≤δ ‖δu+�
>

4
u‖k for all u ∈ C∞,>(�).

Proof. Suppose f ∈C∞,>(�) and �>
4

u = f −δu. First, �⊥
4

D= D�>
4
+ψ2. Now

by the a priori estimates of Lemma 7.4 and the elliptic regularization argument of
Proposition A.4, we see that 33u,32 Du ∈ L2,>, and hence Du ∈ Dom(�⊥

4
) and

(δ+�⊥
4
)Du = D f −ψ2u ∈ L2,> But this implies that Du ∈ S2, so that 32

δu ∈ S1.
This then implies (δ+�⊥

4
)Du ∈ S1 and so Du ∈ S3. Thus 32

δu ∈ S2 and we can
continue to bootstrap our way up to see that u ∈ S∞ ⊂ C∞,>(�).

The estimates then follow from Lemma 7.7 and the fact that32
≤δ3

2
δ≤δ3

2. �

Having established the hypoellipticity of δ+�>
4

for δ > 0, we now wish to find
a priori estimates for�>

4
itself. The possibility of cohomology on the leaves makes

this substantially more difficult since an estimate for ‖�̂bu‖k does not immediately
imply an estimate for ‖u‖k . To overcome this issue, we shall again use the idea of
interpolation on the foliating leaves. The key observation is that for u ∈ C∞,>(�)

(23) (Dku, Dku) = (3Dku,3−1 Dku) ≤ ε‖3Dku‖+ 1
ε ‖3

−1 Dku‖.

The goal is then to establish estimates for the terms on the right side.

Lemma 7.9. For all u ∈ C∞,>(�),

‖3−1 Du‖≤c ‖�
>

F u‖+‖32u‖+‖Du‖,

where �>F is the formal operator �>F = �̂b+ DD.

Proof. First note that

(24) ‖3−1 Du‖ ≤ sup
ϕ∈C∞0 (�)

|(Du, ϕ)|
‖3ϕ‖

= sup
ϕ∈C∞0 (�)

|(u, Dϕ)|
‖3ϕ‖

.
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Now since 1+�>
4

is hypoelliptic, if N := N 0,1, then Nϕ ∈ C∞(�)∩Dom(�>
4
).

But then DNϕ ∈ Dom(D∗) and so DNϕ ∈ C∞,>v (�). Thus

(u, Dϕ) = (u, (1+�>
4
)N Dϕ)

= (�̂bu, N Dϕ)+ (Du, DN Dϕ)+ (u, N Dϕ)

= (�̂bu, DNϕ)+ (�̂bu, [N , D]ϕ)+ (Du, D2 Nϕ)

+ (Du, D[N , D]ϕ)+ (u, DNϕ)+ (u, [N , D]ϕ)

= (�̂bu, DNϕ)+ (�̂bu, N [D, 1+�>
4
]Nϕ)+ (DDu, DNϕ)

+ (Du, DN [D, 1+�>
4
]Nϕ)+ (u, DNϕ)+ (u, N [D, 1+�>

4
]Nϕ).

Now

[D,�>
4
] = ψ2+ [D, D]D = ψ2+ (S1+ψ2)D.

Note that32 is a well-defined, differential operator that acts in directions tangent to
the foliation, [D,32

] =ψ2, and [∂̂, 32
] = 0= [ϑ̂, 32

]. Thus we can again apply a
commutation argument to the basic estimate to see that for α ∈C∞(�)∩Dom(�>

4
)

‖33α‖2+‖D32α‖2≤c Q>0,1(3
2α,32α)= Q>0,1(α,3

4α)+ (ψ2α, D32α),

and so there is an estimate ‖32 Dα‖≤c ‖3(1+�
>

4
)α‖. Applying this to α = Nϕ

we have the estimate ‖[D,�>
4
]Nϕ‖≤c ‖3ϕ‖. However we also have

‖DNα‖ ≤ ‖α‖ and ‖Nα‖ ≤ ‖α‖

for all smooth α, and so |(Du, ϕ)| ≤c (‖�
>

F u‖+‖32u‖+‖Du‖)‖3ϕ‖. �

Lemma 7.10. The following commutation and integration properties hold:

[Bk, ψ1] =
∑

j<k ψ1B j
=
∑

j<k B jψ1,

[Bk,∇] =
∑

j<k ∇B j
=
∑

j<k B j
∇, B∗=B+ψ0.

Theorem 7.11. Suppose 0 < δ � 1 and u ∈ C∞,>(�) ∩ Dom(�>
4
) such that

�>
4

u = f − δu. Then, uniformly over δ, we have the a priori estimate

‖32u‖k +‖Du‖k+1≤c ‖ f ‖k +‖u‖ for all k ≥ 0.

Proof. The proof follows a contorted induction argument. The case k = 0 follows
from Lemmas 7.7 and 7.4 combined with the fact that ‖�>

4
u‖ ≤ ‖�>1 u‖ + ‖u‖.

Now suppose the result is true for all 0≤ j < k.
First we note that by Lemma 7.7 and the inductive hypothesis, we have

‖Du‖k+1≤c ‖ f ‖k +‖32u‖k−1≤c ‖ f ‖k +‖u‖.
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Additionally, we note that

‖�̂bu‖k = ‖ f − DDu− δu‖k ≤c ‖ f ‖k + δ‖u‖k +‖u‖

so ‖32u‖k ≤c ‖ f ‖k + ‖u‖k . By the inductive hypothesis, the only derivative we
now need to control to establish the estimate is ‖Dku‖≤c ‖ f ‖k +‖u‖. This is the
meat of the argument. Now

Q>(Bku,Bku)

= (∂̂Bku, ∂̂Bku)+ (ϑ̂Bku, ϑ̂Bku)+ (DBku, DBku)+ δ(Bku,Bku)

= Q>(u, (Bk)∗Bku)+ (
∑

j<k ψ1B j u, ψ1Bku)

+ (∇
∑

j<k B j u, DBku)+ (Du,
∑

j<k B j
∇Bu)

= (Bk f,Bku)+ (ψ1
∑

j<k B j u, ψ1Bku)+ (∇
∑

j<k B j u, DBku)

+ (
∑

j≤k(B
∗) j Du,∇Bk−1u)+ (

∑
j<k(B

∗) j Du,∇
∑

j<k B j u)

= (Bk f,Bku)+ (ψ1Sk−1u, ψ1Bku)+ (∇Sk−1u, DBku)

+ (D
∑

j≤k B j u+∇Sk−1u,∇Bk−1u)+ (∇Sk−1u,∇Sk−1u).

So by the induction hypothesis∣∣Q>(Bku,Bku)
∣∣≤c

(
‖Bk f ‖+‖Sku‖+‖32Sk−1u‖

) (
‖3Bku‖+‖DBku‖

)
+‖u‖2k +‖3

2Sk−1u‖2

≤c (‖ f ‖k +‖u‖k)
(
‖3Bku‖+‖DBku‖

)
+‖u‖2k +‖ f ‖2k−1.

Hence by the basic estimate ‖3Bku‖ + ‖DBku‖ ≤c ‖ f ‖k + ‖u‖k . Now we are
almost done for 3Dk

≤c 3Bk
+ controlled terms, so ‖3Dku‖ ≤c ‖ f ‖k + ‖u‖k .

From Lemma 7.9 and the inductive hypothesis we get

‖3−1 Dku‖≤c ‖�
>

F Dk−1u‖+‖32 Dk−1u‖+‖DDk−1u‖

≤c ‖ f ‖k−1+ δ‖u‖k−1+‖[�
>

F , Dk−1
]u‖+‖u‖+‖[D, Dk−1

]u‖

≤c ‖ f ‖k−1+‖3
2Sk−1u‖+‖u‖+‖32Sk−2u‖

≤c ‖ f ‖k−1+‖u‖.

Using our leaf interpolation method, we see

‖Dku‖2 ≤ ε‖3Dku‖2+ 1
ε ‖3

−1 Dku‖2≤c ε(‖ f ‖2k +‖u‖
2
k)+

1
ε (‖ f ‖2k−1+‖u‖

2).

Thus ‖u‖2k ≤ ε‖u‖
2
k +‖ f ‖2k +‖u‖

2. Choosing ε sufficiently small and absorbing
the ‖u‖k term on the right then yields the result. �
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Theorem 7.12. Let 0 < δ � 1. Suppose u ∈ Dom(�>
4
) and δu +�>

4
u ∈ Sk for

k ≥ 0. Then we have the regularity results

u ∈ Sk, 32u ∈ Sk, Du ∈ Sk+1,

%u ∈ Sk+1, %2u ∈ Sk+2.

Furthermore there is a uniform estimate independent of δ of the form

‖32u‖k +‖%u‖k+1+‖%
2u‖k+2+‖Du‖k+1≤c ‖�

>

4
u‖k +‖u‖.

If we also insist that u⊥Ker(�>
4
), then these results extend to the case δ = 0.

Proof. Most of this theorem has already been proved. Since we know the operators
δ+�>

4
are surjective and hypoelliptic, it easily follows that the a priori estimates

of Theorem 7.11 are genuine estimates. It just remains to show the additional
weighted regularity. Again from hypoellipticity and surjectivity it suffices to show
the estimate holds for smooth u ∈ Dom(�>

4
).

Now if u ∈C∞,>(�), then %u vanishes on the boundary. Alternatively phrased,
%u satisfies Dirichlet boundary conditions. We can then repeat the arguments from
Section 6 for the operator δ+�>

4
to see that

‖%u‖k+1≤c ‖�
>

4
(%u)‖k−1+‖%u‖,

where we compute �>
4
(%u) formally and if k = 0 replace k− 1 by 0. But

‖�>
4
%u‖k−1≤c ‖%�

>

4
u‖k−1+‖u‖k ≤c ‖�

>

4
u‖+‖u‖.

The same argument can be applied to %2u to obtain

‖%2u‖k+2≤c ‖%
2�>
4

u‖k +‖ρu‖k+1+‖u‖k .

Thus the claim holds for 0< δ� 1. The δ = 0 case follows from Lemma A.5. �

8. Regularity and estimates for �b

In this section we shall suppose that u and f are (0, q)-forms with 1 ≤ q ≤ n− 2
and δ > 0. Now we set D= C∞(�)∩Dom(∂b)∩Dom(∂

∗

b)

Lemma 8.1. If � has noncharacteristic boundary and satisfies (A1) and (A2),
then the set D is dense in Dom(∂b)∩Dom(∂

∗

b) in the graph norm given by

u 7→ ‖u‖+‖∂bu‖+‖∂
∗

bu‖.

Since � has noncharacteristic boundary and satisfies (A1) and (A2), the density
result can be proved using a method almost identical to [Chen and Shaw 2001,
Lemma 4.3.2]. The equivalent notion to splitting a form into complex tangent and
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normal pieces is just the decomposition u = u>+ θ0
∧u⊥. The details are lengthy

but standard.

Definition 8.2. The sesquilinear forms Qδ,ε are defined by

Qδ,ε(u, v)= (∂bu, ∂bv)+ (∂
∗

bu, ∂
∗

bv)+ δ(u, v)+ ε(∇u,∇v).

The spaces Dε are now the closures of D under that Q1,ε-norm.

Lemma 8.3. Under conditions (A1), (A3) and (B), for u ∈D and for δ, ε ≥ 0 such
that Qδ,ε(u, v)= ( f, v) for all v ∈ Dε , we have

‖3u‖≤c ‖ f ‖+‖u‖.

Proof. For u ∈ D, we have

‖u‖2+‖3u‖2≤c ‖3u>‖2+‖3u⊥‖2≤c Q>0,0(u
>, u>)+ Q⊥0,0(u

⊥, u⊥)+‖u‖2

= Q0,0(u, u)+ (ψ1u>, u⊥)+ (ψ1u⊥, u>)+‖u‖2

≤c Qδ,ε(u, u)+‖3u‖‖u‖+‖u‖2

= ‖ f ‖‖u‖+‖3u‖ ‖u‖+‖u‖2

≤c (‖3u‖+‖u‖)(‖ f ‖+‖u‖). �

Corollary 8.4. Under conditions (A1), (A3) and (B), we have Dom(�b)⊂ Ŝ1.

Proof. First note that if u ∈ Dom(�b), then u ∈ Dom(δ+�b) for any δ ≥ 0. Now
apply Proposition A.4 with X= Ŝ1, Y= L2(�) and P =�b to see that

u = N δ(δ+�b)u ∈ Ŝ1. �

Lemma 8.5. Under conditions (A1), (A3) and (B), the operator

�4u =�>
4

u>+ θ0
∧�⊥

4
u⊥

with Dom(�4)=
{
u : u> ∈ Dom(�>

4
), u⊥ ∈ Dom(�⊥

4
)
}

is selfadjoint.

Proof. This follows immediately from Lemmas 6.5 and 7.3. �

Lemma 8.6. Under conditions (A1), (A3) and (B), Dom(�b)= Dom(�4).

Proof. Theorems 6.9 and 7.12 imply that Dom(�4) ⊂ Dom(�b). To prove the
reverse inclusion, we see that for u ∈ Ŝ1

∩Dom(�b) and v ∈ Dom(�4)

(u,�4v) = (u,�bv+ψ1v) = (�bu+ψ1u, v).

Since �4 is selfadjoint, this implies u ∈ Dom(�∗
4
) = Dom(�4), and so we have

Dom(�b)∩ Ŝ1
⊂Dom(�4)⊂Dom(�b). But by Corollary 8.4, Dom(�b)⊂ Ŝ1. �
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For a pair (�,w) such that (A1) holds, we denote by K the points p ∈� such
that Hww is not constant on the leaf of w through p. If (A2) holds, then K is
contained in the interior of �, and we can define

B∞ =
{
ξ = ξ(w,w) ∈ C∞(�) : 1− ξ ∈ C∞0 (�), K ⊂ {ξ = 0}

}
.

Thus B∞ is the collection of smooth functions ξ depending only on w and w such
that ξ = 1 on a neighborhood of ∂� and (A3) holds on the support of ξ .

Definition 8.7. The spaces Sk; j are defined as follows: For ξ ∈B∞

Sk; j
=
{
u ∈ Sk

: % j u ∈ Sk+ j for j = 1, . . . , k, (ξu)⊥ ∈ Sk+ j ,

D(ξu>) ∈ Sk+ j−1, 3 j (ξu) ∈ Sk}
with associated norm

‖u‖k; j =
j∑

m=0

‖%mu‖k+m +‖ξu⊥‖k+ j +‖D(ξu>)‖k+ j−1+‖3
j (ξu)‖k .

Up to equivalence of norms, this definition is independent of the choice of ξ .

Lemma 8.8. Under conditions (A1), (A3) and (B), for u ∈ Dom(�b) ∩ C∞(�)
there is a uniform a priori estimate

‖u‖k;2 ≤ ‖�bu‖k +‖u‖.

Proof. From Theorems 6.9 and 7.12, we see

‖u‖k;2≤c ‖u
>
‖k;2+‖θ

0
∧ u⊥‖k+2≤c ‖�

>

4
u>‖k +‖�⊥4u⊥‖k +‖u‖

≤c ‖�
>

4
u>‖k +‖�bu‖k +‖ψ1u>‖k +‖u‖

≤c ‖�4u>‖k +‖�b(θ
0
∧ u⊥)‖k +‖u‖

≤c ‖�bu‖k +‖ψ1u⊥‖k +‖u‖

≤c ‖�bu‖k +‖�⊥4u⊥‖k−1+‖u‖.

By repeating this argument, we see that

‖u‖k;2≤c ‖�bu‖k +‖�⊥4u⊥‖+‖u‖

≤c ‖�bu‖k +‖ψ1u⊥‖+‖u‖≤c ‖�bu‖k +‖u‖,

where the last inequality follows from Lemma 8.3. �

Lemma 8.9. Under conditions (A1), (A3) and (B), if �bu+δu ∈ Sk , then u ∈ Sk;2.

Proof. The proof is by induction again. First we note that if u ∈ Dom(�b) then
u ∈ Dom(�4) by Lemma 8.6. Then Theorems 6.9 and 7.12 imply that u ∈ S0;2.
Thus the result is true for k = 0.
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Suppose the result is true for j < k. If u ∈ Dom(�b) and �bu+ δu ∈ Sk , then
u ∈ Sk−1;2 and

(δ+�4)u = δu+�bu+ θ0
∧ (ψ1u>)+ψ1u⊥.

Decomposing we get

(δ+�>
4
)u> ∈ Sk and (δ+�⊥

4
)u⊥ ∈ Sk−1.

The second of these implies that u⊥ ∈ Sk+1. This implies that we can improve the
first to (δ +�>

4
)u> ∈ Sk . This implies that u> ∈ Sk;2. Thus we can improve the

second to (δ+�⊥
4
)u⊥ ∈ Sk , which implies that u⊥ ∈ Sk+2. �

Corollary 8.10. For δ > 0, the operators δ+�b are hypoelliptic.

We summarize our results so far:

Theorem 8.11. Under conditions (A1), (A3) and (B), if 1≤q≤n−2 and 0<δ�1
then for any (0, q)-form f ∈ L2(�) and δ > 0, there is a unique u ∈Dom(�b) such
that �bu = f − δu. Furthermore if f ∈ Sk(�) then u ∈ Sk;2(�) and there is a
uniform estimate independent of δ given by ‖u‖k;2≤c ‖ f ‖k +‖u‖.

Proof. The operators δ+�b are selfadjoint, injective and have closed range. Thus
for f ∈ L2(�), there is a unique u ∈Dom(�b) with �bu = f −δu. The regularity
of u follows from Lemma 8.9. From Lemma 8.8 and the observation that �b

is continuous from Sk;2 to Sk , we see that ‖u‖k;2 ≤c ‖ f ‖k + δ‖u‖k + ‖u‖. For
sufficiently small δ we can therefore absorb the δ‖u‖k term. �

Theorem 8.12. Suppose � is a noncharacteristic smoothly bounded domain such
that the triple (�, θ,w) satisfies (A1) and (A2). If 1≤ q ≤ n−2 and�b has closed
range in L2

0,q(�), then for any (0, q)-form f ∈ L2(�) such that f⊥Ker(�b) there
is a unique u⊥Ker(�b) such that �bu = f . Also, if f ∈ Sk(�), then u ∈ Sk;2(�)

and there is a uniform estimate ‖u‖k;2≤c ‖ f ‖k .

Proof. The content here is that we must relax the assumptions in Theorem 8.11
from (A3) to the weaker (A1) and allow (B) to fail in the interior of �. However
C(w) = {p : dw ∧ dw = 0} is closed so K = C(w)∩� is a compact set, which
by condition (A2) lies inside �. Therefore we can construct a nest of smoothly
bounded open sets U j such that

K ⊂U1 ⊂⊂U2 ⊂⊂U3 ⊂⊂�.

Let� j =�\U j for j = 1, 2, 3. Since (A2) holds near the boundary, we can choose
these sets so that (A2) holds on each � j . Thus the triples (� j , θ, w) all satisfy
(A1), (A3) and (B).
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As we are assuming that �b has closed range and �b is selfadjoint, there is a
decomposition

L2(�)= Range(�b)⊕Ker(�b).

Thus if f⊥Ker(�b), then there is a unique u⊥Ker(�b) such that �bu = f .
Now suppose additionally that f ∈ Sk(�) and choose ξ ∈ B such that ξ = 1

on �3 and ξ = 0 on U1. For δ > 0 there is a unique uδ ∈ Dom(�b) such that
�buδ = f − δuδ. By standard interior regularity results [Folland and Stein 1974;
Chen and Shaw 2001], we see that uδ ∈ Sk+2(U3) and

(25) ‖uδ‖k+2,U3 ≤c ‖ f ‖k +‖uδ‖.

Now, it’s easy to see that ξuδ ∈ Dom(��1
b ) and �b(ξuδ) = ξ f − δξuδ + ζ∇su,

where ζ is a smooth real-valued function that vanishes on both �3 and U1. There-
fore by Theorem 8.11, we see

‖ξuδ‖k;2≤c ‖ξ f + ζ∇su‖k +‖uδ‖≤c ‖ f ‖k +‖uδ‖k+1,U3 ≤c ‖ f ‖k +‖uδ‖.

Combining with (25), we see that each uδ ∈ Sk;2 and there is a uniform estimate
independent of δ given by ‖uδ‖k;2≤c‖ f ‖k+‖uδ‖. We can then apply the regularity
result of Lemma A.5 together with the closed range assumption to see that u ∈ Sk;2

and that the desired estimate holds. �

9. Proofs of Theorems A–E

The following result from functional analysis will prove very useful in allowing us
to move results between degrees and pseudohermitian structures.

Lemma 9.1. The following are equivalent.

(1) �b has closed range in L2
(p,q).

(2) ∂b and ∂
∗

b have closed range in L2
(p,q).

(3) ∂b has closed range in L2
(p,q) and L2

(p,q+1).

(4) ∂b has closed range in L2
(p,q+1) and ∂

∗

b has closed range in L2
(p,q−1).

Proof. From standard results in functional analysis on the closed range properties
of adjoint operators, it follows that (2), (3) and (4) are equivalent.

Now suppose (1) that �b has closed range in L2
(p,q). Then

L2
(p,q)(�)= Range(�b)⊕Ker(�b).

Now Ker(�b)⊂ Ker(∂
∗

b)= Range(∂b)
⊥

. Thus

Range(∂b)⊂ Range(�b)⊂ Range(∂b)⊕Range(∂
∗

b).
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But this clearly implies that Range(∂b) is closed in L2
(p,q). A virtually identical

argument applies to Range(∂
∗

b).
Next suppose that (2) and hence (3) and (4) hold, so that both ∂b and ∂

∗

b have
closed range on the relevant bidegree forms. Then

L2
(p,q)(�)= Range(∂b)⊕Ker(∂

∗

b)= Range(∂b)⊕Range(∂
∗

b)⊕ H,

where H is the orthogonal complement of Range(∂
∗

b) in Ker(∂
∗

b). Standard results
imply that Range(∂

∗

b)
⊥
= Ker(∂b), so H ⊂ Ker(∂b) ∩Ker(∂

∗

b) = Ker(�b). Thus
we can decompose u = u1+ u2+ u H with u1 ∈ Range(∂b), u2 ∈ Range(∂

∗

b) and
u H ∈ H . Now suppose u ∈ Dom(∂b)∩Dom(∂

∗

b) and u⊥Ker(�b). Then u H = 0,
u1 ∈ Dom(∂

∗

b)∩Ker(∂b) and u2 ∈ Dom(∂b)∩Ker(∂
∗

b). But since both ∂b and ∂
∗

b
have closed range we see

‖u‖2 ≤ ‖u1‖
2
+‖u2‖

2
≤c ‖∂

∗

bu1‖
2
+‖∂bu2‖

2.

But for u ∈ Dom(�b) the far right side is equal to (�bu, u). Thus �b has closed
range in L2

(p,q). �

It is often desirable to work with a particular fixed pseudohermitian structure
rather than a rescaled form. Thus it is useful to see how things change under a
rescaling. While the regularity results for the Kohn Laplacian itself do not easily
hold up under this rescaling, as we shall see the closed range property and results
for related inhomogeneous ∂b equation do rescale well.

The key observation is as follows: For (0, q)-forms ϕ and ψ

(µxϕ,µxψ)x =

∫
�

〈µxϕ,µxψ〉xη
(x)
∧ (dη(x))n

=

∫
�

e−qx
〈ϕ,µ〉x e(n+1)xη∧ dηn

= (e(n+1−q)xϕ,ψ),

where µx is as defined in Equation (6). From this it is easy to see that

∂b(µxϕ)= µx(∂bϕ) and ∂
∗

b(µxϕ)= e−xµx
(
∂
∗

bϕ− (n+ 1− q)∂bx ∨ϕ
)
.

Corollary 9.2. If �b has closed range on (p, q)-forms, then �x
b has closed range

also for all x ∈ C∞(�) with x > 0.

Proof. It is sufficient to show that ∂b has closed range for the pseudohermitian form
η(x) in L2

(p,q) and L2
(p,q+1). Suppose that ∂b(µx un)→ f . Then ∂bun → µ−x f .

But since ∂b has closed range for η itself, there is some u ∈ L2(�) such that
∂bu = µ−x f . But then ∂bµx u = f and so f is in the range of ∂bµx . �

Corollary 9.3. If �b has closed range, then the dimension of Ker(�x
b) is indepen-

dent of choice of smooth x > 0.
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Proof. Since the assumption implies that Ker(∂b) = Range(∂b) ⊕ Ker(�b), the
result follows from the observation that µx preserves both Ker(∂b) and Range(∂b).

�

We now have all the ingredients to prove the theorems from the introduction.

Proof of Theorem A. This is just Theorem 8.12. �

Proof of Theorem B. Normalize θ=η(x) so that (�, θ,w) additionally satisfies (A2)
near the boundary. From Corollary 9.2, this normalization preserves the closed
range condition.

Let N be the Neumann operator for �0,q
b with this rescaled pseudohermitian

form. Then v = Nµx f solves �0,q
b v = µx f uniquely with v⊥Ker(�0,q

b ). Set
u = ∂

∗

bv. Then since

v ∈ Dom(�0,q
b ) and 0= ∂b�

0,q
b v =�0,q+1

b ∂bv,

it can easily be see that ∂bv ∈ Ker(�0,q+1
b )⊂ Ker(∂b)∩Ker(∂

∗

b). Therefore

∂bu = ∂b∂
∗

bv = ∂b∂
∗

bv+ ∂
∗

b∂bv =�
0,q+1
b v = µx f.

In particular, we now have that ∂bµ−x u = f . For the estimates, we first observe
that the decomposition of ∂

∗

b in Lemma 4.10 implies that ∂
∗

b maps Sk;2
∩Dom(∂

∗

b)

continuously into Sk;1. The estimates then follow easily from Theorem A and the
observation that each µx is an isomorphism on all function spaces that depend only
on derivatives of component functions. �

Proof of Theorem C. Since the Kohn Laplacian is globally subelliptic on compact
strictly pseudoconvex manifolds, the lack of cohomology implies the existence of
a strictly positive smallest eigenvalue on each leaf. Continuity of eigenvalues and
the lack of cohomology on each boundary leaf implies the existence of a smoothly
bounded set ∂� ⊂ �b ⊂ � foliated by level sets of w such that �b is open in �
and such that there is a global, strictly positive lower bounded on eigenvalues for
leaves contained within �b. Since dw ∧ dw̄ 6= 0 on ∂�, we can normalize the
pseudohermitian form so that (A3) holds on �b.

This all implies the existence of an estimate of the form

(26) ‖3u>‖L2,>(�b)≤c (�̂bu>, u>)L2,>(�b).

Therefore we can apply the basic estimates of Sections 6 and 7 to the domain�b

and combine with (26) to see that

(27)

‖3u>‖2+‖u⊥‖21≤c (�
>

4
u>, u>)+ (�⊥

4
u⊥, u⊥)

≤c (�bu, u)+ (ψ1u>, u⊥)+ (ψ1u⊥, u>)

≤c (�bu, u)+‖u⊥‖‖3u>‖
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for u ∈ Dom(�b) on �b.
Now let ξ1⊂ ξ2 be smooth bump functions compactly supported within�whose

supports contain �−�b, and set ζ = 1− ξ1.
Applying (27) to ζu then implies that there is an estimate on� itself of the form

(28) ‖ζu>‖+‖ζu⊥‖1≤c (�bu, u)+‖ξ2u‖1+‖ζu⊥‖

for all u ∈ Dom(�b) on �.
Suppose that un is a sequence in Dom(�b) such that un ⊥Ker(�b), �bun→ 0

and ‖un‖= 1. From (28), this implies that ζu⊥n is a bounded sequence in S1. Since
� is compact, by applying the Rellich lemma and passing to a subsequence we can
assume that ζu>n converges in L2. A similar argument using the interior estimate

‖ξ2u‖1≤c ‖�bu‖+‖u‖

implies that a subsequence of ξ2un converges. The estimate (28) then implies that
an appropriate subsequence of ζu>n is L2-Cauchy and so converges. Now since
{ζ = 1} ∪ {ξ2 = 1} ⊃ �, we can deduce that after passing to a subsequence, un

itself is Cauchy and so converges in L2. Thus un → u for some u ∈ L2 and
�bun→ 0. Since �b is a closed operator, this implies that u ∈ Ker(�b). But this
is a contradiction, and hence we must have an estimate

‖u‖≤c ‖�bu‖ for all u ⊥ Ker(�b).

This estimate is equivalent to �b having closed range. A similar argument, this
time assuming that un ∈Ker(�b), shows that every bounded sequence in Ker(�b)

has a convergent subsequence. Thus the L2 unit ball in Ker(�b) is compact, so
Ker(�b) is finite dimensional.

Thus for this normalized pseudohermitian form, �b is Fredholm on L2
0,q(�).

From Corollaries 9.2 and 9.3, we see that �b for the original pseudohermitian
form is also Fredholm.

Next we show that �b is hypoelliptic up to the boundary when (A3) holds.
From Theorem 8.12 it suffices to show that if �bu = 0, then u ∈C∞(�). Standard
interior estimates imply that u ∈ C∞(�). It remains to show that u is smooth up
to the boundary. Since the boundary leaves have no cohomology, we can find a
smooth neighborhood U of the boundary such that�b=U∩� satisfies (A1), (A3)
and (B) and none of the foliating leaves in �b have cohomology. The closed range
result implies that �b has closed range as an unbounded operator on �b also. Let
ξ be a smooth positive function supported in U that is identically equal to 1 near
∂�. Since u ∈Ker(�b), it follows that f =�b(ξu)∈C∞(�b) and ξu ∈Dom(�b)

on �b.
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Now from Corollary 4.11, there is a first order operator L ∈91 such that

�bv =�
>

4
v>+ Lv⊥+ θ0

∧ (�⊥
4
v⊥+ L∗v>)

for all v ∈ Dom(�b) on �b. Thus ξu solves the system

�>
4
v> = f >− Lv⊥�⊥

4
v⊥= f ⊥− L∗v>.

Since Dom(�b)⊂ Ŝ1 and vitally that �>
4

is injective on �b, we can now run an in-
duction argument using Corollary 6.10 and Theorem 7.12 to see that ξu ∈ C∞(�).
For if L∗(ξu) ∈ Sk−1, then Corollary 6.10 implies that (ξu)⊥ ∈ Sk+1. Then, by
Theorem 7.12, both (ξu) ∈ Sk and L∗(ξu)> ∈ Sk . �

Proof of Theorem D. For p = 0, this follows immediately from Theorem 1.1 and
Theorem C. To move to the case p > 0, we recall that dz1, . . . , dzn+1 yields a
global holomorphic trivialization of 31,0(M). That �b has closed range on (0, q)-
forms implies by Lemma 9.1 that ∂b has closed range in (0, q) and (0, q + 1)-
forms. The presence of global holomorphic trivialization immediately implies that
∂b has closed range on (p, 1) and (p, 2). For if ∂b(dz I

∧ un)→ φ, then φ can be
written as dz I

∧ u and un → u. But this implies u = ∂bv for some v and hence
φ = ∂b(dz I

∧ v). But then Lemma 9.1 can be applied again to see that �b has
closed range on (p, q)-forms.

That �b has finite kernel follows a very similar argument. Finite dimensional
kernel on (0, q)-forms is equivalent to Range(∂b) having a finite dimensional com-
plement in Ker(∂b). The global holomorphic trivialization immediately extends
this later condition to p > 0. �

Proof of Theorem E. From Theorem D we see�b is Fredholm; from Theorem C, it
is hypoelliptic on �. A theorem of Shaw [1991] states that the extra assumptions
that w = z1 and % is strictly convex imply that the Kohn Laplacian is actually
injective. Theorem B then implies smooth solvability of ∂b on (0, q)-forms. For
the case p > 0, we again use the global holomorphic trivialization. �

Appendix A. Functional analysis and elliptic regularization

In this section, we prove the elliptic regularization results that we need in this paper.
Here are the standing assumptions we shall make throughout.

• D is a linear subspace of C∞(�) such that C∞0 ⊂ D⊂ C∞(�).

• Q(u, v) is a first order, symmetric, nonnegative sesquilinear form on D.

• D is the closure of D in the 1+ Q-norm.

• X and Y are Hilbert spaces such that C∞(�)⊂ X⊂ Y⊂ L2(�) and

‖u‖ ≤ ‖u‖Y ≤ ‖u‖X.
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• C∞(�) is dense in Y.

We define Qδ,ε(u, v)= Q(u, v)+ δ(u, v)+ ε(∇u,∇v) on Dε , the closure of D

in the Q1,ε-norm. From this we define second operator operators Pε,δ by

Dom(Pδ,ε)=
{
u ∈ Dε

: there exists f ∈ L2(�) such that

Qε,δ(u, v)= ( f, v) for all v ∈ Dε
}

with Pδ,εu = f . We set Pδ = P0,δ, P = P0,0 and D= D0.

Lemma A.1. On a Hilbert space X, an unbounded, closed, densely defined, sym-
metric bijection F : Dom(F)→ X is selfadjoint.

Proof. Since F is surjective, it has closed range. Therefore since F is injective,
closed and densely defined, we have the bound ‖u‖≤c ‖Fu‖ for all u ∈Dom(F).
This implies that F−1 is a bounded operator X→ X. But F−1 is also symmetric
and any bounded, symmetric operator is selfadjoint. But this implies that F itself
is selfadjoint [Riesz and Sz.-Nagy 1990, page 312]. �

Lemma A.2. For δ > 0, Pε,δ is a closed, densely defined, bijective, selfadjoint
unbounded operator on L2(�).

Proof. The operator Pε,δ is densely defined since C∞0 (�)⊂ Dom(Pε,δ). From the
positivity of Q, we immediately see

‖u‖2 ≤ 1
δ Q>δ,ε(u, u).

To show that it’s closed, suppose that un ∈ Dom(Pε,δ) is a sequence such that
un→ u and Pε,δun→ f in L2(�). But the estimate then implies un converges in
Dε in the Qε,δ-norm. Thus u ∈ D and

Qε,δ(u, v)= lim Qε,δ(un, v)= lim(Pε,δun, v) = ( f, v).

The estimate also implies both that Pε,δ is injective and, using the Riesz repre-
sentation theorem applied to v 7→ ( f, v) on Dε , that there exists a weak solution
u ∈D0 to Qε,δ(u, v)= ( f, v) for all f ∈ L2(�). Therefore we clearly have that the
operators are bijective. As Q is symmetric so is Pε,δ. Selfadjointness then follows
from Lemma A.1. �

Since Pε,δ is bijective for δ > 0, we can always construct a bounded inverse
operator N ε,δ. Again we use N δ

= N 0,δ.
We’ll base our main regularity result on the following key lemma:

Lemma A.3. Suppose un is a bounded sequence in X that converges weakly in L2

to some u, then u ∈ X and ‖u‖X ≤ lim inf‖un‖X.
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Proof. Since X is a Hilbert space, it is reflexive and so that ‖un‖ is bounded in X

implies that un has a subsequence unk that converges weakly to some β ∈ X and

‖β‖X ≤ lim inf‖un‖X.

Now for v ∈ L2(�),

(u, v) ≤ ‖u‖‖v‖ ≤ ‖u‖X‖v‖ for all u ∈ X.

Therefore the map u 7→ (u, v) is a bounded linear functional on X. But this implies
that unk → β weakly in L2(�) and so β = u. �

Next we prove our main elliptic regularization theorem.

Proposition A.4. Suppose δ > 0 and the following a priori estimate holds uni-
formly in ε: If u ∈ D and Qδ,ε(u, v)= ( f, v) for all v ∈ Dε , then

‖u‖X≤c ‖ f ‖Y+‖u‖.

Then if f ∈ Y, then N δ f ∈ X and ‖N δ f ‖X≤c ‖ f ‖Y+
1
δ ‖N f ‖.

Proof. For f ∈ L2(�)

δ‖N δ,ε f ‖2 ≤ Qδ,ε(N δ,ε f, N δ,ε f )≤ ( f, N δ,ε f ) ≤ ‖ f ‖‖N δ,ε f ‖,

so ‖N δ,ε f ‖ ≤ 1
δ ‖ f ‖ for all f ∈ L2 and ε ≥ 0. Now for ε > 0 there is an elliptic

estimate
‖u‖2H1 ≤

1
min(ε, δ)

Qδ,ε(u, u) for all u ∈ Dε .

Thus we can apply elliptic regularity to see that N δ,ε f ∈ C∞(�) if f ∈ C∞(�).
Applying the a priori estimate we see that for ε > 0 and f ∈ C∞(�)

(29) ‖N δ,ε f ‖X ≤ Ck(‖ f ‖Y+‖N
δ,ε f ‖)≤ C‖ f ‖Y+

C
δ ‖ f ‖,

with C independent of ε, δ, f .
Once again suppose that f ∈C∞(�). As ε→ 0, the sequence N δ,ε f is bounded

in X. But for g ∈ D

|Qδ(N δ,ε f − N δ f, g)| = ε|(∇N δ,ε f,∇g)| ≤ ε‖N δ,ε f ‖H1‖g‖H1 .

Now

‖N δ,ε f ‖H1 ≤

√
1

min(ε, δ)
Qδ,ε(N δ,ε f, N δ,ε f )≤

√
1

min(ε, δ)

√
‖ f ‖‖N δ,e f ‖

≤
1

√
δ
√

min(δ, ε)
‖ f ‖.

Thus

|Qδ(N δ,ε f − N δ f, g)| ≤ ε
√
δ
√

min(ε, δ)
‖ f ‖‖g‖H1 → 0 as ε→ 0.
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This is sufficient to show that

(30) Qδ(N δ,ε f − N δ f, g)→ 0 for all g ∈ D.

However

Qδ(N δ,ε f − N δ f, N δ,ε f − N δ f )

= ε(∇N δ,ε f,∇N δ,ε f )− Qδ(N δ,ε f, N δ f )+ Qδ(N δ f, N δ f )

≤
ε

δmin(ε, δ)
‖ f ‖2+‖ f ‖‖N δ,ε f ‖+ Qδ(N δ f, N δ f )

≤
1
δ ‖ f ‖2+ Qδ(N δ f, N δ f ),

so N δ,ε f −N δ f is bounded in D0 as ε→ 0. This combined with (30) implies that
N δ,ε f − N δ f converges weakly to 0 in D0.

Thus N δ,ε f is a bounded sequence in X that converges weakly in L2(�) to N δ f .
Hence by Lemma A.3, we see that N δ f ∈ X and

(31) ‖N δ f ‖X≤c ‖ f ‖Y+
1
δ ‖N

δ f ‖.

Now suppose f ∈ Y. Then by the density assumption there is a sequence of
smooth forms fn→ f in Y. Now, N δ fn is therefore a bounded sequence in X that
converges as n→∞ to N δ f in L2(�). By Lemma A.3 this implies that N δ f ∈X

and (31) holds for all f ∈ Y. �

For δ = 0, we no longer have surjectivity for P . However, if we assume that
P has closed range, we can often extend the preceding result partially to δ = 0. It
only proves regularity for the solutions to Pu = f that are orthogonal to Ker(P).
In the case of the Kohn Laplacian, this all we expect. Examples of forms in the
kernel of �b that are not even in S1(�) were constructed in [Hladky 2006a].

Lemma A.5. Suppose we assume in addition to the standing assumptions that

• P has closed range;

• the Neumann operators N δ are hypoelliptic;

• there is an a priori estimate for u ∈ D∩Dom(P) given by

‖u‖X≤c ‖Pu‖Y+‖u‖;

• P is continuous as a map from Dom(P)∩X to Y.

Then if Pu = f ∈ Y and u⊥Ker(P), then u ∈ X and ‖u‖X≤c ‖ f ‖Y.

Proof. Since we are assuming P has closed range there is a constant c0 such that

‖u‖ ≤ c0‖Pu‖ for all u ∈ Dom(P) with u⊥Ker(P),
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and therefore there is a Neumann operator N : Range(P)→ (Ker(P))⊥∩Dom(P)
with

N P = 1 on (Ker(P))⊥ ∩Dom(P),

P N = 1 on Range(P).

Furthermore we have the estimate ‖N f ‖≤ c0‖ f ‖ for all f ∈Range(P). Now note
that N δ f ∈ Dom(Pδ)= Dom(P) for f ∈ L2(�). Also

P N δ f = (Pδ − δ)N δ f = f − δN δ f.

Therefore f ∈Range(P) implies that N δ f ∈Range(P)= (Ker(P))⊥. In particular,
we now have

‖N δ f ‖ ≤ c0
(
‖ f ‖+ δ‖N δ f ‖

)
,

and so ‖N δ f ‖≤c ‖ f ‖ for small 0< δ� 1.
Suppose f ∈C∞(�). Then by assumption N δ f ∈C∞(�). Now by the a priori

estimate we see

(32)
‖N δ f ‖X≤c (‖P N δ f ‖Y+‖N

δ f ‖)

≤c ‖ f ‖Y+ δ‖N
δ f ‖Y+‖N

δ f ‖.

so by absorbing the middle term for 0< δ� 1, we get

(33) ‖N δ f ‖X≤c ‖ f ‖Y+‖N
δ f ‖.

Now for f ∈ Y, there is a sequence fn ∈ C∞(�) such that fn → f in Y. As
n → ∞, the sequence N δ fn is bounded in X. But since δ‖N δg‖ ≤ ‖g‖ for all
g ∈ L2(�), the sequence converges strongly in L2(�) to N δ f . By Lemma A.3,
this shows that N δ f ∈ X and (33) holds as a genuine estimate.

Now for f ∈ Range(P)∩Y

|Q(N δ f −N f, g)| = δ|(N δ f, g)| ≤ δ‖N δ f ‖‖g‖≤c‖ f ‖‖g‖→ 0 for all g ∈ D0.

Since both N δ f and N f are in (Ker(P))⊥, this implies that N δ f → N f strongly
in L2(�). This implies that N δ f is a bounded sequence in X that converges weakly
to N f in L2(�). By Lemma A.3, this implies that N f ∈ X and

‖N f ‖X ≤ lim inf‖N δ f ‖X≤c ‖ f ‖Y. �
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