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JUI-TANG RAY CHEN AND CHIUNG-JUE ANNA SUNG

Let M be a complete noncompact manifold. We prove vanishing and finite-
ness results for harmonic p-forms on M, assuming both the curvature op-
erator lower bound and the weighted Poincaré inequality on M.

1. Introduction

It is interesting to study the structures of noncompact complete manifolds, espe-
cially their topological properties at infinity. There are many results [Witten and
Yau 1999; Cai and Galloway 1999; Wang 2001; 2001; Wan and Xin 2004] on
the topology of conformally compact manifolds. Recently, by assuming that the
Ricci curvature is bounded from below in terms of the dimension and of the first
eigenvalue, Li and Wang [2001] obtained information on the topology of complete
manifolds infinity and in some cases the metric structure of these manifolds, by
proving a vanishing-type theorem of L2 harmonic 1-forms. In his thesis, Lam
[2007] generalized Li and Wang’s result by relaxing the curvature assumptions.
He proved that a manifold must have finitely many nonparabolic ends if a similar
inequality between the Ricci curvature and the weight function in the weighted
Poincaré inequality (see Definition 1.1) is valid outside a compact subset.

In this note, we will consider general harmonic p-forms. Working with a com-
plete manifold M satisfying a weighted Poincaré inequality and a curvature oper-
ator lower bound expressed in terms of the dimension and the weight function, we
prove vanishing and finiteness theorems for the Ld harmonic p-forms. Also, on an
end of manifold with weighted p-Poincaré inequality, we prove that the Green’s
form satisfies a sharp decay estimate. Let us first recall some definitions.

Definition 1.1. Let Mm be an m-dimensional complete Riemannian manifold. We
say that Mm satisfies a weighted Poincaré inequality [Li and Wang 2006] with a
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nonnegative weight function ρ(x) if the inequality∫
M
ρ(x)φ2

≤

∫
M
|∇φ|2 for φ ∈ C∞0 (M)

is valid for all compactly supported smooth functions φ ∈ C∞0 (M).

Definition 1.2. Let Mm be an m-dimensional complete Riemannian manifold. We
say that Mm has property (Pρ) if a weighted Poincaré inequality is valid on M with
some nonnegative weight function ρ and if the ρ-metric, defined by ds2

ρ = ρds2
M ,

is complete.

Let λ1(M) denote the greatest lower bound of the spectrum of the Laplacian
acting on L2 functions. Then the variation principle for λ1(M) asserts the validity
of the Poincaré inequality

λ1(M)
∫

M
φ2
≤

∫
M
|∇φ|2

for all compactly supported functions φ ∈ C∞0 (M). If λ1(M) is positive, then
obviously M has property (Pρ) with ρ(x) = λ1(M). Property (Pρ) may be seen
as a generalization of the assumption λ1(M) > 0.

For harmonic p-forms, let C∞0 (
∧p M) denote the space of smooth p-forms with

compact support on M . Then we define property (Pp,ρ) as follows.

Definition 1.3. Let Mm be an m-dimensional complete Riemannian manifold. We
say that Mm has property (Pp,ρ) if a weighted p-Poincaré inequality is valid on
M with some nonnegative weight function ρ, that is,∫

M
ρ(x)|φ|2 ≤

∫
M
|dφ|2+ |δφ|2 for φ ∈ C∞0 (

∧p M),

and if the ρ-metric, defined by ds2
ρ = ρds2

M , is complete.

If the greatest lower bound λ1,p of the p spectrum satisfies λ1,p(M) > 0, then
M has property (Pp,ρ) with the weight function ρ(x)= λ1,p(M). Hence property
(Pp,ρ) can also be viewed as a generalization of the assumption that λ1,p(M) > 0.

Throughout, we use H p
d (M

m) to denote the space of Ld harmonic p-forms, and
rρ(x) to denote the geodesic distance from some fixed point to x with respect to
the metric ds2

ρ . Our main result is the following.

Theorem 1.4. For m≥ 3, let Mm be a complete noncompact Riemannian manifold
with properties (Pρ0) and (Pp,ρ). Suppose the volume growth of M satisfies∫

Bρ(2R)\Bρ(R)
ρe−2(m−p−1)rρ ≤ cR
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and the curvature operator K p of Mm has the lower bound

K p > −
m− p

m− p− 1
ρ0 on M.

Then the space H p
d (M) is trivial for 2≤ d ≤ 2(m− p− 1)/(m− p− 2).

We will employ some of the arguments from [Li and Wang 2001] to prove the
sharp decay estimate for the Green’s form in the next section, and prove the main
theorem in Section 3.

2. Decay estimate

Let Mm be a complete manifold, and let1 be the Hodge Laplace–Beltrami operator
of Mm acting on differential p-forms. The Weitzenböck formula gives

1=∇2
− K p,

where ∇2 is the Bochner Laplacian and K p is an endomorphism depending upon
the curvature tensor of Mm . Using an orthonormal basis {θ1, . . . , θm

} dual to
{e1, . . . , em}, one may express the curvature term K p as

〈K p(w),w〉 =

〈 m∑
j,k=1

θ k
∧ ie j R(ek, e j )w,w

〉
.

In particular, 〈K1(w),w〉=Ric(w], w]), wherew] is the vector dual to the formw.
We say Mm has curvature lower bound kp if for all p-forms w on Mm ,

〈K p(w),w〉 ≥ kp|w|
2

We recall [Li 2000] that an end is simply an unbounded component of M\D,
where D is a compact smooth domain of M . Write E(R)= E∩Bq(R), and define
∂E(R) = ∂E ∪ (∂Bq(R) ∩ E). Let λ1,p(E(R)) be the first eigenvalue of 1 for
p-forms satisfying Dirichlet boundary conditions on ∂E(R), that is, λ1,p(E) =
infR>0,E(R) 6=∅ E(R); see [Donnelly 1984; Donnelly and Xavier 1984]. Therefore
we have for all w ∈ C∞0 (

∧p E)

λ1,p(E)
∫
|w|2 ≤

∫
(|∇w|2+〈K p(w),w〉),

where C∞0 (
∧p E) is the space of smooth p-forms with compact supported on the

end E . If the p-spectrum λ1,p(E) is positive, then E has property (Pp,ρ) with the
weight function ρ = λ1,p(E).

In this section, we study the harmonic p-forms on the end E of a manifold
with weighted p-Poincaré inequality and prove the following decay estimate. See
[Donnelly 1984; Li and Wang 2001].
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Lemma 2.1. Let M be a complete noncompact manifold. If E is an end of M with
the property (Pp,ρ) for some nonnegative weight function ρ, then for any smooth
harmonic p-form w satisfying

(1)
∫

Eρ(2R)\Eρ(R)
ρ(x) exp(−2rρ)|w|2dv = o(R),

we have ∫
Eρ(R)

ρ(x) exp(2rρ)|w|2dv ≤ C R,∫
Eρ(R+1)\Eρ(R)

ρ(x) exp(2rρ)|w|2dv ≤ C

for all R sufficiently large and for some constant C depending on w and ρ.

Proof. Let ψ be a nonnegative cutoff function. Integration by parts gives∫
E
|∇(ψw)|2+〈K p(ψw),ψw〉

=

∫
E
|∇ψ |2|w|2+ 2ψ〈w∇ψ,∇w〉+ |ψ |2|∇w|2+ψ2

〈K p(w),w〉

=

∫
E
|∇ψ |2|w|2−

∫
E
ψ2
〈w,1w〉M

=

∫
E
|∇ψ |2|w|2.

By property (Pp,ρ),∫
E
ρ(x)ψ2

|w|2dv ≤
∫

E
(|∇(ψw)|2+〈K p(ψw),ψw〉),

so we have

(2)
∫

E
ρ(x)ψ2

|w|2dv ≤
∫

E
|∇ψ |2|w|2dv

for any cutoff function ψ on E . Let ψ = φ(rρ(x)) exp(a(rρ(x))). Then

(3)
∫
E

φ2 exp(2a)|w|2dv ≤
∫
E

(
|∇φ|2+2〈∇φ,∇a〉φ+|∇a|2φ2) exp(2a)|w|2dv.

Choose φ as the nonnegative cutoff function defined by

φ(rρ(x))=


rρ(x)− R0 on Eρ(R0+ 1)\Eρ(R0),

1 on Eρ(R)\Eρ(R0+ 1),
(2R− rρ(x))/R on Eρ(2R)\Eρ(R),
0 on E\Eρ(2R),
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and also choose a(rρ(x)) as

a(rρ(x))=
{
δrρ(x) for rρ ≤ K/(1+ δ),
K − rρ(x) for rρ > K/(1+ δ),

for some fixed K > (R0+ 1)(1+ δ) and 0< δ < 1. If R ≥ K/(1+ δ), it is easy to
check that

|∇φ|2(x)=


ρ(x) on Eρ(R0+ 1)\Eρ(R0),

0 on Eρ(R)\Eρ(R0+ 1),
ρ(x)/R2 on Eρ(2R)\Eρ(R),
0 on E\Eρ(2R),

|∇a|2(x)=
{
δ2ρ(x) for r ≤ K/(1+ δ),
ρ(x) for r > K/(1+ δ),

and then

〈∇φ,∇a〉 (x)=


δρ(x) on Eρ(R0+ 1)\Eρ(R0),

ρ(x)/R on Eρ(2R)\Eρ(R),
0 otherwise.

Therefore (3) becomes∫
Eρ(2R)

ρφ2 exp(2a)|w|2dv

≤

∫
Eρ(2R)

(
|∇φ|2+ 2〈∇φ,∇a〉φ+ |∇a|2φ2) exp(2a)|w|2dv

≤

∫
Eρ(R0+1)\Eρ(R0)

ρ exp(2a)|w|2dv+ 1
R2

∫
Eρ(2R)\Eρ(R)

ρ exp(2a)|w|2dv

+ 2δ
∫

Eρ(R0+1)\Eρ(R0)

ρφ exp(2a)|w|2dv+ 2
R

∫
Eρ(2R)\Eρ(R)

ρφ exp(2a)|w|2dv

+ δ2
∫

Eρ( K
1+δ )\Eρ(R0)

ρφ2 exp(2a)|w|2dv+
∫

Eρ(2R)\Eρ( K
1+δ )

ρφ2 exp(2a)|w|2dv.

Hence

(1− δ2)

∫
Eρ( K

1+δ )\Eρ(R0+1)
ρ exp(2a)|w|2dv

≤ (δ2
+ 2δ+ 1)

∫
Eρ(R0+1)\Eρ(R0)

ρ exp(2a)|w|2dv

+

( 1
R2 +

2
R

) ∫
Eρ(2R)\Eρ(R)

ρ exp(2a)|w|2dv.
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By the definition of a(x) and the growth estimate of w (see (1)), the last term on
the right side tends to 0 as R→∞. Thus we obtain the estimate

1−δ2

(δ+1)2

∫
Eρ( K

1+δ )\Eρ(R0+1)

ρ exp(2δrρ)|w|2dv ≤
∫

Eρ(R0+1)\Eρ(R0)

ρ exp(2δrρ)|w|2dv.

Since the right side of this inequality is independent of K , by letting K →∞ we
conclude that

(4)
∫

E\Eρ(R0+1)
ρ exp(2δrρ)|w|2dv ≤ C for some constant 0< C <∞.

Next we improve this estimate by setting a(rρ(x)) = rρ(x) in the preceding
argument. For R0 < R1 < R, let us choose φ to be

φ(x)=
{
(rρ(x)− R0)/(R1− R0) on Eρ(R1)\Eρ(R0),

(R− rρ(x))/(R− R1) on Eρ(R)\Eρ(R1).

The inequality (3) asserts that∫
Eρ(R)

ρφ2 exp(2rρ)|w|2dv ≤
∫

Eρ(R)
|∇(φ exp(rρ))|2|w|2dv

=
1

(R−R1)2

∫
Eρ(R)\Eρ(R1)

ρ exp(2rρ)|w|2dv

+
1

(R1−R0)2

∫
Eρ(R1)\Eρ(R0)

ρ exp(2rρ)|w|2dv

−
2

(R−R1)2

∫
Eρ(R)\Eρ(R1)

(R− rρ(x))ρ exp(2rρ)|w|k2dv

+
2

(R1−R0)2

∫
Eρ(R1)\Eρ(R0)

(rρ(x)− R0)ρ exp(2rρ)|w|2dv

+

∫
Eρ(R)

ρφ2 exp(2rρ)|w|2dv.

Then

2
(R−R1)2

∫
Eρ(R)\Eρ(R1)

(R− rρ(x))ρ exp(2rρ)|w|2dv

≤
1

(R−R1)2

∫
Eρ(R)\Eρ(R1)

ρ exp(2rρ)|w|2dv

+
1

(R1−R0)2

∫
Eρ(R1)\Eρ(R0)

ρ exp(2rρ)|w|2dv

+
2

(R1−R0)

∫
Eρ(R1)\Eρ(R0)

rρ(x)− R0

R1− R0
ρ exp(2rρ)|w|2dv.
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On the other hand, for any fixed 0< t < R− R1,

t
(R−R1)2

∫
Eρ(R−t)\Eρ(R1)

ρ exp(2rρ)|w|2dv

≤
1

(R−R1)2

∫
Eρ(R)\Eρ(R1)

(R− rρ(x))ρ exp(2rρ)|w|2dv,

we deduce that

(5) 2t
(R−R1)2

∫
Eρ(R−t)\Eρ(R1)

ρ exp(2rρ)|w|2dv

≤

( 1
(R1−R0)2

+
2

R1−R0

) ∫
Eρ(R1)\Eρ(R0)

ρ exp(
√

2rρ)|w|2dv

+
1

(R−R1)2

∫
Eρ(R)\Eρ(R1)

ρ exp(
√

2rρ)|w|2dv.

Observe that if R1 = R0+ 1, if t = 1, and if

g(R)=
∫

Eρ(R)\Eρ(R0+1)
ρ exp(2rρ)|w|2dv,

then the inequality (5) can be written as

g(R− 1)≤ C1 R2
+

1
2 g(R),

where C1= 2
∫

Eρ(R0+1)\Eρ(R0)
ρ exp(2rρ)|w|2dv is independent of R. Iterating this

inequality, we show that for any positive integer k, R ≥ 1, and constant C2,

g(R)≤ C1

k∑
i=1

(R+ i)2

2i−1 + 2−k g(R+ k)

≤ C1 R2
∞∑

i=1

(1+ i)2

2i−1 + 2−k g(R+ k)≤ C2 R2
+ 2−k g(R+ k).

However, the previous estimate in (4) asserts that∫
E
ρ exp(2δrρ)|w|2dv ≤ C for any δ < 1.

This implies that

g(R+ k)=
∫

Eρ(R+2k)\Eρ(R0+1)
ρ exp(2rρ)|w|2

≤ exp(2(1− δ)(R+ k))
∫

Eρ(R+k)\Eρ(R0+1)
ρ exp(2δrρ)|w|2

≤ C exp(2(1− δ)(R+ k)).
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Hence 2−k g(R+ k)→ 0 as k→∞ by choosing 2(1− δ) < ln 2. This proves the
estimate that g(R)≤ C2 R2. Adjusting the constant, we have

(6)
∫

Eρ(R)
ρ exp(2rρ)|w|2dv ≤ C3 R2 for all R ≥ R0.

Using inequality (5) again and choosing R1 = R0+ 1, R > 2R1 and t = R/2, we
conclude that

R
∫

Eρ(R/2)\Eρ(R0+1)
ρ exp(2rρ)|w|2dv≤C4 R2

+2
∫

Eρ(R)\Eρ(R0+1)
ρ exp(2rρ)|w|2dv.

However, applying the estimate (6) to the second term on the right side, we have∫
Eρ(R/2)\Eρ(R0+1)

ρ exp(2rρ)|w|2dv ≤ C5 R.

Therefore

(7)
∫

Eρ(R)
ρ exp(2rρ)|w|2dv ≤ C6 R for R ≥ R0.

We are ready to prove the theorem by using (7). Setting t = 2 and R1 = R− 4
in (5), we have∫

Eρ(R−2)\Eρ(R−4)
ρ exp(2rρ)|w|2dv

≤

( 4
(R−R0−4)2

+
8

R−R0−4

) ∫
Eρ(R−4)\Eρ(R0)

ρ exp(2rρ)|w|2dv

+
1
4

∫
Eρ(R)\Eρ(R−4)

ρ exp(2rρ)|w|2dv.

According to (7), the first term of the right side is bounded by a constant. Hence
this inequality can be rewritten as∫

Eρ(R−2)\Eρ(R−4)
ρ exp(2rρ)|w|2dv ≤ C7+

1
2

∫
Eρ(R)\Eρ(R−4)

ρ exp(2rρ)|w|2dv.

Iterating this inequality k times, we have∫
Eρ(R+2)\Eρ(R)

ρ exp(2rρ)|w|2dv

≤ C7

k−1∑
i=0

2−i
+

1
2k

∫
Eρ(R+2(k+1))\Eρ(R)

ρ exp(2rρ)|w|2dv.
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Using (7) again, we conclude the second term is bounded by

1
2k

∫
Eρ(R+2(k+1))\Eρ(R)

ρ exp(2rρ)|w|2dv ≤
C(R+ 2(k+ 1))

2k ,

and the upper bound tends to zero as k→∞. Hence∫
Eρ(R+2)\Eρ(R)

ρ exp(2rρ)|w|2dv ≤ C8

for some constant C8 > 0 independent of R. �

Corollary 2.2. Let M be a complete manifold. If E is an end of M with posi-
tive λ(E), where λ(E) is equal to either λ1,p(E) or λ1(E) + K p, then for any
smooth harmonic p-form w satisfying∫

E(2R)\E(R)
exp(−2

√
λ(E)r)|w|2dv = o(R),

we have ∫
E(R)

exp(2
√
λ(E)r)|w|2dv ≤ C R,∫

E(R+1)\E(R)
exp(2

√
λ(E)r)|w|2dv ≤ C,

for all R sufficiently large.

3. Vanishing and finiteness theorems of harmonic p-forms

Let w be a harmonic p-form on an m-dimensional manifold M . Then w satisfies
the Kato inequality [Wan and Xin 2004; Calderbank et al. 2000; Herzlich 2000]

|∇w|2 ≥
m− p+ 1

m− p

∣∣∇|w|∣∣2,
and equality holds if and only if there exists a 1-form α with α∧w = 0 such that

(8) ∇w = α⊗w−
1

m+1− p

m∑
j=1

θ j
⊗ (θ j

∧ iα]w),

where {θ1, . . . , θm
} is an orthonormal basis for the cotangent bundle and α] is the

vector dual to α.
Now we are ready to prove vanishing and finiteness theorems for harmonic p-

forms using the decay estimate Lemma 2.1 and the Kato inequality. To simplify
our statement, we will assume the function ρ is bounded in the rest of the section.
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Theorem 3.1. For m≥ 3, let Mm be a complete noncompact Riemannian manifold
with properties (Pρ0) and (Pp,ρ). Suppose the volume growth of M satisfies∫

Bρ(2R)\Bρ(R)
ρe−2(m−p−1)rρ ≤ c R

and the curvature operator K p of Mm has the lower bound

K p ≥ −
m− p

m− p− 1
ρ0 on M.

Then any harmonic p-form w in Ld with 2≤ d ≤ 2(m− p− 1)/(m− p− 2) must
either vanish or satisfy Equation (8).

Proof. The theorem is obviously true if d = 2 as (Pp,ρ) holds on M . So we assume
d > 2. Let w be a smooth harmonic p-form. By the Kato inequality, the Bochner
formula becomes |w|1|w| ≥ 1

m−p |∇|w||
2
+ K p|w|

2.
Let g = |w|(m−p−1)/(m−p). Then this inequality can be rewritten as

(9) 1g ≥
m− p− 1

m− p
K pg.

We first show that g satisfies the integral estimate
∫

Bρ(2R)\Bρ(R)
ρg2
≤ C R. To

see this, using the Schwarz inequality, we have

(10)
∫

Bρ(2R)\Bρ(R)
ρg2
≤

(∫
Bρ(2R)\Bρ(R)

ρ exp(2rρ)|w|2
)m−p−1/(m−p)

·

(∫
Bρ(2R)\Bρ(R)

ρ exp(−2(m− p− 1)rρ)
)1/(m−p)

.

By the volume growth condition, the second term on the right side satisfies∫
Bρ(2R)\Bρ(R)

ρ exp(−2(m− p− 1)rρ)≤ c R.

On the other hand, for a = d/(d − 2), we have∫
Bρ(2R)\Bρ(R)

ρ exp(−2rρ)|w|2 ≤
(∫

Bρ(2R)\Bρ(R)
ρa exp(−2 a rρ)

)1/a

·

(∫
Bρ(2R)\Bρ(R)

|w|d
)2/d

≤ C
(∫

Bρ(2R)\Bρ(R)
ρ exp(−2(m− p− 1)rρ)

)1/a

≤ C R1/a,
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since w is in Ld . Now according to Lemma 2.1, one has∫
Bρ(2R)\Bρ(R)

ρ exp(2rρ)|w|2 ≤ C R.

Then (10) can be written as
∫

Bρ(2R)\Bρ(R)
ρg2
≤ C R.

To finish the proof of the theorem, note that for a cutoff function φ, we have∫
M
ρ0φ

2g2
≤

∫
M
|∇(φg)|2 =

∫
M
|∇φ|2g2

+ 2φg〈∇φ,∇g〉+ |φ|2|∇g|2.

Also, ∫
M

2φg〈∇φ,∇g〉 =
∫

M
g〈∇φ2,∇g〉 = −

∫
M
φ2
|∇g|2−

∫
M
φ2g1g.

Therefore ∫
M
ρ0φ

2g2
≤

∫
M
|∇φ|2g2

−

∫
M
φ2g1g,

or in other words,

(11)
∫

M
φ2g(ρ0g+1g)≤

∫
M
|∇φ|2g2.

Let us now choose φ = φ(rρ) to satisfy the properties that

φ =

{
1 on Bρ(R),
0 on M\Bρ(2R),

and

|φ′(t)| ≤ 2 R−1 for R ≤ t ≤ 2R.

Then ∫
Bρ(2R)

φ2g2
(
ρ0+

m− p−1
m− p

K p

)
≤ C R−2

∫
Bρ(2R)\Bρ(R)

ρg2.

The right side of this tends to zero as R→∞. Since K p≥−(m−p)ρ0/(m−p−1),
we conclude that g must be identically zero, or

(12) 1g =
m− p− 1

m− p
K pg.

This in particular implies that w must satisfy (8). �

Next we prove the finiteness theorem for the space of harmonic p-forms if the
curvature lower bound only holds on M\Bq(R0), where Bq(R0) is a geodesic ball
in M .
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Theorem 3.2. For m≥ 3, let Mm be a complete noncompact Riemannian manifold
with properties (Pρ0) and (Pp,ρ). Suppose the volume growth of M satisfies∫

Bρ(2R)\Bρ(R)
ρe−2(m−p−1)rρ ≤ c R

and the curvature operator K p of Mm has the lower bound

K p ≥−

( m− p
m− p−1

− ε
)
ρ0 on M \ Bq(R0).

Then dim H p
d (M)≤ C(m, p, ε, Bq(R0)) with 2≤ d ≤ 2(m− p− 1)/(m− p− 2).

Proof. According to the proof of the vanishing Theorem 3.1, for each w ∈ H p
d ,

function g = |w|2(m−p−1)/(m−p) satisfies the estimate∫
Bρ(2R)\Bρ(R)

g2
≤ C R.

Also, the Bochner formula together with the curvature assumption implies that the
function g satisfies the differential inequality

1g ≥
(m− p−1

m− p
ε− ρ0

)
g on M\Bq(R0).

Let φ be a cutoff function satisfying

φ =


0 on Bq(R0),

1 on Bρ(R)\Bq(2R0),

0 on M\Bρ(2R),

|∇φ| ≤ C R−1
0 on Bq(2R0)\Bq(R0),

|∇φ| ≤ C
√
ρR−1 on Bρ(2R)\Bρ(R)

for some constant C > 0.
Since∫

M
ρ0φ

2g2
≤

∫
M
|∇(φg)|2 =

∫
M
|∇φ|2g2

+ 2φg〈∇φ,∇g〉+ |φ|2|∇g|2

and ∫
M

2φg〈∇φ,∇g〉 =
∫

M
g〈∇φ2,∇g〉 = −

∫
M
φ2
|∇g|2−

∫
M
φ2g1g,

we conclude ∫
M
ρ0φ

2g2
≤

∫
M
|∇φ|2g2

−

∫
M
φ2g1g.
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Hence, we have∫
M\Bq (R0)

φ2g(ρ0g+1g)≤ C R−2
0

∫
Bq (2R0)\Bq (R0)

g2
+C R−2

∫
Bρ(2R)\Bρ(R)

ρg2.

Let R→∞. Then

m− p−1
m− p

ε

∫
M\Bq (2R0)

g2
≤ C R−2

0

∫
Bq (2R0)\Bq (R0)

g2.

In particular,

(13)
∫

Bq (3R0)

g2
≤

(
1+ C

εR2
0

) ∫
Bq (2R0)

g2.

It is now standard to conclude [Li 1980] that dim H p
d ≤ C . �
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