Pacific Journal of Mathematics

HARMONIC FORMS ON MANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY

JUI-TANG RAY CHEN AND CHIUNG-JUE ANNA SUNG

Volume 242 No. 2

October 2009

HARMONIC FORMS ON MANIFOLDS WITH WEIGHTED POINCARÉ INEQUALITY

JUI-TANG RAY CHEN AND CHIUNG-JUE ANNA SUNG

Let M be a complete noncompact manifold. We prove vanishing and finiteness results for harmonic p-forms on M, assuming both the curvature operator lower bound and the weighted Poincaré inequality on M.

1. Introduction

It is interesting to study the structures of noncompact complete manifolds, especially their topological properties at infinity. There are many results [Witten and Yau 1999; Cai and Galloway 1999; Wang 2001; 2001; Wan and Xin 2004] on the topology of conformally compact manifolds. Recently, by assuming that the Ricci curvature is bounded from below in terms of the dimension and of the first eigenvalue, Li and Wang [2001] obtained information on the topology of complete manifolds infinity and in some cases the metric structure of these manifolds, by proving a vanishing-type theorem of L^2 harmonic 1-forms. In his thesis, Lam [2007] generalized Li and Wang's result by relaxing the curvature assumptions. He proved that a manifold must have finitely many nonparabolic ends if a similar inequality between the Ricci curvature and the weight function in the weighted Poincaré inequality (see Definition 1.1) is valid outside a compact subset.

In this note, we will consider general harmonic p-forms. Working with a complete manifold M satisfying a weighted Poincaré inequality and a curvature operator lower bound expressed in terms of the dimension and the weight function, we prove vanishing and finiteness theorems for the L^d harmonic p-forms. Also, on an end of manifold with weighted p-Poincaré inequality, we prove that the Green's form satisfies a sharp decay estimate. Let us first recall some definitions.

Definition 1.1. Let M^m be an *m*-dimensional complete Riemannian manifold. We say that M^m satisfies a weighted Poincaré inequality [Li and Wang 2006] with a

MSC2000: primary 58A10; secondary 53C21.

Keywords: weighted Poincaré inequality, harmonic forms.

Both authors were partially supported by NSC Taiwan.

nonnegative weight function $\rho(x)$ if the inequality

$$\int_{M} \rho(x)\phi^{2} \leq \int_{M} |\nabla \phi|^{2} \quad \text{for } \phi \in C_{0}^{\infty}(M)$$

is valid for all compactly supported smooth functions $\phi \in C_0^{\infty}(M)$.

Definition 1.2. Let M^m be an *m*-dimensional complete Riemannian manifold. We say that M^m has property (\mathcal{P}_{ρ}) if a weighted Poincaré inequality is valid on *M* with some nonnegative weight function ρ and if the ρ -metric, defined by $ds_{\rho}^2 = \rho ds_M^2$, is complete.

Let $\lambda_1(M)$ denote the greatest lower bound of the spectrum of the Laplacian acting on L^2 functions. Then the variation principle for $\lambda_1(M)$ asserts the validity of the Poincaré inequality

$$\lambda_1(M) \int_M \phi^2 \le \int_M |\nabla \phi|^2$$

for all compactly supported functions $\phi \in C_0^{\infty}(M)$. If $\lambda_1(M)$ is positive, then obviously *M* has property (\mathcal{P}_{ρ}) with $\rho(x) = \lambda_1(M)$. Property (\mathcal{P}_{ρ}) may be seen as a generalization of the assumption $\lambda_1(M) > 0$.

For harmonic *p*-forms, let $C_0^{\infty}(\bigwedge^p M)$ denote the space of smooth *p*-forms with compact support on *M*. Then we define property $(\mathcal{P}_{p,\rho})$ as follows.

Definition 1.3. Let M^m be an *m*-dimensional complete Riemannian manifold. We say that M^m has property $(\mathcal{P}_{p,\rho})$ if a weighted *p*-Poincaré inequality is valid on M with some nonnegative weight function ρ , that is,

$$\int_{M} \rho(x) |\phi|^{2} \leq \int_{M} |d\phi|^{2} + |\delta\phi|^{2} \quad \text{for } \phi \in C_{0}^{\infty}(\bigwedge^{p} M),$$

and if the ρ -metric, defined by $ds_{\rho}^2 = \rho ds_M^2$, is complete.

If the greatest lower bound $\lambda_{1,p}$ of the *p* spectrum satisfies $\lambda_{1,p}(M) > 0$, then *M* has property $(\mathcal{P}_{p,\rho})$ with the weight function $\rho(x) = \lambda_{1,p}(M)$. Hence property $(\mathcal{P}_{p,\rho})$ can also be viewed as a generalization of the assumption that $\lambda_{1,p}(M) > 0$.

Throughout, we use $H_d^p(M^m)$ to denote the space of L^d harmonic *p*-forms, and $r_\rho(x)$ to denote the geodesic distance from some fixed point to *x* with respect to the metric ds_ρ^2 . Our main result is the following.

Theorem 1.4. For $m \ge 3$, let M^m be a complete noncompact Riemannian manifold with properties (\mathcal{P}_{p_0}) and $(\mathcal{P}_{p,\rho})$. Suppose the volume growth of M satisfies

$$\int_{B_{\rho}(2R)\setminus B_{\rho}(R)}\rho e^{-2(m-p-1)r_{\rho}} \leq cR$$

and the curvature operator K_p of M^m has the lower bound

$$K_p > -\frac{m-p}{m-p-1}\rho_0 \quad on \ M$$

Then the space $H_d^p(M)$ is trivial for $2 \le d \le 2(m-p-1)/(m-p-2)$.

We will employ some of the arguments from [Li and Wang 2001] to prove the sharp decay estimate for the Green's form in the next section, and prove the main theorem in Section 3.

2. Decay estimate

Let M^m be a complete manifold, and let Δ be the Hodge Laplace–Beltrami operator of M^m acting on differential *p*-forms. The Weitzenböck formula gives

$$\Delta = \nabla^2 - K_p,$$

where ∇^2 is the Bochner Laplacian and K_p is an endomorphism depending upon the curvature tensor of M^m . Using an orthonormal basis $\{\theta^1, \ldots, \theta^m\}$ dual to $\{e_1, \ldots, e_m\}$, one may express the curvature term K_p as

$$\langle K_p(w), w \rangle = \left\langle \sum_{j,k=1}^m \theta^k \wedge i_{e_j} R(e_k, e_j) w, w \right\rangle.$$

In particular, $\langle K_1(w), w \rangle = \operatorname{Ric}(w^{\sharp}, w^{\sharp})$, where w^{\sharp} is the vector dual to the form w. We say M^m has curvature lower bound k_p if for all *p*-forms w on M^m ,

$$\langle K_p(w), w \rangle \ge k_p |w|^2$$

We recall [Li 2000] that an end is simply an unbounded component of $M \setminus D$, where *D* is a compact smooth domain of *M*. Write $E(R) = E \cap B_q(R)$, and define $\partial E(R) = \partial E \cup (\partial B_q(R) \cap E)$. Let $\lambda_{1,p}(E(R))$ be the first eigenvalue of Δ for *p*-forms satisfying Dirichlet boundary conditions on $\partial E(R)$, that is, $\lambda_{1,p}(E) =$ $\inf_{R>0, E(R)\neq\emptyset} E(R)$; see [Donnelly 1984; Donnelly and Xavier 1984]. Therefore we have for all $w \in C_0^{\infty}(\bigwedge^p E)$

$$\lambda_{1,p}(E)\int |w|^2 \leq \int (|\nabla w|^2 + \langle K_p(w), w \rangle),$$

where $C_0^{\infty}(\bigwedge^p E)$ is the space of smooth *p*-forms with compact supported on the end *E*. If the *p*-spectrum $\lambda_{1,p}(E)$ is positive, then *E* has property $(\mathcal{P}_{p,\rho})$ with the weight function $\rho = \lambda_{1,p}(E)$.

In this section, we study the harmonic p-forms on the end E of a manifold with weighted p-Poincaré inequality and prove the following decay estimate. See [Donnelly 1984; Li and Wang 2001].

Lemma 2.1. Let *M* be a complete noncompact manifold. If *E* is an end of *M* with the property $(\mathcal{P}_{p,\rho})$ for some nonnegative weight function ρ , then for any smooth harmonic *p*-form *w* satisfying

(1)
$$\int_{E_{\rho}(2R)\setminus E_{\rho}(R)}\rho(x)\exp(-2r_{\rho})|w|^{2}dv = o(R),$$

we have

$$\begin{split} &\int_{E_{\rho}(R)} \rho(x) \exp(2r_{\rho}) |w|^2 dv \leq CR, \\ &\int_{E_{\rho}(R+1) \setminus E_{\rho}(R)} \rho(x) \exp(2r_{\rho}) |w|^2 dv \leq C \end{split}$$

for all R sufficiently large and for some constant C depending on w and ρ .

Proof. Let ψ be a nonnegative cutoff function. Integration by parts gives

$$\begin{split} \int_{E} |\nabla(\psi w)|^{2} + \langle K_{p}(\psi w), \psi w \rangle \\ &= \int_{E} |\nabla \psi|^{2} |w|^{2} + 2\psi \langle w \nabla \psi, \nabla w \rangle + |\psi|^{2} |\nabla w|^{2} + \psi^{2} \langle K_{p}(w), w \rangle \\ &= \int_{E} |\nabla \psi|^{2} |w|^{2} - \int_{E} \psi^{2} \langle w, \Delta w \rangle_{M} \\ &= \int_{E} |\nabla \psi|^{2} |w|^{2}. \end{split}$$

By property $(\mathcal{P}_{p,\rho})$,

$$\int_{E} \rho(x)\psi^{2}|w|^{2}dv \leq \int_{E} (|\nabla(\psi w)|^{2} + \langle K_{p}(\psi w), \psi w \rangle),$$

so we have

(2)
$$\int_{E} \rho(x)\psi^{2}|w|^{2}dv \leq \int_{E} |\nabla\psi|^{2}|w|^{2}dv$$

for any cutoff function ψ on *E*. Let $\psi = \phi(r_{\rho}(x)) \exp(a(r_{\rho}(x)))$. Then

(3)
$$\int_{E} \phi^2 \exp(2a) |w|^2 dv \le \int_{E} \left(|\nabla \phi|^2 + 2\langle \nabla \phi, \nabla a \rangle \phi + |\nabla a|^2 \phi^2 \right) \exp(2a) |w|^2 dv.$$

Choose ϕ as the nonnegative cutoff function defined by

$$\phi(r_{\rho}(x)) = \begin{cases} r_{\rho}(x) - R_{0} & \text{on } E_{\rho}(R_{0} + 1) \setminus E_{\rho}(R_{0}), \\ 1 & \text{on } E_{\rho}(R) \setminus E_{\rho}(R_{0} + 1), \\ (2R - r_{\rho}(x))/R & \text{on } E_{\rho}(2R) \setminus E_{\rho}(R), \\ 0 & \text{on } E \setminus E_{\rho}(2R), \end{cases}$$

and also choose $a(r_{\rho}(x))$ as

$$a(r_{\rho}(x)) = \begin{cases} \delta r_{\rho}(x) & \text{for } r_{\rho} \leq K/(1+\delta), \\ K - r_{\rho}(x) & \text{for } r_{\rho} > K/(1+\delta), \end{cases}$$

for some fixed $K > (R_0 + 1)(1 + \delta)$ and $0 < \delta < 1$. If $R \ge K/(1 + \delta)$, it is easy to check that

$$|\nabla \phi|^{2}(x) = \begin{cases} \rho(x) & \text{on } E_{\rho}(R_{0}+1) \setminus E_{\rho}(R_{0}), \\ 0 & \text{on } E_{\rho}(R) \setminus E_{\rho}(R_{0}+1), \\ \rho(x)/R^{2} & \text{on } E_{\rho}(2R) \setminus E_{\rho}(R), \\ 0 & \text{on } E \setminus E_{\rho}(2R), \end{cases}$$
$$|\nabla a|^{2}(x) = \begin{cases} \delta^{2}\rho(x) & \text{for } r \leq K/(1+\delta), \\ \rho(x) & \text{for } r > K/(1+\delta), \end{cases}$$

and then

$$\langle \nabla \phi, \nabla a \rangle (x) = \begin{cases} \delta \rho(x) & \text{on } E_{\rho}(R_0 + 1) \backslash E_{\rho}(R_0), \\ \rho(x)/R & \text{on } E_{\rho}(2R) \backslash E_{\rho}(R), \\ 0 & \text{otherwise.} \end{cases}$$

Therefore (3) becomes

$$\begin{split} &\int_{E_{\rho}(2R)} \rho \phi^{2} \exp(2a) |w|^{2} dv \\ &\leq \int_{E_{\rho}(2R)} \left(|\nabla \phi|^{2} + 2\langle \nabla \phi, \nabla a \rangle \phi + |\nabla a|^{2} \phi^{2} \right) \exp(2a) |w|^{2} dv \\ &\leq \int_{E_{\rho}(R_{0}+1) \setminus E_{\rho}(R_{0})} \rho \exp(2a) |w|^{2} dv + \frac{1}{R^{2}} \int_{E_{\rho}(2R) \setminus E_{\rho}(R)} \rho \exp(2a) |w|^{2} dv \\ &\quad + 2\delta \int_{E_{\rho}(R_{0}+1) \setminus E_{\rho}(R_{0})} \rho \phi \exp(2a) |w|^{2} dv + \frac{2}{R} \int_{E_{\rho}(2R) \setminus E_{\rho}(R)} \rho \phi \exp(2a) |w|^{2} dv \\ &\quad + \delta^{2} \int_{E_{\rho}(\frac{K}{1+\delta}) \setminus E_{\rho}(R_{0})} \rho \phi^{2} \exp(2a) |w|^{2} dv + \int_{E_{\rho}(2R) \setminus E_{\rho}(\frac{K}{1+\delta})} \rho \phi^{2} \exp(2a) |w|^{2} dv. \end{split}$$

Hence

$$(1-\delta^2)\int_{E_{\rho}(\frac{K}{1+\delta})\setminus E_{\rho}(R_0+1)}\rho\exp(2a)|w|^2dv$$

$$\leq (\delta^2+2\delta+1)\int_{E_{\rho}(R_0+1)\setminus E_{\rho}(R_0)}\rho\exp(2a)|w|^2dv$$

$$+\left(\frac{1}{R^2}+\frac{2}{R}\right)\int_{E_{\rho}(2R)\setminus E_{\rho}(R)}\rho\exp(2a)|w|^2dv.$$

By the definition of a(x) and the growth estimate of w (see (1)), the last term on the right side tends to 0 as $R \to \infty$. Thus we obtain the estimate

$$\frac{1-\delta^2}{(\delta+1)^2} \int_{E_{\rho}(\frac{K}{1+\delta})\setminus E_{\rho}(R_0+1)} \rho \exp(2\delta r_{\rho})|w|^2 dv \leq \int_{E_{\rho}(R_0+1)\setminus E_{\rho}(R_0)} \rho \exp(2\delta r_{\rho})|w|^2 dv.$$

Since the right side of this inequality is independent of *K*, by letting $K \to \infty$ we conclude that

(4)
$$\int_{E \setminus E_{\rho}(R_0+1)} \rho \exp(2\delta r_{\rho}) |w|^2 dv \le C \quad \text{for some constant } 0 < C < \infty.$$

Next we improve this estimate by setting $a(r_{\rho}(x)) = r_{\rho}(x)$ in the preceding argument. For $R_0 < R_1 < R$, let us choose ϕ to be

$$\phi(x) = \begin{cases} (r_{\rho}(x) - R_0)/(R_1 - R_0) & \text{on } E_{\rho}(R_1) \setminus E_{\rho}(R_0), \\ (R - r_{\rho}(x))/(R - R_1) & \text{on } E_{\rho}(R) \setminus E_{\rho}(R_1). \end{cases}$$

The inequality (3) asserts that

r

$$\begin{split} \int_{E_{\rho}(R)} \rho \phi^{2} \exp(2r_{\rho}) |w|^{2} dv &\leq \int_{E_{\rho}(R)} |\nabla(\phi \exp(r_{\rho}))|^{2} |w|^{2} dv \\ &= \frac{1}{(R-R_{1})^{2}} \int_{E_{\rho}(R) \setminus E_{\rho}(R_{1})} \rho \exp(2r_{\rho}) |w|^{2} dv \\ &+ \frac{1}{(R_{1}-R_{0})^{2}} \int_{E_{\rho}(R_{1}) \setminus E_{\rho}(R_{0})} \rho \exp(2r_{\rho}) |w|^{2} dv \\ &- \frac{2}{(R-R_{1})^{2}} \int_{E_{\rho}(R) \setminus E_{\rho}(R_{1})} (R-r_{\rho}(x)) \rho \exp(2r_{\rho}) |w| k2 dv \\ &+ \frac{2}{(R_{1}-R_{0})^{2}} \int_{E_{\rho}(R_{1}) \setminus E_{\rho}(R_{0})} (r_{\rho}(x) - R_{0}) \rho \exp(2r_{\rho}) |w|^{2} dv \\ &+ \int_{E_{\rho}(R)} \rho \phi^{2} \exp(2r_{\rho}) |w|^{2} dv. \end{split}$$

Then

$$\begin{split} \frac{2}{(R-R_1)^2} \int_{E_{\rho}(R)\setminus E_{\rho}(R_1)} (R-r_{\rho}(x))\rho \exp(2r_{\rho})|w|^2 dv \\ &\leq \frac{1}{(R-R_1)^2} \int_{E_{\rho}(R)\setminus E_{\rho}(R_1)} \rho \exp(2r_{\rho})|w|^2 dv \\ &\quad + \frac{1}{(R_1-R_0)^2} \int_{E_{\rho}(R_1)\setminus E_{\rho}(R_0)} \rho \exp(2r_{\rho})|w|^2 dv \\ &\quad + \frac{2}{(R_1-R_0)} \int_{E_{\rho}(R_1)\setminus E_{\rho}(R_0)} \frac{r_{\rho}(x)-R_0}{R_1-R_0} \rho \exp(2r_{\rho})|w|^2 dv. \end{split}$$

On the other hand, for any fixed $0 < t < R - R_1$,

$$\begin{split} \frac{t}{(R-R_1)^2} \int_{E_{\rho}(R-t)\setminus E_{\rho}(R_1)} \rho \exp(2r_{\rho})|w|^2 dv \\ &\leq \frac{1}{(R-R_1)^2} \int_{E_{\rho}(R)\setminus E_{\rho}(R_1)} (R-r_{\rho}(x))\rho \exp(2r_{\rho})|w|^2 dv, \end{split}$$

we deduce that

(5)
$$\frac{2t}{(R-R_1)^2} \int_{E_{\rho}(R-t)\setminus E_{\rho}(R_1)} \rho \exp(2r_{\rho})|w|^2 dv$$
$$\leq \left(\frac{1}{(R_1-R_0)^2} + \frac{2}{R_1-R_0}\right) \int_{E_{\rho}(R_1)\setminus E_{\rho}(R_0)} \rho \exp(\sqrt{2}r_{\rho})|w|^2 dv$$
$$+ \frac{1}{(R-R_1)^2} \int_{E_{\rho}(R)\setminus E_{\rho}(R_1)} \rho \exp(\sqrt{2}r_{\rho})|w|^2 dv.$$

Observe that if $R_1 = R_0 + 1$, if t = 1, and if

$$g(R) = \int_{E_{\rho}(R)\setminus E_{\rho}(R_0+1)} \rho \exp(2r_{\rho})|w|^2 dv,$$

then the inequality (5) can be written as

$$g(R-1) \le C_1 R^2 + \frac{1}{2}g(R),$$

where $C_1 = 2 \int_{E_{\rho}(R_0+1) \setminus E_{\rho}(R_0)} \rho \exp(2r_{\rho}) |w|^2 dv$ is independent of *R*. Iterating this inequality, we show that for any positive integer *k*, $R \ge 1$, and constant C_2 ,

$$g(R) \le C_1 \sum_{i=1}^k \frac{(R+i)^2}{2^{i-1}} + 2^{-k} g(R+k)$$

$$\le C_1 R^2 \sum_{i=1}^\infty \frac{(1+i)^2}{2^{i-1}} + 2^{-k} g(R+k) \le C_2 R^2 + 2^{-k} g(R+k).$$

However, the previous estimate in (4) asserts that

$$\int_E \rho \exp(2\delta r_\rho) |w|^2 dv \le C \quad \text{ for any } \delta < 1.$$

This implies that

$$g(R+k) = \int_{E_{\rho}(R+2k)\setminus E_{\rho}(R_{0}+1)} \rho \exp(2r_{\rho})|w|^{2}$$

$$\leq \exp(2(1-\delta)(R+k)) \int_{E_{\rho}(R+k)\setminus E_{\rho}(R_{0}+1)} \rho \exp(2\delta r_{\rho})|w|^{2}$$

$$\leq C \exp(2(1-\delta)(R+k)).$$

Hence $2^{-k}g(R+k) \to 0$ as $k \to \infty$ by choosing $2(1-\delta) < \ln 2$. This proves the estimate that $g(R) \le C_2 R^2$. Adjusting the constant, we have

(6)
$$\int_{E_{\rho}(R)} \rho \exp(2r_{\rho}) |w|^2 dv \le C_3 R^2 \quad \text{for all } R \ge R_0.$$

Using inequality (5) again and choosing $R_1 = R_0 + 1$, $R > 2R_1$ and t = R/2, we conclude that

$$R \int_{E_{\rho}(R/2) \setminus E_{\rho}(R_{0}+1)} \rho \exp(2r_{\rho}) |w|^{2} dv \leq C_{4} R^{2} + 2 \int_{E_{\rho}(R) \setminus E_{\rho}(R_{0}+1)} \rho \exp(2r_{\rho}) |w|^{2} dv.$$

However, applying the estimate (6) to the second term on the right side, we have

$$\int_{E_{\rho}(R/2)\setminus E_{\rho}(R_0+1)}\rho\exp(2r_{\rho})|w|^2dv\leq C_5R.$$

Therefore

(7)
$$\int_{E_{\rho}(R)} \rho \exp(2r_{\rho}) |w|^2 dv \le C_6 R \quad \text{for } R \ge R_0.$$

We are ready to prove the theorem by using (7). Setting t = 2 and $R_1 = R - 4$ in (5), we have

$$\begin{split} \int_{E_{\rho}(R-2)\setminus E_{\rho}(R-4)} \rho \exp(2r_{\rho})|w|^{2} dv \\ &\leq \left(\frac{4}{(R-R_{0}-4)^{2}} + \frac{8}{R-R_{0}-4}\right) \int_{E_{\rho}(R-4)\setminus E_{\rho}(R_{0})} \rho \exp(2r_{\rho})|w|^{2} dv \\ &\qquad + \frac{1}{4} \int_{E_{\rho}(R)\setminus E_{\rho}(R-4)} \rho \exp(2r_{\rho})|w|^{2} dv. \end{split}$$

According to (7), the first term of the right side is bounded by a constant. Hence this inequality can be rewritten as

$$\int_{E_{\rho}(R-2)\setminus E_{\rho}(R-4)} \rho \exp(2r_{\rho})|w|^{2} dv \leq C_{7} + \frac{1}{2} \int_{E_{\rho}(R)\setminus E_{\rho}(R-4)} \rho \exp(2r_{\rho})|w|^{2} dv.$$

Iterating this inequality k times, we have

$$\begin{split} \int_{E_{\rho}(R+2)\setminus E_{\rho}(R)} \rho \exp(2r_{\rho})|w|^{2}dv \\ &\leq C_{7}\sum_{i=0}^{k-1}2^{-i} + \frac{1}{2^{k}}\int_{E_{\rho}(R+2(k+1))\setminus E_{\rho}(R)} \rho \exp(2r_{\rho})|w|^{2}dv. \end{split}$$

Using (7) again, we conclude the second term is bounded by

$$\frac{1}{2^k} \int_{E_{\rho}(R+2(k+1))\setminus E_{\rho}(R)} \rho \exp(2r_{\rho}) |w|^2 dv \le \frac{C(R+2(k+1))}{2^k}$$

and the upper bound tends to zero as $k \to \infty$. Hence

$$\int_{E_{\rho}(R+2)\setminus E_{\rho}(R)}\rho\exp(2r_{\rho})|w|^{2}dv\leq C_{8}$$

for some constant $C_8 > 0$ independent of *R*.

Corollary 2.2. Let *M* be a complete manifold. If *E* is an end of *M* with positive $\lambda(E)$, where $\lambda(E)$ is equal to either $\lambda_{1,p}(E)$ or $\lambda_1(E) + K_p$, then for any smooth harmonic *p*-form *w* satisfying

$$\int_{E(2R)\setminus E(R)} \exp(-2\sqrt{\lambda(E)}r)|w|^2 dv = o(R),$$

we have

$$\int_{E(R)} \exp(2\sqrt{\lambda(E)}r)|w|^2 dv \le CR,$$
$$\int_{E(R+1)\setminus E(R)} \exp(2\sqrt{\lambda(E)}r)|w|^2 dv \le C,$$

for all R sufficiently large.

3. Vanishing and finiteness theorems of harmonic *p*-forms

Let w be a harmonic p-form on an m-dimensional manifold M. Then w satisfies the Kato inequality [Wan and Xin 2004; Calderbank et al. 2000; Herzlich 2000]

$$|\nabla w|^2 \ge \frac{m-p+1}{m-p} |\nabla |w||^2,$$

and equality holds if and only if there exists a 1-form α with $\alpha \wedge w = 0$ such that

(8)
$$\nabla w = a \otimes w - \frac{1}{m+1-p} \sum_{j=1}^{m} \theta^{j} \otimes (\theta^{j} \wedge i_{a^{\sharp}} w),$$

where $\{\theta^1, \ldots, \theta^m\}$ is an orthonormal basis for the cotangent bundle and α^{\sharp} is the vector dual to α .

Now we are ready to prove vanishing and finiteness theorems for harmonic *p*-forms using the decay estimate Lemma 2.1 and the Kato inequality. To simplify our statement, we will assume the function ρ is bounded in the rest of the section.

Theorem 3.1. For $m \ge 3$, let M^m be a complete noncompact Riemannian manifold with properties (\mathcal{P}_{ρ_0}) and $(\mathcal{P}_{p,\rho})$. Suppose the volume growth of M satisfies

$$\int_{B_{\rho}(2R)\setminus B_{\rho}(R)}\rho e^{-2(m-p-1)r_{\rho}} \leq c R$$

and the curvature operator K_p of M^m has the lower bound

$$K_p \ge -\frac{m-p}{m-p-1}\rho_0 \quad on \ M$$

Then any harmonic *p*-form w in L^d with $2 \le d \le 2(m - p - 1)/(m - p - 2)$ must either vanish or satisfy Equation (8).

Proof. The theorem is obviously true if d = 2 as $(\mathcal{P}_{p,\rho})$ holds on M. So we assume d > 2. Let w be a smooth harmonic p-form. By the Kato inequality, the Bochner formula becomes $|w|\Delta|w| \ge \frac{1}{m-p} |\nabla|w||^2 + K_p |w|^2$.

Let $g = |w|^{(m-p-1)/(m-p)}$. Then this inequality can be rewritten as

(9)
$$\Delta g \ge \frac{m-p-1}{m-p} K_p g$$

We first show that g satisfies the integral estimate $\int_{B_{\rho}(2R)\setminus B_{\rho}(R)} \rho g^2 \leq CR$. To see this, using the Schwarz inequality, we have

(10)
$$\int_{B_{\rho}(2R)\setminus B_{\rho}(R)} \rho g^{2} \leq \left(\int_{B_{\rho}(2R)\setminus B_{\rho}(R)} \rho \exp(2r_{\rho})|w|^{2}\right)^{m-p-1/(m-p)} \cdot \left(\int_{B_{\rho}(2R)\setminus B_{\rho}(R)} \rho \exp(-2(m-p-1)r_{\rho})\right)^{1/(m-p)}$$

By the volume growth condition, the second term on the right side satisfies

$$\int_{B_{\rho}(2R)\setminus B_{\rho}(R)}\rho\exp(-2(m-p-1)r_{\rho})\leq c\ R$$

On the other hand, for a = d/(d-2), we have

$$\begin{split} \int_{B_{\rho}(2R)\setminus B_{\rho}(R)} \rho \exp(-2r_{\rho})|w|^{2} &\leq \left(\int_{B_{\rho}(2R)\setminus B_{\rho}(R)} \rho^{a} \exp(-2ar_{\rho})\right)^{1/a} \\ &\cdot \left(\int_{B_{\rho}(2R)\setminus B_{\rho}(R)} |w|^{d}\right)^{2/d} \\ &\leq C\left(\int_{B_{\rho}(2R)\setminus B_{\rho}(R)} \rho \exp(-2(m-p-1)r_{\rho})\right)^{1/a} \\ &\leq CR^{1/a}, \end{split}$$

since w is in L^d . Now according to Lemma 2.1, one has

$$\int_{B_{\rho}(2R)\setminus B_{\rho}(R)}\rho\exp(2r_{\rho})|w|^{2}\leq CR.$$

Then (10) can be written as $\int_{B_{\rho}(2R)\setminus B_{\rho}(R)} \rho g^2 \leq CR$. To finish the proof of the theorem, note that for a cutoff function ϕ , we have

$$\int_{M} \rho_0 \phi^2 g^2 \le \int_{M} |\nabla(\phi g)|^2 = \int_{M} |\nabla \phi|^2 g^2 + 2\phi g \langle \nabla \phi, \nabla g \rangle + |\phi|^2 |\nabla g|^2.$$

Also,

$$\int_{M} 2\phi g \langle \nabla \phi, \nabla g \rangle = \int_{M} g \langle \nabla \phi^{2}, \nabla g \rangle = -\int_{M} \phi^{2} |\nabla g|^{2} - \int_{M} \phi^{2} g \Delta g.$$

Therefore

$$\int_{M} \rho_0 \phi^2 g^2 \leq \int_{M} |\nabla \phi|^2 g^2 - \int_{M} \phi^2 g \Delta g,$$

or in other words,

(11)
$$\int_{M} \phi^2 g(\rho_0 g + \Delta g) \le \int_{M} |\nabla \phi|^2 g^2$$

Let us now choose $\phi = \phi(r_{\rho})$ to satisfy the properties that

$$\phi = \begin{cases} 1 & \text{on } B_{\rho}(R), \\ 0 & \text{on } M \setminus B_{\rho}(2R), \end{cases}$$

and

$$|\phi'(t)| \le 2R^{-1}$$
 for $R \le t \le 2R$.

Then

$$\int_{B_{\rho}(2R)} \phi^2 g^2 \left(\rho_0 + \frac{m-p-1}{m-p} K_p \right) \leq C R^{-2} \int_{B_{\rho}(2R) \setminus B_{\rho}(R)} \rho g^2.$$

The right side of this tends to zero as $R \to \infty$. Since $K_p \ge -(m-p)\rho_0/(m-p-1)$, we conclude that g must be identically zero, or

(12)
$$\Delta g = \frac{m-p-1}{m-p} K_p g$$

This in particular implies that w must satisfy (8).

Next we prove the finiteness theorem for the space of harmonic p-forms if the curvature lower bound only holds on $M \setminus B_q(R_0)$, where $B_q(R_0)$ is a geodesic ball in M.

Theorem 3.2. For $m \ge 3$, let M^m be a complete noncompact Riemannian manifold with properties (\mathcal{P}_{ρ_0}) and $(\mathcal{P}_{p,\rho})$. Suppose the volume growth of M satisfies

$$\int_{B_{\rho}(2R)\setminus B_{\rho}(R)}\rho e^{-2(m-p-1)r_{\rho}} \leq c R$$

and the curvature operator K_p of M^m has the lower bound

$$K_p \ge -\left(\frac{m-p}{m-p-1}-\epsilon\right)\rho_0 \quad on \ M \setminus B_q(R_0).$$

Then dim $H_d^p(M) \le C(m, p, \epsilon, B_q(R_0))$ with $2 \le d \le 2(m - p - 1)/(m - p - 2)$.

Proof. According to the proof of the vanishing Theorem 3.1, for each $w \in H_d^p$, function $g = |w|^{2(m-p-1)/(m-p)}$ satisfies the estimate

$$\int_{B_{\rho}(2R)\setminus B_{\rho}(R)}g^{2}\leq C R.$$

Also, the Bochner formula together with the curvature assumption implies that the function *g* satisfies the differential inequality

$$\Delta g \ge \left(\frac{m-p-1}{m-p}\epsilon - \rho_0\right)g$$
 on $M \setminus B_q(R_0)$.

Let ϕ be a cutoff function satisfying

$$\phi = \begin{cases} 0 & \text{on } B_q(R_0), \\ 1 & \text{on } B_\rho(R) \setminus B_q(2R_0), \\ 0 & \text{on } M \setminus B_\rho(2R), \end{cases}$$
$$|\nabla \phi| \le C R_0^{-1} & \text{on } B_q(2R_0) \setminus B_q(R_0), \\ |\nabla \phi| \le C \sqrt{\rho} R^{-1} & \text{on } B_\rho(2R) \setminus B_\rho(R) \end{cases}$$

for some constant C > 0.

Since

$$\int_{M} \rho_0 \phi^2 g^2 \le \int_{M} |\nabla(\phi g)|^2 = \int_{M} |\nabla \phi|^2 g^2 + 2\phi g \langle \nabla \phi, \nabla g \rangle + |\phi|^2 |\nabla g|^2$$

and

$$\int_{M} 2\phi g \langle \nabla \phi, \nabla g \rangle = \int_{M} g \langle \nabla \phi^{2}, \nabla g \rangle = -\int_{M} \phi^{2} |\nabla g|^{2} - \int_{M} \phi^{2} g \Delta g,$$

we conclude

$$\int_{M} \rho_0 \phi^2 g^2 \leq \int_{M} |\nabla \phi|^2 g^2 - \int_{M} \phi^2 g \, \Delta g.$$

Hence, we have

$$\int_{M\setminus B_q(R_0)} \phi^2 g(\rho_0 g + \Delta g) \le C R_0^{-2} \int_{B_q(2R_0)\setminus B_q(R_0)} g^2 + C R^{-2} \int_{B_\rho(2R)\setminus B_\rho(R)} \rho g^2.$$

Let $R \to \infty$. Then

$$\frac{m-p-1}{m-p}\epsilon \int_{M\setminus B_q(2R_0)} g^2 \leq CR_0^{-2} \int_{B_q(2R_0)\setminus B_q(R_0)} g^2.$$

In particular,

(13)
$$\int_{B_q(3R_0)} g^2 \le \left(1 + \frac{C}{\epsilon R_0^2}\right) \int_{B_q(2R_0)} g^2.$$

It is now standard to conclude [Li 1980] that dim $H_d^p \leq C$.

References

- [Cai and Galloway 1999] M. Cai and G. J. Galloway, "Boundaries of zero scalar curvature in the AdS/CFT correspondence", *Adv. Theor. Math. Phys.* **3** (1999), 1769–1783 (2000). MR 2002k:53080 Zbl 0978.53084
- [Calderbank et al. 2000] D. M. J. Calderbank, P. Gauduchon, and M. Herzlich, "Refined Kato inequalities and conformal weights in Riemannian geometry", J. Funct. Anal. 173:1 (2000), 214–255. MR 2001f:58046 Zbl 0960.58010
- [Donnelly 1984] H. Donnelly, "Eigenforms of the Laplacian on complete Riemannian manifolds", *Comm. Partial Differential Equations* **9**:13 (1984), 1299–1321. MR 86c:58145 Zbl 0552.58027
- [Donnelly and Xavier 1984] H. Donnelly and F. Xavier, "On the differential form spectrum of negatively curved Riemannian manifolds", *Amer. J. Math.* **106**:1 (1984), 169–185. MR 85i:58115 Zbl 0547.58034
- [Herzlich 2000] M. Herzlich, "Refined Kato inequalities in Riemannian geometry", in *Journées "Équations aux Dérivées Partielles"* (La Chapelle sur Erdre, 2000), Exposé 6, Univ. Nantes, 2000. MR 2001i:58068 Zbl 1028.58025
- [Lam 2007] L. Lam, Weighted Poincaré inequality and manifolds with spin holonomy, thesis, University of California at Irvine, 2007.
- [Li 1980] P. Li, "On the Sobolev constant and the *p*-spectrum of a compact Riemannian manifold", *Ann. Sci. École Norm. Sup.* (4) **13**:4 (1980), 451–468. MR 82h:58054 Zbl 0466.53023
- [Li 2000] P. Li, "Curvature and function theory on Riemannian manifolds", pp. 375–432 in *Surveys in differential geometry*, edited by S.-T. Yau, Surv. Differ. Geom. **7**, Int. Press, Somerville, MA, 2000. MR 2003g:53047 Zbl 1066.53084
- [Li and Wang 2001] P. Li and J. Wang, "Complete manifolds with positive spectrum", *J. Differential Geom.* **58**:3 (2001), 501–534. MR 2003e:58046 Zbl 1032.58016
- [Li and Wang 2006] P. Li and J. Wang, "Weighted Poincaré inequality and rigidity of complete manifolds", *Ann. Sci. École Norm. Sup.* **39**:6 (2006), 921–982. MR 2008d:53053 Zbl 1120.53018
- [Wan and Xin 2004] T. Y. H. Wan and Y. L. Xin, "Vanishing theorems for conformally compact manifolds", *Comm. Partial Differential Equations* **29**:7-8 (2004), 1267–1279. MR 2005h:53058 Zbl 1086.53060

[Wang 2001] X. Wang, "On conformally compact Einstein manifolds", *Math. Res. Lett.* **8**:5-6 (2001), 671–688. MR 2003d:53075 Zbl 1053.53030

[Witten and Yau 1999] E. Witten and S.-T. Yau, "Connectedness of the boundary in the AdS/CFT correspondence", *Adv. Theor. Math. Phys.* **3**:6 (1999), 1635–1655 (2000). MR 2002b:53071 Zbl 0978.53085

Received October 20, 2008. Revised March 21, 2009.

JUI-TANG RAY CHEN DEPARTMENT OF MATHEMATICS NATIONAL TAIWAN NORMAL UNIVERSITY 88 SECTION 4 TING CHOU ROAD TAIPEI TAIWAN

jtchen@math.ntnu.edu.tw

CHIUNG-JUE ANNA SUNG NATIONAL TSING HUA UNIVERSITY DEPARTMENT OF MATHEMATICS NUMBER 101, SECTION 2 GUANGFU ROAD HSINCHU 30013 TAIWAN cjsung@math.nthu.edu.tw