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We will give a local version of the Hamilton–Ivey-type pinching estimate of
the gradient shrinking soliton with vanishing Weyl tensor, and then give a
complete classification of gradient shrinking solitons with vanishing Weyl
tensor.

1. Introduction

Let (M, g, f ) be a gradient shrinking soliton, that is, (M, g) is a smooth Riemann-
ian manifold with a smooth function f that satisfies Ri j +∇i∇ j f = λgi j , where λ
is a positive constant.

Recent work has been directed at classifying the complete gradient shrinking
soliton, as it is an important problem in the theory of the Ricci flow. Note that
people often do not distinguish between the gradient shrinking soliton and the
self-similar solution, which is defined in [Chow and Knopf 2004, Chapter 2]. In
fact, the author [Zhang 2008b, Theorem 1] has shown that the complete gradient
shrinking soliton solution is in fact the self-similar solution.

In dimension 2, Hamilton [1995] proved that any 2-dimensional complete non-
flat ancient solution of bounded curvature must be S2, R P2, or the cigar soliton.
In dimension 3, Ivey [1993] first showed that the compact 3-dimensional gradient
shrinking soliton has constant positive sectional curvature. For the noncompact
case, Perelman [2003] showed that a 3-dimensional complete nonflat gradient
shrinking soliton that is bounded and has nonnegative sectional curvature, and that
is also κ-noncollapsed on all scales, must be the finite quotient of S2

×R or S3. This
result of Perelman was improved by Ni and Wallach [2008] and Naber [2008], who
the assumption on κ-noncollapsing condition and replaced nonnegative sectional
curvature by nonnegative Ricci curvature. In addition, Ni and Wallach allowed
the curvature to grow as fast as ea(r(x)+1), where r(x) is the distance function
and a is a positive constant. In particular, Ni and Wallach’s result implies that
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any 3-dimensional complete noncompact nonflat gradient shrinking soliton with
nonnegative Ricci curvature and with curvature not growing faster than ea(r(x)+1)

must be a quotient of the round infinite cylinder S2
× R. Recently, by using a local

version of the Hamilton–Ivey pinching estimate due to Chen [2007, Corollary 2.4],
Cao, Chen, and Zhu [Cao et al.≥2009] obtained a complete classification (without
any curvature bound assumption) of 3-dimensional complete gradient shrinking
solitons, as follows.

Theorem 1.1 [Cao et al. ≥ 2009, Proposition 4.7]. The only 3-dimensional com-
plete gradient shrinking solitons are the finite quotients of R3, S2

× R, and S3.

Classifying complete gradient shrinking solitons in higher dimension is more
difficult. Note that a 3-dimensional manifold automatically has vanishing Weyl
tensor, so some recent work has focused on complete gradient shrinking solitons
with vanishing Weyl tensor in higher dimension. The first classification theorem
in dimension n ≥ 4, given by Gu and Zhu [2008, Proposition 4.1], says that
any nonflat κ-noncollapsing rotationally symmetric gradient shrinking soliton with
bounded and nonnegative sectional curvature must be the finite quotient of Sn

× R
or Sn+1. Later, Kotschwar [2007] improved this result by showing that any com-
plete rotationally symmetric gradient shrinking soliton (without any bounds on the
curvature) is the finite quotient of Rn+1, Sn

×R, or Sn+1. Note that any rotationally
symmetric metric has vanishing Weyl tensor. In the more general case of vanishing
Weyl tensor, Ni and Wallach [2008] considered a complete n-dimensional gradient
shrinking soliton with vanishing Weyl tensor and nonnegative Ricci curvature that
grows no faster than ea(r(x)+1), where r(x) is the distance function and a is a
positive constant; they showed its universal cover is either Rn , Sn , or Sn−1

× R.
This result has been improved by Peterson and Wylie [2008, Theorem 1.2 and
Remark 1.3], in which they only needed to assume the Ricci curvature is bounded
from below and grows no faster than exp(2

5 cr(x)2) outside of a compact set, where
c < λ/2. We also note that Cao and Wang [2008] had an alternative proof of Ni
and Wallach’s result [2008].

The key to obtaining the above complete classification theorem of 3-dimensional
complete gradient shrinking solitons without making a curvature bound assumption
is the local version of the Hamilton–Ivey pinching estimate, which in 3-dimension
plays a crucial role in the analysis of the Ricci flow. An open question is how to
generalize Hamilton and Ivey’s work to higher dimension. In [Zhang 2008a], the
author obtained the following (global) Hamilton–Ivey-type pinching estimate in
higher dimension:

Theorem. Suppose we have a solution to the Ricci flow on an n-dimension man-
ifold that is complete with bounded curvature and vanishing Weyl tensor for each
t ≥ 0. Assume at t = 0 that the smallest eigenvalue of the curvature operator at
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each point is bounded from below by ν≥−1. Then at all points and all times t ≥ 0,
we have the pinching estimate

R ≥ (−ν)[log(−ν)+ log(1+ t)− n(n+ 1)/2]

whenever ν < 0.

In this paper, we will get a local version of this Hamilton–Ivey-type pinching
estimate for the gradient shrinking solitons with vanishing Weyl tensor (without
curvature bound). The idea is to use the methods of [Chen 2007], but since the
curvature operator is more complicated in higher dimension, we first need to prove
an algebraic lemma. Based on this pinching estimate, we will obtain the following
complete classification theorem (without any curvature bound assumption).

Theorem 1.2. Any complete gradient shrinking soliton with vanishing Weyl tensor
must be the finite quotient of Rn , Sn−1

× R, or Sn .

This rest of this paper is organized as follows. In Section 2, we will prove an
algebraic lemma, which will be used to prove the local version of the Hamilton–
Ivey-type pinching estimate. In Section 3, we will give some propositions and
finish the proof of Theorem 1.2.

2. An algebraic lemma

In this section, we will give an algebraic lemma. Assume x1, . . . , xn for n ≥ 4 are
real numbers, and m is any positive integer. Define Mi j := xi + x j and a function

f (x1, . . . , xn) :=

−

∑
i< j,{i, j}6={1,2} Mi j

m+ 1

( ∑
i< j

{i, j}6={1,2}

Mi j + (m+ 1)M12

)

−M12
∑
i< j

{i, j}6={1,2}

Mi j +

( ∑
i< j

{i, j}6={1,2}

(M2
i j +

∑
k 6=i, j

Mik M jk)+ (m+ 1)
∑

k 6=1,2

M1k M2k

)
.

Lemma 2.1. Suppose ρ is a nonnegative constant. Then there exists a nonnegative
constant C(m, n) such that f ≥−C(m, n)ρ2 if the following hold:

(i) x1 ≤ x2 ≤ min
3≤i≤n

xi .

(ii)
∑
i< j

{i, j}6={1,2}

Mi j +mM12 ≥−ρ.

(iii)
∑
i< j

{i, j}6={1,2}

Mi j + (m+ 1)M12 <−(m+ 1)(m+ n− 1)ρ.
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Proof. We first claim that f ( . . . , x3, x4, . . . ) ≥ f ( . . . , x, x, . . . ), where 2x =
x3+ x4.

Without loss of generality, we may assume x3 < x4. Let 2δ = x4− x3. Then by
direct computation we get (M0 = x)

f (. . . , x3, x4, . . .)− f (. . . , x, x, . . .)=∑
k 6=3,4

(M3k M4k −M2
0k)+

∑
i< j, {i, j}6={1,2}
{i, j}6={3,4}

(M3i M3 j +M4i M4 j − 2M0i M0 j )

+

∑
i 6=3,4

(
M2

3i +
∑

k 6=3,i

M3k Mik −M2
0i −

∑
k 6=3,i

M0k Mik

)
+

∑
i 6=3,4

(
M2

4i +
∑

k 6=4,i

M4k Mik −M2
0i −

∑
k 6=4,i

M0k Mik

)
+ (m+ 1)(M13 M23+M14 M24− 2M10 M20)

=

∑
k 6=3,4

(−δ2)+
∑

i< j,{i, j}6={1,2}
{i, j}6={3,4}

2δ2
+

∑
i 6=3,4

2δ2
+ (m+ 1)2δ2

≥ 0.

Note that f and the assumptions are symmetric with respect to x3, . . . , xn . By
the claim above, we only need to prove the special case that x3 = · · · = xn . In this
case, ∑

i< j
{i, j}6={1,2}

Mi j = (n− 2)
(
M12+

1
2(n− 1)M33

)
,

and

f (x1, x2, x3, . . . , x3)=−
(n− 2)

(
M12+

n−1
2 M33

)
m+ 1

( ∑
i< j

{i, j}6={1,2}

Mi j + (m+ 1)M12

)

+
n−2

2

(
(n− 1)M2

13+ (n− 1)M2
23+ (n− 1)(n− 3)M2

33

+ (n− 3)M12 M33+ 2(m+ 1)M13 M23

)
= I + II.

Clearly, −(m+ 1)(m+ n− 1)ρ ≤−2ρ ≤ 0, and we have some estimates in the
following assertion.

Claim. The following inequalities hold.

(1) M12 <−ρ ≤ 0.

(2) M33 > 0.

(3) M12+
1
2(n− 1)M33 > 0.
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(4) (m+ n− 1)(−M12)≥
1
2(n− 1)(n− 2)M33.

(5) 1
2(n− 1)(n− 2)M33 ≥−ρ− (m+ n− 2)M12.

(6) (n− 2)(M12+
1
2(n− 1)M33)≥ (m− 1)(−M12).

Proof of claims. Obviously, by combining the assumptions (ii) and (iii), we get
(1)–(3). Then by (iii), we have (n−2)(M12+

1
2(n−1)M33)+ (m+1)M12 ≤ 0, so

we get (4). Now by (ii), (n− 2)(M12+
1
2(n− 1)M33)≥−ρ−mM12(≥ 0), which

gives (5). Then (6) follows from (5) immediately. �

By the claim we know that I is always nonnegative. In the following, we will
divide the argument into two cases.

Case 1: m = 1, 2. In this case, we have

II ≥ 1
2(n− 2)

(
3M2

13+ 3M2
23− 6|M13 M23|

+ (n− 3)
(
M12+

1
2(n− 1)M33

)
M33+

1
2(n− 1)(n− 3)M2

33
)
≥ 0.

In this case, Lemma 2.1 is proved.

Case 2: m ≥ 3. It suffices to prove that M13 M23 < 0, that is, M13 < 0 and M23 > 0,
which implies −M12 M33 ≥ −M13 M23 > 0. (Indeed, if M13 M23 ≥ 0, it is easy to
see that II is positive; therefore we have proved Lemma 2.1.)

Then we have

I ≥ 1
m+1(m− 1)(−M12)(m+ 1)(m+ n− 1)ρ

≥ (m− 1) 1
2(n− 1)(n− 2)ρM33

≥ (n− 3)ρM33,

II ≥ 1
2(n− 2)

(
(n− 1)M2

13+ (n− 1)M2
23+ 2(m+ 1)M13 M23

+
n−3
n−2

M33[−ρ−m M12] +
n−3
n−2

M33[−ρ− (m+ n− 2)M12]

)
≥

1
2(n− 2)

(
(n− 1)M2

13+ (n− 1)M2
23+ 2(m+ 1)M13 M23

− 2(m+ 1)n−3
n−2

M12 M33− 2n−3
n−2

ρM33

)
≥

1
2(n− 2)

(
(n− 1)M2

13+ (n− 1)M2
23+

2(m+1)
n−2

M13 M23

)
− (n− 3)ρM33.

Therefore

f ≥ 1
2(n− 1)(n− 2)(M2

13+M2
23+ 2 m+1

(n−1)(n−2)
M13 M23).

If
(m+1)

(n−1)(n−2)
≤ 1,
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then f ≥ 0; if the same quantity is greater than 1 and

M23+ 2 m+1
(n−1)(n−2)

M13 ≥ 0,

then we have f ≥ 0 again.
Otherwise, m+ 1> (n− 1)(n− 2), and

M13 < −
(n−1)(n−2)

2(m+1)
M23.

Since M12+
1
2(n− 1)M33 = M13+M23+

1
2(n− 3)M33, by (ii), we get

(n−1)(n−2)
2

2(m+1)−(n−1)(n−2)
2(m+1)

M23+
(
m− 1

2(n− 2)(n− 3)
)
M12 ≥−ρ,

So

−M12 ≤
(n−1)(n−2)

2(m+1)
2(m+1)−(n−1)(n−2)

2m−(n−2)(n−3)
M23+

2
2m−(n−2)(n−3)

ρ

≤
(n−1)(n−2)

2(m+1)
M23+

ρ
n
,

and then

f ≥ 1
2(n− 1)(n− 2)

((
(n−1)(n−2)

2(m+1)
M23

)2
−

2(m+1)
n(n−1)(n−2)

ρM23

)
≥−C(m, n)ρ2,

where C(m, n) is a constant depending only on m and n. �

3. The proof of Theorem 1.2

Let (M, g, f ) be a smooth gradient shrinking soliton. Then by using the contracted
second Bianchi identity, we get the equation R+|∇ f |2−2λ f = const. Obviously,
by rescaling g and changing f by a constant, we can assume that λ= 1/2 and that
R+|∇ f |2− f = 0. We call such a soliton normalized, and f a normalized soliton
function.

In terms of moving frames [Hamilton 1986] of the Ricci flow, the curvature
operator Mαβ has the evolution equation

∂
∂t

Mαβ =4Mαβ +M2
αβ +M#

αβ,

where M#
αβ is the Lie algebra adjoint of Mαβ . In general, we know little about M#

αβ .
However, when the metric is conformally flat, we know this:

Proposition 3.1. Suppose we have a smooth solution gi j (x, t) of the Ricci flow on
an n-dimensional manifold M , and suppose at t = t0 that the metric gi j (x, t0) has
vanishing Weyl tensor. Then at t = t0, for any point p, there exist an orthonormal



GRADIENT SHRINKING SOLITONS WITH VANISHING WEYL TENSOR 195

basis {ei } and n real numbers Mi such that {φα =
√

2ei ∧ e j } for i < j is an
orthonormal basis of

∧2 Tp M , and we have

(i) Mαβ =

{
Mi j := Mi +M j if φα = φβ =

√
2ei ∧ e j ,

0 if α 6= β.

(ii) M#
αβ =

{∑
k 6=i, j Mik M jk if φα = φβ =

√
2ei ∧ e j ,

0 if α 6= β.

Proof. Suppose {ei } is an orthonormal basis that diagonalizes the Ricci tensor, that
is, Ric(ei )= λi ei .

Because the Weyl tensor vanishes, we have

Ri jkl =
1

n−2
(Rik g jl+R jl gik−Ril g jk−R jk gil)−

1
(n−1)(n−2)

R(gik g jl−gil g jk).

Thus

Ri j i j =
λi+λ j

n−2
−

1
(n−1)(n−2)

R,

and Ri jkl = 0 if three of the indices are mutually distinct. We then prove (i) by
letting Mi = 2λi/(n− 2)− R/((n− 1)(n− 2)).

See that M#
αβ = Cγη

α Cδθ
β MγδMηθ = Cγη

α Cγη
β MγγMηη, where [φα, φβ] = Cαβ

γ φ
γ .

Let Ai j for i 6= j denote by the matrix with (Ai j )i j = 1, (Ai j ) j i = −1 and all
other elements zero. Then [Ai j , A jk] = Aik if i < j < k.

By direct computation, we have M#
αβ = 0 if α 6= β. If α= β =

√
2ei ∧e j (i < j),

we have

M#
αα = (C

γδ
α )

2 MγγMδδ =
〈
[

1
√

2
Ai j , φ

γ
], φδ

〉2 MγγMδδ

=

∑
k 6=i, j

〈
[

1
√

2
Ai j ,

1
√

2
Aki ], φ

δ
〉2 Mki Mδδ +

∑
k 6=i, j

〈
[

1
√

2
Ai j ,

1
√

2
Ak j ], φ

δ
〉2 Mk j Mδδ

=
1
2

∑
k 6=i, j

〈 1
√

2
A jk, φ

δ
〉2 Mki Mδδ +

1
2

∑
k 6=i, j

〈 1
√

2
Aik, φ

δ
〉2 Mk j Mδδ

=

∑
k 6=i, j

Mik M jk . �

Now, combing Lemma 2.1 and Proposition 3.1, we are ready to prove the local
version of the Hamilton–Ivey-type pinching estimate. The basic idea is to use the
methods of [Chen 2007].

Proposition 3.2. For any nonnegative integer m, there is a constant Cm depending
only on m and n with the following property. Suppose we have a complete gradient
shrinking soliton (Mn, gi j (x, t)) for n ≥ 4 on [0, T ] with vanishing Weyl tensor.
Also assume that Ric(x, t) ≤ (n − 1)r−2

0 for x ∈ Bt(x0, Ar0) and t ∈ [0, T ] and
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that R + mν ≥ −Km(Km ≥ 0) on B0(x0, Ar0) at t = 0, where ν is the smallest
eigenvalue of the curvature operator. Then we have

R(x, t)+mν ≥min
{
−

Cm
t+1/Km

,−
Cm

Ar2
0

}
if A ≥ 2

whenever x ∈ Bt(x0,
1
2 Ar0), with t ∈ [0, T ].

Proof. By [Perelman 2002], we have(
∂
∂t
−1

)
dt(x0, x)≥ − 5(n−1)

3
r−1

0 ,

whenever dt(x0, x) > r0 in the sense of support functions.
We will argue by induction on m to prove the estimate holds on ball of radius

(1/2+ 1/2m+2)Ar0. The case m = 0 follows from [Zhang 2008b, Theorem 1].
Suppose we have proved the result for some nonnegative m0, that is, there is a
constant Cm0 such that

R(x, t)+m0ν ≥min
{
−

Cm0

t+1/Km0

,−
Cm0

Ar2
0

}
whenever x ∈ Bt(x0, (1/2+ 1/2m0+2)Ar0) and t ∈ [0, T ]. We are going to prove
the result for m = m0 + 1 on ball of radius (1/2+ 1/2m0+3)Ar0. Without loss of
generality, we may assume K0 ≤ K1 ≤ K2 ≤ · · · .

Define a function Cm0(t) :=max{Cm0/(t + 1/Km0),Cm0/Ar2
0 }.

Under the moving frame, let

Nαβ := Rgαβ + (m0+ 1)Mαβ and Pαβ := ϕ
(dt(x, x0)

Ar0

)
Nαβ,

where ϕ is a smooth nonnegative decreasing function that is 1 on the interval
(−∞, 1/2+ 1/2m0+3

] and 0 on [1/2+ 1/2m0+2,∞).
By direct computation, we have(

∂
∂t
−1

)
Pαβ =−2∇lϕ∇l Nαβ + Qαβ,

where

Qαβ =

(
ϕ′

1
Ar0

(
∂
∂t
−1

)
dt −ϕ

′′ 1
(Ar0)2

)
Nαβ

+ϕ
(

gαβ
(
∂
∂t
−1

)
R+ (m0+ 1)

(
∂
∂t
−1

)
Mαβ

)
=

(
ϕ′

1
Ar0

(
∂
∂t
−1

)
dt −ϕ

′′ 1
(Ar0)2

)
Nαβ

+ϕgαβ
(∑

i< j

(
M2

i j +
∑

k 6=i, j

Mik M jk

)
+ (m0+ 1)

(
M2

i0 j0 +
∑

k 6=i0, j0

Mi0k M j0k

))
,
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where φα =
√

2ei0 ∧ e j0 and the second equality follows from Proposition 3.1.
Note that the smallest eigenvalue of Nαβ is R+ (m0+ 1)ν.
Let

u(t) := min
x∈M
{(R+ (m0+ 1)ν)ϕ(x, t)}.

For fixed t0 ∈ [0, T ], assume

(R+ (m0+ 1)ν)ϕ(x0, t0)= u(t0) <−(m0+ 2+ 1)(m0+ 2+ n− 1)Cm0(t0).

Otherwise, we have the estimate at time t0.
Let V be the corresponding unit eigenvector of the smallest eigenvalue of Nαβ

at (x0, t0). Let {λi } be the eigenvalues of the Ricci tensor, where λ1≤λ2≤· · ·≤λn .
Then by Lemma 2.1 and Proposition 3.1, we have

Q(V, V )(x0, t0)

=

(
ϕ′

1
Ar0

(
∂
∂t
−1

)
dt −ϕ

′′ 1
(Ar0)2

)u(t0)
ϕ

+ϕ
(∑

i< j

(M2
i j +

∑
k 6=i, j

Mik M jk)+ (m0+ 1)(M2
12+

∑
k 6=1,2

M1k M2k)
)

=

(
ϕ′

1
Ar0

(
∂
∂t
−1

)
dt −ϕ

′′ 1
(Ar0)2

)u(t0)
ϕ

+ϕ

((∑
i< j, {i, j}6={1,2} Mi j + (m0+ 2)M12

)2

m0+ 2
+ f (M1, . . . ,Mn)

)
≥

(
ϕ′

1
Ar0

(
−

5(n−1)
3

r−1
0

)
−ϕ′′

1
(Ar0)2

)
u(t0)
ϕ

+
1

(m0+2)ϕ
u(t0)2−ϕC(m0)Cm0(t0)

2

=
1

(m0+2)ϕ

(
u(t0)2−

(
ϕ′

1
Ar2

0

5(n−1)(m0+2)
3

+ϕ′′
m0+2
(Ar0)2

)
u(t0)

)
−C(m0)Cm0(t0)

2.

where m = m0+ 1 in the second equality.
Since |ϕ′| ≤ C(m0), |ϕ′′| ≤ C(m0) and (ϕ′)2/ϕ ≤ C(m0), by applying the

maximum principle, we have

d−

dt
u
∣∣∣∣
t=t0

≥ Q(V, V )(x0, t0)+
2

(Ar0)2
(ϕ′)2

ϕ2 u(t0)≥
1

2(m0+2)
u(t0)2,

provided |u|(t0) ≥ max{C(m0)Cm0(t0),C(m0)/(Ar2
0 )}. By integrating the differ-

ential inequality above, we get the estimate

u(t)≥min
{ 1

1/u(0)−t/(2(m0+2))
,−C(m0)Cm0(t),−

C(m0)

Ar2
0

}
.
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Clearly, there is a constant Cm0+1 such that

u(t)≥
{
−

Cm0+1
t+1/Km0+1

,−
Cm0+1

Ar2
0

}
. �

Remark. In fact, the case m = 0, we do not need to suppose that the soliton has
vanishing Weyl tensor, since Chen [2007] has already proved this result.

Corollary 3.3. Any gradient shrinking soliton (not necessarily having bounded
curvature) with vanishing Weyl tensor must have nonnegative curvature operator.

Proof. Let (M, g, f ) be a gradient shrinking soliton. Then we have a solution g(t)
for t ∈ (−∞, 0] of the Ricci flow with g(0)= g.

The case n = 3 has done by Chen [2007]. Therefore we only need to prove the
case n ≥ 4.

Fix a point x0 on M . For any T > 0, there is a small r0 such that when-
ever t ∈ [−T, 0] and x ∈ Bt(x0, r0), we have |Rm |(x, t) ≤ r2

0 . Let A → ∞ in
Proposition 3.2. Then we get

(R+mν)(x, 0)≥− Cm
T−0+1/Km

≥ −
Cm
T
.

Since Cm does not depend on T , we get that (R+mν)(x, 0)≥ 0 for any m. This
implies ν ≥ 0, that is, the curvature operator is nonnegative. �

Proposition 3.4. Any gradient shrinking soliton(not necessarily having bounded
curvature) with vanishing Weyl tensor must have the properties that

(i) Ric≥ 0 and

(ii) |Ri jkl | ≤ exp(a(d(p, x)+ 1)) for some a > 0 and fixed point p.

Proof. Property (i) follows from Corollary 3.3 immediately.
For property (ii), it clearly suffices to prove the result under the condition that

the soliton is normalized. So R+|∇ f |2− f = 0. Combining the soliton equation
Ri j +∇i∇ j f = 1

2 gi j and (i), we get that ∇i∇ j f ≤ 1
2 gi j .

For any point x ∈M , let γ(t) : [0, d(p, x)]→M be the shortest normal geodesic
connecting p and x , and denote by h(t)= f (γ(t)). Then

h′′(t)= 〈∇ f, γ̇〉′ = γ̇〈∇ f, γ̇〉 = ∇2 f (γ̇, γ̇)≤ 1
2 ,

By integrating inequality above, we have

f (x)= h(d(p, x))

≤
1
4 d(p, x)2−〈∇ f, γ̇〉(0)d(p, x)− h(0)

≤
1
4 d(p, x)2+ |∇ f |(p)d(p, x)+ | f |(p).
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Since the right side of this inequality just depends on local properties of f at p,
that R+|∇ f |2− f = 0 implies that R ≤ f ≤ exp(a(d(p, x)+1)) for some a > 0;
hence |Ri jkl | ≤ exp(a(d(p, x)+1)), because of the nonnegativity of the curvature
operator. �

Finally, by [Ni and Wallach 2008] or [Petersen and Wylie 2008], we get the
classification theorem, Theorem 1.2.
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