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The notion of Z2 ×Z2-symmetric spaces is a generalization of classical sym-
metric spaces, where the group Z2 is replaced by Z2 × Z2. In this article, a
classification is given of the Z2 × Z2-symmetric spaces G/K where G is an
exceptional compact Lie group or Spin(8), complementing recent results of
Bahturin and Goze. Our results are equivalent to a classification of Z2 ×Z2-
gradings on the exceptional simple Lie algebras e6, e7, e8, f4, g2 and so(8).

1. Introduction and results

The notion of 0-symmetric spaces introduced by Lutz [1981] is a generalization
of the classical notion of a symmetric space.

Definition 1.1. Let 0 be a finite abelian group and let G be a connected Lie group.
A homogeneous space G/K is called 0-symmetric if G acts almost effectively
on G/K and there is an injective homomorphism ρ : 0→ Aut G, such that G0

0 ⊆

K ⊆G0, where G0 is the subgroup of elements fixed by ρ(0) and G0
0 its connected

component.

In the case 0 = Z2 this is just the classical definition of symmetric spaces,
and in the case 0 = Zk one obtains k-symmetric spaces, as studied in [Wolf and
Gray 1968]. In the case 0 = Z2 × Z2 we can rephrase the definition as follows.
A homogeneous space G/K is Z2 × Z2-symmetric if and only if there are two
different commuting involutions on G, that is, there are σ, τ ∈ Aut G \ {idG} such
that σ 2

= τ 2
= idG , σ 6= τ and στ = τσ such that (Gσ

∩Gτ )0 ⊆ K ⊆ Gσ
∩Gτ .

It is the purpose of this paper to give a classification of Z2 × Z2-symmetric
spaces in the case G is a simply connected compact Lie group of isomorphism
type Spin(8), E6, E7, E8, F4 or G2. This amounts to a classification of pairs
of commuting involutions on the Lie algebras of these groups. Recently, such
a classification has been obtained by Bahturin and Goze [2008] for the case of
simple classical Lie algebras except so(8). The results of the classification in the
exceptional and Spin(8) case are given in Theorems 1.2 and 1.3, respectively.
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Let G/K be a Z2×Z2-symmetric space. Then there is a triple of involutions σ , τ ,
στ of G and we say that the Z2×Z2-symmetric space is of type (X, Y, Z)where X ,
Y , Z denote the local isomorphism classes of the symmetric spaces G/Gσ , G/Gτ

and G/Gστ , respectively. For example, we will show that there are two commuting
involutions σ, τ on G = E7 such that G/Gσ , G/Gτ and G/Gστ are isomorphic
to symmetric spaces of type E V, E VI and E VII, respectively and such that the
Lie algebra of Eσ6 ∩Eτ6 is isomorphic to su(6)+ sp(1)+R; see Table 2. Thus we
say that the corresponding Z2×Z2-symmetric space is of type (E V, E VI, E VII),
abbreviated as E V-VI-VII.

Type g k

E I-I-II e6 so(6)+R

E I-I-III e6 sp(2)+ sp(2)
E I-II-IV e6 sp(3)+ sp(1)
E II-II-II e6 su(3)+ su(3)+R+R

E II-II-III e6 su(4)+ sp(1)+ sp(1)+R

E II-III-III e6 su(5)+R+R

E III-III-III e6 so(8)+R+R

E III-IV-IV e6 so(9)

E V-V-V e7 so(8)
E V-V-VI e7 su(4)+ su(4)+R

E V-V-VII e7 sp(4)
E V-VI-VII e7 su(6)+ sp(1)+R

E VI-VI-VI e7 so(8)+ so(4)+ sp(1)
e7 u(6)+R

E VI-VII-VII e7 so(10)+R+R

E VII-VII-VII e7 f4

E VIII-VIII-VIII e8 so(8)+ so(8)
E VIII-VIII-IX e8 su(8)+R

E VIII-IX-IX e8 so(12)+ sp(1)+ sp(1)
E IX-IX-IX e8 e6+R+R

F I-I-I f4 u(3)+R

F I-I-II f4 sp(2)+ sp(1)+ sp(1)
F II-II-II f4 so(8)

G g2 R+R

Table 1. Exceptional Z2×Z2-symmetric spaces.
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The problem of commuting involutions has a geometric interpretation in terms
of classical Z2-symmetric spaces. Let G be a simple compact connected Lie group
and let H , L be symmetric subgroups of G (see Definition 2.1 below) such that
(Gσ )0 ⊆ H ⊆ Gσ and (Gτ )0 ⊆ L ⊆ Gτ , where σ, τ ∈ Aut(G) are involutions.
Then M = G/L endowed with a left G-invariant metric is a symmetric space in
the classical sense and there is a natural isometric action of H on M which is hy-
perpolar, that is, there exists a flat submanifold which meets all the orbits and such
that its intersections with the orbits are everywhere orthogonal; see [Heintze et al.
1995] and [Kollross 2002]. These actions have first been considered by Hermann
[1960]; they are called Hermann actions.

Hermann [1962] proved that the H–orbit through g L ∈ M , g ∈ G is totally
geodesic if and only if the involutions ig σ i−1

g and τ commute where we use the
notation ig to denote the automorphism of a Lie group G given by ig(x)= g x g−1;
this means that the classification of commuting involutions on G is equivalent to a
classification of totally geodesic orbits of Hermann actions.

Conlon [1969] determined all pairs of conjugacy classes of involutions σ, τ for
which there is a g ∈ G such that igσ i−1

g and τ commute. The proof relies on
the unpublished notes [Conlon 1968]. (For inner involutions σ = ia , τ = ib there
is obviously always such a g since there is a g ∈ G such that g a g−1 and b are
contained in the same maximal torus of G.) Our classification however uses a
direct approach which does not rely on any of the previously mentioned results.

Theorem 1.2. Let g be a compact exceptional Lie algebra of type e6, e7, e8, f4, or
g2. If σ, τ ∈ Aut(g) are two commuting involutions such that σ 6= τ then the pair
(g, gσ ∩ gτ ) is one of the pairs (g, k) given by Table 1; the conjugacy classes of
σ , τ and στ are given by the first row of Table 1. Conversely, for any pair of Lie
algebras (g, k) in Table 1 there exists a pair (σ, τ ) of commuting involutions of g

such that k∼= gσ ∩ gτ .

The data in Table 1 in all cases but one determines the conjugacy class of the
subalgebra k⊂ g; see Remark 4.2. To prove Theorem 1.2, we first exhibit various
standard examples for pairs of involutions on exceptional Lie algebras in Section 3.
Then it is shown in Section 4 that these constructions already exhaust all possibil-
ities for Z2×Z2-symmetric spaces.

Theorem 1.3. Let k⊂g=so(8) be a subalgebra such that there are two commuting
involutions σ and τ , σ 6= τ , of g with k= gσ ∩ gτ . Then there is an automorphism
ϕ of so(8) such that ϕ(k) is one of the following subalgebras of so(8).

(i) so(n1)+ so(n2)+ so(n3), n1+ n2+ n3 = 8, ni ≥ 1;

(ii) so(n1)+ so(n2)+ so(n3)+ so(n4), n1+ n2+ n3+ n4 = 8, ni ≥ 1;

(iii) u(3)+ u(1).
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Note that for the case of so(8) there are less cases than there are in the classifi-
cation of [Bahturin and Goze 2008] for the Lie algebras so(n), n 6= 8, since some
of the Z2×Z2–symmetric subalgebras for general so(n) which appear as distinct
cases in [Bahturin and Goze 2008] are conjugate by some automorphism of so(8).
Theorem 1.3 is proved in Section 5.

It should be mentioned that recently several authors announced results on the
classification of gradings on exceptional algebras [Draper and Martı́n 2007; Draper
et al. 2008; Draper and Viruel 2007]. As was remarked in [Bahturin and Goze
2008], the result on Z2×Z2-gradings on Spin(8) can also be obtained from [Draper
and Martı́n 2006]. Z2×Z2-symmetric spaces are of some interest in Riemannian
geometry since they are examples of spaces possessing families of nonnegatively
curved homogeneous metrics; see [Schwachhöfer and Tapp 2008].

2. Preliminaries

Definition 2.1. Let g be a Lie algebra. We say that k⊂ g is a symmetric subalgebra
of g if there is a nontrivial automorphism σ of g with σ 2

= idg such that k= gσ :=

{X ∈ g | σ(X)= X}. If G is a Lie group, we say that a closed subgroup K ⊂ G is
a symmetric subgroup if the Lie algebra of K is a symmetric subalgebra in the Lie
algebra of G.

Proposition 2.2. Let g be a real Lie algebra. Let σ, τ be automorphisms of g such
that σ 2

= τ 2
= idg, στ = τσ , σ 6= τ . Then the Lie algebra g splits as a direct sum

of vector spaces

g= g1⊕ gσ ⊕ gτ ⊕ gστ ,(2-1)

where g1 = gσ ∩ gτ , g1 + gσ = gσ , g1 + gτ = gτ , g1 + gστ = gστ such that the
following hold:

(i) We have [gϕ, gψ ]⊆gϕψ for all ϕ,ψ ∈0, that is, the Lie algebra g is 0-graded,
where 0 = {1, σ, τ, στ } is the subgroup of Aut(g) generated by σ and τ .

(ii) For all ϕ ∈ 0 \ {1} we have that g1 is a symmetric subalgebra of g1+ gϕ .

(iii) For all ϕ ∈ 0 \ {1} we have that g1+ gϕ is a symmetric subalgebra of g.

Proof. Consider the Cartan decomposition g = gσ + pσ . Since τ commutes with
σ , it leaves this decomposition invariant and hence we have further splittings

gσ = (gσ ∩ gτ )+ (gσ ∩ pτ ) and pσ = (pσ ∩ gτ )+ (pσ ∩ pτ ),

where g = gτ + pτ is the Cartan decomposition with respect to τ . Define gσ =

gσ ∩pτ , gτ = gτ ∩pσ and gστ = pσ ∩pτ . Now the assertions of the proposition are
easily checked. �
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Conversely, given a Z2×Z2–grading on a Lie algebra g, one can define a pair
of commuting involutions σ, τ on g such that (2-1) agrees with the grading. Thus
our results are equivalent to a classification of Z2×Z2-gradings on e6, e7, e8, f4, g2

and so(8).
In order to classify Z2×Z2-symmetric spaces, we want to find all possibilities for

a pair of involutions (σ, τ ) such that σ and τ commute. It follows from Proposition
2.2 that in this case we have

dim g− dim gσ − dim gτ = dim gστ − 2 dim gσ ∩ gτ .(2-2)

This gives a necessary condition for the existence of Z2×Z2-symmetric spaces of
certain types. The left-hand side in (2-2) depends only on the conjugacy classes of
σ and τ ; we define

d := d(σ, τ ) := dim g− dim gσ − dim gτ .

To find candidates for the pair (gστ , gσ ∩ gτ ), we list all symmetric subalgebras of
symmetric subalgebras in exceptional compact Lie algebras in Table 3 on the next
two pages; the table gives for each pair (hk), the number c(h, k) := dim h−2 dim k.
By (2-2), the only candidates for a pair (gστ , gσ ∩gτ ) are those pairs (h, k), where
the number c(h, k) equals d. Furthermore, we may eliminate immediately all pairs
(h, k) from the list of candidates which do not fulfil the necessary condition that
gσ and gτ both contain a symmetric subalgebra isomorphic to k. However, these
are only necessary conditions and we have to check in each case if a decomposi-
tion (2-1) with gστ ∼= h, gσ ∩ gτ ∼= k actually exists.

For the convenience of the reader we list the symmetric subalgebras k of sim-
ple compact exceptional Lie algebras g in Table 2; in Tables 4 (page 121) and 5
(page 127) we list respectively the pairs of (conjugacy classes of) involutions on
the exceptional Lie algebras and so(8), together with the numbers d = d(σ, τ ).

g k

E I e6 sp(4)
E II e6 su(6)+ sp(1)
E III e6 so(10)+R

E IV e6 f4

E V e7 su(8)
E VI e7 so(12)+ sp(1)

g k

E VII e7 e6+R

E VIII e8 so(16)
E IX e8 e7+ sp(1)

F I f4 sp(3)+ sp(1)
F II f4 so(9)

G g2 sp(1)+ sp(1)

Table 2. Exceptional symmetric spaces of type I.
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g h k c(h, k)

e6 sp(4) sp(4− n)+ sp(n), n = 1, 2 −12,−4
e6 sp(4) su(4)+R 4
e6 su(6)+ sp(1) s(u(6−n)+u(n))+R −34,−14,

n = 0, . . . , 3 −2, 2
e6 su(6)+ sp(1) s(u(6−n)+u(n))+ sp(1) −18,−6,−2

n = 1, . . . , 3
e6 su(6)+ sp(1) sp(3)+ sp(1) −10
e6 su(6)+ sp(1) sp(3)+R −6
e6 su(6)+ sp(1) so(6)+ sp(1) 2
e6 su(6)+ sp(1) so(6)+R 6
e6 so(10)+R so(10−n)+ so(n) −44,−26,−12,

n = 0, . . . , 5 −2, 4, 6
e6 so(10)+R so(10−n)+ so(n)+R −28,−14,

n = 1, . . . , 5 −4, 2, 4
e6 so(10)+R u(5)+R −6
e6 so(10)+R u(5) −4
e6 f4 sp(3)+ sp(1) 4
e6 f4 so(9) −20

e7 su(8) s(u(8− n)+u(n)) −35,−15,
n = 1, . . . , 4 −3, 1

e7 su(8) sp(4) −9
e7 su(8) so(8) 7
e7 so(12)+ sp(1) so(12−n)+ so(n)+R −65,−43,−25,

n = 0, . . . , 6 −11,−1, 5, 7
e7 so(12)+ sp(1) so(12−n)+ so(n)+ sp(1), −47,−29,

n = 1, . . . , 6 −15,−5, 1, 3
e7 so(12)+ sp(1) u(6)+ sp(1) −9
e7 so(12)+ sp(1) u(6)+R −5
e7 e6+R sp(4)+R 5
e7 e6+R sp(4) 7
e7 e6+R so(10)+R+R −15
e7 e6+R so(10)+R −13
e7 e6+R su(6)+ sp(1)+R 1
e7 e6+R su(6)+ sp(1) 3
e7 e6+R f4+R −27
e7 e6+R f4 −25

Table 3. Symmetric subalgebras of symmetric subalgebras of
simple exceptional compact Lie algebras.
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g h k c(h, k)

e8 so(16) so(16−n)+ so(n) −90,−64,−42,
n = 1, . . . , 8 −24,−10, 0, 6, 8

e8 so(16) u(8) −8
e8 e7+ sp(1) e7+R −132
e8 e7+ sp(1) su(8)+ sp(1) 4
e8 e7+ sp(1) su(8)+R 8
e8 e7+ sp(1) so(12)+ sp(1)+ sp(1) −8
e8 e7+ sp(1) so(12)+ sp(1)+R −4
e8 e7+ sp(1) e6+R+ sp(1) −28
e8 e7+ sp(1) e6+R+R −24

f4 sp(3)+ sp(1) sp(3)+R −20
f4 sp(3)+ sp(1) sp(2)+ sp(1)+ sp(1) −8
f4 sp(3)+ sp(1) sp(2)+ sp(1)+R −4
f4 sp(3)+ sp(1) u(3)+ sp(1) 0
f4 sp(3)+ sp(1) u(3)+R 4
f4 so(9) so(9−n)+ so(n) −20,−8, 0, 4

n = 1, . . . , 4

g2 so(4) u(2) −2
g2 so(4) so(3) 0
g2 so(4) R+R 2

Table 3 (continued).

3. Involutions of reductive Lie algebras and construction of examples

We will now discuss some constructions of Z2 × Z2-symmetric spaces. We start
with a list of several possibilities how one can define involutive automorphisms of
a reductive complex Lie algebra from a given root space decomposition. Let g be
a reductive complex Lie algebra with Cartan subalgebra g0 and let

(3-1) g= g0+
∑
α∈8

gα

be the root space decomposition with respect to g0. Also assume that we have
chosen once and for all a set {α1, . . . , αn} of simple roots.

Type 1. Let h ⊂ g be a symmetric subalgebra of maximal rank. Then we may
assume that h contains g0. Hence there is a subset S⊂8 such that h=g0+

∑
α∈S gα

and we may define an involutive automorphism σ of g by requiring that σ(X)= X
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if X ∈ h and σ(X)=−X if X ∈
∑

α∈8\S gα. The corresponding symmetric spaces
are exactly those where the involution is an inner automorphism.

Type 2. Outer involutions induced from automorphisms of the Dynkin diagram
(see [Helgason 1978, Chapter X, Section 5]): The corresponding simply connected
irreducible symmetric spaces with simple compact isometry group are the spaces
SU(2n+ 1)/SO(2n+ 1), SU(2n)/Sp(n), SO(2n+ 2)/SO(2n+ 1) and E6/F4.

Type 3. Let g be a reductive complex Lie algebra and let t ⊂ g be a Cartan
subalgebra. Then there is an automorphism σ of g which acts as minus identity
on t and sends each root to its negative. The symmetric spaces G/H given in
this way are exactly those where rk G/H = rk G; the Satake diagram of G/H is
given by the Dynkin diagram of G with uniform multiplicity one. The automor-
phisms obtained in this way may be inner or outer. The corresponding irreducible
compact symmetric space are: A I, SO(2n+ 1)/SO(n+ 1)× SO(n), Sp(n)/U(n),
SO(2n)/SO(n)×SO(n), E I, E V, E VIII, F I, G.

The distinction of the three types of involutions above pertains to the action
of the involution with respect to one fixed Cartan subalgebra. While Type 1 in-
volutions obviously are never conjugate to involutions of type Type 2, a Type 3
involution may be conjugate to a Type 1 or Type 2 involution.

In the examples below, we show how to construct various Z2 × Z2-symmetric
spaces mainly by combining two commuting involutions as defined above with
respect to one fixed root space decomposition (3-1). We start with the examples
where both involutions are of Type 1.

Example 3.1. Let G be a connected compact Lie group and let σ1 and σ2 be two
involutions of G defined by conjugation with the elements g1 and g2, respectively,
of G, such that the fixed point sets Gσ1 and Gσ2 are nonisomorphic. After con-
jugation, we may assume that g1 and g2 are both contained in one and the same
maximal torus T of G; in particular, σ1 and σ2 commute. Consider the root space
decomposition (3-1) where g0 is the complexification of the Lie algebra of T .
Then the automorphisms of gC induced by σ and τ are both of Type 1 and the
complexification of the Lie algebra of Gσ

∩ Gτ is given by g0 +
∑

α∈S1∩S2
gα,

where Si is the root system of Gσi , i = 1, 2, with respect to g0.
The maximal subgroups of maximal rank in a simple compact Lie group G can

be conveniently described by using extended Dynkin diagrams; see [Onishchik
1994, 1.3.11]. The nodes of the extended Dynkin diagram correspond to roots
α0, α1, . . . , αn , where α1, . . . , αn are the simple roots and α0 = −δ where δ is
highest root. The simple roots of a maximal subgroup of maximal rank are then
given by certain subsets of the set of nodes of the extended Dynkin diagram. For
the groups E6, E7 and E8 these subsets are given below by the black nodes r for
the symmetric ones among the subgroups of maximal rank. The root systems Si of
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these subgroups are given as the union of all roots which are integral linear com-
binations of the simple roots corresponding to black nodes. Now we may consider
two diagrams depicting two symmetric subgroups Gσ1 and Gσ2 of maximal rank.
Then the root system of Gσ1 ∩Gσ2 with respect to g0 is given by S1∩ S2 and it is a
straightforward task to explicitly determine this set. However, to completely avoid
these computations, we will use a simplified approach. We know from [Onishchik
1994, 1.3, Proposition 15] that both Gσ1 and Gσ2 contain a subgroup whose simple
roots with respect to g0 are those whose corresponding nodes are marked black in
both diagrams. Thus we obtain the set of simple roots of a regular subgroup of G
contained in the intersection Gσ

∩Gτ . This information, together with a dimension
count using Table 3 (pages 118–119) and Table 4, turns out to be sufficient in all
cases given below to identify the connected component of the intersection Gσ

∩Gτ ,
which is a symmetric subgroup of both Gσ and Gτ .

Type d Type d Type d

E I-I 6 E III-IV −20 E VII-VII −25
E I-II 4 E IV-IV −26 E VIII-VIII 8
E I-III −4 E V-V 7 E VIII-IX −8
E I-IV −10 E V-VI 1 E IX-IX −24
E II-II 2 E V-VII −9 F I-I 4
E II-III −6 E VI-VI −5 F I-II −8
E II-IV −12 E VI-VII −15 F II-II −20
E III-III −14 G 2

Table 4. Pairs of involutions on exceptional groups.

The symmetric subgroups of maximal rank in E6, namely SU(6) · Sp(1) and
Spin(10) ·U(1) are given by the following diagrams:

E II r r r r rr r r r rbr E II′ b b b b br r rr r
r

E III r r r rb b b b brbb

Comparing E-II and E-III, we see that there is a Z2×Z2-symmetric space G/K such
that k contains a subalgebra isomorphic to su(5)+R+R. A simple dimension count,
facilitated by Tables 3 and 4, shows that the corresponding Z2×Z2-symmetric space
is of type E II-III-III with k ∼= su(5)+R+R. Using an alternative embedding of
SU(6) · Sp(1) into E6, shown as E II′, and combining it with E II, we obtain a
Z2×Z2-symmetric space with k∼= su(4)+ sp(1)+ sp(1)+R∼= so(6)+ so(4)+R

of type E II-II-III. Combining E III and E III′ (as given in Example 3.6 below) we
construct a Z2×Z2-symmetric space of type E III-III-III with k= so(8)+R+R.
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The connected symmetric subgroups of E7, namely SU(8), Spin(12) ·Sp(1) and
E6 ·U(1), are given by the following diagrams.

E V r r r r r rr r r r r r rb
E VI r r r r rb b b b b b br r

E VI’ r r r r rb b b b b b brr E VII r r r r rb b b b b bbr
Combining E V and E VI we obtain a Z2×Z2-symmetric space with k = su(6)+
sp(1)+ R of type E V-VI-VII. Combining E VI and E VII we obtain a Z2 × Z2-
symmetric space with k containing a subalgebra isomorphic to so(10)+ R+ R;
using Tables 3 and 4 it follows that the corresponding Z2×Z2-symmetric space is
of type E VI-VII-VII with k ∼= so(10)+ R+ R. Combining E VI with E VI’, we
obtain a Z2 × Z2-symmetric space such that k contains a subalgebra isomorphic
to so(8) + sp(1) + sp(1). We see from the same tables that the corresponding
Z2×Z2-symmetric space is of type E VI-VI-VI with k∼= so(8)+ so(4)+ sp(1).

The connected symmetric subgroups of E8, namely SO′(16) and E7 · Sp(1) are
given by the following diagrams.

E VIII b b b b b b br r r r r r rr
E IX b b b b b b br r r r r r rrr

Combining the two diagrams and using Tables 4 and 3 proves the existence of a
Z2×Z2-symmetric space of type E VIII-IX-IX with k∼= so(12)+ sp(1)+ sp(1).

Example 3.2. Let now G be simple and let g ∈ G be an element with i2
g = idG .

Let T be a maximal torus of G containing g. Let w = k ZG(T ), k ∈ NG(T ), be
an element of the Weyl group WG = NG(T )/ZG(T ) of G such that the action
of w on T does not leave the root system of ZG({g}) invariant. Define h =w . g=
k g k−1. Then ig and ih are two conjugate commuting involutions of G whose fixed
point sets do not agree. Hence they define a Z2×Z2–symmetric space.

We now use this construction to prove the existence of various Z2×Z2-symmetric
spaces. First, let G = F4 and let ig be an inner involution of type F II, that is, the
connected component of the fixed point set of ig is isomorphic to Spin(9). Define
another involution ih as above; it is also of type F II, but the fixed point sets of ig

and ih do not agree. From Table 4 we see that d =−20 for a pair of involutions of
Type F II-II. In Table 3 there are two entries with g= f4 and c(h, k)=−20, namely
k = sp(3)+ R and k = so(8). Since sp(3) is not subalgebra of so(9), it follows
that the Z2×Z2-symmetric space constructed in this way is of type F II-II-II. This
argument also shows that there is no Z2×Z2-symmetric space of type F I-II-II.
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Now let G =E8 and let σ be an involution of type E IX as given in Example 3.1
and let gσ be the Lie algebra of the fixed point set of ig. Consider the subalgebra h⊂

g= e8 isomorphic to su(3)+ e6 given by the diagram

b b b b b b br r r r r r rrr
Let W be the Weyl group of e8 with respect to g0= t. The Weyl groups of gσ and of
h are subgroups of W in a natural way. Comparing the two diagrams corresponding
to gσ and h, respectively, we see that there is at least one root space of g which is
contained in the su(3)-summand of h, but not in gσ . Hence there is a Weyl group
element w ∈W ⊂Aut(g) whose action on g leaves the e6-summand of h fixed, but
which does not leave gσ invariant. This implies that there is an involution τ 6= σ
such that gσ ∩ gτ contains a subalgebra isomorphic to e6. By a dimension count,
this shows the existence of a Z2 × Z2-symmetric space of type E IX-IX-IX with
k∼= e6+R+R.

Now consider g= e7 and let σ be an involution as given by the diagram E VI in
Example 3.1. Consider the subalgebra h⊂ g isomorphic to su(6)+su(3) given by

r r r rb b b b b b br rr
With an analogous argument as above we may construct a Z2×Z2-symmetric space
such that k contains a subalgebra isomorphic to su(6). Using Table 3 we see that the
corresponding Z2×Z2-symmetric space is of type E VI-VI-VI with k∼= u(6)+R.

For G = E6, consider the subgroup locally isomorphic to SU(3) ·SU(3) ·SU(3)
given by the diagram

b b b b br r rr r
r

Let ig be an inner involution corresponding to the diagram E II from Example 3.1.
Then there is a Weyl group element w = k ZG(T ) such that the involution ih with
h = k g k−1 is such that the Lie algebra of the common fixed point set of ig and
ih contains a subalgebra isomorphic to su(3)+ su(3)+ R+ R. It follows from
Table 3 that we have constructed a Z2×Z2-symmetric space of type E II-II-II with
k= su(3)+ su(3)+R+R.

Example 3.3. Here we combine two involutions of Type 3 and Type 1, respec-
tively. Thus let g be a complex semisimple Lie algebra and let g0 ⊂ g be a Cartan
subalgebra. Let σ be an involution of Type 3 on g. Let τ be an inner involution
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given as conjugation by an element t = exp X , where X ∈ g0. Then the con-
nected component of ZG({t}) is the connected Lie subgroup of G corresponding
to g0 +

∑
α∈S gα, where S is a certain subset of the root system 8 of g with the

property that for each α ∈ S we have also −α ∈ S. Obviously, the two involutions
commute and the involution induced by σ on the fixed point set gτ of τ is the
automorphism which acts as minus identity on g0 and sends each root α ∈ S of gτ

to its negative. Moreover, the fixed point set of στ will be isomorphic to the fixed
point set of σ , since the corresponding symmetric spaces will have isomorphic
Satake diagrams. Hence the data of the Z2×Z2-symmetric space obtained in this
way can be immediately deduced from the classification of ordinary symmetric
spaces. This shows the existence of the exceptional Z2 × Z2-symmetric space of
types E I-I-II, E I-I-III, E V-V-V, E V-V-VI, E V-V-VII, E VIII-VIII-VIII, E VIII-
VIII-IX, F I-I-I, F I-I-II, G as given in Table 1.

Example 3.4. Let now G=E6 and choose a Cartan subalgebra g0⊂ e6. Let σ be an
involution of Type 2, that is, E IV and let τ be an involution of Type 3, that is, E I.
Then the two involutions obviously commute. A dimension count using Tables 4
and 3 shows that στ is of type E II and hence the corresponding Z2×Z2-symmetric
space is of type E I-II-IV with k∼= sp(3)+ sp(1).

Example 3.5. Let G = E6. Let σ be the involution of Type 2 given by the per-
mutation of the simple roots α1 7→ α5, α2 7→ α4, α3 7→ α3, α4 7→ α2, α5 7→ α1,
α6 7→ α6 and let τ be the involution of Type 1 given by the following diagram,
where the numbering of the roots α0, . . . , α6 is given.

E III′ r r rb b b b brr
1 2 3 4 5

6
0

Then obviously σ and τ commute and since στ is an outer automorphism of E6, it
follows from Lemma 4.1 that we have constructed a Z2×Z2-symmetric space of
type E III-IV-IV with k∼= so(9).

Example 3.6. Let G = E7. By [Wolf 1968, Theorem 3.1] there is an isotropy
irreducible homogeneous space E7/L , where L is locally isomorphic to Sp(1) ·F4

such that the 78-dimensional isotropy representation ρ is equivalent to the tensor
product of the adjoint representation of Sp(1) and the 26-dimensional irreducible
representation of F4. In particular, we may view the isotropy representation as
a representation of SO(3)× F4 and choose two elements g, h ∈ L such that the
action of ρ(g) and ρ(h) is given by diag(−1,−1,+1)⊗e and diag(1,−1,−1)⊗e,
respectively, where e stands for the identity element of F4. Then the involutions ig

and ih generate a subgroup 0 ⊂Aut(E7) isomorphic to Z2×Z2 whose fixed point
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set has Lie algebra k ∼= f4. Since the fixed point sets of ig, ih and igh are all 79-
dimensional, it follows that we have constructed a Z2 × Z2-symmetric space of
type E VII-VII-VII.

4. The classification in the exceptional case

Lemma 4.1. There are no Z2 × Z2-symmetric spaces of type F I-II-II, E I-III-IV ,
E II-IV-IV , E V-VI-VI, E VI-VI-VII or E V-VII-VII.

Proof. The nonexistence of type F I-II-II was already shown in Example 3.2. The
nonexistence of type E I-III-IV or E II-IV-IV spaces follows immediately from Ta-
bles 4 and 3. For a pair of involutions of type E VI-VI on E7 we have d =−5, see
Table 4. It follows from Table 3 that there is no symmetric subalgebra k of h=su(8)
or h= e6+R such that c(su(8), k)=−5; this shows there are no Z2×Z2-symmetric
spaces of type E V-VI-VI or E VI-VI-VII. Now consider a pair of involutions of
type E VII-VII on E7; by Table 4 we have d =−25 and it follows from Table 3 that
k∼= so(10)+R+R or k∼= f4; since neither occurs as a subalgebra of su(8), we have
proved the nonexistence of a Z2×Z2-symmetric space of type E V-VII-VII. �

Remark 4.2. In each row of Table 1, only the isomorphism type of the subalgebra
k⊂ g and the type of the Z2×Z2-symmetric space (that is, the entry in the first col-
umn defines the isomorphism type of the three symmetric subalgebras gσ , gτ , gστ

of g) is given. However, this information is sufficient to determine the conjugacy
class of the subalgebra k⊂g in most cases, since k⊂h is also symmetric subalgebra
for h= gσ , gτ , gστ : Assume that g is a compact Lie algebra and let k⊂ h⊂ g and
k′ ⊂ h′ ⊂ g be such that all inclusions are of symmetric subalgebras and such that
k ∼= k′, h ∼= h′. Then there is an automorphism η ∈ Aut(g) such that η(h′) = h. In
most cases (see [Kollross 2002, 3.1]) there is an inner automorphism θ0 of h such
that θ0(η(k

′))= k. Then obviously θ0 can be extended to an inner automorphism θ

of g such that θ ◦ η(k′)= k.
This shows that for most cases the subalgebra k is uniquely defined by the data in

Table 1. The only exception occurs for the Z2×Z2-symmetric space of type E VI-
VI-VI with k ∼= u(6)+R. Indeed, there are two conjugacy classes of subalgebras
isomorphic to a5 in e7. These two classes are denoted by [A5]

′ and [A5]
′′ in [Dynkin

1957]. They are given by the two diagrams below.

[A5]′ r r r r rb b b b b b bb
[A5]′′ r r r rb b b b b b br

These two subalgebras of e7 are both contained in so(12) ⊂ e7 and, as subalge-
bras of so(12), they are conjugate by an outer automorphism of so(12); however,
this automorphism cannot be extended to an automorphism of e7. It follows from
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[Dynkin 1957, Tables 25 and 26, pages 204, 207] that only the subalgebra [A5]′′

gives rise to a Z2×Z2-symmetric space.

Proof of Theorem 1.2. For each entry in Table 1 we have given a construction in
Section 3 thus showing the existence of a corresponding Z2×Z2-symmetric space.
Lemma 4.1 shows that the types of Z2×Z2-symmetric space not listed in Table 1
indeed do not exist. (Note that on E6, the involutions of type E I and E IV are outer,
while the involutions of type E II and E III are inner; in particular, there cannot be
Z2×Z2-symmetric spaces of type E I-I-I or of type E I-II-II etc.)

However, it remains to be shown that the type of the Z2×Z2-symmetric space as
given in Table 1 indeed determines the conjugacy class of the fixed point set k=gσ∩

gτ except for spaces of type E VI-VI-VI. In most cases, it can be seen from Tables 4
and 3 that the conjugacy class of the subalgebra k ⊂ g is uniquely determined by
the type of the Z2 × Z2-symmetric space, that is, in most cases, the conjugacy
class of the subalgebra k is uniquely determined by the triple (g, h, c(h, k)) where
c(h, k)= d . There are three exceptions to this general rule:

For g= e6 we have two entries in Table 3 with h= su(6)+sp(1) and c(h, k)= 2,
namely k= su(3)+ su(3)+R+R and k= so(6)+ sp(1). For the first possibility
we have already shown the existence of a corresponding Z2×Z2-symmetric space
of type E II-II-II. The second possibility would imply the existence of a Z2×Z2-
symmetric space of type E II-II-II with k = so(6)+ sp(1) ⊂ su(6)+ sp(1) such
that the isotropy representation of k on g/k restricted to so(6) consists of a sum
of three isotypical summands; however this is not the case according to [Dynkin
1957, Tables 25 and 26, pages 200, 206].

There are also two entries in Table 3 with h= su(6)+ sp(1) and c(h, k)=−6,
namely k= s(u(4)+u(2))+sp(1) and k= sp(3)+R. For the first we have already
shown the existence of a Z2 × Z2-symmetric space of type E II-II-III in Example
3.1; the second one can be ruled out since sp(3)+R is not a symmetric subalgebra
of so(10)+R.

Finally, for g = e7 there are two items in Table 3 with h = so(12)+ sp(1) and
c(h, k)=−5, namely k= so(8)+ so(4)+ sp(1) and k= u(6)+R. We have shown
the existence of a corresponding Z2×Z2-symmetric space of type E VI-VI-VI for
both cases in Examples 3.1 and 3.2, respectively. �

5. The classification in the Spin(8) case

In [Bahturin and Goze 2008], the Z2×Z2-symmetric space of the classical groups
have been determined except for G ∼= Spin(8). This case requires special attention
as the group of outer automorphisms Out(Spin(8)) = Aut(Spin(8))/ Inn(Spin(8))
is isomorphic to the symmetric group on three letters, whereas for all other simple
compact Lie groups the group Out(G) is either trivial or isomorphic to Z2. In this
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section, we will classify the Z2×Z2-symmetric spaces with G = Spin(8). It was
remarked in [Bahturin and Goze 2008] that the result can be obtained from [Draper
and Martı́n 2006]. We give an independent proof, using an analogous method as
in the exceptional case.

We recall [Kollross 2002] that all connected symmetric subgroups of Spin(8)
are conjugate by some automorphism of Spin(8) to one of the groups

Spin(8− n) ·Spin(n), n = 1, 2, 3, 4.

However, if one considers conjugacy classes with respect to inner automorphisms,
there are three conjugacy classes of symmetric subgroups locally isomorphic to
one of Spin(7), Spin(6) · Spin(2), Spin(5) · Spin(3), respectively, and only one
conjugacy class of subgroups locally isomorphic to Spin(4)·Spin(4); see [Kollross
2002, Proposition 3.3]. Hence there are ten conjugacy classes (with respect to inner
automorphisms) of connected symmetric subgroups in Spin(8); under the covering
map Spin(8)→ SO(8), they correspond to the conjugacy classes (with respect to
inner automorphisms) of connected (locally) symmetric subgroups in SO(8) given
by SO(7), Spin(7)+, Spin(7)−, SO(6)× SO(2), U(4), α(U(4)), SO(5)× SO(3),
Sp(2) ·Sp(1), α(Sp(2) ·Sp(1)), SO(4)×SO(4), where α = idiag(−1,1,...,1).

Gσ Gτ d

Spin(7) Spin(7) −14
Spin(7) Spin(6) ·Spin(2) −9
Spin(7) Spin(5) ·Spin(3) −6
Spin(7) Spin(4) ·Spin(4) −5

Spin(6) ·Spin(2) Spin(6) ·Spin(2) −4
Spin(6) ·Spin(2) Spin(5) ·Spin(3) −1
Spin(6) ·Spin(2) Spin(4) ·Spin(4) 0
Spin(5) ·Spin(3) Spin(5) ·Spin(3) 2
Spin(5) ·Spin(3) Spin(4) ·Spin(4) 3
Spin(4) ·Spin(4) Spin(4) ·Spin(4) 4

Table 5. Pairs of involutions on Spin(8).

Example 5.1. We may construct standard examples of Z2×Z2-symmetric spaces
for g= so(8) using a pair of commuting involutions both given by conjugation with
diagonal matrices of the form diag (±1, . . . ,±1). In this way obtain we Z2×Z2-
symmetric spaces with k= so(n1)+ so(n2)+ so(n3), n1+ n2+ n3 = 8, ni ≥ 1 or
k= so(n1)+ so(n2)+ so(n3)+ so(n4), n1+ n2+ n3+ n4 = 8, ni ≥ 1.
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Example 5.2. Now assume that the subalgebra so(6)+ so(2) ∼= u(4) ⊂ so(8) is
embedded as {(

A −B t

B A

) ∣∣∣∣ A+ i B ∈ u(4)
}
.

We may define a pair of commuting involutions of so(8) using conjugation with
the matrices

J =
(
−I

I

)
and A =

(
D 0
0 D

)
,

respectively, where I is the 4× 4-identity matrix and D is either diag(−1, 1, 1, 1)
or diag(−1,−1, 1, 1). We obtain Z2×Z2-symmetric spaces with k=u(1)+u(3) or
k= u(2)+u(2). Note however that the subalgebra u(2)+u(2) of so(8) is conjugate
to so(4)+ so(2)+ so(2) via an outer automorphism.

Proof of Theorem 1.3. Assume σ and τ are two commuting involutions of Spin(8).
Then the gστ is a symmetric subalgebra of g = so(8) by Proposition 2.2. Hence
we may assume (by applying an automorphism of so(8)) that gστ is one of the
subalgebras h of so(8) as given in Table 6. Since gσ ∩ gτ ⊂ h is a symmetric
subalgebra of h, it is conjugate (by some automorphism θ0 of h) to one of the
subalgebras k as from Table 6 such that c(h, k)= d(σ, τ ).

g h k c(h, k)

so(8) so(7) so(7− n)+ so(n) −9,−1, 3
n = 1, 2, 3

so(8) so(6)+ so(2) so(6− n)+ so(n)+ so(2) −6, 0, 2
n = 1, 2, 3

so(8) so(6)+ so(2) so(6− n)+ so(n) −14,−4, 2, 4
n = 0, 1, 2, 3

so(8) so(6)+ so(2) u(3)+ u(1) −4
so(8) so(6)+ so(2) u(3) −2
so(8) so(5)+ so(3) so(5− n)+ so(n)+ so(3) −5,−1

n = 1, 2
so(8) so(5)+ so(3) so(5− n)+ so(n)+ so(2) −9,−1, 3

n = 0, 1, 2
so(8) so(4)+ so(4) (4− n) · sp(1)+ n · so(2) −8,−4, 0, 4

n = 1, 2, 3, 4
so(8) so(4)+ so(4) so(3)+ so(4) −6
so(8) so(4)+ so(4) so(3)+ so(3) 0
so(8) so(4)+ so(4) so(3)+ u(2) −2
so(8) so(4)+ so(4) so(3)+ so(2)+ so(2) 2

Table 6. Symmetric subalgebras of symmetric subalgebras of so(8).
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Now we show that any automorphism θ0 of h can be extended to an automor-
phism θ of so(8) such that θ(h) = h and θ |h = θ0: This is obvious for inner
automorphisms of h and there is only one case where h has outer automorphisms,
namely h=so(4)+so(4)∼=4·a1. After choosing a Cartan subalgebra of g contained
in h, and a set of simple roots α1, . . . , α4 we can define diagram automorphisms
which act by permuting the simple roots α1, α2, α3 and hence by permuting the
corresponding three of the four a1-summands of h. In addition, consider the inner
automorphism ig with

g =
(

I
I

)
, I = diag(1, 1, 1, 1).

This acts on h = so(4)+ so(4) by interchanging the two so(4)-summands. These
automorphisms together with the inner automorphisms of h extended to g generate
a subgroup of Aut(g) isomorphic to Aut(h).

Hence there is an automorphism ϕ of so(8) such that ϕ(gσ ∩ gτ ) is one the
subalgebras k⊂ so(8) as given in Table 6. Conversely, it is straightforward to see
that for each candidate (h, k) one can construct a corresponding Z2×Z2-symmetric
space using Examples 5.1 or 5.2. �
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