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We obtain weighted Sobolev interpolation inequalities on generalized John
domains that include John domains (bounded or unbounded) for δ-doubling
measures satisfying a weighted Poincaré inequality. These measures in-
clude ones arising from power weights d(x, ∂�)α and need not be dou-
bling. As an application, we extend the Sobolev interpolation inequalities
obtained by Caffarelli, Kohn and Nirenberg. We extend these inequal-
ities to product spaces and give some applications on products �1 × �2

of John domains for A p(R
n × Rm) weights and power weights of the type

w(x, y) = dist(x, G1)
α dist( y, G2)

β , where G1 ⊂ ∂�1 and G2 ⊂ ∂�2. For
certain cases, we obtain sharp conditions.

1. Introduction

Sobolev interpolation inequalities are useful tools in the study of solutions of cer-
tain partial differential equations; see [Caffarelli et al. 1982; Gutiérrez and Whee-
den 1990; Fernandes 1991; Chua 1992]. These inequalities are indeed closely
related to the Sobolev inequalities

(P1) ‖ f − fB,µ‖Lq
w(B) ≤ A(B)‖∇ f ‖L p

v (B)

on a ball B ⊂ Rn , where fB,µ =
∫

B f (x)dµ/µ(B) and in most cases µ = 1 or
µ= w, and

A(B)= C |B|1/nw(B)1/qv(B)−1/p.

There are many studies of such inequalities, for example, [Chanillo and Whee-
den 1985; Sawyer and Wheeden 1992; Chiarenza and Frasca 1985], and they have
been extended to domains other than cubes or balls, for example, in [Kufner 1985;
Bojarski 1988; Iwaniec and Nolder 1985; Chua 1993; Hajłasz and Koskela 1998;
Buckley and Koskela 1995]. Estimates of sharp constants have also been made
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in [Chua and Wheeden 2000; 2006; Acosta and Durán 2004] on convex domains.
They have also been used to deduce Sobolev interpolation inequalities of the form

‖∇
i f ‖Lq

w(Rn)
≤ C‖ f ‖αLr

v0
(Rn)‖∇

k f ‖1−α
L p
v (Rn)

,(P2)

‖∇
i f ‖Lq

w(�)
≤ C(C1‖ f ‖Lr

v0
(�))

α
(
C1ε
−1
0 ‖ f ‖Lr

v0
(�)+C2‖∇

k f ‖L p
v (�)

)1−α(P3)

for 0≤ i ≤ k−1 and 0<α< 1 by Caffarelli, Kohn and Nirenberg [1984], Gutiérrez
and Wheeden [1991], and Chua [1994]. The inequality (P2) was also obtained by
Brown and Hinton [1988; 1990] for some domains � in Rn . Moreover, the author
[Chua 1992; 2006] discussed (P2) and (P3) on (ε,∞) domains (as introduced by
Jones [1981]). Of course one cannot replace Rn in (P2) by bounded domains �; in
that case (P3) seems to be a natural substitute of (P2). Indeed, Brown and Hinton
discussed mostly the weighted interpolation inequalities in sum form, namely,

(1-1) ‖∇ i f ‖Lq
w(�)
≤ C1ε

−α
‖ f ‖Lr

v0
(�)+C2ε

1−α
‖∇

k f ‖L p
v (�)

for all ε ∈ (0, ε0),

where 0<α < 1. They were obtained from a basic Sobolev integral representation
formula (in Rn). It is easy to see that (P2) or (P3) is indeed equivalent to (1-1) with
ε0 =∞ or ε0 <∞ respectively; see Remark 1.8(4) below.

It is well known that weighted Sobolev inequalities on cubes/balls imply that the
inequalities will also hold on John domains [Chua 1993; Chua and Wheeden 2008;
Hajłasz and Koskela 1998] under standard balance conditions on the weights; see
also Theorem 2.11. However, even though it is well known that Sobolev inter-
polation (weighted or unweighted) inequalities hold for cubes, these inequalities
have not been well studied on general domains. Indeed, it was only made known
in [Chua 1995] that such inequalities remain true for Lipschitz domains when the
weights involved satisfy some standard balance conditions, as they were shown to
be special cases of a Boman-type domain introduced there.

In this paper, we will first define a generalization of John domains that clearly
contains John domains. Surprisingly, it turns out that these generalized domains are
equivalent to the domains introduced in [Chua 1995, Definition 1.2], and hence it is
clear that the weighted Sobolev inequalities obtained in [Chua 1995] also hold on
generalized John domains. Our generalized John domains include John domains
and hence also Lipschitz domains; see Definition 1.2. Moreover, we will relax
the standard doubling condition to just δ-doubling (see Definition 1.4). Note that
power-type weights d(·, �c)a for a≥0 will induce a δ-doubling measure on� (but
we do not know whether it is doubling unless � is Lipschitz). We then extend our
ideas to generalized John domains in product spaces. Meanwhile, as an application,
we will discuss a Sobolev interpolation inequality that is an extension of the one
obtained by Caffarelli, Kohn and Nirenberg [1984] and Lin [1986].
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In what follows, 〈H, d〉 will always be a metric space. For any x ∈ H and r > 0,
recall that the metric balls are of the form B(x, r) = {y ∈ H : d(x, y) < r} and
call B(x, r) the ball with center x and radius r . If B = B(x, r) is a ball and c
is a positive constant, we often use cB to denote B(x, cr). We usually use r(B)
and xB to denote the radius and center of a ball B. We say � ⊂ H satisfies the
nonempty annuli property if (� ∩ B(x, r)) \ B(x, r ′) 6= ∅ for all 0 < r ′ < r and
x ∈ � whenever � is not a subset of B(x, r ′). The domains considered in this
paper will always satisfy the nonempty annuli property. We say a family F of balls
has bounded intercepts with bound K if each fixed ball in F intersects at most K
balls in F. Thus, if F consists of disjoint balls, then it has bounded intercepts with
bound 1. If F has bounded intercepts with bound K , then F=

⋃K
i=1 Fi such that

balls in each Fi are pairwise disjoint.
For E, F ⊂ H , we define

d(E, F)= inf
z1∈E
z2∈F

d(z1, z2).

If x ∈ H, F ⊂ H , we define d(x, F) = d({x}, F). For a fixed � ⊂ H (here
� is usually open) and when there is no danger of confusion, we will also write
d(x) = d(x, �c) and d(E) = d(E, �c) for x ∈ � and E ⊂ �. We also write
diam(�)= sup{d(x, y) : x, y ∈�}.

Let σ, N > 1. Recall that a Boman domain � in a metric space 〈H, d〉 has a
covering W of balls such that

(1) σW = {σ B}B∈W has bounded intercepts and σ B ⊂�;

(2) there exists a central ball B∗ ∈ W such that for any other ball B ∈ W , there
exists a Boman chain connecting B to B∗, that is, a finite chain of balls
{B0 = B, B1, . . . , BK = B∗} ⊂W such that, for all i ,
• Bi ∩ Bi+1 contains a ball B ′i such that Bi ∪ Bi+1 ⊂ N0 B ′i for some N0 > 1

and
• B ⊂ N Bi .

We will write�∈Fd(σ, N ), and sometimes we just write F(σ, N )when the choice
of the metric is clear. We say W is a Boman cover of� and define r(�)=r(B∗). To
reduce the number of constants involved, we will assume that N0= N and that σ B
for any B ∈W intersects at most N balls in the family σW ={σ B}B∈W . Among the
many examples of Boman domains in Rn are bounded Lipschitz domains, bounded
(ε,∞) domains, and John domains; see [Bojarski 1988; Iwaniec and Nolder 1985;
Chua 1992; 1995].

Now, let us define John domains in a metric space.

Definition 1.1. Let�⊂ H and 0< c≤1 (here c is usually<1). We write�∈ J (c)
if there exists a “center” x ′ ∈� such that for all x ∈� with x 6= x ′, there exists a
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map γ : [0, l] →� such that γ(0)= x and γ(l)= x ′ and such that

(1-2) d(γ(t1), γ(t2))≤ |t2− t1| and d(γ(t))= d(γ(t),�c) > ct

for all t1, t2, t ∈ [0, l].
Clearly � is always open connected. We will usually say � is a John domain

or a J (c) domain. Though our definition may look different from the usual one
[Martio and Sarvas 1979], it is essentially the same; see also [Acosta et al. 2006].

Under the assumption of the existence of a doubling measure, it is easy to see that
a John domain (using a Whitney-type decomposition) is a Boman domain such that
each Boman chain of balls {B0, B1, . . . , BK = B∗} can be chosen such that r(Bi )≥

Cci
0r(B0) for some fixed c0>1 for all i . The converse is not obvious at all. It wasn’t

until 1995 that it was shown — by Buckley, Koskela and Lu [1996] — that a Boman
domain is indeed a John domain when the domain satisfies a geodesic condition.
We say that � ⊂ H satisfies the geodesic condition if, for any z ∈ B(x, r) ⊂ �,
there exists a γ : [0, d(x, z)] → B(x, r) such that

d(γ(t1), γ(t2))= |t1− t2| for all t1, t2 ∈ [0, d(x, z)].

Clearly, the metric balls that satisfy the geodesic condition are J (1) domains. In
most cases, domains considered in this paper will satisfy the geodesic condition.

We will now define a generalization of John domains.

Definition 1.2. Let 0< c ≤ 1 and 0< M0 ≤∞. We write � ∈ J (c,M0) if, given
any z ∈ � and 0 < M < M0 with d(z, �c) < M , there exists γ : [0, l] → � such
that γ(0)= z and d(γ(l),�c)≥ M and such that

(1-3) d(γ(t1), γ(t2))≤ |t1− t2| and d(γ(t))= d(γ(t),�c) > ct

for t, t1, t2 ∈ [0, l]. Of course, one can choose l such that d(γ(l)) = M . We will
say � is a generalized John domain or J (c,M0) domain.

Our generalized John domains include John domains and the unbounded John
domains introduced in [Väisälä 1989]; see also [Hurri-Syrjänen 1992]. It also in-
cludes uniform domains introduced in [Martio and Sarvas 1979]. We do not require
a J (c,M0) domain to be connected; however, each of its connected component will
be in J (c,M0).

Examples (unbounded generalized John domains in R2). (1) Let xk = (k, 0)∈R2

for k ∈Z. Then�N =
⋃

k∈Z,|k|<N B(xk, 1+2−|k|−1)∈ J (1, 1) for 1≤ N ≤∞,
�N ∈ J (cN ) for any positive number N , and cN → 0 as N →∞.

(2) Let r > 0 and let � be a convex domain in the Euclidean ball B(0, r). Then

S = {(x1, x2) ∈ R2
\� : |x1|< 3r} ∈ J (1, r).
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See Proposition 2.24 for more examples.

Definition 1.3. Suppose � is an open subset of H and that 0 < δ < 1. A ball
B(x, r) will be called a δ-ball if x ∈ � and r ≤ δd(x). It is easy to see that then
d(B) = d(B, �c) ≥ (1− δ)r . If B1 and B2 are intersecting δ-balls, then (by the
triangle inequality)

(1-4) d(B1)≤ (1+ 2/(1− δ))d(B2)

and vice versa.

The concept of δ-ball has been introduced before; see for example [Sawyer and
Wheeden 2006]. Balls in a Boman covering of a domain � ∈ F(σ, N ) are clearly
δ-balls with 1/σ ≤ δ < 1.

We next define δ-doubling and doubling on � (usually open).

Definition 1.4. Let � ⊂ H . We say µ is a doubling measure on � if there exists
a doubling constant Dµ such that

µ(2k B)≤ (Dµ)
kµ(B) for all k ∈ N

for any ball with center in � such that r(B) ≤ diam(�). If the above is true for
all balls in H , we will just say µ is doubling. Moreover, if 0 < δ < 1 and the
above is true only for δ-balls B in �, then we will say µ is δ-doubling on �. Note
that if 0 < δ1 < δ2 < 1, then µ is δ1-doubling if and only if it is δ2-doubling.
Clearly, if µ is δ-doubling on � then so is µ|�, where µ|�(E) = µ(E ∩�). It is
obvious that a doubling measure on � is always δ-doubling on �. Conversely, a
δ-doubling measure on a John domain is also doubling on � since any ball with
center in � with radius less than diam(�) must contain a δ-ball of comparable
size; see [Chua and Wheeden 2008, Proposition 2.2] or [Chua and Wheeden 2009]
for details. Furthermore, if �⊂ H1× H2, where 〈H1, d1〉 and 〈H2, d2〉 are metric
spaces, we say that µ is a product δ-doubling measure on � in H1× H2 if

µ(2k B1× 2k B2))≤ (Dµ)
kµ(B1× B2) for all k ∈ N

for any product of balls B1 × B2 ⊂ H1 × H2 (that is, Bi is a metric ball in Hi

for i=1, 2) such that B1/δ×B2/δ⊂�. We define product doubling on� similarly.

If � satisfies the nonempty annuli property, then δ-doubling or doubling on �
will imply reverse doubling (of the same type on �); see Proposition 2.8. If µ is
doubling on H and �0 ⊂�

c, it is easy to see that any weight d(x, �0)
α will give

rise to a δ-doubling measure µα(E) =
∫

E d(x, �0)
αdµ(x) on � for any α ≥ 0.

It is clear that if µi is δ-doubling on �i ⊂ Hi for i = 1, 2, then µ1 ×µ2 will be
product δ-doubling on �1×�2 in H1× H2.

Most of the weights or measures studied in the previous papers were assumed
to be at least doubling (on the whole space). In this paper we will relax these
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assumptions and consider merely δ-doubling measures on the domain involved.
With the help of metrics dλ (see Definition 1.9), we also manage to generalize our
idea to study Sobolev interpolation inequalities on product spaces.

In what follows, C denotes various positive constants, which may differ even in a
same string of estimates. We will use C(α, β, . . . ) instead of C to emphasize when
the constant depends only on α, β, . . . . Also, p′ = p/(p− 1) if 1 < p <∞ and
p′=∞ if p=1. Next, for any open set�⊂Rn , we let Ck,1

loc (�) be the collection of
all functions on � whose derivatives of degree ≤ k exist and are locally Lipschitz
continuous. If f ∈ C0,1

loc (�) and � ⊂ Rn
× Rm , then for any (x, y) ∈ Rn

× Rm

such that (x, y) ∈�, we denote by ∇x f (x, y) and ∇y f (x, y) the partial gradients
of f containing the x- and y-derivatives, respectively. If f ∈ C1,1

loc (�), we denote
by ∇2

x f (x, y) the vector of all second order x-derivatives and by ∇xy f (x, y) the
vector of all y-derivatives of the x-derivatives of f .

If w is a measure on �⊂ H , we define for 1≤ p <∞

‖ f ‖L p
w(�)
=

(∫
�

| f |pdw
)1/p

and ‖ f ‖L∞w (�) = esssup
x∈�
| f (x)|.

By a weight w, we always mean a nonnegative measurable function that is finite
almost everywhere. We will also denote the measure arising from w by w, and
sometimes we write dw instead of w(x)dx .

We now extend the Boman-type domain introduced in [Chua 1995] to metric
spaces.

Definition 1.5. Let 1< σ, N <∞ and 0< ε0 ≤∞. Let � be a subset in a metric
space 〈H, d〉. By �∈F′d(σ, N , ε0), we mean that given any 0<ε< ε0, there exist
{� j } ⊂ Fd(σ, N ) such that ε ≤ r(� j )≤ Nε for all j , and χ� ≤

∑
χ� j ≤ Nχ�.

When there is no danger of confusion, we will write F′(σ, N , ε0) instead of
F′d(σ, N , ε0). We will show that these domains are just generalized John domains
when the domain satisfies the geodesic condition; see Proposition 2.21. Our first
theorem, extends [Chua 1995, Theorems 1.3 and 1.4] to the case of δ-doubling
measures on the above domains in metric spaces.

Theorem 1.6. Let� be a subset in a metric space 〈H, d〉. Let A′, A0>0, α, β ∈R

and σ, N > 1. Let 0 < ε0 ≤ ∞, � ∈ F′(σ, N , ε0) and 1 ≤ p, r ≤ q <∞. Let
δ = 1/σ and 1 ≤ τ ≤ σ . Let v, v0, w,µ be measures such that w is δ-doubling
on � and dv0 = ṽ0dµ. Let

(1-5) w(B)1/q

µ(B)
‖ṽ
−1/r
0 ‖Lr ′

µ (B)
≤ A0r(B)−β

for all δ-balls B with r(B) < N 2ε0.
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(a) If f and g are measurable functions on � for α ≥ 0, such that

(1-6) ‖ f − fB,µ‖Lq
w(B) ≤ A′r(B)α‖g‖L p

v (τ B)

for all δ-balls B with r(B) < N 2ε0,

where fB,µ =
∫

B f dµ/µ(B), then

(1-7) ‖ f ‖Lq
w(�)
≤ C(N , Dw, q)

(
A0ε
−β
‖ f ‖Lr

v0
(�)+ A′εα‖g‖L p

v (�)

)
for all ε ∈ (0, ε0).

(b) Let k ∈N. Suppose H =Rn and d is a metric arising from a norm. Suppose µ
is also δ-doubling on�. For any f ∈Ck,1

loc (�), l ≤ k and δ-ball B, let P l(B) f
be the polynomial of degree ≤ l such that

∫
B Dγ( f − P l(B) f )dµ= 0 for all

|γ| ≤ l. If i ≤ k for i ∈ N∪ {0}, k− i +α ≥ 0,

w(B)1/q

µ(B)
‖ f − Pk(B) f ‖L1

µ(B) ≤ A′r(B)k+α‖∇k+1 f ‖L p
v (τ B),(1-8)

‖ f − Pk−i (B) f ‖Lq
w(B) ≤ A′r(B)k−i+α

‖∇
k−i+1 f ‖L p

v (τ B)(1-9)

for all δ-balls B with r(B) < N 2ε0 and all f ∈ Ck,1
loc (�), then

(1-10) ‖∇ i f ‖Lq
w(�)
≤ C(N , n, k, Dµ, Dw, q)

×
(

A0ε
−(β+i)

‖ f ‖Lr
v0
(�)+ A′εk−i+α

‖∇
k+1 f ‖L p

v (�)

)
for all ε ∈ (0, ε0) and all f ∈ Ck,1

loc (�).

As most applications involve the Sobolev inequality (P1), we will prove a useful
corollary of Theorem 1.6.

Corollary 1.7. Let � ⊂ Rn . Let α, β ∈ R, A′, A0, c1 > 0 and σ, N > 1. Let i
and k be nonnegative integers with i ≤ k. Let 0 < ε0 ≤∞, � ∈ F′(σ, N , ε0) and
1 ≤ p, r ≤ q <∞. Let δ = 1/σ . Let v, v0, w,µ be measures such that w,µ, v
are δ-doubling on � and dv0 = ṽ0dµ. For all δ-balls B with r(B) < N 2ε and all
f ∈ C0,1

loc (�), suppose

‖ f − fB,µ‖Lq
w(B) ≤ A′r(B)α‖∇ f ‖L p

v (B),(1-11)

1
µ(B)

‖ f − fB,µ‖L1
µ(B) ≤ c1

r(B)
v(B)1/p ‖∇ f ‖L p

v (B).(1-12)

If , for all δ-balls B with r(B) < N 2ε0 and k− i +α ≥ 0,

(1-13)
w(B)1/q

µ(B)
‖ṽ
−1/r
0 ‖Lr ′

µ (B)
≤ A0r(B)−β,

c1w(B)1/qv(B)−1/pr(B)≤ A′r(B)α,
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then, for all ε ∈ (0, ε0) and all f ∈ Ck,1
loc (�),

(1-14) ‖∇ i f ‖Lq
w(�)
≤ C(N , n, k, Dv, Dµ, Dw, p, q)

×
(

A0ε
−(β+i)

‖ f ‖Lr
v0
(�)+ A′εk−i+α

‖∇
k+1 f ‖L p

v (�)

)
.

Remark 1.8. (1) [Chua 1995, Theorems 1.3 and 1.4] are indeed special cases of
Theorem 1.6 with H = Rn , g = |∇ f | and w a doubling weight. It was further
assumed in [Chua 1995, Theorem 1.4], that µ= 1 and i = k.

(2) (1-8) and (1-9) seem to be arbitrary. However, they are usually true under
standard assumptions. For example, suppose

w(B)1/qv(B)−1/pr(B)≤ Cr(B)α,(1-15)

1
w(B)1/q

‖ f − fB,µ‖Lq
w(B) ≤

Cr(B)
v(B)1/p ‖∇ f ‖L p

v (B)(1-16)

for all f ∈ C0,1
loc (�) and δ-balls B. If v and w are δ-doubling (on �), then (1-8)

and (1-9) will hold with µ= w. To see this, first observe that

‖ f − fB,w‖Lq
w(B) ≤ ‖ f − fB,µ‖Lq

w(B)+‖ fB,µ− fB,w‖Lq
w(B) ≤ 2‖ f − fB,µ‖Lq

w(B).

Hence by Hölder’s inequality, we have

1
w(B)

‖ f − fB,w‖L1
w(B) ≤

Cr(B)
v(B)1/p ‖∇ f ‖L p

v (B).

We can now apply Proposition 2.15 with µ= w to obtain

(1-17) ‖ f − fB,w‖L p
v (B) ≤ Cr(B)‖∇ f ‖L p

v (B)

for all f ∈ C0,1
loc (�) and δ-balls B. Taking µ = w and letting Pk(B) f be as in

Theorem 1.6, we have by iterations of (1-17)

‖∇( f − Pk(B) f )‖L p
v (B) ≤ Cr(B)k‖∇k+1 f ‖L p

v (B).

Hence,

1
w(B)

‖ f − Pk(B) f ‖L1
w(B) ≤

Cr(B)
v(B)1/p ‖∇( f − Pk(B) f )‖L p

v (B)

≤
Cr(B)k+1

v(B)1/p ‖∇
k+1 f ‖L p

v (B).

The inequality (1-8) is now clear with µ = w and τ = 1 by (1-15). Finally, (1-9)
is also clear by (1-15), (1-16) and (1-17).

(3) In the theorem and corollary above, we have chosen δ= 1/σ for convenience:
δ could be any constant such that 0 < δ < 1. Clearly the theorem above remains
true if δ > 1/σ . However, in case δ < 1/σ , we will need Corollary 2.12.
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(4) Interpolation inequalities of sum form such as (1-10), (1-14) or (1-7) are usu-
ally equivalent to interpolation inequalities of product form. For example, when
α, β > 0, inequality (1-7) is equivalent to

(1-18) ‖ f ‖Lq
w(�)
≤ C(A0‖ f ‖Lr

v0
(�))

α/(α+β)

× (A′‖g‖L p
v (�)
+ A0ε

−β−α
0 ‖ f ‖Lr

v0
(�))

β/(α+β).

Here is a short proof: Clearly, by the fact that arithmetic mean is larger than
geometric mean, we know the right hand side of (1-18) is less than

C
(
ε−β A0‖ f ‖Lr

v0
(�)+ ε

α(A′‖g‖L p
v (�)
+ A0ε

−β−α
0 ‖ f ‖Lr

v0
(�))

)
= C(ε−β + ε−β0 )A0‖ f ‖Lr

v0
(�)+CεαA′‖g‖L p

v (�)
.

Inequality (1-7) is now clear since ε ∈ (0, ε0) and β > 0. Conversely, if (1-7) holds,
its right side is less than

C
(
ε−β A0‖ f ‖Lr

v0
(�)+ ε

α(A′‖g‖L p
v (�)
+ A0ε

−β−α
0 ‖ f ‖Lr

v0
(�))

)
.

Inequality (1-18) is now clear by taking

ε =

( A0‖ f ‖Lr
v0
(�)

A′‖g‖L p
v (�)
+ A0ε

−β−α
0 ‖ f ‖Lr

v0
(�)

)1/(α+β)

,

which is possible since the above choice of ε is certainly less than ε0. Note that
if � ∈ F′(σ, N ,∞), then � ∈ F′(σ, N , ε0) for all ε0 > 0, and one could just let
ε0→∞ in (1-18) to obtain (as C is independent of ε0)

(1-19) ‖ f ‖Lq
w(�)
≤ C(A0‖ f ‖Lr

v0
(�))

α/(α+β)(A′‖g‖L p
v (�)

)β/(α+β).

Indeed, it can also be obtained directly from (1-7) if we assume (1-7) holds for
all ε ∈ (0,∞). Note that the equivalence of (1-7) and (1-19) is well known when
ε0 =∞; see for example [Brown and Hinton 1990] or [Brown and Hinton 1988].

(5) Let µ, v and w be δ-doubling on � ⊂ Rn . Let � ∈ F′(σ, N , ε0), 0 < a < 1
and 1≤ p ≤ q <∞. Suppose the normalized Sobolev inequality

(1-20) ‖ f − fB,µ‖Lq
w(B) ≤ Cw(B)1/qv(B)−1/pr(B)‖∇ f ‖L p

v (B)

holds for all δ-balls B with r(B) < N 2ε0 and f ∈ C0,1
loc (�).

If v ∈ Ap(µ) on all δ-balls in �, that is, dv = ṽdµ and

1
µ(B)

v(B)1/p
‖ṽ−1/p

‖
L p′
µ (B)
≤ C,

for all δ-balls B in �, then

(1-21) ‖∇
i f ‖Lq

w(�)
≤ C1

(
ε−a(k+1)

‖ f ‖L p
v (�)
+ ε(1−a)(k+1)

‖∇
k+1 f ‖L p

v (�)

)
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for all functions f ∈ C0,1
loc (�) and ε ∈ (0, ε0) if and only if

(1-22) w(B)1/qv(B)−1/p
≤ C2r(B)−(k+1)a+i for all δ-balls B with r(B) < N 2ε0.

To see that the above is true, first note that by (1-20) and (1-22), we have (1-11)
with α = 1− (k+ 1)a+ i . By Proposition 2.15, (1-20) implies

(1-23) ‖ f − fB,µ‖L p
v (B) ≤ Cr(B)‖∇ f ‖L p

v (B)

for all δ-balls B with r(B) < N 2ε0 and f ∈ C0,1
loc (�). By the fact that v ∈ Ap(µ),

(1-22) and (1-23), we have (1-12). Thus, in view of Corollary 1.7, we only need
to show why the condition (1-22) is necessary. To this end, for simplicity, let us
consider only metrics such that metric balls are cubes. For any δ-cube Q, there
exists a polynomial P of degree ≥ k+1 such that DαP = 0 on ∂Q for all |α| ≤ k.
Let f = χQ P . Then f ∈ Ck,1

loc (�). First by (1-21), we have

‖∇
i f ‖Lq

w(�)
≤ C1‖ f ‖1−a

L p
v (�)

(ε−k−1
0 ‖ f ‖L p

v (�)
+‖∇

k+1 f ‖L p
v (�)

)a

≤ C1‖ f ‖1−a
L p
v (�)

(ε
−a(k+1)
0 ‖ f ‖aL p

v (�)
+‖∇

k+1 f ‖aL p
v (�)

).

Hence,

‖∇
i P‖Lq

w(Q) ≤ C1v(Q)(1−a)/p
‖P‖1−a

L∞(Q)

×
(
ε
−a(k+1)
0 v(Q)a/p

‖P‖aL∞(Q)+ v(Q)
a/p
‖∇

k+1 P‖aL∞(Q)
)
.

However, by Proposition 2.6 (Markov’s inequality) and the fact that DαP = 0 on
∂Q for all |α| ≤ k, we have

‖∇
k+1 P‖L∞(Q) ≤ Cr(Q)−k−1

‖P‖L∞(Q),

Cr(Q)−i
‖P‖L∞(Q) ≤ ‖∇

i P‖L∞(Q).

But by (2-2), we have

‖∇
i P‖L∞(Q) ≤

C
w(Q)1/q

‖∇
i P‖Lq

w(Q).

Hence

w(Q)1/qr(Q)−i
≤ Cv(Q)(1−a)/p(ε−a(k+1)

0 v(Q)a/p
+ v(Q)a/pr(Q)−a(k+1)).

Inequality (1-22) is now clear since r(Q) < N 2ε0.

Let us now define a Boman-type domain in product spaces.

Definition 1.9. Let 〈H1, d1〉 and 〈H2, d2〉 be metric spaces. For each λ= (λ1, λ2)

with λ1, λ2 > 0, we will define a metric on H1× H2 by

dλ((x, y), (u, v))=max{d1(x, u)/λ1, d2(y, v)/λ2}
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for any (u, v), (x, y)∈ H1×H2. Clearly dλ defines a metric on H1×H2. Note that
metric balls (with respect to dλ) are just products of balls I × J ⊂ H1× H2, with
r(I )/r(J )=λ1/λ2. Let�⊂ H1×H2. We say�∈F′(σ, N , ε1, ε2, H1×H2) if�∈
F′dλ(σ, N , 1) for all λ= (λ1, λ2) such that 0<λi <εi for i =1, 2. In another words,
for such λ1 and λ2, there exists {� j } ⊂ Fdλ(σ, N ) such that χ� ≤

∑
χ� j ≤ Nχ�

and 1≤ rdλ(� j )≤ N .
In particular, when H1× H2 = Rn

×Rm , we will define

dλ((x, y), (u, v))=max{|xi − ui |/λ1, |y j − v j |/λ2 : 1≤ i ≤ n, 1≤ j ≤ m}

for any (u, v), (x, y) ∈ Rn
×Rm . Clearly, now dλ arises from a norm. Note that

now the metric balls (with respect to dλ) are just parallelepipeds I × J ⊂Rn
×Rm ,

(that is, I and J are cubes in Rn and Rm respectively) with r(I )/r(J )= λ1/λ2.

In this paper, we will work on these domains, which include products of gener-
alized John domains. Indeed, if �i ∈ F′(σ, N , εi ) and �i ⊂ Hi for i = 1, 2, then
�1 × �2 ∈ F′(σ, N ′,Cε1,Cε2, H1 × H2); see Propositions 2.21 and 2.23. Our
main theorem is about weighted interpolation inequalities on such domains.

Theorem 1.10. Let 〈H1, d1〉 and 〈H2, d2〉 be metric spaces. Let 0≤ ai , bi ≤ 1 such
that ai+bi ≤1 for i=0, 1, 2. Let A0, A1, A2>0. Let 1<σ, N<∞, 0<ε1, ε2≤∞

and�∈F′(σ, N , ε1, ε2, H1×H2). Suppose 1≤r0, r1, r2≤q<∞. Let δ=1/σ . Let
µ, v0, v1, v2 be measures, let dv0 = ṽ0dµ, let w be a product δ-doubling measure
on � in H1× H2, and let

A0(R)= w(R)1/qµ(R)−1
‖ṽ
−1/r0
0 ‖L

r ′0
µ (R).

(a) If f , g1 and g2 are measurable functions on � such that

‖ f − fR,µ‖Lq
w(R) ≤ A1(R)r(I )‖g1‖L

r1
v1 (R)
+ A2(R)r(J )‖g2‖L

r2
v2 (R)

,(1-24)

Ai (R)≤ Air(I )−ai r(J )−bi for i = 0, 1, 2,(1-25)

for all products R = I × J ⊂ H1 × H2 of balls I and J such that σ R ⊂ � with
r(I ) < N 2ε1 and r(J ) < N 2ε2, then

(1-26) ‖ f ‖Lq
w(�)
≤ C(q, Dw, N , σ )

×
(

A0λ
−a0
1 λ−b0

2 ‖ f ‖L
r0
v0 (�)
+ A1λ

1−a1
1 λ−b1

2 ‖g1‖L
r1
v1 (�)
+ A2λ

−a2
1 λ1−b2

2 ‖g2‖L
r2
v2 (�)

)
for all λi ∈ (0, εi ) for i = 1, 2.

(b) Suppose also that H1×H2 =Rn
×Rm , that µ is a product δ-doubling measure

on� in Rn
×Rm , and that dµ= dµ1×dµ2, where µ1 and µ2 are measures on Rn

and Rm , respectively. Assume

(1-27) ‖g− gI,µ1‖L1
µ1
(I ) ≤ c2r(I )‖∇g‖L1

µ1
(I ) where c2 ≥ 1
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for all cubes I ⊂ Rn and g ∈ C0,1(I ), that is, g is Lipschitz continuous on I . If the
inequalities (1-25),

‖ f − fR,µ‖Lq
w(R) ≤ right side,(1-28)

w(R)1/q

µ(R)
‖ f − fR,µ‖L1

µ(R) ≤ right side,(1-29)

where

right side= A1(R)r(I )‖∇x f ‖L
r1
v1 (R)
+ A2(R)r(J )‖∇y f ‖L

r2
v2 (R)

,

for all f ∈ C0,1
loc (�) and parallelepipeds R = I × J ⊂ Rn

×Rm such that σ R ⊂�,
with r(I ) < N 2ε1 and r(J ) < N 2ε2, then

(1-30) ‖∇x f ‖Lq
w(�)
≤ C(m, n, Dw, Dµ, N , q, σ )

× c2
(

A1λ
1−a1
1 λ−b1

2 ‖∇
2
x f ‖L

r1
v1 (�)

+ A2λ
−a2
1 λ1−b2

2 ‖∇xy f ‖L
r2
v2 (�)
+ A0λ

−1−a0
1 λ−b0

2 ‖ f ‖L
r0
v0 (�)

)
for all λi ∈ (0, εi ), i = 1, 2, and f ∈C1,1

loc (�). Of course, a similar inequality holds
for ‖∇y f ‖Lq

w(�)
, in which the roles of x and y are interchanged under similar

assumptions.

Remark 1.11. (1) If a0 = a2 = 0, then ‖ f ‖Lq
w(�)

is independent of ‖g1‖L
r1
v1 (�)

in (1-26).

(2) If b1 = b0 = 0, then ‖ f ‖Lq
w(�)

and ‖∇x f ‖Lq
w(�)

are independent of ‖g2‖L
r2
v2 (�)

and ‖∇xy f ‖L
r2
v2 (�)

, respectively (in (1-26) and (1-30)).

(3) Again, (1-26) or (1-30) are equivalent to interpolation inequalities of product
form when ai = a and bi = b for i = 0, 1, 2; for example, (1-26) is equivalent to

(1-31) ‖ f ‖Lq
w(�)
≤ C(A0‖ f ‖L

r0
v0 (�)

)1−a−b(A0ε
−1
1 ‖ f ‖L

r0
v0 (�)
+ A1‖g1‖L

r1
v1 (�)

)a
×
(

A0ε
−1
2 ‖ f ‖L

r0
v0 (�)
+ A2‖g2‖L

r2
v2 (�)

)b
.

To see this, note that by the fact that geometric mean is less than arithmetic mean,
the right side of the above is less than

C
(
λ−a

1 λ−b
2 A0‖ f ‖L

r0
v0 (�)
+ λ1−a

1 λ−b
2 (A0ε

−1
1 ‖ f ‖L

r0
v0 (�)
+ A1‖g1‖L

r1
v1 (�)

)

+ λ−a
1 λ1−b

2 (A0ε
−1
2 ‖ f ‖L

r0
v0 (�)
+ A2‖g2‖L

r2
v2 (�)

)
)

= C
(
(λ−a

1 λ−b
2 + λ

1−a
1 λ−b

2 ε−1
1 + λ

−a
1 λ1−b

2 ε−1
2 )A0‖ f ‖L

r0
v0 (�)

+ λ1−a
1 λ−b

2 A1‖g1‖L
r1
v1 (�)
+ λ−a

1 λ1−b
2 A2‖g2‖L

r2
v2 (�)

)
.
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It is now easy to see that (1-26) holds. Conversely, it suffices to see that (when
ai = a, bi = b for i = 0, 1, 2) the right side of (1-26) is less than the above. Then
(1-31) can then be obtained with

λi =

( A0‖ f ‖L
r0
v0 (�)

ε−1
i A0‖ f ‖L

r0
v0 (�)
+ Ai‖gi‖L

ri
vi (�)

)1/2

for i = 1, 2.

(4) If either ε1 =∞ or ε2 =∞, all we need to do is to let ε1→∞ or ε2→∞

in (1-31).

(5) If ai = a, bi = b, Ai = A0, vi = v and ri = r for i = 0, 1, 2, it is necessary
that

(1-32) w(R)1/qv(R)−1/r
≤ C A0r(I )−ar(J )−b

in order for (1-26) to hold for all f ∈ C0,1
loc (�) with g1 = |∇x f | and g2 = |∇y f |.

In fact, for any parallelepiped R = I × J ⊂ σ R ⊂ � such that r(I ) < N 2ε1 and
r(J ) < N 2ε2, by choosing an appropriate function similar to Remark 1.8(5), we
have by (1-31) (using the fact that w is δ-doubling),

w(R)1/q ≤ C(A0v(R)1/r )1−a−b(A0ε
−1
1 v(R)1/r

+C A0r(I )−1v(R)1/r)a
×
(

A0ε
−1
2 v(R)1/r

+C A0r(J )−1v(R)1/r)b

= C A0v(R)1/r
(1+ ε1r(I )−1

ε1

)a(1+ ε2r(J )−1

ε2

)b

≤ C A0v(R)1/rr(I )−ar(J )−b,

since ε2r(J )−1 and ε1r(I )−1
≥ 1/N 2. It is now clear that we have (1-32).

(6) Some necessary conditions for the Sobolev inequalities in product spaces have
been obtained in [Shi and Torchinsky 1993; Fefferman and Stein 1982; Lu and
Wheeden 1998; Chua 1999]; see also Proposition 2.16.

2. Preliminaries

First, let us state a useful lemma on polynomials. Its proof is a simple modification
of that of [Strömberg and Torchinsky 1989, Chapter 3, Lemma 7].

Lemma 2.1. Let � be a closed convex set in Rn . If p is a polynomial of degree k
such that

M = |p(x0)| =max
x∈�
|p(x)|, x0 ∈�,

then

(2-1) |p(x0+ t (x − x0)| ≥
M
2k for all 0≤ t ≤ 1/(2k)k and x ∈�.
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We will write �x0 = {x0+ t (x − x0) : 0≤ t ≤ 1/(2k)k, x ∈�}. Clearly, �x0 ⊂�.

Remark 2.2. If d is a metric arising from a norm in Rn and � = B(x1, r) with
x0 ∈ ∂B(x1, r), then

B(z0,
r

(2k)k
)⊂�x0 where z0 = x0+

r
(2k)k

(x1− x0).

Note that B(x1, r)⊂ B(z0, ((2(2k)k − 1)/(2k)k)r)⊂ 2(2k)k B(z0, r/(2k)k).

It is now easy to prove the following proposition. From now on, in Euclidean
space, we will only be interested in those metrics arising from norms.

Proposition 2.3. Let k ∈ N, p0 > 0 and a polynomial p of degree less than k. Let
B = B(x, r) be a norm ball in Rn . If µ(B) ≤ Cµµ(B ′) for any ball B ′ ⊂ B such
that B ⊂ 4(2k)k B ′, then

(2-2) ‖p‖L∞(B) ≤ 2k
( Cµ
µ(B)

)1/p0

‖p‖L
p0
µ (B)

.

Proof. It suffices to see that if |p(x0)| = ‖p‖L∞(B), x0 ∈ B, then there exists
B ′ = B(x1, r1)⊂ B ⊂ 2B(x1, r1) with x0 ∈ ∂B ′. By the previous remark, we know
it contains a ball B0 such that B ′ ⊂ 2(2k)k B0 with |p| ≥ |p(x0)|/2k on B0.

Remark 2.4. It follows that if µ is a δ-doubling measure on �, p is a polynomial
of degree ≤ k, and B is a δ-ball, then

(2-3) ‖p‖L∞(B) ≤
2kCµ
µ(B)

‖p‖L1
µ(B),

where Cµ is the constant in the previous proposition. Clearly, Cµ depends only on
the doubling constant Dµ and k.

Also, we have the following simple property about polynomials.

Lemma 2.5 [Chua 1992, Theorem 2.2]. Let γ > 0. Let B be a metric ball in
Euclidean space with the metric arising from a norm and let E be a (Lebesgue)
measurable set in B with | E |> γ | B |. If p is a polynomial of degree ≤ k, then

‖ p ‖L∞(E)≥ C ‖ p ‖L∞(B),

where C depends only on γ, k and the choice of norm. Moreover, if we consider
only metric of the form dλ as in Definition 1.9, then indeed C is also independent
of λ= (λ1, λ2).

Note that though [Chua 1992, Theorem 2.2] is only proved for cubes, it is easy
to see that the proof also works for norm balls. Moreover, if we consider only
metric of the form dλ as in Definition 1.9, then indeed C is also independent of
λ = (λ1, λ2) as there is a simple one-to-one linear transformation between their
respective unit norm balls with center at the origin.
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Now, let us state Markov’s inequality; see for example [Bos and Milman 1993,
Theorem 1.1] and [Bos and Milman 1995].

Proposition 2.6. Let p be any polynomial in Rn of degree less than k. Then

‖Dα p‖L∞(Q) ≤ k2|α|r(Q)−|α|‖p‖L∞(Q) for all cubes Q in Rn .

Our next theorem concerns the projection of functions into polynomials and is
just an extension of [Chua 2005, Proposition 2.4] to δ-doubling measure.

Proposition 2.7. Let d be a metric arising from a norm on Rn . Let 0< δ < 1. For
any k ∈ N, δ-ball B ⊂ � ⊂ Rn and δ-doubling measure µ on �, there exists a
projection πµk (B) : L

1
µ(B)→Pk−1 (space of polynomials of degree < k) such that

‖π
µ
k (B) f ‖L∞(B) ≤

C(k, n, Dµ)

µ(B)
‖ f ‖L1

µ(B).

Proof. First note that Pk−1 is a finite-dimensional vector space over Rn and that∫
B p1 p2 dµ defines an inner product on Pk−1. There is an orthonormal basis
{ϕ1, ϕ2, . . . , ϕm} ⊂ Pk−1 with respect to this inner product. Then ‖ϕi‖L2

µ(B) = 1
and

p(x)=
m∑

i=1

ϕi (x)
∫

B
p(y)ϕi (y)dµ if p ∈ Pk−1.

We now define

π
µ
k (B) f (x)=

m∑
i=1

ϕi (x)
∫

B
f (y)ϕi (y)dµ for f ∈ L1

µ(B).

It is clear that πµk (B) is a projection to Pk−1. Next, by (2-3) and Hölder’s inequality,
we have

‖ϕi‖L∞(B) ≤
2kCµ
µ(B)1/2

‖ϕi‖L2
µ(B) = 2kCµ/µ(B)1/2.

It is now clear that

‖π
µ
k (B) f ‖L∞(B) ≤

m∑
i=1

‖ϕi‖L∞(B)‖ϕi‖L∞(B)‖ f ‖L1
µ(B) ≤

m(2kCµ)2

µ(B)
‖ f ‖L1

µ(B). �

The next theorem is slightly different from [Wheeden 1993, page 269].

Proposition 2.8. Let 0 < δ < 1 and N ≥ 1. Let � ⊂ H such that � satisfies
the nonempty annuli property. If µ is a δ-doubling measure on �, then there exist
C1,C2, D1, D2 > 0 depending only on N and the doubling constant Dµ of µ, such
that

(2-4) C1(r(B)/r(B̃))D1 ≤ µ(B)/µ(B̃)≤ C2(r(B)/r(B̃))D2
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for all δ-balls B and B̃ such that B ⊂ N B̃. If µ is doubling on �, then (2-4)
will also hold for all balls B and B̃ with centers in � such that B ⊂ N B̃ and
r(B), r(B̃)≤ diam(�).

Proof. We will only prove the first part, that is, the case when µ is δ-doubling.
We use a simple modification of argument used in [Wheeden 1993]. Since the left
inequality follows immediately from standard argument, we will only show the
right one. We first show that there exists a β > 1 such that µ(B) ≥ βµ(B/4) for
all δ-balls B. Suppose x ∈ � and s > 0. Assume that B(x, 4s) is a δ-ball. By the
nonempty annuli property, there exists y ∈� such that 2s ≤ d(x, y) < 3s. Thus if
z ∈ B(y, s), we have

2s ≤ d(x, y)≤ d(x, z)+ d(z, y) < d(x, z)+ s.

Hence d(x, z) > s, and clearly B(y, s)∩ B(x, s)=∅. Also, for z ∈ B(y, s),

d(x, z)≤ d(x, y)+ d(z, y) < 3s+ s = 4s.

Hence B(y, s)⊂ B(x, 4s). Now, since µ is a measure, we know

(2-5) µ(B(x, 4s))≥ µ(B(y, s))+µ(B(x, s))

since the two balls are disjoint and inside B(x, 4s). Also, B(x, 4s) ⊂ B(y, 7s).
Using the δ-doubling property of µ on �, we have

µ(B(x, 4s))≤ µ(B(y, 7s))≤ (Dµ)
3µ(B(y, s))= (1/η)µ(B(y, s)).

Hence by (2-5), we have

µ(B(x, 4s))≥ ηµ(B(x, 4s))+µ(B(x, s)).

Thus
µ(B(x, 4s))≥ (1− η)−1µ(B(x, s))= βµ(B(x, s)).

It is now easy to see that there exists D2 > 0 such that

µ(B(x, r))/µ(B(x, r̃))≤ C(r/r̃)D2 for r ≤ r̃ and B(x, r̃) a δ-ball,

where C is an absolute constant. Suppose now B = B(x, r) ⊂ N B̃ = B(y, Nr̃)
and that B and B̃ are both δ-balls. Then B(y, (N + 1)r̃)⊃ B(x, r̃) and

µ(B(y, r̃))/µ(B(x, r))≥ C(N , Dµ)µ(B(x, r̃))/µ(B(x, r))≥ C2(r̃/r)D2 .

The first part of the proposition is now clear. �

Now, let us define the Hardy–Littlewood maximal function with respect to a
doubling measure w on a given set �.
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Definition 2.9. Let �⊂ H and let f be a function on �. We define

M�
w f (x)= sup 1

w(B)

∫
B∩�
| f |dw for x ∈�,

where the supremum is taken over all balls B with center x .

By a proof similar to the one used for the usual Hardy–Littlewood maximal
function and the Vitali type covering lemma, it can be shown when w is doubling
on � that

w{x ∈� : M�
w f (x) > t} ≤ (C(Dw)/t)‖ f ‖L1

w(�)
for all t > 0.

On the other hand, it is obvious that ‖M�
w f ‖L∞(�) ≤ ‖ f ‖L∞(�). By a standard

interpolation argument, we see that

‖M�
w f ‖L p

w(�)
≤ C(Dw, p)‖ f ‖L p

w(�)
if 1< p <∞.

The next lemma is similar to [Chua 1993, Lemma 2.5] and is an extension of
[Iwaniec and Nolder 1985, Lemma 4] and [Bojarski 1988, Lemma 4.2].

Lemma 2.10. Let �⊂ H , and let w be a doubling measure on �. Let {Bα}α∈I be
an arbitrary family of balls with center in � and with radius less than diam(�). If
{aα}α∈I is a family of nonnegative real numbers, then for 1 ≤ p <∞ and N ≥ 1,
we have ∥∥∥∑

α

aαχN Bα

∥∥∥
L p
w(�)
≤ C(Dw, p, N )

∥∥∥∑
α

aαχBα

∥∥∥
L p
w(�)

.

Sketch of the proof. We follow approach in [Chua 1993] (which in turn follows
the approach in [Iwaniec and Nolder 1985]); however, in the case 1< p <∞, we
now make use of M�

w instead of the usual weighted Hardy–Littlewood maximal
functions. The case p = 1 follows immediately from the fact that w is doubling
on �; hence w(N Bα)≤ C(N , Dw)w(Bα) since Bα are balls with center in � and
with radius less than diam(�). �

Retracing the proof of [Chua 1993, Theorem 1.5] using Lemma 2.10, inequality
(2-3) and Lemma 2.5, we find that the following is true since δ-doubling measures
on a John domain are also doubling on the domain [Chua and Wheeden 2008,
Proposition 2.2]; see also [Chua and Wheeden 2008, Theorem 2.9].

Theorem 2.11. Let σ, N > 1, 1 ≤ q < ∞, δ = 1/σ and k ∈ N. Let � ⊂ H.
Let � ∈F(σ, N ), and let W be a corresponding Boman cover with center ball B∗.
Let f be a function on �, and let w be a δ-doubling measure on � with doubling
constant Dw. If there is a constant a( f, B) associated to any B ∈W , then

(2-6) ‖ f − a( f, B∗)‖q
Lq
w(�)
≤ C(q, Dw, N )

∑
B∈W

‖ f − a( f, B)‖q
Lq
w(B)

.
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In case the metric space is Rn with any metric d arising from a norm and if there
is a polynomial P( f, B) of degree ≤ k associated to any B ∈W , then

(2-7) ‖ f − P( f, B∗)‖q
Lq
w(�)
≤ C(n, k, q, Dw, N , d)

∑
B∈W

‖ f − P( f, B)‖q
Lq
w(B)

.

If the metric d is of the form dλ as in Definition 1.9, then, just as in Lemma 2.5, the
constant above is independent of λ= (λ1, λ2).

Corollary 2.12. Let N , τ > 1 and 0<δ< 1. Let�⊂ H , and letw be a δ-doubling
measure on�. Suppose� satisfies the geodesic condition and the nonempty annuli
property. If f and g are measurable functions on � such that

‖ f − fB,µ‖Lq
w(B) ≤ A(B)‖g‖L p

v (τ B)(2-8)

for all δ-balls B with τ B ⊂� and r(B) < N 2ε0,

where A(B̃)≤ ĀA(B) for all δ-balls B and B̃ with B̃ ⊂ B, then

‖ f − fB,µ‖Lq
w(B) ≤ C(τ, q, Dw) ĀA(B)‖g‖L p

v (B)(2-9)

for all δ-balls B in � with r(B) < N 2ε0 .

Proof. Any ball B ⊂� is a J (1) domain. Hence B ∈F(τ, N0) with some constant
N0 = C(τ ) > 1; see Proposition 2.21 and the remark after the proof.

For each δ-ball B such that r(B) ≤ N 2ε0, let W be a Boman cover of B. Then
we have by Theorem 2.11 that

‖ f − fB,µ‖Lq
w(B) ≤ C(Dw, τ, q)

(∑
B̃∈W

‖ f − f B̃,µ‖
q
Lq
w(B̃)

)1/q

≤ C
(∑

B̃∈W

A(B̃)‖g‖q
L p
w(τ B̃)

)1/q
≤ C(Dw, τ, q) ĀA(B)‖g‖L p

w(B)

since q ≥ p and
∑
χτ B̃ ≤ N0χB . �

Next, a consequence of [Franchi et al. 2003, Theorems 1 and 2, Corollary 3]:

Proposition 2.13. Let 1 < q < ∞ and c0 ≥ 1. Let 0 < δ < 1. Let � ⊂ H ,
and let � satisfy the geodesic condition and the nonempty annuli property. Let f
be a measurable function defined on a δ-ball B0 and let ‘a’ be a nonnegative set
function on all balls B in B0. Let µ and w be δ-doubling measures on �. Suppose
that for any metric ball B in B0,

(2-10) 1
µ(B)

‖ f − fB,µ‖L1
µ(B) ≤ a(B)
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such that there exists 0< θ < 1 with

(2-11)
∑
B∈C

(a(B)qw(B))θ ≤ (c0a(B0)
qw(B0))

θ

for any collection C of disjoint balls B in B0. Then, for all t > 0,

(2-12) w{x ∈ B0 : | f (x)− fB0,µ|> t} ≤ C(Dw, θ)c0a(B0)
qw(B0)/tq .

If (2-10) and (2-11) hold with a(B) = b(B, f ) for all f ∈ F with ′b′, and F

satisfies [Franchi et al. 2003, (H8)—(H13) on pages 524–525], then we also have
the strong-type inequality

(2-13) ‖ f − fB0,µ‖Lq
w(B0)
≤ C(Dw, θ)c0b(B0, f ) for all f ∈ F.

Remark 2.14. (1) By Proposition 2.8, µ and w are reverse doubling (on δ-balls).

(2) Similar theorems of this form have been discussed in [Hajłasz and Koskela
1998; 2000; Franchi et al. 1998; Chua 2001]. A more extensive discussion
can be found in [Chua and Wheeden 2008].

Proposition 2.15. Let 1≤ p<∞ and A0 > 0. Let�⊂ H. Suppose� satisfies the
geodesic condition and the nonempty annuli property. Let 0 < δ < 1. Let f and g
be measurable functions on �. If µ and v are δ-doubling measures on � such that

1
µ(B)

‖ f − fB,µ‖L1
µ(B) ≤ c0

r(B)
v(B)1/p ‖g‖L p

v (B) for all δ-balls B,

then

‖ f − fB,µ‖L p
v (B) ≤ C(p, Dv)c0r(B)‖g‖L p

v (B) for all δ-balls B.(2-14)

Proof. First, since v is δ-doubling on �, by Proposition 2.8, there exist k > 1 and
a constant C , both depending on p and Dv, such that(

v(B)

v(B̃)

)1−1/k
≥ C(p, Dv)

(r(B)

r(B̃)

)p
for all δ-balls B, B̃ such that B ⊂ B̃.

Let a(B) = c0(r(B)/v(B)1/p)‖g‖L p
v (B). If θ = 1/k and q = kp, then for any

collection C of disjoint balls in the ball B̃, we have∑
B∈C

(a(B)qv(B))θ =
∑
B∈C

cp
0

r(B)p

v(B)1−1/k ‖g‖
p
L p
v (B)

≤ C(p, Dv)c
p
0

r(B̃)p

v(B̃)1−1/k

∑
B∈C

‖g‖p
L p
v (B)

≤ C(p, Dv)c
p
0 a(B̃)pv(B̃)1/k .
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Since 0< p < kp = q , it follows from Proposition 2.13 that

‖ f − fB0,µ‖L p
v (B0)
≤ C(p, Dv)c0r(B0)‖g‖L p

v (B). �

Next, we will prove some Sobolev inequalities on parallelepipeds.

Proposition 2.16. Suppose 1≤ r1, r2 < q <∞. Let 0< δ < 1 and σ = 1/δ. Let w
be a product δ-doubling measure on�⊂Rn

×Rm , and let v1 and v2 be nonnegative
weights on Rn+m . Let

Ai (R)= w(R)1/q‖v
−1/ri
i ‖

Lr ′i (R)
|R|−1 for i = 1, 2.

If Ai (R)r(I ) ≤ ĀAi (R̃)r( Ĩ ) for i = 1, 2 for all parallelepipeds R = I × J ⊂ R̃ =
Ĩ × J̃ ⊂ Rn

× Rm such that σ R̃ ⊂ � and r(I )/r( Ĩ ) = r(J )/r( J̃ ), then for all
parallelepipeds R = I × J ⊂ Rn

×Rm such that σ R ⊂� and f ∈ C0,1(R),

(2-15) ‖ f − fR‖Lq
w(R)

≤C(m, n, q, Dw) Ā
(

A1(R)r(I )‖∇x f ‖L
r1
v1 (R)
+ A2(R)r(J )‖∇y f ‖L

r2
v2 (R)

)
,

where fR =
∫

R f/|R|.
In particular, if 1≤ r1, r2, p<∞ such that 1/p≥ 1/ri−1/(m+n) for i = 1, 2,

then

(2-16) ‖ f − fR‖L p(R)

≤ C(m, n, p)
(
r(I )|R|1/p−1/r1‖∇x f ‖Lr1 (R)+ r(J )|R|1/p−1/r2‖∇y f ‖Lr2 (R)

)
holds for all f ∈ C0,1(R) and all parallelepipeds R = I × J ⊂ Rn

×Rm .

Proof. This result is probably quite well known. However, as we are unable to find
a suitable reference, we will give a quick sketch here.

If R = I × J ⊂ Rn
×Rm is a parallelepiped, then, noting that r(I ) and r(J ) are

equal to half of the edge lengths of the cubes I and J , respectively, we have

‖ f − fR‖L1(R) ≤
√

nr(I )‖∇x f ‖L1(R)+
√

mr(J )‖∇y f ‖L1(R);

see [Lu and Wheeden 1998, page 148] or [Chua and Wheeden 2006, Theorem 1.3].
Hence by Hölder’s inequality, we have

(2-17) 1
|R|
‖ f − fR‖L1(R) ≤ C(m, n)

(
r(I )A1(R)w(R)−1/q

‖∇x f ‖L
r1
v1 (R)

+ r(J )A2(R)w(R)−1/q
‖∇y f ‖L

r2
v2 (R)

)
.

For any fixed parallelepiped R0 = I0 × J0 ⊂ Rn
× Rm such that σ R0 ⊂ �, let

l(J0)/ l(I0) = η. Consider the metric dλ with λ = (1, η) as in Definition 1.9.
Let C be any collection of disjoint metric balls (with respect to dλ) in R0. Then
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r(J )/r(I )= r(J0)/r(I0)= η for any R = I × J ∈ C. Let r =max{r1, r2}. Check
that(∑

R∈C

w(R)−r/q(r(I )A1(R)‖∇x f ‖L
r1
v1 (R)
+r(J )A2(R)‖∇y f ‖L

r2
v2 (R)

)r
w(R)r/q

)1/r

≤

(∑
R

(r(I )A1(R))r‖∇x f ‖r
L

r1
v1 (R)

)1/r
+

(∑
R

(l(J )A2(R))‖∇y f ‖r
L

r2
v2 (R)

)1/r

≤ Ā
(
r(I0)A1(R0)‖∇x f ‖L

r1
v1 (R0)
+r(J )A2(R0)‖∇y f ‖L

r2
v2 (R0)

)
.

Let

b(R, f )= w(R)−1/q(r(I )A1(R)‖∇x f ‖L
r1
v1 (R)
+ r(J )A2(R)‖∇y f ‖L

r2
v2 (R)

)
,

and F = C0,1(R). It then follows from Proposition 2.13 that (2-15) holds since
b(R, f ) and C0,1(R) satisfy [Franchi et al. 2003, (H8)–(H13)]. The constants
involved are independent of the ratio r(I0)/r(J0), since w is product δ-doubling.
This proves the first part of the proposition.

Let q > 1 be such that 1/q = 1/r − 1/(m+ n), where r =max{r1, r2}. Clearly
q > r . Let w = v1 = v2 = 1. It is then easy to check that Ai (R)r(I )≤ Ai (R̃)r( Ĩ )
for i = 1, 2 and for all parallelepipeds R= I× J ⊂ R̃= Ĩ× J̃ ⊂Rn

×Rm such that
r(I )/r( Ĩ )= r(J )/r( J̃ ). Hölder’s inequality completes the proof, since q ≥ p. �

Remark 2.17. We are unsure whether the above can also be proved by using
[Franchi et al. 1998, Theorem 3.1] when w ∈ A∞; see [Chua 1999, Theorem 2.4].
This is because the former’s proof only mentions that the constant is independent
of the ball and the function f , while we need our constant to be independent of
the ratio η of the parallelepiped.

The following proposition gives a simple extension of facts from [Sawyer and
Wheeden 1992, page 843], which concern the construction of a crude notion of
dyadic cubes in a metric space.

Proposition 2.18. Let 〈H, d〉 be a metric space. For each k ∈ Z, there exists a
collection of balls {Bk

i = B(xk
i , 3k)}i in H such that

(1) for each k, H =
⋃

i Bk
i and every ball of radius 3k−1 is inside at least one Bk

i ;

(2) the balls B̂k
i = B(xk

i , 3k−1) are disjoint in i for each k, that is, for every k,
B̂k

j ∩ B̂k
i =∅ if i 6= j ; and

(3) if 0 < δ < 1 and there exists a δ-doubling measure on an open set � ⊂ H ,
then the subcollection of {Bk

i = B(xk
i , 3k)}i consisting of δ-balls in � has

bounded intercepts with bound depending only on the doubling constant of
the measure.
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Proof. For (1) and (2), see [Sawyer and Wheeden 1992, pages 843–844], where
these were proved for a homogeneous space (see also [Coifman and Weiss 1971]).
For a doubling measure, (3) is proved in [Sawyer and Wheeden 1992, page 844]
by using a standard volume argument; a similar argument works for a δ-doubling
measure. �

Lemma 2.19. Let � ⊂ H , 0 < δ < 1 and N > 1. Suppose there is a δ-doubling
measure µ on �. If F = {Bi } is a family of bounded (say K ) intersecting δ-balls
in � such that λ−1r(B j ) ≤ r(Bi ) ≤ λr(B j ) for all Bi , B j ∈ F whenever the in-
tersection N Bi ∩ N B j is nonempty. Then the family {N Bi }Bi∈F also has bounded
intercepts with bound C(λ, N , Dµ)K , where Dµ is the doubling constant of µ.

Proof. Fix a ball B0. First, N Bi ∩ N B0 6=∅ will imply Bi ⊂ C1 B0 = C(λ, N )B0.
However, by standard volume arguments, there can be at most C2 = C(λ, N , Dµ)

disjoint balls Bi with r(Bi )≥r(B0)/λ in C1 B0 sinceµ(C1 B0)≤C(λ, N , Dµ)µ(Bi )

for all Bi ∈ C1 B0 and Bi ∈ F. It is now easy to see that there are at most C2K
balls Bi from F containing in C1 B0. Thus, the family {N Bi }Bi∈F of balls must
have bounded intercepts. �

Proposition 2.18 yields a special Whitney-type decomposition of an open set
in a metric space. Coifman and Weiss [1971] obtained a similar statement on
homogeneous space (assuming µ is doubling instead of δ-doubling).

Proposition 2.20. Let� be an open set in a metric space 〈H, d〉 with a δ-doubling
measure µ on �. Let τ ≥ 1 and 0 < δ < 1/τ . Then � has a covering of δ-balls
W = {Bα} such that

(a) r(Bα)≤ δd(Bα)≤ 32r(Bα);

(b) for every τ ≥ 1 that satisfies τδ < 1, there is a constant K , depending only on
τ , δ and the doubling constant Dµ, such that each ball τ Bi intersects at most
K balls τ B j ; and

(c) the family of balls W̃ = {B/3 : B ∈W } is also a cover of �.

Proof. For each k ∈ Z, there is a set of balls of radius 3k as in Proposition 2.18.
Let W̃ be the collection of balls Bk

i = B(xk
i , 3k) such that

(2-18) 3k+1
≤ δd(Bk

i ) < 3k+3.

For any x ∈ �, there exists a k ′ ∈ Z such that 3k′
≤ δd(x) < 3k′+1. Let k =

k ′− 2. By Proposition 2.18, there exists i such that B(x, 3k−1)⊂ Bk
i = B(xk

i , 3k).
Moreover,

d(Bk
i )≤ d(x)≤ 3k′+1/δ = 3k+3/δ,

d(Bk
i )≥ d(xk

i )− 3k
≥ d(x)− d(x, xk

i )− 3k
≥ 3k+1/δ.
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Thus Bk
i ∈ W̃ and it is clear that it covers �.

Now let W = {Bα = 3B̃α : B̃α ∈ W̃ }. Clearly Bα are δ-balls and (a) and (c) hold.
Next, we will show (b). By Proposition 2.18, W̃k = {B̃ j ∈ W̃ : r(B j ) = 3k

}

has bounded intercepts for each k. It then follows from Lemma 2.19 that the set
τWk = {3τ B̃ j = τ B j : B̃ j ∈ W̃k} also has bounded intercepts. Finally, note that if
τ Bi ∩ τ B j 6=∅ and Bi , B j ∈W , then by (1-4) and (a), we have r(Bi )∼ r(B j ). It
is then easy to see that (b) holds. �

We can now show that any open set that satisfies the geodesic condition is a
Boman domain if and only if it is a John domain. Also, the notion of generalized
John domains is the same as the Boman-type domain introduced in Definition 1.5.

Proposition 2.21. Let 0 < δ < 1. Let � ⊂ H such that � satisfies the geodesic
condition. Suppose µ is a δ-doubling measure on �. If � ∈ J (c) for 0 < c < 1,
then there exist σ, N > 1 such that � ∈ F(σ, N ), where N depends only on c
and Dµ. Conversely, if � ∈ F(σ, N ), then � ∈ J (c) with c depending only on N
and Dµ. If � ∈ J (c,M0) for M0 > 0, then � ∈ F′(σ, N , ε0) with ε0 depending
only on M0. Finally, if � ∈F′(σ, N , ε0), then � ∈ J (c,M0), where M0 = 4ε0 and
c = C(N , Dµ).

Proof. The first part of the proof follows the proof in [Buckley et al. 1996]. First,
by Proposition 2.20, � has a Whitney-type decomposition W . For convenience,
we will take δ = 1/2 in Proposition 2.20, though of course we could also choose
δ < 1/2. By Definition 1.3, we know for B1, B2 ∈W that if B1 intersects B2, then
d(B1) ∼ d(B2) and hence r(B1) ∼ r(B2) by Proposition 2.20(a). If � ∈ J (c), it
is easy to see that this family W of δ-balls provides a Boman covering of � and
hence � ∈ F(σ, N ), with σ = 2 and N depending only on the doubling constant
Dµ and c. We will choose a ball that contains the center x ′, the center ball B∗.
Any Boman chain (connecting B to B∗) can be just taken to be an appropriate
subfamily of balls (in W ) along the curve connecting the center of B to x ′ ∈ B∗

(this curve exists by the c-John condition). By balls along the curve, we mean balls
B ∈W such that B/3 intersects the curve.

Next, suppose�∈F(σ, N ) and� satisfies the geodesic condition. Then, similar
to the proof in [Buckley et al. 1996], it suffices to find a number K such that if
{B0, B1, . . . , BN = B ′} is a Boman chain with N ≥ K , then there exists a B j

with r(B j ) ≥ 2r(B0). To find such a constant K , note that r(Bi ) ≥ r(B0)/N
because B0 ⊂ N Bi and {Bi } has bounded intercepts with bound depending on the
doubling constant. Suppose there are M0 disjoint balls Bi with r(Bi )< 2r(B0) and
B0 ⊂ N Bi . Then Bi ⊂ C1(N )B0. However, by δ-doubling,

µ(Bi )≥ C(N , Dµ)µ(B0) and µ(C1(N )B0)≤ C(N , Dµ)µ(B0).
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It is then clear that M0 ≤ C(N , Dµ), and hence K depends only on N and Dµ.
Thus, by the argument of [Buckley et al. 1996], we know that � ∈ J (c) with xB∗

the center of B∗ and c depending only on Dµ and N . It is now easy to see that if
� ∈F′(σ, N , ε0), then � ∈ J (c,M0) with M0 = 4ε0 and c depending only on Dµ

and N . Indeed, for any M < 4ε0 and d(z) < M with z ∈ �, we have z ∈ � j ⊂ �

with � j ∈ F(σ, N ) and M/4 ≤ r(� j ) ≤ N M/4. We know from the above that
� j ∈ J (c) (here c depends only on N and Dµ) with xB j the center of the center
ball B j of � j . Hence d(xB j , �

c
j )= d(B j , �

c
j )+r(B j )≥ 4r(B j )≥ M . Now, since

� j ∈ J (c) for all x ∈ � j , there exists γ : [0, l] → � j satisfying (1-2). It is then
clear that � ∈ J (c,M0) since d(γ(t),�c)≥ d(γ(t),�c

j ).
Conversely, suppose �∈ J (c,M0). For each M < M0, we will show that � can

be decomposed into union of bounded overlapping J (c/3) domains that contain
a center ball of size about M . Let us fix a set W of δ-balls with δ = 1/2 as in
Proposition 2.20. We will now consider two types of balls B∈W with d(B)>M/2.

Type 1: W1 = {B ∈ W : d(B) > 2M}. For any fixed ball B ∈ W1, we will find a
finite number of disjoint balls {Qi (B)}i∈I (B) with center in B and of radius M/3,
such that B ⊂

⋃
3Qi (B). Such family of balls exists since there is a δ-doubling

measure on �. Each of these 3Qi (B) is a δ-ball and the family {3Qi (B)} (for
each fixed B) has bounded intercepts by standard volume argument, since there
is a δ-doubling measure on �. Each of these balls 3Qi (B) is clearly a domain in
J (1) by the assumed geodesic condition.

Type 2: W2 = {B ∈ W : M/2 < d(B) ≤ 2M}. For any B ∈ W2 and 0 < τ ≤ c, let
�B =�B(τ ) be the set of y ∈� such that there exists γ : [0, l]→� with γ(0)= y
and γ(l)= xB (the center of B) and such that

(2-19) d(γ(t1), γ(t2))≤ |t1− t2| and d(γ(t)) > τ t for all t, t1, t2 ∈ [0, l].

Since d(xB)≤ d(B)+ r(B)≤ Cr(B), it is clear that �B(τ )⊂ C(τ )B. We will
now check that �B =�B(τ ) is a J (τ ) domain.

It is easy to see that �B is open since � satisfies the geodesic condition. Hence
it suffices to observe that if γ satisfies (2-19), then 0γ ⊂�B , where

0γ = {z : d(z, γ(t))≤ τ t, 0≤ t ≤ l}.

So suppose d(z, γ(t0))= t1≤ τ t0. Since � satisfies the geodesic condition, we can
define γz : [0, l − (t0− t1)] →� by

γz(t)=
{

a geodesic with γz(0)= z and γz(t1)= γ(t0) if t ∈ [0, t1],
γ(t + (t0− t1)) if t ∈ [t1, l − (t0− t1)].

It is easy to see that γz satisfies (2-19). We will now fix τ = c/3.
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We will now show for any x ∈ � that either x ∈ �B(c/3) for some B ∈ W2

or x ∈ B with d(B) > M/2. Note that if d(x) ≥ M and B ∈ W contains x , then
d(B)+2r(B) > d(x)≥ M and hence d(B) > M/2. Thus, we only need to look at
those x ∈� with d(x) <M . By definition, we know for any x ∈� with d(x) <M ,
there is a a curve γ : [0, l] → � connecting x to x ′ that satisfies condition (2-19)
with τ = c and d(x ′)= M . Let x ′ ∈ B with B ∈ W . Then B ∈ W2. It is clear that
x ∈�B(c/3) if x ′ = xB . If x ′ 6= xB , then, since � satisfies the geodesic condition,
x ′ can be connected to xB by a geodesic in the ball B. We can then extend γ from
[0, l] to [0, l + d(xB, x ′)] by attaching the geodesic on [l, l + d(xB, x ′)]. Recall
that cl < d(γ(l))= M and r(B)≤ d(B)/2, and hence for t ∈ [l, l+d(xB, x ′)], we
have

d(γ(t))≥ d(B)= 2
3 d(B)+ 1

3 d(B) > 1
3 M + 1

3 d(B)≥ c 1
3(l + 2r(B))≥ 1

3 ct

since d(xB, x ′) < r(B). Thus, x ∈�B(τ )=�B with τ = c/3. Hence � is a union
of domains in {�B : B ∈W2} and {3Qi (B) : i ∈ I (B), B ∈W1}.

It is clear that �B or 3Qi (B) has a center ball with radius more than C M and
less than C(c)M . Moreover, it follows from the first part that each of these domains
is in F(2, N ), with N depending only on c.

Finally, it can be checked that they have bounded overlaps. First, let us show
that F1 = {3Qi (B) : i ∈ IB, B ∈ W1} has bounded intercepts. We will first check
that F0={Qi (B) : i ∈ IB, B ∈W1} has bounded intercepts. Let us fix a ball Q0(B1)

in the family. Note that if Qi (B j ) intersects Q0(B1), then 3Q0(B1)⊃ Qi (B j ) and
3
2 B j will intersect 3

2 B1. But, by Proposition 2.20(b), there are at most C2=C(Dµ)

balls in {32 B j : B ∈ W1} that intersect 3
2 B1. Moreover, for each fixed B j ∈ W1,

a ball Q0(B1) intersects at most C3 = C(Dµ) balls from {Qk(B j ) : k ∈ I (B j )}

since they are disjoint balls in 3
2 B j (again by the standard volume argument). It

is now clear that Q0(B1) will intersect at most C2C3 = C(Dµ) balls in the family
F0 = {Qi (B) : i ∈ IB, B ∈ W1}. It then follows from Lemma 2.19 that F1 has
bounded intercepts (with bound K1 = C(Dµ)).

Next, note that �B ⊂ C4 B = C(c)B. Hence if �B1 intersects �B2 , then C4 B2

intersects C4 B1. Since the family W2 has bounded intercepts, by Lemma 2.19, the
family F2 = {C4 Bi : Bi ∈ W1} also has bounded intercepts. Thus, any fixed �B1

intersects at most K2 = C(Dµ, c) domains in {�Bi , Bi ∈W2}.
To complete the proof, we need to show that any �B1 intersects a bounded

number of sets 3Qi (B j ) and any 3Q0(B2) intersects at most a bounded number of
sets�Bi . We will only prove the first part. By Lemma 2.19, it suffices to show that
the family {B1} ∪F0 has bounded intercepts since r(B1) ∼ M and �B1 ⊂ C4 B1.
Since F0 is already known to have bounded intercepts, it suffices to show that B1

intersects at most a bounded number of balls from F0. But B1 intersects Bα in F0

provided Bα⊂C5 B1=C(Dµ)B1. Hence there can be at most C6=C(Dµ) disjoint
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balls from F0 in C5 B1 (again by the volume argument). Thus, B1 can intersect at
most K1C6 = C(Dµ) balls from F0. �

Remark 2.22. The above proof also shows that �∈ J (c) implies �∈F(σ, N ) for
any σ ≥ 2 if we choose δ = 1/σ . However, N will then depend also on σ .

We now show that products of generalized John domains are a special class of
generalized John domains.

Proposition 2.23. Let 〈Hi , di 〉 be metric spaces for i = 1, 2. Let σ, N > 1 and
0 < ε1, ε2 ≤∞. Let �i ⊂ Hi such that �i ∈ F′(σ, N , εi ) for i = 1, 2. If both �i

satisfy the geodesic condition, then �1×�2 ∈ F′(σ, N ′,Cε1,Cε2, H1× H2).

Proof. By the previous proposition, it suffices to show that if �i ∈ J (c, εi ) for
i = 1, 2, then for any metric dλ defined in Definition 1.9 with λ = (λ1, λ2) and
0<λi <εi , we have�1×�2∈ J (c, 1)with respect to dλ. So let (x1, x2)∈�1×�2.
Then since �i ∈ J (c, εi ), there exist γi : [0, li ] →�i for i = 1, 2 such that

di (γi (t), γi (s))≤ |t − s| and di (γi (t),�c
i ) > ct for t, s ∈ [0, li ]

and d(γi (li ),�
c
i ) ≥ λi for i = 1, 2. Without loss of generality, we may assume

l1/λ1 ≤ l2/λ2. Define

γ(t)=
{
(γ1(λ1t), γ2(λ2t)) if t ≤ l1/λ1,

(γ1(l1), γ2(λ2t)) if t ∈ [l1/λ1, l2/λ2].

It is now easy to see that

dλ(γ(t), γ(s))≤ |t − s| and dλ(γ(t), (�1×�2)
c) > ct for all t, s ∈ [0, l2/λ2].

Moreover, it is clear that dλ(γ(l2/λ2))≥ 1. �

Finally, let us show that if a point is removed from a generalized John domain,
then it is still a generalized John domain under an additional, mild assumption.

Proposition 2.24. Let z ∈�⊂ H and suppose�∈ J (c,M0), where 0< c< 1 and
0< M0 ≤∞. Suppose � satisfies the geodesic condition and the nonempty annuli
property. Suppose there exists a c0 satisfying 0< c0 < 1 and the mild property that

• for any two points x1, x2 ∈ B(z, d(z)/2) ⊂ � such that d(x1, z) ≤ d(x2, z),
there exists η : [0, l ′] → B(z, d(z)/2) such that d(η(t), z) is nondecreasing,
η(0)= x1, η(l ′)= x2, and

c0|t1− t2| ≤ d(η(t1), η(t2))≤ |t1− t2| for all t1, t2 ∈ [0, l ′].

Then � \ {z} ∈ J (cc0/3,M0/3).
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Proof. For convenience, let d(z)= inf{d(x, z) : x ∈�c
}=2ε. Suppose 0<M<M0.

Let us consider two cases.

Case (i): 2ε≥ 2M/3. For any x ∈�\{z}, if x ∈ B(z, ε), we need only connect x to
any point of the boundary of B(z, ε) using the assumed η. Note that the boundary of
B(z, ε) is nonempty by the geodesic condition and the nonempty annuli property.
Thus, we may assume x 6∈ B(z, ε) and we only need to consider the case d(x) <
M/3.

By definition, there exists γ : [0, l] → � such that γ(0) = x and d(γ(l)) = M ,
and

d(γ(t1), γ(t2))≤ |t1− t2| and d(γ(t)) > ct for all t, t1, t2 ∈ [0, l].

If γ[0, l] ∩ B(z, ε) = ∅, then d(γ(t), z) ≥ M/3 > cc0t/3 for all t ∈ [0, l], since
l ≤ M/c. Now suppose γ[0, l] ∩ B(z, ε) 6= ∅. Then there exists a t ′ ∈ [0, l] such
that d(γ(t ′), z) = ε ≥ M/3, and we may assume γ[0, t ′] ∩ B(z, ε) = ∅. It is then
clear that d(γ(t), z)≥ M/3> cc0t/3 for all t ∈ [0, t ′]. Note that d(γ(t ′))≥ M/3.

Case (ii): Now suppose 2ε < 2M/3. Again, let x ∈� \ {z} such that d(x) < M/3
or d(x, z) < M/3. In any case, d(x) < M . Hence, by definition, there exists
γ : [0, l] →� such that γ(0)= x and d(γ(l))= M , and

d(γ(t1), γ(t2))≤ |t1− t2| and d(γ(t)) > ct for all t, t1, t2 ∈ [0, l].

We will now consider two subcases.

Subcase (a): γ[0, l] ∩ B(z, ε)=∅. Here it is clear that d(γ(t), z) > ct/3 for all t .
Indeed,

d(γ(t), z)≥ d(γ(t))− d(z) > ct − 2ε ≥ ct/3 if t ≥ 3ε/c,

d(γ(t), z)≥ ε > ct/3 if t < 3ε/c.

Note that d(γ(l), z)≥ d(γ(l))− d(z)≥ M/3. This proves this subcase.

Subcase (b): γ[0, l] ∩ B(z, ε) 6=∅. Let

t0 = inf{t ∈ [0, l] : γ(t) ∈ B(z, ε)} and t ′0 = sup{t ∈ [0, l] : γ(t) ∈ B(z, ε)}.

Note that d(γ(t ′0), z) = ε as γ(l) 6∈ B(z, ε) because d(γ(l)) = M . By assumption,
there exists η : [0, l ′] →� with η(0)= γ(t0) and η(l ′)= γ(t ′0) such that

c0|t1− t2| ≤ d(η(t1), η(t2))≤ |t1− t2| for all t1, t2 ∈ [0, l ′]

and d(η(t), z) is nondecreasing. Note that t0+ l ′ ≤ t0+ (t ′0− t0)/c0 ≤ t ′0/c0 and

c0t ≤ d(η(t), η(0))≤ d(η(t), z)+ d(η(0), z)≤ 2d(η(t), z),

and hence d(η(t), z)≥ c0t/2.
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We define

γ̄ : [0, l̄] →�, t 7→


γ(t) if t ∈ [0, t0],
η(t − t0) if t ∈ [t0, t0+ l ′],
γ(t − l ′+ (t ′0− t0)) if t ∈ [t0+ l ′, l̄],

where l̄ = l + l ′− t ′0+ t0.
First, for t ∈[0, t0], similar to Subcase (a), it is easy to see that d(γ(t), z))>ct/3.
Next, consider t ∈ [t0, t0+ l ′]. Note the following.

• d(γ̄(t))≥ ε > cc0(t0+ l ′)/3≥ cc0t/3. This is because

t0+ l ′ ≤ t ′0/c0 <
d(γ(t ′0))

cc0
≤

d(γ(t ′0), z)+ d(z)
cc0

≤
3ε
cc0

.

• d(γ̄(t), z) > cc0t/3. If t0 = 0 this is because d(γ̄(t), z)= d(η(t), z)≥ c0t/2.
On the other hand, if t0 > 0, then

d(γ̄(t), z)≥ d(γ(t0), z)= ε > cc0(t + l ′)/3≥ cc0t/3.

Next, if t ∈ [t0+ l ′, l̄], then since c0l ′ ≤ (t ′0− t0) and t ≥ l ′, we have

d(γ̄(t))= d(γ(t−l ′+t ′0−t0))> c(t−l ′+t ′0−t0)≥ c(t−(1−c0)l ′)≥ cc0t ≥ cc0t/3.

If t ≥ 3ε/(cc0), then

d(γ̄(t), z)≥ d(γ̄(t)− d(z) > c(t − l + t ′0− t0)− 2ε ≥ cc0t − 2ε ≥ cc0t/3.

On the other hand, when t < 3ε/(cc0), it is clear that d(γ̄(t), z) ≥ ε > cc0t/3.
Finally, note that d(γ̄(l̄), z)≥ d(γ̄(l̄))− d(z)≥ M − 2ε > M/3. �

Remark 2.25. If � ∈ J (c,M0) for �⊂ Rn , it follows from Proposition 2.24 that
� \ {z} ∈ J (c′/3,M0/3) with c′ = c/C , where C > 1 is an absolute constant.

3. Proofs of the main results

Proof of Theorem 1.6. The proof of part (a) is just a simple modification of the
proofs of [Chua 1995, Theorems 1.3 and 1.4].

Given any ε ∈ (0, ε0), there exists a set {� j } ⊂ F(σ, N ) such that
⋃
� j = �,∑

χ� j ≤ N and ε ≤ r(� j ) ≤ Nε. For each � j , let Q j be the central ball in � j ,
and let W j be its corresponding Boman cover. Then by Theorem 2.11,

‖ f − fQ j ,µ‖Lq
w(� j )
≤ C(Dw, q, N )

(∑
B∈W j

‖ f − fB,µ‖
q
Lq
w(B)

)1/q

≤ C A′r(Q j )
α
(∑
‖g‖q

L p
v (τ B)

)1/q
(by (1-6), since α ≥ 0)

≤ C(Dw, q, N )A′r(Q j )
α
‖g‖L p

v (� j )
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since q ≥ p and
∑

B∈W j
χτ B ≤ Nχ� j . Hence, by the triangle inequality,

‖ f ‖Lq
w(� j )
≤ ‖ fQ j ,µ‖Lq

w(� j )
+‖ f − fQ j ,µ‖Lq

w(� j )

≤ ‖ fQ j ,µ‖Lq
w(� j )
+C(q, Dw, N )A′r(Q j )

α
‖g‖L p

v (� j )

≤
w(� j )

1/q

µ(Q j )

∫
Q j

| f |ṽ1/r
0 ṽ

−1/r
0 dµ+C A′r(� j )

α
‖g‖L p

v (� j )

≤ C(Dw, q)
w(Q j )

1/q

µ(Q j )
‖ṽ
−1/r
0 ‖Lr ′

µ (Q j )
‖ f ‖Lr

v0
(Q j )+C A′r(� j )

α
‖g‖L p

v (� j )

(by Hölder’s inequality and the fact that w is δ-doubling)

≤ C A0r(Q j )
−β
‖ f ‖Lr

v0
(� j )+C A′r(� j )

α
‖g‖L p

v (� j )
(by (1-5))

≤ C(N , Dw, q)(A0ε
−β
‖ f ‖Lr

v0
(� j )+C A′εα‖g‖L p

v (� j )
).

Hence by the fact that (
∑
|a j + b j |

q)1/q ≤ (
∑
|a j |

q)1/q + (
∑
|b j |

q)1/q ,

(∑
‖ f ‖q

Lq
w(� j )

)1/q
≤ C A0ε

−β
(∑
‖ f ‖qLr

v0
(� j )

)1/q
+C A′εα

(∑
‖g‖q

L p
v (� j )

)1/q
≤ C A0ε

−β
(∑
‖ f ‖rLr

v0
(� j )

)1/r
+C A′εα

(∑
‖g‖p

L p
v (� j )

)1/p
,

since r, p ≤ q . Thus

‖ f ‖Lq
w(�)
≤ C(N , Dw, q)(A0ε

−β
‖ f ‖Lr

v0
(�)+ A′εα‖g‖L p

v (�)
).

This completes part (a). For part (b), even though we use essentially the ideas of
[Chua 1995], this time the proof is more tricky because we do not assume µ = 1
and i = k. First by Proposition 2.6, the triangle inequality, and Proposition 2.7, we
have (like [Chua 1995])

‖∇
i Pk(Q j ) f ‖Lq

w(Q j )

≤ C(n, k)r(Q j )
−iw(Q j )

1/q
‖Pk(Q j ) f ‖L∞(Q j )

≤ Cr(Q j )
−iw(Q j )

1/q

× (‖π
µ
k+1(Q j ) f ‖L∞(Q j )+‖π

µ
k+1(Q j ) f − Pk(Q j ) f ‖L∞(Q j ))

= Cr(Q j )
−iw(Q j )

1/q

× (‖π
µ
k+1(Q j ) f ‖L∞(Q j )+‖π

µ
k+1(Q j )( f − Pk(Q j ) f )‖L∞(Q j ))

≤ C(n, k, Dµ)w(Q j )
1/qr(Q j )

−iµ(Q j )
−1

× (‖ f ‖L1
µ(Q j )+‖ f − Pk(Q j ) f ‖L1

µ(Q j ))
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≤ C
(
w(Q j )

1/qr(Q j )
−iµ(Q j )

−1
‖ṽ
−1/r
0 ‖Lr ′

µ (Q j )
‖ f ‖Lr

v0
(Q j )

+ A′r(Q j )
k−i+α

‖∇
k+1 f ‖L p

v (τQ j )

)
(by Hölder’s inequality and (1-8))

≤ C
(

A0r(Q j )
−i−β
‖ f ‖Lr

v0
(Q j )+ A′r(Q j )

k−i+α
‖∇

k+1 f ‖L p
v (� j )

)
by (1-5). Also, since w is δ-doubling and � j ⊂ N Q j , we have by the triangle
inequality, Lemma 2.5, (2-3) and Theorem 2.11 that

‖∇
i f ‖Lq

w(� j )
≤ ‖∇

i Pk(Q j ) f ‖Lq
w(� j )
+‖∇

i ( f − Pk(Q j ) f )‖Lq
w(� j )

≤ C(N , Dw, k, q, n)‖∇ i Pk(Q j ) f ‖Lq
w(Q j )
+‖∇

i ( f − Pk(Q j ) f )‖Lq
w(� j )

≤ C
(
‖∇

i Pk(Q j ) f ‖Lq
w(Q j )
+

(∑
B∈W j

‖∇
i ( f − Pk(B) f )‖q

Lq
w(B)

)1/q)
.

Hence by (1-9) and the penultimate calculation above, (recall that k− i+α≥ 0)

‖∇
i f ‖Lq

w(� j )
≤ C(n, k, Dw, Dµ, q, N )

× (A0r(Q j )
−β
‖ f ‖Lr

v0
(Q j )+ A′r(Q j )

k−i+α
‖∇

k+1 f ‖L p
v (� j )

)

≤ C A0ε
−β−i
‖ f ‖Lr

v0
(� j )+C A′εk−i+α

‖∇
k+1 f ‖L p

v (� j )
.

Thus, just as before, we have

‖∇
i f ‖Lq

w(�)
≤ C(n, k, Dw, Dµ, N , q)

×(A0ε
−β−i
‖ f ‖Lr

v0
(�)+ A′εk−i+α

‖∇
k+1 f ‖L p

v (�)
). �

Proof of Corollary 1.7. We will show that both (1-9) and (1-8) hold with τ = 1.
Let B be a δ-ball such that r(B) < N 2ε0. First note that (1-11) implies (2-14) with
g = |∇ f | by Proposition 2.15; hence we have

w(B)1/q

µ(B)
‖ f − Pk(B) f ‖L1

µ(B)

≤ c1
r(B)w(B)1/q

v(B)1/p ‖∇( f − Pk(B) f )‖L p
v (B) (by (1-12))

≤ C(Dv, p)c1
r(B)k+1w(B)1/q

v(B)1/p ‖∇
k+1 f ‖L p

v (B)

(by repeated application of (2-14))

≤ C(Dv, p)A′r(B)α+k
‖∇

k+1 f ‖L p
v (B), (by (1-13))
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and for any l ≤ k,

‖ f − P l(B) f ‖Lq
w(B)

≤ A′r(B)α‖∇( f − P l(B) f ‖L p
v (B) (by (1-11))

≤ C(Dv, p)A′r(B)α+l
‖∇

l+1 f ‖L p
v (B) (by repeated application of (2-14)).

The corollary is now a clear consequence of Theorem 1.6. �

Proof of Theorem 1.10. Given any λi ∈ (0, εi ) for i = 1, 2, there exist {� j } such
that

⋃
� j = � and � j ∈ Fdλ(σ, N ), where λ = (λ1, λ2), and also such that∑

χ� j
≤ Nχ� and 1 ≤ rdλ(� j ) ≤ N . For each fixed j , let W j be a Boman cover

of � j (with respect to dλ). Let R j = I j× J j be the central ball (with respect to dλ)
in � j . Then recall that λ1 ≤ r(I j ) ≤ Nλ1 and λ2 ≤ r(J j ) ≤ Nλ2. Let η = λ2/λ1.
Then r(Jα)/r(Iα) = η for all Rα = Iα × Jα ∈ W j . Recall that by Theorem 2.11
with d = dλ, we have

(3-1) ‖ f − fR j ,µ‖Lq
w(� j )

≤ C(N , q, Dw)
( ∑

Rα∈W j

‖ f − fRα,µ‖
q
Lq
w(Rα)

)1/q

≤ C
( ∑

Rα∈W j

(
A1(Rα)r(Iα)‖g1‖L

r1
v1 (Rα)

+ A2(Rα)r(Jα)‖g2‖L
r2
v2 (Rα)

)q)1/q

≤ C
( ∑

Rα∈W j

A1(Rα)r(Iα)‖g1‖
q
L

r1
v1 (Rα)

)1/q
+C

( ∑
Rα∈W j

A2(Rα)r(Jα)‖g2‖
q
L

r2
v2 (Rα)

)1/q

≤ C A1r(I j )
1−a1−b1η−b1

( ∑
Rα∈W j

‖g1‖
q
L

r1
v1 (Rα)

)1/q

+C A2r(I j )
1−a2−b2η1−b2

( ∑
Rα∈W j

‖g2‖
q
L

r2
v2 (Rα)

)1/q

≤ C(N , q, Dw)

×
(

A1r(I j )
1−a1r(J j )

−b1‖g1‖L
r1
v1 (� j )

+ A2r(I j )
−a2r(J j )

1−b2‖g2‖L
r2
v2 (� j )

)
.

Above, the second inequality follows from (1-24). The fourth follows from (1-25)
since Rα = Iα × Jα ⊂ N R j = N I j × N J j for all Rα ∈ W j and r(Jα)/r(Iα) =
r(J j )/r(I j )= η. The last follows since q ≥ r1, r2 and

∑
Rα∈W j

χRα ≤ Nχ� j . Also,
by Hölder’s inequality and the facts that w is product δ-doubling on � in H1×H2

and that A0(R j )= w(R j )
1/qµ(R)−1

‖ṽ
−1/r0
0 ‖L

r ′0
µ (R j )

, we have

‖ fR j ,µ‖Lq
w(� j )
≤
w(� j )

1/q

µ(R j )

∫
R j

| f |dµ

≤ C(Dw, q)A0(R j )‖ f ‖L
r0
v0 (� j )

≤ C A0r(I j )
−a0r(J j )

−b0‖ f ‖L
r0
v0 (� j )
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by (1-25). Hence by the triangle inequality, we have

‖ f ‖Lq
w(� j )
≤ C(Dw, q, N )

(
A0λ
−a0
1 λ−b0

2 ‖ f ‖L
r0
v0 (� j )

+ A1λ
1−a1
1 λ−b1

2 ‖g1‖L
r1
v1 (� j )

+ A2λ
−a2
1 λ1−b2

2 ‖g2‖L
r2
v2 (� j )

)
.

Next by the previous estimates and the fact that q ≥ r0, r1, r2, we have

‖ f ‖Lq
w(�)
≤

(∑
j

‖ f ‖q
Lq
v (� j )

)1/q

≤ C A0λ
−a0
1 λ−b0

2

(∑
j

‖ f ‖r0

L
r0
v0 (� j )

)1/r0
+C A1λ

1−a1
1 λ−b1

2

(∑
j

‖g1‖
r1

L
r1
v1 (� j )

)1/r1

+C A2λ
−a2
1 λ1−b2

2

(∑
j

‖g2‖
r2

L
r2
v2 (� j )

)1/r2

≤ C(Dw, N , q)
(

A0λ
−a0
1 λ−b0

2 ‖ f ‖L
r0
v0 (�)
+ A1λ

1−a1
1 λ−b1

2 ‖g1‖L
r1
v1 (�)

+ A2λ
−a2
1 λ1−b2

2 ‖g2‖L
r2
v2 (�)

)
.

This proves part (a).
We now prove part (b). Again, let R j = I j × J j be the central ball in � j . For

any fixed f ∈ C1,1
loc (�), let g(x)=

∫
J j

f (x, y)dµ2(y). Then

(3-2)
∂g
∂xi

(x)=
∫

J j

∂ f
∂xi

(x, y)dµ2(y) for i = 1, 2, . . . , n.

Let P(g)= P(I j )g be the polynomial of degree ≤ 1 in Rn such that∫
I j

P(g)dµ1(x)=
∫

I j

gdµ1(x),∫
I j

∂g
∂xi

dµ1(x)=
∫

I j

∂P(g)
∂xi

dµ1(x) for i = 1, 2, · · · , n.

Note that

(3-3)

∫
J j

∫
I j

f dµ=
∫

J j

∫
I j

1
µ2(J j )

P(g)dµ,∫
J j

∫
I j

∂ f
∂xi

dµ=
∫

J j

∫
I j

1
µ2(J j )

∂P(g)
∂xi

dµ for i = 1, 2, . . . , n.

Also, if P f = P(R j ) f is the polynomial in Rn+m of degree ≤ 1 such that∫
R j

Dγ( f − P f )dµ= 0 for all |γ| ≤ 1,
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then
∫

J j
P(R j ) f (x, y)dµ2(y)= P(g)(x) by (3-2) and (3-3).

Next observe that

1
µ2(J j )

‖∇x Pg‖Lq
w(R j )

≤
w(R j )

1/q

µ2(J j )
‖∇x Pg‖L∞(R j ) =

w(R j )
1/q

µ2(J j )
‖∇x Pg‖L∞(I j )

≤ C(n)r(I j )
−1w(R j )

1/q

µ2(J j )
‖Pg‖L∞(I j ) (by Proposition 2.6)

≤ Cr(I j )
−1w(R j )

1/q

µ2(J j )
‖Pg−πµ1

1 g‖L∞(I j )+Cr(I j )
−1w(R j )

1/q

µ2(J j )
‖π

µ1
1 g‖L∞(I j )

(by the triangle inequality, where πµ1
1 is the projection given in Proposition 2.7)

= Cr(I j )
−1w(R j )

1/q

µ2(J j )
‖π

µ1
1 (g− Pg)‖L∞(I j )+Cr(I j )

−1w(R j )
1/q

µ2(J j )
‖π

µ1
1 g‖L∞(I j )

≤ C(Dµ1, n)r(I j )
−1µ(R j )

−1w(R j )
1/q(
‖g− Pg‖L1

µ1
(I j )+‖g‖L1

µ1
(I j )

)
(by Proposition 2.7)

≤ C(Dµ1, n)
(
c2w(R j )

1/qµ(R j )
−1
‖∇x(g− Pg)‖L1

µ1
(I j )

+ r(I j )
−1w(R j )

1/qµ(R j )
−1
‖g‖L1

µ1
(I j )

)
(by (1-27))

≤ C(Dµ1, n)w(R j )
1/qµ(R j )

−1(c2
∥∥∫

J j
|∇x( f − P f )|dµ2

∥∥
L1
µ1
(I j )

+ r(I j )
−1∥∥∫

J j
f dµ2

∥∥
L1
µ1
(I j )

)
≤ Cw(R j )

1/qµ(R j )
−1(c2‖∇x( f − P f )‖L1

µ(R j )+ r(I j )
−1
‖ f ‖L1

µ(R j )

)
(by Fubini’s theorem)

≤ Cc2
(

A1(R j )r(I j )‖∇
2
x f ‖L

r1
v1 (R j )

+ A2(R j )r(J j )‖∇xy f ‖L
r2
v2 (R j )

)
+Cr(I j )

−1 A0(R j )‖ f ‖L
r0
v0 (R j )

(by (1-29) and Hölder’s inequality)

≤ C(Dµ, n)c2
(

A1λ
1−a1
1 λ−b1

2 ‖∇
2
x f ‖L

r1
v1 (� j )

+ A2λ
−a2
1 λ1−b2

2 ‖∇xy f ‖L
r2
v2 (� j )

+ A0λ
−1−a0
1 λ−b0

2 ‖ f ‖L
r0
v0 (� j )

)
.

The last inequality follows from (1-25) and the fact that R j ⊂ � j . Hence by the
triangle inequality, by the facts that w is product δ-doubling and � j ⊂ N R j , and
by (2-2) and Lemma 2.5, we have

‖∇x f ‖Lq
w(� j )
≤

∥∥∥∇x( f − 1
µ2(J j )

Pg)
∥∥∥

Lq
w(� j )
+

1
µ2(J j )

‖∇x Pg‖Lq
w(� j )

≤

∥∥∥∇x( f − 1
µ2(J j )

Pg))
∥∥∥

Lq
w(� j )
+

C(Dw, N , q)
µ2(J j )

‖∇x Pg‖Lq
w(R j )

.
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Recall that ∫
R j

∂ f
∂xi

dµ=
∫

R j

1
µ2(J j )

∂P(g)
∂xi

dµ for i = 1, 2, . . . , n.

Hence by (1-28) and Theorem 2.11, similar to (3-1) we have∥∥∥∇x( f − 1
µ2(J j )

Pg))
∥∥∥

Lq
w(� j )
≤ C(Dw, N , q, n,m)

×
(

A1r(I j )
1−a1r(J j )

−b1‖∇
2
x f ‖L

r1
v1 (� j )

+ A2r(I j )
−a2r(J j )

1−b2‖∇xy f ‖L
r2
v2 (� j )

)
.

Thus by the previous estimates, we have

‖∇x f ‖Lq
w(� j )
≤ C(Dw, N , q, n,m)c2

×
(

A1λ
1−a1
1 λ−b1

2 ‖∇
2
x f ‖L

r1
v1 (� j )

+ A2λ
−a2
1 λ1−b2

2 ‖∇xy f ‖L
r2
v2 (� j )

+ A0λ
−1−a0
1 λ−b0

2 ‖ f ‖L
r0
v0 (� j )

)
.

Finally, by arguments similar to the ones used to estimate ‖ f ‖Lq
w(�)

, we have

‖∇x f ‖Lq
w(�)
≤ C(Dw, N , q, n,m)c2

×
(

A1λ
1−a1
1 λ−b1

2 ‖∇
2
x f ‖L

r1
v1 (�)
+ A2λ

−a2
1 λ1−b2

2 ‖∇xy f ‖L
r2
v2 (�)

+ A0λ
−1−a0
1 λ−b0

2 ‖ f ‖L
r0
v0 (�)

)
. �

4. Applications

The next theorem is an extension of [Chua 1995, Corollary 3.1]. We are able to
obtain a stronger result simply because Theorem 1.6 is stronger; see Remark 1.8(1).

Theorem 4.1. Let σ, N>1 and 0<ε0≤∞. Let�⊂Rn such that�∈F′(σ, N , ε0).
Let c1 ≥ 1 and c2, c3, D1 > 0. Let 1 ≤ p, r ≤ q <∞. Let v and w be δ-doubling
measures on � such that

w(B)1/qv(B)−1/p
≤ c1r(B)τ−1,

w(B)≥ c2r(B)D1,
(4-1)

‖ f − fB,w‖Lq
w(B) ≤ c3w(B)1/qv(B)−1/pr(B)‖∇ f ‖L p

v (B)(4-2)

for all f ∈ C0,1
loc (�), all δ-balls B, and k ∈ N∪ {0}. Let i, k ∈ N∩ {0} with i ≤ k.

Let

(i) a = k− i + τ +min{t/q − s/p, 0} ≥ 0,
b = i + D1(1/r − 1/q)−min{t/q − u/r, 0};

(ii) t/q ≤ s/p and t/q ≤ u/r if � is unbounded.
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Let G ⊂�c and ρ(x)= d(x,G). Let ρG = supx∈� ρ(x). Let wt(E)=
∫

E ρ(x)
t dw

be δ-doubling, and define wu and vs similarly. Then for all f ∈ Ck,1
loc (�), we have

(4-3) ‖∇ i f ‖Lq
wt (�)
≤ C(N , σ, n, p, q, r, s, t, u, Dw, Dv, c2, c3)c1

×
(
ε−bρ

max{t/q−u/r,0}
G ‖ f ‖Lr

wu (�)+ ε
aρ

max{t/q−s/p,0}
G ‖∇

k+1 f ‖L p
vs (�)

)
for all ε ∈ (0, ε0). (When ρG =∞, we will use the convention∞0

= 1.)

Proof of Theorem 4.1. The proof goes like that of [Chua 1995, Corollary 3.1],
except that it was assumed there that i = k and v =w= 1. For convenience, let us
use the metric

d(x, y)=max{|xi − yi | : i = 1, . . . , n}.

Let δ= 1/σ . If B is a metric ball (which is indeed a cube) in � such that σ B ⊂�,
then B is a δ-ball in � and we know that

(4-4)
d(B,G)≤ d(x,G)= ρ(x)≤ d(B,G)+ 2r(B)

≤ (1+ 2/(σ − 1))d(B,G) for all x ∈ B.

Thus

d(B,G)αw(B)≤ wα(B)=
∫

B
ρ(x)αdw ≤ C(α, σ )d(B,G)αw(B) for α ≥ 0,

d(B,G)αw(B)≥ wα(B)≥ C(α, σ )d(B,G)αw(B) for α < 0.

Similarly, we have vs(B)∼ d(B,G)sv(B). Again, since r(B)≤ d(B,G)/(σ −1),
we have

wt(B)1/q

w(B)
‖ρ−u/r

‖Lr ′
w (B)
≤ C(q, r, σ, t, u)d(B,G)t/q−u/rw(B)1/q−1/r

≤ C(q, r, σ, t, u, c2)ρ
max{t/q−u/r,0}
G r(B)D1(1/q−1/r)+min{t/q−u/r,0}

≤ C(q, r, σ, t, u, c2)ρ
max{t/q−u/r,0}
G r(B)−b+i .

Inequality (1-5) is now clear with µ=w, v0 =w
u and β = b− i . We now need to

establish (1-8) and (1-9). To this end, first note that by (4-2), Hölder’s inequality
and Proposition 2.15, we have

‖ f − fB,w‖L p
v (B) ≤ c3C(Dv, p)r(B)‖∇ f ‖L p

v (B) for all δ-balls B.

Hence by (4-2), letting Pk(B) f be as in (1-8) with µ= w, we have

(4-5) 1
w(B)

‖ f − Pk(B) f ‖L1
w(B) ≤ C(Dv, p)(c3r(B))k+1

‖∇
k+1 f ‖L p

v (B).
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Since

wt(B)1/qvs(B)−1/pr(B)≤ C(t, s, σ, p, q)c1r(B)τd(B,G)t/q−s/p

≤ C(t, s, σ, p, q)c1r(B)a−k+iρ
max{t/q−s/p,0}
G ,

it is now easy to see (again by (4-4)) that

wt(B)1/q

w(B)
‖ f − Pk(B) f ‖L1

w(B)

≤ C(Dv, p, t, s, σ, q, c3)c1r(B)a+iρ
max{t/q−s/p,0}
G ‖∇

k+1 f ‖L p
vs (B).

Next, by (4-2), (4-5) and (4-4), we have

‖ f − Pk−i (B) f ‖Lq
wt (B)

≤ C(Dv, p, t, s, σ, q, c3)c1r(B)aρmax{t/q−s/p,0}
G ‖∇

k−i+1 f ‖L p
vs (B)

for all f ∈ C0,1
loc (�) and any δ-ball B. These establish that (1-8) and (1-9) hold

with µ = w, v = vs , w = wt and a = k − i + α, b = i + β. The theorem is now
clear by Theorem 1.6(b). �

Remark 4.2. (1) Clearly, wt is δ-doubling on � when t ≥ 0.

(2) In case w= v= 1, we know D1= n and τ = 1−n/p+n/q. Thus when 1/q ≥
1/p− 1/n, we have by the nonweighted Poincaré inequality and Theorem 4.1

(4-6) ‖∇ i f ‖Lq
ρt (�)
≤ C(N , σ, p, q, n, s, t, u, r)

×
(
ε−bρ

max{t/q−u/r,0}
G ‖ f ‖Lr

ρu (�)+ ε
aρ

max{t/q−s/p,0}
G ‖∇

k+1 f ‖L p
ρs (�)

)
for all ε ∈ (0, ε0), where ρs, ρt and ρu are the measures arising from the weights
ρ(x)s, ρ(x)t and ρ(x)u , respectively.

(3) In [Chua 1995, Corollary 3.1], it was assumed that ρt is doubling and k= i . We
have only assumed here that ρt is δ-doubling. Note that ρt is certainly δ-doubling
when t ≥ 0.

(4) In the case that a, b > 0, under the assumption of Theorem 4.1, we have

(4-7) ‖∇ i f ‖Lq
wt (�)
≤ C(N , n, σ, p, q, r, s, t, u, Dw, Dv, c2, c3)c1

× (K1‖ f ‖Lr
wu (�))

a/(a+b)(ε−a−b
0 K1‖ f ‖Lr

wu (�)+ K2‖∇
k+1 f ‖L p

vs (�)

)b/(a+b)
,

where K1 = ρ
max{t/q−u/r,0}
G and K2 = ρ

max{t/q−s/p,0}
G .

(5) If 0 ≤ α ≤ a, 0 ≤ β ≤ b and ε0 <∞, then it is clear that (4-6) will still hold
with a and b be replaced by α and β, respectively.
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(6) Conditions (i) and (ii) of Theorem 4.1 whenw=v=1 (hence τ =1−n/p+n/q
and D1 = n) are also necessary when ε0 =∞. Indeed, suppose (4-6) holds with
a+ b = λ= k+ 1+ n(1/r − 1/p)+ u/r − s/p > 0. Then

‖∇
i f ‖Lq

ρt (�)
≤ C(‖ f ‖Lr

ρu (�))
a/λ(‖∇k+1 f ‖L p

ρs (�)
)b/λ for all f ∈ C0,1

loc (�).

It is well known that 1/q ≥ 1/p− 1/n; see for example [Caffarelli et al. 1984] or
[Lin 1986]. For any δ-ball B in �, let f be as in Remark 1.8(5). Then

r(B)−i
|B|1/qd(B,G)t/q

≤ C |B|a/(rλ)d(B,G)ua/(rλ)(r(B)−k−1
|B|1/pd(B,G)s/p)b/λ.

Thus, we must have (letting a′ = a/λ and b′ = b/λ)

r(B)b
′(k+1)−i+n(1/q−a′/r−b′/p)d(B,G)t/q−a′u/r−b′s/p

≤ C

for all δ-balls in �. However, since � is unbounded, t/q ≤ a′u/r + b′s/p and
hence t/q ≤ u/r and t/q ≤ s/p. Next, since d(B,G) ≥ d(B) ≥ (σ − 1)r(B), we
have

b′(k+ 1)− i + n(1/q − a′/r − b′/p)+ t/q − a′u/r − b′s/p = 0

and hence (λ/q)(n+ t − qi)= (a/r)(n+ u)+ (b/p)(n+ s− (k+ 1)p).
We now note that (n+ u)/r 6= (n+ s− p(k+ 1))/p, since otherwise

(n+ t − qi)/q = (n+ u)/r = (n+ s− p(k+ 1))/p

and hence λ= 0, which is impossible.
It is then clear that a and b are as in condition (i).

The following Sobolev interpolation inequality, an application of Theorem 4.1,
extends the one obtained by Caffarelli, Kohn and Nirenberg [1984] and Lin [1986].

Theorem 4.3. Let σ, N > 1 and 0 < ε0 ≤∞. Let � ⊂ Rn and � ∈ F′(σ, N , ε0).
Let i, k ∈N such that i ≤ k. Suppose t >−n, 1≤ p, r ≤ q <∞, 1/q ≥ 1/p−1/n
and that the conditions (i) and (ii) of Theorem 4.1 hold with τ = 1− n/p + n/q
and D1 = n. Then (4-6) holds with G = {0}.

Proof. We will apply Theorem 4.1 with v = w = 1. Inequality (4-2) holds since
1/q ≥ 1/p− 1/n. Also, (4-1) holds with τ = 1− n/p+ n/q and D1 = n. Also, it
is well known that |x |t is doubling for t > −n. It is hence clear that the measure
arising from the weight ρ(x)t = |x |t is δ-doubling on�. The theorem now follows
immediately from the fact that � \ {0} ∈ F′(σ, N ′, ε′0), with N ′ and ε′0 depending
on N and ε0, respectively, by Propositions 2.24 and 2.21. �

Remark 4.4. (1) Lin [1986] has also dealt with fractional derivatives.
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(2) Inequality (4-7) has been obtained by Caffarelli, Kohn and Nirenberg [1984]
when �=Rn . We have only considered the case q ≥ p, r here. However, we
have no restriction on s and u. Also, Chua [2005] made some observations
about sharp conditions when �= Rn .

(3) For C∞ functions with compact support in �, Gurka and Opic [1991] have
also obtained similar results on bounded Lipschitz domains � for measures
arising from powers of distance weight d(x, ∂�).

(4) We can of course extend our idea to obtain various weighted Sobolev in-
terpolation inequalities with distance type weights. For example, G can be
also chosen as a line segment or image of a Lipschitz map (if we know that
�\G is still a generalized John domain). Some sufficient conditions for such
distance-type weights to be doubling were been discussed in [Chua 1995].

We now discuss interpolation inequalities for power weights on product spaces.

Theorem 4.5. Let 0≤ ai , bi ≤ 1 such that ai +bi ≤ 1 for i = 0, 1, 2. Let σ, N > 1
and 1≤r0, r1, r2≤q<∞. Let 0<ε1, ε2≤∞ and let�∈F′(σ, N , ε1, ε2,Rn

×Rm).
Let G1 ⊂ Rn and G2 ⊂ Rm , with (G1×Rm)∩� and (Rn

×G2)∩� both empty.
Let w(x, y) = d(x,G1)

αd(y,G2)
β for (x, y) ∈ Rn

×Rm . Assume w is product δ-
doubling on� in Rn

×Rm . Suppose vi (x, y)=d(x,G1)
αi d(y,G2)

βi for i =0, 1, 2.
Let

ρ1 = sup{d(x,G1) : (x, y) ∈� for some y ∈ Rm
},

ρ2 = sup{d(y,G2) : (x, y) ∈� for some x ∈ Rn
}.

Suppose these conditions hold:

(i) α/q−αi/ri ≤ 0 if ρ1 =∞ and β/q−βi/ri ≤ 0 when ρ2 =∞ for i = 0, 1, 2.

(ii) min{α/q − αi/ri , 0} +min{β/q − βi/ri , 0} + (m + n)(1/q − 1/ri ) ≥ −1 for
i = 0, 1, 2.

(iii) −ai = n(1/q − 1/ri )+min{α/q −αi/ri , 0},
−bi = m(1/q − 1/ri )+min{β/q −βi/ri , 0} for i = 0, 1, 2,

Then (again we will use the convention∞0
= 1)

(4-8) ‖ f ‖Lq
w(�)
≤ C

(
λ−a0

1 λ−b0
2 ρ

max{α/q−α0/r0,0}
1 ρ

max{β/q−β0/r0,0}
2 ‖ f ‖L

r0
v0 (�)

+ λ1−a1
1 λ−b1

2 ρ
max{α/q−α1/r1,0}
1 ρ

max{β/q−β1/r1,0}
2 ‖∇x f ‖L

r1
v1 (�)

+ λ−a2
1 λ1−b2

2 ρ
max{α/q−α2/r2,0}
1 ρ

max{β/q−β2/r2,0}
2 ‖∇y f ‖L

r2
v2 (�)

)
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for all λi ∈ (0, εi ) with i = 1, 2, and f ∈ C0,1
loc (�). Also

(4-9) ‖∇x f ‖Lq
w(�)

≤ C
(
λ1−a1

1 λ−b1
2 ρ

max{α/q−α1/r1,0}
1 ρ

max{β/q−β1/r1,0}
2 ‖∇

2
x f ‖L

r1
v1 (�)

+ λ−a2
1 λ1−b2

2 ρ
max{α/q−α2/r2,0}
1 ρ

max{β/q−β2/r2,0}
2 ‖∇xy f ‖L

r2
v2 (�)

+ λ−1−a0
1 λ−b0

2 ρ
max{α/q−α0/r0,0}
1 ρ

max{β/q−β0/r0,0}
2 ‖ f ‖L

r0
v0 (�)

)
for all λi ∈ (0, εi ) with i = 1, 2, and f ∈ C1,1

loc (�). All the constants above depend
only on q, ri ,m, n, α, αi , β, βi , σ and N.

Remark 4.6. (1) If D = �1 × �2 ⊂ Rn
× Rm in Theorem 4.5, we may take

G1 ⊂�
c
1 and G2 ⊂�

c
2.

(2) The distances d(x,G1) and d(y,G2) can be any distance functions arising
from any norm on Rn and Rm , respectively. Of course, all norms on Euclidean
space are equivalent. For convenience, we will use our previous norm, namely,
d(x, u)=max{|ui − xi | : i = 1, 2, . . . , n} for any x, u ∈ Rn (or Rm).

(3) Clearly, if α, β ≥ 0, then w is product δ-doubling on � in Rn
×Rm .

Proof of Theorem 4.5. We will use Theorem 1.10 with µ = 1. First, for any
parallelepiped R = I × J ⊂� such that σ R ⊂�, we have

d(I,G1)+ 2r(I )≥ d(x,G1)≥ d(I,G1)≥ (σ − 1)r(I ),

d(J,G2)+ r(J )≥ d(y,G2)≥ d(J,G2)≥ (σ − 1)r(J )

for any (x, y) ∈ I × J . Hence w(x, y) is comparable to d(I,G1)
αd(J,G2)

β for
any (x, y) ∈ R and hence w(I × J ) is comparable to d(I,G1)

αd(J,G2)
β
|I ||J |.

Similar estimates can be obtained for v0, v1 and v2.
For any Lipschitz continuous function f on R, we have by Proposition 2.16,

‖ f − fR‖Lq (R)

≤ C(m, n, q)
(
r(I )|R|1/q−1/r1‖∇x f ‖Lr1 (R)+ r(J )|R|1/q−1/r2‖∇y f ‖Lr2 (R)

)
for all parallelepipeds R = I × J ⊂ Rn

×Rm , where fR =
∫

R f/|R|.
It is then clear that for any parallelepiped R = I × J ⊂ � such that σ R ⊂ �,

we have

‖ f − fR‖Lq
w(R)
≤ C(m, n, q)

×
(
K1r(I )1+n(1/q−1/r1)r(J )m(1/q−1/r1)d(I,G1)

α/q−α1/r1d(J,G2)
β/q−β1/r1‖∇x f ‖L

r1
v1 (R)

+ K2r(I )n(1/q−1/r2)r(J )1+m(1/q−1/r2)d(I,G1)
α/q−α2/r2d(J,G2)

β/q−β2/r2‖∇y f ‖L
r2
v2 (R)

)
,
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where Ki = C(σ, q, α, β, αi , βi , ri ). We now let

Ai (R)= r(I )n(1/q−1/ri )+min{α/q−αi/ri ,0}r(J )m(1/q−1/ri )+min{β/q−βi/ri ,0}

× ρ
max{α/q−αi/ri ,0}
1 ρ

max{β/q−βi/ri ,0}
2

for i = 1, 2. Also, recall that

A0(R)= v(R)1/q |R|−1
‖v
−1/r0
0 ‖

Lr ′0 (R)

≤ Cd(I,G1)
α/q−α0/r0d(J,G2)

β/q−β0/r0 |I |1/q−1/r0 |J |1/q−1/r0

≤ Cρmax{α/q−α0/r0,0}
1 ρ

max{β/q−β0/r0,0}
2

× r(I )n(1/q−1/r0)+min{α/q−α0/r0,0}r(J )m(1/q−1/r0)+min{β/q−β0/r0,0}.

It is now easy to see that (1-25) holds with Ai =Kiρ
max{α/q−αi/ri ,0}
1 ρ

max{β/q−βi/ri ,0}
2 .

Moreover, we have

‖ f − fR‖Lq
w(R) ≤ C K1 A1(R)l(I )‖∇x f ‖L

r1
v1 (R)
+C K2 A2(R)l(J )‖∇y f ‖L

r2
v2 (R)

for all parallelepipeds R = I × J ⊂ Rn
×Rm such that σ R ⊂ �. This establishes

(1-28) with µ= 1. Similarly, (1-29) is clear.
Finally, (1-27) clearly holds by the unweighted Poincaré inequality.
The theorem now follows from Theorem 1.10. �

Next, let us prove an interesting case when we have Ap weights on Rn
×Rm ;

see [Chua 1999] or [Fefferman and Stein 1982] for definitions.

Theorem 4.7. Let 1< p<∞ and 1<σ, N , 0< ε1, ε2 <∞. If w ∈ Ap(R
n
×Rm)

and � ∈ F′(σ, N , ε1, ε2,Rn
× Rm) is a bounded set, then there exists an ε > 0

depending only on the weight w, such that for any p < q ≤ p + ε there exist
0< h1, h2 < 1 with h1+ h2 ≤ 1 such that

‖ f ‖Lq
w(�)
≤ Cw(R0)

1/q−1/pr(I0)
h1r(J0)

h2

×
(
λ−h1

1 λ−h2
2 ‖ f ‖L p

w(�)
+ λ1−h1

1 λ−h2
2 ‖∇x f ‖L p

w(�)
+ λ−h1

1 λ1−h2
2 ‖∇y f ‖L p

w(�)

)
for all f ∈ C0,1

loc (�) and

‖∇x f ‖Lq
w(�)
≤ Cw(R0)

1/q−1/pl(I0)
h1l(J0)

h2

×
(
λ−1−h1

1 λ−h2
2 ‖ f ‖L p

w(�)
+ λ1−h1

1 λ−h2
2 ‖D

2
x f ‖Lq

w(�)
+ λ−h1

1 λ1−h2
2 ‖∇xy f ‖L p

w(�)

)
for all f ∈ C1,1

loc (�), where R0 = I0× J0 is any parallelepiped that contains �.

Proof. First note that since w ∈ Ap(R
n
×Rm), by the Hölder inequality we have(

w(R)

w(R̃)

)1/p( |R|
|R̃|

)−1(w−1/(p−1)(R)

w−1/(p−1)(R̃)

)1/p′

≤ C
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for all parallelepipeds R ⊂ R̃ ⊂ Rn
× Rm . Next since w is reverse doubling

on Rn
× Rm , there exists an η > 0 such that w(R)/w(R̃) ≥ C(|R|/|R̃|)η for

all parallelepipeds R ⊂ R̃ ⊂ Rn
× Rm . Hence if we choose ε > 0 such that

(m+n)η(1/p−1/(p+ε))≤1, then for any p<q≤ p+ε, there exist 0<h1, h2<1
with h1+ h2 ≤ 1, such that

(4-10)
(
w(R)

w(R̃)

)1/q( |I |
| Ĩ |

)h1/n−1( |J |
| J̃ |

)h2/m−1(w−1/(p−1)(R)

w−1/(p−1)(R̃)

)1/p′

≤ C.

for all parallelepipeds R = I × J ⊂ R̃ = Ĩ × J̃ ⊂ Rn
×Rm . Let

Ai (R)= w(R)1/q |R|−1(w−1/(p−1)(R))1/p′ .

Since h1+ h2 ≤ 1, if r(J )/r(I )= r( Ĩ )/r( J̃ ), we have

Ai (R)

Ai (R̃)

r(I )

r( Ĩ )
≤

Ai (R)

Ai (R̃)

(r(I )

r( Ĩ )

)h1+h2

=
Ai (R)

Ai (R̃)

(r(I )

r( Ĩ )

)h1
(r(J )

r( J̃ )

)h2

≤ C

by (4-10).
Hence by Proposition 2.16, we have

‖ f − fR‖Lq
w(R)

≤ Cw(R)1/q |R|−1(w−1/(p−1)(R))1/p′(r(I )‖∇x f ‖L p
w(R)+ r(J )‖Dy f ‖L p

w(R)),

for all f ∈ C0,1
loc (�) and parallelepipeds R = I × J ⊂ Rn

× Rm . Furthermore, if
R0 = I0× J0 is any parallelepiped that contains �, then

Ai (R)≤ Cw(R0)
1/q−1/pr(I0)

h1r(J0)
h2r(I )−h1r(J )−h2

for i = 0, 1, 2 and all parallelepipeds R = I × J ⊂ Rn
×Rm such that σ R ⊂�.

The result now follows from Theorem 1.10. �
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