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We give a general definition of the exponents of a meromorphic connection
∇ on a holomorphic vector bundle E of rank n over a compact Riemann
surface X . We prove that they can be computed as invariants of a vector
bundle EL canonically attached to E, which we construct and call the Levelt
bundle of E, and whose degree (equal to the sum of the exponents) we esti-
mate by upper and lower bounds (Fuchs’ relations). We use this definition
to construct, for every linear differential equation on a compact Riemann
surface (with regular or irregular singularities), the companion bundle of
the equation, a vector bundle endowed with a meromorphic connection that
is equivalent to the given equation and has precisely the same singularities
and the same set of exponents.

Introduction

Exponents of differential equations are complex numbers that describe the behavior
of solutions in a neighborhood of a singular point. Consider a fuchsian differential
equation with coefficients in C(z):

y(n)+ a1 y(n−1)
+ · · ·+ an y = 0.

Its exponents (es
i )16i6n for s∈P1(C), defined by Fuchs [1866], obey the celebrated

Fuchs relation ∑
s∈P1(C)

n∑
i=1

(es
i − (i − 1))=−n(n− 1).

This relation, and several generalizations — on a Riemann surface in [Saito 1958]
and for irregular singularities in [Bertrand and Beukers 1985; Chudnovsky and
Chudnovsky 1984], for example — have been used in arithmetic, following ideas
by C. L. Siegel, to give transcendence estimates for values of special functions
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on the basis of differential equations that they satisfy. Basically, differential equa-
tions and differential systems are equivalent, and both could be used for the same
purpose. However, the theory of exponents for systems has lagged behind some
80 years, probably due to the absence of such a nice characterization of a regular
singular point as provided by Fuchs’ theorem for equations.

The counterexample given by A. A. Bolibrukh [1990b] to the strong Riemann–
Hilbert problem (that is, with simple poles) is based on a Fuchs relation argument
for differential systems, and has shown yet another application for this notion.
Indeed, if

(1) d X
dz
= AX, where A ∈Mn(C(z)),

is a meromorphic differential system with regular singularities on P1(C), Bolibrukh
proves that its exponents µs

1, . . . , µ
s
n , defined by Levelt [1961], satisfy the relation∑

s∈P1(C)

∑n
i=1 µ

s
i 6 0, and the equality is achieved exactly when the system has

only simple poles; such systems are called Fuchsian.
Although both categories are usually treated as strictly equivalent, the sum of

exponents for equations is a positive integer, while the sum of exponents for sys-
tems is negative. Hence, there cannot exist a differential system that is globally
equivalent to a differential equation, in that it has the same exponents everywhere.
In the regular case, such equivalent constructions (by way of a companion ma-
trix) are always possible locally, as is well known. To perform this globally, one
must glue these local data together; therefore we must introduce the framework of
holomorphic vector bundles equipped with a meromorphic connection.

The first contribution of this paper is to bridge the gap between the two notions of
exponents by constructing in a canonical way such a vector bundle (the compan-
ion bundle of the differential equation), which gives the correct local exponents
at every singularity. In case the equation is fuchsian, the vector bundle that we
get has been constructed by M. F. Singer and M. van der Put [2003], albeit from
another perspective. In the irregular case, the exponents of the companion bundle
are equal to the exponents (λs

i )16i6n for s ∈ P1(C), defined by D. Bertrand and
G. Laumon [1985] as a generalization of Fuchs’ exponents, for the arithmetical
purposes explained above. In this last case, a ramification of the variable is usually
required. For the construction of the companion bundle, it is thus necessary to
replace the Riemann sphere with a compact covering π : X → P1(C), ramified
over the singular points of the equation.

This requires therefore a precise definition of the exponents µE,s
1 , . . . , µE,s

n at
any point s ∈ X for a vector bundle E endowed with a meromorphic connection
∇ on a Riemann surface X . Our algebraic Definition 3, which extends the notion
of exponents defined by Levelt for the regular case, involves the construction of a
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special “well-behaved” Levelt bundle EL of the bundle E; see Theorem 1. This part
of the article builds on local results from [Corel 2004], in which we defined the
exponents of the linear differential system (1) at an irregular singularity s ∈P1(C).

First, we prove that these exponents are defined in a coordinate-invariant way
(unlike for instance the generalized exponents defined by Van Hoeij [1997], whose
Laurent polynomial part depends on the chosen local coordinate); consequently, we
find that the Bertrand–Laumon exponents are well defined on a Riemann surface.

Second, we derive in Theorem 4 new Fuchs-like estimates for the sum of the
exponents of a general meromorphic connection on a holomorphic bundle. Arith-
metic applications therefore do not need to be restricted to actual solutions of differ-
ential equations, but can be used with horizontal sections of arbitrary meromorphic
connections on any compact Riemann surface.

Finally, the definition of the Levelt bundle can shed some light on the Riemann–
Hilbert problem and some of its generalizations. P. Deligne [1970] showed how
to extend a holomorphic vector bundle E, defined over the complement of a divi-
sor D and endowed with a holomorphic connection ∇ having regular singularities
on D, into a logarithmic connection (E,∇) that has singularities on the divisor
and is uniquely determined by a section of the natural projection C→ C/Z. In
this way, we get all logarithmic extensions of E with nonresonant residue; these
are the Deligne lattices. This construction is sufficient to solve positively the
weak Riemann–Hilbert problem (that is, the one with regular singularities). The
strong Riemann–Hilbert problem however asks for a logarithmic bundle (with the
prescribed monodromy) that is also trivial. Bolibrukh’s counterexample requires
therefore the knowledge of all the logarithmic extensions of a regular connection
in order to prove that none is trivial. The Levelt bundles, in the regular case,
correspond precisely to the missing logarithmic extensions, those for which we
allow the residue to be resonant.

In the irregular case, the Levelt bundle is, roughly, the “closest” bundle with the
property of being locally split in isotypical components, themselves logarithmic
modulo an irregular part (we call this property “log-split”). Like in the regular case,
the Levelt bundle happens to be the extension to the resonant case of a classical
construction, here Malgrange’s [1996] canonical bundle, which extends Deligne’s
to the irregular case. It is also a natural extension of the notion of “logarithmic
bundle” as it is likewise characterized by a Fuchs relation (see Theorem 3)

(2) E is log-split if and only if
∑
s∈X

n∑
i=1

µE,s
i = deg E.

In the formulation of Bolibrukh, Malek and Mitschi [Bolibruch et al. 2006],
the generalized Riemann–Hilbert problem asks for a trivial bundle with minimal
Poincaré ranks with respect to the unique connection satisfying some prescribed
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“generalized monodromy data”. As one expects, the reducibility of the monodromy
is involved in the solubility, but more unexpectedly, ramification (or rather its
absence) also is. Van der Put and Saito [2009] have already provided a coun-
terexample to this version of the problem. However, it is not clear whether a
bundle with minimal Poincaré ranks provides the most natural generalization of
the logarithmic bundles required in the regular case. Indeed, a bundle fails to be
logarithmic when the connection exhibits nilpotency (appearing under the form
of an irregular part whose leading term is nilpotent) that can be suppressed by
meromorphic gauge transforms. Requiring minimal Poincaré rank in the irregular
case does not prevent the regular part of the connection from having a residual
nilpotency hidden under the terms of the irregular part (this can result, for exam-
ple, in a nondiagonalizable leading term). In terms of the Babbitt–Varadarajan
decomposition of the connection into a regular connection and an irregular part
[Babbitt and Varadarajan 1983; Corel 2004], the extension of the Fuchs relation
for Fuchsian systems as formula (2) suggests that the equivalent of “logarithmic”
in the irregular case requires minimal (that is, zero) Poincaré rank for the regular
part, and diagonalizability for the irregular part of the connection, namely that the
bundle be log-split. At any rate, it would be interesting to know if, in the unramified
case at least, the variant of the generalized Riemann–Hilbert problem asking for a
trivial log-split bundle admits a solution. On the other hand, the tools introduced
here also apply for the minimum Poincaré rank case (Proposition 1), so interesting
insights can be reasonably expected, although they would require more work, since
the corresponding bundle has no direct characterization by exponents.

In Section 1, we prove that the exponents of a meromorphic connection on a
holomorphic vector bundle can be defined by a global object, the Levelt bundle;
we do this basically by gluing the local Levelt lattices constructed in [Corel 2004].
For these exponents, we establish new estimates based on the local Jordan structure
of the residual maps of the connection. In Section 2, we construct the companion
bundle of a differential equation, and in Section 3, we establish the global estimates.

1. The Levelt bundle and the exponents

Let X be a compact Riemann surface and D=
∑

x∈X mx x be a positive divisor on
X with (finite) support |D|= {x ∈ X |mx 6= 0}. Let OD be the sheaf of meromorphic
functions on X whose poles have order bounded by mx at x ∈ X . For a locally free
sheaf E of OX -modules (subsequently called a vector bundle) of finite rank on X ,
let ED = E⊗OX OD. Let ∇ : E→ E⊗OX �D be a meromorphic connection with
singular divisor D on a vector bundle E of rank n. In the sequel, we will always
assume that D is the smallest possible. Sometimes for simplicity we’ll just say
“connection” for the pair (E,∇). The Poincaré rank of ∇ at x ∈ X is the integer
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px(∇)=max(0,mx − 1). If px(∇)= 0, the sheaf E is said to be logarithmic with
respect to ∇ at x . Let S= |D| be the singular, and Slog = {x ∈ S | px(∇)= 0} the
logarithmic singular sets of ∇. If Slog 6= ∅, then one can define the residue map
Res∇ ∈ End(E/E−[Slog]), where [{x1, . . . , xm}] = x1 + · · · + xm . If x ∈ S \ Slog

is not logarithmic, the residue of zpx (∇)∇ for any local coordinate z induces the
well-defined polar map PM∇ ∈P End(E/E−[S]) of ∇ over E. For more details on
these notions, see [Sabbah 2002].

1.1. Local maximal lattices. Let x ∈ S. Let O = ÔX,x be the formal completion
of the ring OX,x endowed with its discrete valuation v with respect to its maximal
ideal m, and let K be the fraction field of O. The O-module 3 = Ex ⊗OX,x O is
a lattice in the K -vector space V = 3 ⊗O K , on which it induces an additive
valuation v3(x) = max{k ∈ Z | x ∈ mk3} for x ∈ V . Let � = �X,x ⊗OX,x K and
�(k)= {ω ∈� | v(ω)>−k}. The germ of connection

∇x : Ex → Ex ⊗OX,x �D,x

extends as the map ∇ =∇x ⊗ idK + idV ⊗d : V → V ⊗K �. The triple (V,3,∇)
is called the (formal) local model of (E,∇) at x .

Let z be a uniformizing parameter of K , and consider the derivation θ = z d
dz .

The Poincaré rank p of ∇ at x satisfies p=−v3(∇θ (3)+m3), where v3(M)=
infx∈M v3(x). The map δ3 induced by zp∇θ on 3 = 3/m3 is a representative
of the germ (PM∇)x . If p = 0, put δ3 = 0. For any integer ` > 0, we have
z`p∇`

θ (3)= (z
p∇θ )

` mod m3. The map induced by either on3=3/m3 is equal
to δ`3. Let K= (k1, . . . , kn) be the (increasing) sequence of elementary divisors of
a lattice M ⊂ 3, and let [3 : M] =

∑n
i=1(ki − k1) be its index with respect to 3.

A lattice M in V induces a natural flag in 3 as follows. Let

m3⊂ Mk = (z−k M ∩3)+m3⊂3 for k ∈ Z.

The images Mk in the quotient space 3 induce a flag of C-vector spaces

F3(M) : 0= F0 ( F1 ( · · ·( Fs =3,

where Fi = Mki ; here ki is the i-th distinct elementary divisor of M .
Let m(∇) be the order of singularity of ∇, that is, the minimum of the Poincaré

ranks over all lattices. For any q > m(∇), there exists a largest lattice of 3q ⊂ 3

having Poincaré rank 6 q; see [Corel 2004, Corollary 2.2].

Proposition 1. Let 3 be a lattice in V with Poincaré rank p. Let δi = rk(δ3)i and
1i = δi − δi+1 for i > 0. For m(∇)6 q6 p, the maximal lattice 3q ⊂3 satisfies

d
∑
i>1

δi 6 [3 :3q]6
1
2 n(n− 1)d − 1

2

∑
i>0

1i (1i − 1), where d = p− q.
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Let 3 and M be lattices in V , and let p3 and pM be their respective Poincaré
ranks with respect to the connection ∇.

Lemma 1. For k ∈ Z, one has δ3(Mk)⊂ M`, where `= k+ (pM − p3).

Proof. Put p = p3, let m ∈ M such that z−km ∈3 holds, and let λ ∈3. Then,

z p
∇θ (z−km+ zλ)=−kz p−km+ z−kz p

∇θ (m)+ z(z p
∇θ (λ)+ z pλ).

By assumption, z p−km ∈ z p−k M∩z p3 holds, and so does z(z p
∇θ (λ)+z pλ)∈m3.

By definition of Poincaré rank, we have z p
∇θ (m)= z p−pM (zpM∇θ (m))∈ z p−pM M ,

and, since m ∈ zk3, we then get z p
∇θ (m) ∈ zk3. Accordingly, we find that

z−kz p
∇θ (m) ∈ z−k(z p−pM M ∩ zk3)= z−(k+pM−p)M ∩3. Consequently, we have

z p
∇θ (z−km + zλ) ∈ (z−(k+pM−p)M ∩3)+m3 = Mk+(pM−p), and the lemma is

established by taking the quotient by m3. �

Corollary 1. Let M be a lattice having Poincaré rank pM < p3 and elementary
divisors (k1, . . . , kn) with respect to 3. Let F3(M) : 0=F0 ( F1 ( · · ·( Fs =3

be the flag induced by M.

(i) The flag F3(M) satisfies δ3(Fi )⊂ Fi−1 for all 16 i 6 s.

(ii) If ki+1− ki < p3− pM , the graduated map grF
i+1(δ3) : Fi+1/Fi → Fi/Fi−1

is equal to 0.

(iii) For ` > 0, let t =max{16 i 6 n | ki − k1 < `(p3− pM)}. Then M t ⊂ ker δ`3.

Proof. The three assertions are consequences of Lemma 1. Indeed, if Fi = Mki ,
then δ3(Fi )⊂ Mki+pM−p3 ⊂ Mki−1= Mki−1 =Fi−1. The second is established by
remarking that if ki+1 − ki < p3 − pM , then ki+1 + pM − p3 < ki , and therefore
ki+1 + pM − p3 6 ki − 1. Thus δ3(Fi+1) ⊂ Mki−1 = Fi−1. Finally, one has
δ`3(M t) ⊂ Mkt+`(pM−p3) ⊂ Mk1−1 = 0, since kt − `(pM − p3) < k1 according to
the definition of t ; this establishes the third result. �

Let K= (k1, . . . , kn) be the elementary divisors of3q in3, and let F be the flag
induced by 3q in 3/m3. Recall (see [Corel 2004, Proposition 4.2]) that k1 = 0
and maxi=1,...,n−1 ki+i−ki 6p−q6 kn . In this case, the converse of Corollary 1(ii)
holds.

Lemma 2. With the previous notations, ki+1−ki=p−q if and only if grF
i+1(δ3) 6=0.

Proof. Let (e) be a basis of3 and (ε) a basis of3q such that the matrix of the basis
change from (e) to (ε) is zK where K = diag(k1 In1, . . . , ks Ins ), by considering the
elementary divisors with multiplicities. Recall that ni = dim Fi − dim Fi−1. This
means to consider the sequence t1 < · · ·< ts such that n j = t j − t j−1+ 1 and

0= k1 = · · · = kt1 < kt1+1 = · · · = kt2 < · · ·< kts−1+1 = · · · = kts = kn.
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Let A =Mat(∇θ , (e)) = A−pz−p
+ · · · . The matrix A−p has the block-triangular

form

(3) A−p =


0n1 A12 · · · A1s

0 0n2 · · · A2s
...

. . .
...

0 0 · · · 0ns

 .
Let ` ∈ {1, . . . , n− 1} such that k` > 0, and consider the K̃= (k̃1, . . . , k̃n), where
k̃i = ki for i 6 ` and k̃ j = k j − 1 for j > `+ 1. Since 3q is maximal, there exists
(i0, j0) such that v(Ai0, j0)+ k̃ j0 − k̃i0 <−q. We have

k̃ j − k̃i =


k j − ki if i 6 ` and j 6 `, or i > `+ 1 and j > `+ 1,
k j − ki + 1 if i > `+ 1 and j 6 `,
k j − ki − 1 if i 6 ` and j > `+ 1.

Thus, we get i0 6 ` < ` + 1 6 j0, and accordingly v(Ai0, j0) + k j0 − ki0 = −q.
Assume that k`+1− k` = p− q. Since k j0 − ki0 > k`+1− k`, we have

−p6 v(Ai0, j0)6−k j0 + ki0 − q6−p;

hence v(Ai0, j0) = −p. Therefore (A−p)i0, j0 6= 0 with ki0 = k` and k j0 = k`+1. Let
u be the index such that k` = ktu . Then, in the block structure of A−p we have
rk Au,u+1 > 1. This implies that Au,u+1 6= 0 if and only if ktu+1 − ktu = p− q. But
Au,u+1 is nothing but the matrix of the graduated map grF

u+1(δ3). �

Let `> 0 be an integer. Let a` =max{16 i 6 n | ki < `(p−q)} and a0 = 0, and
let

J` = {16 i 6 n− ` | ki+` = ki + `(p− q)} and g` = |J`|.

Corollary 2. For any integer `> 0, we have g` 6 δ` 6 n− a`.

Proof. The second inequality is a direct consequence of Corollary 1. Indeed, one
has k1 = 0 and a` = dim Ma` 6 dim ker δ`. For the first inequality, note that
rk δ3 >

∑s−1
i=0 rk grF

i+1(δ3). By Lemma 2, we get

δ1 >
∣∣{16 i 6 n− 1 | ki+1 = ki + p− q}

∣∣= g1.

Since δ3 is strictly upper block-triangular, we have rk δ`3 >
∑s−`

i=0 rk grF
i+`(δ

`
3) for

` > 0. Now, grF
i+`(δ

`
3) = grF

i+`(δ3) ◦ grF
i+`−1(δ3) ◦ · · · ◦ grF

i+1(δ3). If i ∈ J`,
then dim Fi+1/Fi = · · · = dim Fi+`/Fi+`−1 = 1. Since grF

k (δ3) is nonzero for
i + 16 k 6 i + `, the map grF

i+`(δ
`
3) is also nonzero, and rk δ`3 > g` follows. �
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1.2. The proof of Proposition 1. The proof relies on two combinatorial results.

Lemma 3. Let T = (t1, . . . , tn) be an increasing sequence of integers such that
t1 = 0 and ti+1− ti 6 1. Let J` = {16 i 6 n−` | ti+` = ti +`} and c` = |J` \ J`+1|.
Then we have

1
2

∑
j>0

c j (c j − 1)6
∑

i∈J0\J1

(n− i)6 c0
∑
j>0

c j −
1
2

∑
j>0

c j (c j − 1).

Proof. Let J0 \ J1 = {h1, . . . , hc0} with h0 = 0 < h1 < · · · < hc0 = n, and let
R=

∑
i∈J0\J1

(n−i). Clearly, R=
∑c0

i=1(n−hi )=
∑c0

i=0 i(hi+1−hi ). The interval
I = [0, n] is cut into c0 segments of respective lengths hi+1−hi for 06 i 6 c0−1.
By construction, there are |{1 6 i 6 c0 | hi − hi−1 = j}| = c j−1− c j segments of
length j . The quantity R is the sum of these lengths weighted by their index of ap-
pearance along the interval I ; therefore it is minimal (respectively maximal) when
the segments are ordered by decreasing (respectively increasing) length. Thus, we
get the bounds ∑

j>1

j
c j−1−1∑

i=c j

i 6 R 6
∑
j>1

j
c0−c j−1∑

i=c0−c j−1

i.

A direct computation yields the claimed result. �

For an integer sequence (gi )i>0, let (1gi )i>0 be defined by 1gi = gi − gi+1.
Let us say that (gi )i>0 is strongly decreasing if both (gi )i>0 and (1gi )i>0 are
nonincreasing. Let 1g =

∑
i>01gi (1gi − 1). Note that

(4) 1g = g2
0 − 2

∑
j>0

g j+11gi .

Lemma 4. Let (gi )i>0 and (δi )i>0 be two integer strongly decreasing sequences
such that g0 = δ0 and δi > gi for all i > 0. Then 1g >1δ.

Proof. By formula (4), one has h = 1
2 (1g−1δ)=

∑
i>1(δi − gi ) (1δi−1−1gi ).

Write 1δi−1−1gi = (δi−1− gi−1)− (δi − gi )+1gi−1−1gi . Substituting in h,
we straightforwardly get h =

∑
i>1(δi − gi ) (1gi−1−1δi ) . Summing the two

expressions for h, we get 2h =
∑

i>1(δi − gi ) (1gi−1−1gi +1δi−1−1δi )> 0;
hence 1g >1δ. �

Proof of Proposition 1. Let us consider the sequence K= (k1, . . . , kn) of elemen-
tary divisors of 3q with respect to 3 and let d = p− q. Recall that

[3 :3q] = dimC3/3q = k1+ · · ·+ kn;

see [Corel 2004, Lemma 2.3, page 1371]. Define `0 as the largest ` such that
a` < n, so that 1 6 a1 6 · · · 6 a`0 < n = a`0+1. By definition of ai , we get
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i=a j+1 ki > jd(a j+1− a j ). According to Corollary 2, we have

[3 :3q] =

`0∑
j=0

a j+1∑
i=a j+1

ki >
`0∑

j=0

j (a j+1− a j )d =
`0∑

j=1

(n− a j )d > d
`0∑

j=1

δ j ,

which proves the left side of the proposition. For 16 i 6 n−1, let di = ki+1− ki .
Since di 6 d − 1 whenever i /∈ J1, we get

n∑
i=1

ki =

n−1∑
i=1

(n− i)di 6
1
2 n(n− 1)d −

∑
i /∈J1

(n− i).

We wish to minimize R =
∑

i∈J0\J1
(n − i). Construct the following sequence

T = (t1, . . . , tn) defined by induction as{
t1 = 0,

ti+1 = ti + [(ki+1− ki )/d], where [x] denotes the integer part of x .

The sequence T satisfies the assumptions of Lemma 3 with ci =1gi ; hence

(5) R > 1
2

∑
j>0

1g j (1g j − 1).

Let ni be the number of Jordan blocks of size i in the Jordan normal form of δ.
We have

(6) δi =
∑

j>i+1

( j − i)n j and 1i = δi − δi+1 =
∑

j>i+1

n j for all i > 0.

Accordingly, we have δi > δi+1 and 1i > 1i+1 for all i > 0. Let 0i = gi − gi+1.
Both gi > gi+1 and 0i >0i+1 hold, whereas Corollary 2 ensures that gi 6 δi . Both
sequences are strongly decreasing, and g0 = n = δ0. Therefore, by Lemma 4, we
get 0 =

∑
j>0 0 j (0 j − 1) > 1 =

∑
j>01 j (1 j − 1). According to (5), we have

R > 0, so R >1, thereby establishing the right side of the proposition. �

1.3. The Levelt bundle. Let (E,∇) be a meromorphic connection, and (V,3,∇)
be the local model at x ∈ X . Let ∇=∇reg

+ω be the formal Babbitt–Varadarajan
decomposition of ∇ into a regular formal connection ∇reg and the K -linear map
ω : V → V ⊗K � that we introduced in [Corel 2004, Theorem 3]. By a slight
abuse of terminology, we will act as if ω (which we call an irregular part of ∇ at
x from now on) were an endomorphism of V with coefficients in �, and speak of
its eigenspaces, eigenvalues, and so on. Although the Babbitt–Varadarajan decom-
position depends on the choice of a local coordinate, we can retrieve from it the
following invariants of ∇ at x :

• the ramification index ρx(∇) ∈ N, equal to the splitting degree of ω;
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• the Katz rank κx(∇)=max(−vx(ω1)− 1, . . . ,−vx(ωn)− 1) ∈Q;

• the Malgrange irregularity ix(∇)=
∑n

i=1(−vx(ωi )− 1) ∈Q.

Here vx is the valuation defined by (OX )x (extended to formal ramified 1-forms in
the natural way). We’ll use the same notation for the local model at a given point.

Definition 1. Let (E,∇) be a meromorphic connection. Let x ∈ X , let (V,3,∇)
be the local model of (E,∇), and let ∇ = ∇reg

+ ω be a Babbitt–Varadarajan
decomposition of ∇ at x . The vector bundle E is log-split at x if

(i) ρx(∇)= 1, that is, ∇ is unramified at x ;

(ii) ∇reg(3)⊂3⊗O�(1), that is, 3 is logarithmic with respect to ∇reg;

(iii)
⊕s

i=13∩ Vi =3, where V1, . . . , Vs the eigenspaces of ω.

We will next use a classical fact; see [Van der Put and Singer 2003, page 166].

Lemma 5. Let E be endowed with a meromorphic connection ∇. For any family
of lattices M(x) ∈ Ex ⊗OX,x K (OX,x) for x in a discrete set S, there exists a unique
vector bundle EM such that

(EM)x =

{
Ex if x 6∈ S,

M(x) if x ∈ S

and a canonical meromorphic connection on EM that coincides with ∇ over X \S.
We still denote it by ∇ although it may have additional singularities on S.

Let 4(E) denote the set of bundles obtained from E in this way. A natural
extension of the local notion of index recalled in Section 1.1 to the set 4(E) is

[E : F] = deg E− deg F− n
∑
x∈X

vEx (Fx) for F ∈4(E).

Theorem 1. Let E be a holomorphic vector bundle equipped with a connection
∇ that is unramified everywhere. There exists a unique maximal subsheaf EL of
locally free OX -modules of rank n of E that is log-split everywhere. The sheaf EL

is called the Levelt bundle of the vector bundle E.

Proof. At every singularity x , we can construct the formal Levelt lattice

L̂ = (Ex ⊗OX ÔX,x)L

of the formalized stalk of E at x ; see [Corel 2004, Proposition 4.1 and Definition 14,
page 1384]. The Levelt bundle EL is then simply constructed as the extension of E

by the family of lattices L x = L̂ ∩ (Ex ⊗OX K (OX,x)) for x ∈ S. �

Definition 2. Let X̃ be a compact Riemann surface. A nonconstant holomorphic
map X̃ π

−→X is called a ∇-admissible cover of X if the pull-back connection π∗∇
on π∗E over X̃ is unramified everywhere.
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Proposition 2. There exists a ∇-admissible cover of X for any connection ∇.

Proof. Let S = {x1, . . . , x p} be the singular set of ∇ on X , and let ρi = ρxi (∇)

be the ramification index at xi as in Definition 1. Let m = lcm(ρ1, . . . , ρp), and
let g be a cycle of maximal length m in the symmetric group Sm . If p is even,
let gi = g(−1)k−1

for 1 6 i 6 p. If p = 2q + 1 is odd, embed Sm into S2m as
the subgroup fixing the last m terms (in the standard action on {1, . . . , 2m}). Let
g̃ be the cycle acting as g on those last m terms. Define now gi = g(−1)k−1

for
1 6 i 6 2q − 1, and put gp−1 = g̃ and gp = (gg̃)−1. By construction, we have
g1 · · · gp = 1, and each permutation gi is an indecomposable cycle of length m,
except at most one which appears as the product of two disjoint cycles of length m.
By Riemann’s existence theorem (see [Lando and Zvonkin 2004, Theorem 1.8.14
and Remark 1.8.15, pages 74–75]), there exist a compact Riemann surface X̃ and a
holomorphic covering X̃ π

−→X , ramified over S= {x1, . . . , x p}, such that the order
of ramification at all points of π−1(S) is equal to m, which is divisible by the
corresponding ρi . Therefore, the covering map π is ∇-admissible. Note that the
degree of π is m in the even case and 2m in the odd one, and moreover that each
fiber over S is of cardinality 1, except maybe at one point, where it is at most 2. �

At the cost of introducing an apparent ramification point x0 /∈S, one can impose
that the ramification of π be equal to the ramification of the connection, as follows.
For ρ,m ∈N, let the regular (ρ,m)-permutation in Sρm be defined as the product
g = c1 · · · cm of the m disjoint cycles

ck =

(
kρ+ 1 · · · (k+ 1)ρ
kρ+ 2 · · · kρ+ 1

)
of length ρ. Let N = lcm(ρ1, . . . , ρp), and for all 1 6 i 6 p, let mi = N/ρi .
Define gi ∈ SN as the regular (ρi ,mi )-permutation in SN . The group G = 〈gi 〉

generated by these permutations acts transitively since N is the lcm of the cycle
lengths. For an arbitrary point x0 /∈ S, put g0 = (g1 · · · gp)

−1. Let X̃ π
−→X be

the ramified cover attached to the data (x0, . . . , x p, g0, . . . , gp), as in the proof of
Proposition 2. In this case, the fiber π−1(xi ) for i > 1 consists of exactly mi points,
each of ramification index ρi . For further reference, we call this special covering
the minimal ∇-admissible covering with apparent ramification at x0.

Proposition 3. Let (E,∇) be an unramified connection on X , and let EL be the
Levelt bundle of E. For any covering map X̃ π

−→X , we have (π∗E)L = π
∗(EL).

Proof. We only need to prove the local version of this fact. Let X̃ be a compact
Riemann surface, and let X̃ π

−→X be a nonconstant holomorphic map. For x̃ ∈ X̃ ,
the fraction field H of the formal local ring OH = ÔX̃ ,x̃ is a finite extension of the
fraction field K of O= ÔX,x of degree m = ex̃(π). The local model (W,M,1) of
(π∗E, π∗∇) satisfies W = V ⊗K H and M =3⊗O OH . In other terms, (W,M,1)
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is a degree m finite extension of (V,3,∇). Assume that ∇ is unramified at x .
The stalk 3L = (EL)x is the Levelt lattice of 3 = Ex . We want to prove that the
Levelt lattice ML = ((π

∗E)L)x̃ of M satisfies ML = 3L ⊗O OH . We first assume
that ∇ is regular. The Levelt lattice 3L is then simply the largest logarithmic
sublattice of3. Suppose that (3L)H ( ML . The lattice L−=ML∩V is the largest
sublattice of ML (with the standard embedding V ↪→W ) that is defined over O, and
it clearly satisfies∇(L−)⊂ L−⊗O�(1). By maximality of the Levelt lattice, we get
3L= L−. By duality, the smallest O-rational lattice L+ containing ML also satisfies
∇(L+) ⊂ L+ ⊗O �(1). Therefore, we get the inclusions L− = 3L ⊂ L+ ⊂ 3.
Since 3L is maximal, we conclude that L− = L+ = 3L ; hence ML = (3L)H

and we get the desired contradiction. If ∇ is not regular, let ∇ = ∇r
+ ω be

a Babbitt–Varadarajan decomposition of ∇, and let VH =
⊕s

i=1 Vi be the direct
sum of eigenspaces of ω. According to [Corel 2004, proof of Proposition 4.1],
the Levelt lattice ML satisfies ML =

⊕s
i=1 ML(∇

reg)∩ Vi , where ML(∇
reg) is the

Levelt lattice of M with respect to the regular connection ∇reg. The first part of
the proof then yields the claimed result. �

Assume E is log-split with respect to the connection ∇. Let x ∈ X and let ω be
an irregular part of ∇ at x . The local model (V,3,∇) of E at x satisfies

(∇−ω)(3)⊂3⊗O�(1).

Therefore 〈∇ − ω, θ〉 induces a linear map 0 on the C-vector space 3/m3 of
dimension n, which is the residue of the regular connection ∇reg with respect to3,
and is independent of the irregular part ω.

Definition 3. The exponents µE,x
1 , . . . , µE,x

n at x of the connection (E,∇) are

(1) the eigenvalues of the map 0 defined just above if E is log-split and

(2) otherwise, the numbers

µE,x
i =

1
ey(π)

µ
EL (π),y
i for 16 i 6 n for any y ∈ π−1(x),

where X̃ π
−→X is any ∇-admissible ramified cover.

By definition, the Levelt bundle EL(π)= (π
∗E)L of π∗E is log-split with respect

to π∗∇. According to Proposition 3, the previous definition makes sense.

2. The companion bundles of a differential equation

2.1. The Fuchs bundle. Let S be a discrete subset of X and U0 = X \S. For any
xi ∈ S there exists an open neighborhood Ui of xi such that Ui ∩ S = {xi } and
Ui ∩U j = ∅ for nonzero i 6= j . The open covering U = (U0, . . . ,Up) of X will
be called an adapted covering of X (for S).
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Let X be a compact Riemann surface, and let K = 0(X,MX ) be the function
field of X . The set Der(K/C) = 0(X,2X ) of C-derivations of K and its dual
�1

K/C = 0(X,M1
X ) of differential forms are respectively the global sections of the

sheaves of meromorphic sections of the holomorphic tangent and cotangent bundle
of X . For any nontrivial derivation τ ∈Der(K/C), let ωτ be the unique differential
form such that 〈ωτ , τ 〉 = 1. Let DX = K [τ ]. We consider a monic differential
operator

(7) L = τ n
+ a1τ

n−1
+ · · ·+ an ∈DX .

The singular set S of (7) is the reunion of the supports of the divisor of τ and the
polar divisors of a1, . . . , an .

We consider an adapted covering (U0, . . . ,Up) of X such that there is a local
coordinate ti on Ui for i > 0. Locally around xi , there exists a meromorphic
function fi ∈ 0(Ui ,MX ) such that fiτ = ti d

dti
. We can assume, at the cost of

shrinking Ui , that fi is holomorphic and does not vanish on Ui \{xi }. Put θi = ti d
dti

.
The operator L i = f n

i L can be written on Ui in the form

L i = θ
n
i + bi

1θ
n−1
i + · · ·+ bi

n.

Define differential systems defined over the subsets Ui by

(S)
(0) d f=�0 f on U0 with �0 = AL(τ )⊗ωτ ,

(i) d f =�i f on Ui for i > 0 with �i = AL i (θi )⊗ dti/ti ,

where AL is the companion matrix of the operator L .

Lemma 6. The systems (S) can be glued together as a holomorphic vector bundle
F endowed with a meromorphic connection ∇ on X , having exactly S as singular
set. We say that the pair (F,∇) is the Fuchs bundle of the operator L.

Proof. By construction of the adapted covering (Ui ) of X , only the intersections
U0i = U0 ∩Ui are nonempty. Let Qi be the matrix whose i-th column represents
the coefficients of θi in the basis (1, τ, . . . , τ n−1). Also by construction, the matrix
Pi =

tQ−1
i satisfies the relation AL i (θi )= ( fi/ti )P−1

i AL(τ )Pi−P−1
i θi Pi . Restricting

if necessary the open sets Ui , the matrix Pi is holomorphically invertible in the set
Ui \ {xi } =U0i . Tensoring by dti/ti = (ti/ fi )ωτ , we get

(8) �i = P−1
i �0 Pi − P−1

i d Pi .

The collection P = (Pi )
p
i=0 is a (Čech) cocycle in Z1(U,GLn(OX )). Let F be a

holomorphic vector bundle on X having P as cocycle, with F its sheaf of sections.
Then (8) defines a meromorphic connection∇ on F with singularities only in S. �
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2.2. The companion bundle. Let (F,∇) be the Fuchs bundle of a differential op-
erator L ∈DX with singular set S. Let X̃ π

−→X be a ∇-admissible ramified cover
of X . We construct a holomorphic vector bundle C(π) on X̃ as follows.

Let (π∗F, π∗∇) be the pull-back of the Fuchs bundle. Let x̃ ∈ π−1(S) and
consider the local model (W,M,1) of (π∗F, π∗∇) at x̃ . Let K and H be the
field of fractions of OX,π(x̃) and OX̃ ,x̃ , respectively. The degree of the extension
[Ĥ : K̂ ] = [H : K ] is divisible by the ramification index of ∇. Therefore W admits
a basis (e) in which any irregular part is diagonal. Let M be the OĤ -lattice spanned
by (e) in W . We define a local lattice M(x̃) at x̃ by putting M(x̃)=M∩ (π∗F)x̃ .

Definition 4. Let the companion bundle of L with respect to the admissible rami-
fied cover π be the pair (C(π),∇π ), where C(π) is the continuation of the pull-back
bundle (π∗F, π∗∇) by the family of local lattices (M(x̃))x∈π−1(S) and ∇π is the
extension of the pull-back connection π∗∇ to C(π) according to Lemma 5.

Note 1. When L is fuchsian, the Fuchs bundle of L coincides with the companion
bundle C(idX ). However, the companion bundle of an irregular operator does not
generally come from a bundle defined on X — it is not even equal to the Levelt
bundle (F)L(π) of the Fuchs bundle.

The definition of Fuchs’ exponents has been extended by D. Bertrand and G.
Laumon [1985] in relation with arithmetic transcendence problems.

Theorem 2. Let X = P1(C) and L ∈ C(z)[ d
dz ]. The exponents µC(π),x̃i

j (∇π ) of
∇
π with respect to the companion bundle C(π) of an admissible ramified cover π

satisfy

µ
C(π),x̃i
j (∇π )= ex̃i (π)λ

π(x̃i )
j (L),

where the λπ(x̃i )
j (L) are the Bertrand–Laumon exponents of L.

Proof. If the operator L is fuchsian, the Fuchs bundle F is logarithmic and the
exponents µF,xi

j (∇) of ∇ with respect to F are equal to the eigenvalues of the
residue of �i . By construction, the characteristic polynomial of Resxi �i is indeed
equal to the indicial polynomial P xi

L . If L is not fuchsian, the bundle C(π) is nev-
ertheless log-split. At any x̃ ∈ S(∇π ), consider the formal local model (V,3,∇)
of (C(π),∇π ). There is an isomorphism of DĤ -modules

DĤ/DĤ L '
t⊕

i=1

DĤ/DĤ L i (θζ − ηi ),

where L i are formal fuchsian operators and ηi ∈ (1/ζ )C[(1/ζ )], where ζ is a
uniformizing parameter of H , and θζ = ζ d

dζ ; see [Robba 1980, théorème 3.2].
There exists an H -basis (e) of V and a local parameter ζ of X̃ such that the matrix
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of the irregular part ω of ∇ attached to ζ at x̃ is the diagonal matrix

Mat(ωH , (e))= diag(ω1 In1, . . . , ωs Int ), where ωi = ηi ⊗ (dz/z).

As a consequence of [Corel 2004, proof of Theorem 3, page 1383], the map ωH

is in fact defined as the tensor extension of a map ω defined over K . Explicitly,
Mat(∇−ω, (e))=diag(BL1⊗(dζ/ζ ), . . . , BL t⊗(dζ/ζ )). By definition, the expo-
nents µC(π),x̃i

j (∇π ) are the eigenvalues of Resζ=0 Mat(∇−ω, (e)), and therefore
the roots of the characteristic polynomials of

Resζ=0 BL i = ex̃i (π)Resz=0 BL i .

But this matches exactly the definition of the exponents of the operator L; see
[Bertrand and Beukers 1985]. �

Corollary 3. The definition of the Bertrand–Laumon exponents of a differential
operator L ∈DX holds on any Riemann surface X , and so does Theorem 2 if X is
compact.

Indeed, the companion bundle and its exponents are independent of the local
parameter. This answers a question raised originally by G. Laumon.

3. Fuchs relations

Theorem 3 (Fuchs relation). Let E be a holomorphic vector bundle equipped with
a meromorphic connection ∇. The sum of the exponents µE,x

i of ∇ with respect
to E at all points x ∈ X satisfies the relations∑

x∈X

n∑
i=1

µE,x
i =

deg EL(π)

degπ
6 deg E,

where EL(π) is the Levelt bundle of E in any admissible ramified cover X̃ π
−→X.

Moreover, equality is achieved if and only if E is log-split.

Proof. Assume that E is log-split with respect to ∇. Let
∧n
∇ be the connection

induced by∇ on the determinant line bundle
∧n E. A line bundle is always log-split

with respect to a connection on it, so Definition 3 gives
∑n

i=1 µ
E,x
i = Resx

∧n
∇.

By Bott’s [1967] residue formula for line bundles, we get
∑

x∈X Resx
∧n
∇ =

deg
∧n E = deg E and hence the result. In the general case, let X̃ π

−→X be a
∇-admissible cover. By definition, µE,x

i = µ
EL (π),x̃
i /ex̃(π) for any x̃ ∈ π−1(x).

Therefore, we get∑
x̃∈π−1(x)

n∑
i=1

µ
EL (π),x̃
i =

∑
x̃∈π−1(x)

ex̃(π)

n∑
i=1

µE,x
i = degπ

n∑
i=1

µE,x
i .
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Since EL(π) is log-split, we get
∑

x̃∈X̃
∑n

i=1 µ
EL (π),x̃
i = deg EL(π).

Now assume that ∇ is unramified. The exact sequence 0→ EL→ E→P→ 0
yields the following relation for the dimensions of the cohomology groups:

(9) h0(X,EL)− h0(X,E)+ h0(X,P)− h1(X,EL)+ h1(X,E)− h1(X,P)= 0.

By the Riemann–Roch theorem for a vector bundle F [Gunning 1967, page 64],
we have h0(X,F)−h1(X,F)= deg F+n(1−g), where g is the genus of X . The
sheaf P is a skyscraper sheaf with support on S; thus H 1(X,P) = 0. From (9),
we get

(10) deg E− deg EL = h0(X,P)=
∑
x∈S

dimC (E/EL)x =
∑
x∈S

[Ex : (Ex)L ]> 0

and hence the inequality. So, deg E = deg EL if and only if Ex = (Ex)L for all
x ∈S, that is, E= EL . The ramified case follows since degπ deg E= degπ∗E. �

This result shows that log-split is a sensible extension to the irregular case of the
classical notion of logarithmic vector bundle for a regular connection. The maxi-
mality property stated in Theorem 1 together with relation (10) yield the following
consequence, and show that the exponents also measure how far the vector bundle
E is from being log-split.

Corollary 4. For any ∇-admissible covering π of X , and any log-split bundle
F ∈4(π∗E), one has

06 d∇(E)= deg E−
∑
x∈X

n∑
i=1

µE,x
i 6 1

degπ
[π∗E : F],

and the minimum is attained only for the Levelt bundle EL(π) for a given cover-
ing π . The nonnegative rational number d∇(E) will be called the ∇-defect of the
bundle E.

Corollary 5. Let C(π) be the companion bundle of a differential operator L ∈DX

with respect to a ramified cover π of X. The degree deg C(π) satisfies the relation

deg C(π)=
( 1

2 n(n− 1)(p+ 2g− 2)+ 1
2 i(End L)

)
degπ,

where g is the genus of X and i(End L)=
∑

x∈X ix(End L) is the total irregularity
of the operator End L induced by L on End DX . Therefore, a companion bundle is
never trivial except if L is regular with p = 2 singularities over X = P1(C).

Proof. We have
∑

x̃∈X̃
∑n

j=1 µ
C(π),x̃
j (∇) = deg C(π) since the bundle C(π) is

log-split with respect to ∇. On the other hand, the generalized Fuchs relation on a
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Riemann surface (see [Saito 1958] or [Chudnovsky and Chudnovsky 1984]) asserts
that ∑

x∈S(L)

( n∑
j=1

λx
j (L)−

1
2 ix(End L)

)
= (p+ 2g− 2)1

2 n(n− 1).

A vector bundle F is trivial only if it has degree 0. The only case when this can
happen for C(π) is for a fuchsian operator on P1(C) with p = 2, and it does
indeed since the Fuchs bundle over P1(C) is isomorphic to

⊕n−1
i=0 O(−i(p− 2));

see [Van der Put and Singer 2003, Proposition 6.14]. �

Note 2. In the case of P1(C), Bolibrukh [1990a] constructs a Fuchsian system
from a fuchsian operator L , whose exponents µs

i coincide with the exponents λs
i

of L , except at one point x , where µx
i = λ

x
i − i(p− 2) for 16 i 6 n. This system

can be understood as a meromorphic trivialization of the Fuchs bundle F of L ,
which is holomorphic outside x and moreover logarithmic at x , the correction to
the exponents at x corresponding precisely to the type of the bundle.

3.1. The local index of the Levelt bundle.
Definition 5. Let f ∈ End(Cn), let {λ1, . . . , λt } be the distinct eigenvalues of f ,
and let Ei = ker( f −λi idCn )n be the characteristic space corresponding to λi . Put
finally ρ j

i = rk( f |Ei−λi idEi )
j . We define the Jordan invariant J ( f ) and the kernel

invariant K ( f ) of f as the quantities

J ( f )=
∑
d>1

1
2 d(d − 1)nd =

t∑
i=1

∑
j>1

ρ
j

i and K ( f )= 1
2

t∑
i=1

∑
j>0

1
j
i (1

j
i − 1),

where nd is the number of Jordan blocks of dimension d in the Jordan normal form
of f , and 1 j

i = ρ
j

i − ρ
j+1

i .

Let (V,3,∇) be the local model of (E,∇) at a point x ∈ S(∇), with corre-
sponding field K , ring O and maximal ideal m. Let 3L be the Levelt lattice of
3. Take a representative δ = δ3 of (PM∇)x , and let E1, . . . , Et ⊂3/m3 be the
characteristic spaces corresponding to the different eigenvalues of δ. By Sibuya’s
lemma (see [Babbitt and Varadarajan 1983, Lemma 1, page 42]), the space V
is a direct sum of uniquely defined ∇-stable sub-K -vector spaces {W1, . . . ,Wt }

of V , such that (Wi ∩3)/m3 = Ei . Let ∇i = ∇|Wi and δi = δ|Wi . The formal
connections (Wi ,∇i )16i6t form the Sibuya splitting of (E,∇) at x . Note that we
have

⊕t
i=1 Wi ∩3=3 and 3L =

⊕t
i=1(Wi ∩3)L [Corel 2004, page 1389].

Proposition 4. If the connection ∇ is unramified at x , the index [3 : 3L ] of the
Levelt lattice 3L of 3 satisfies

(p− κ)J (δ)6
t∑

i=1

(p− κi )J (δi )6 [3 :3L ]6
1
2 n(n− 1)p− 1

2 ix(End∇)− K (δ),
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where p= px(End∇), κ = κx(End∇) and κi = κ(End∇i ).

Proof. Since ∇ is unramified at x , the Katz rank κ is an integer and we have

(11) [3 :3L ] = [3 :3κ ] + [3κ :3L ].

On the other hand, by Sibuya’s lemma, we have [3 :3L ] =
∑t

i=1[3i : (Wi ∩3)L ].
We can therefore restrict to the case where the map δ has only one eigenvalue
λ. Let ωi = ϕi dz/z be the eigenvalues of the irregular part of ∇ at x attached
to a local coordinate z. For Q = akzk

+ · · · + a`z` ∈ C[z, z−1
], put v(Q) = k

and deg Q = `. If λ 6= 0, then there exists a unique P ∈ (1/z)C[1/z] of largest
degree such that v(ϕi − P) > v(ϕi ) for all i . If λ = 0, it can also happen that the
polynomial P is defined. Otherwise, put P = 0. The map ∇

′
= ∇ − Pdz/z is

also a connection on V . According to [Corel 2004, Lemma 4.2], the Levelt lattices
3L(∇) and 3L(∇

′) coincide. Let p′ and κ ′ respectively be the Poincaré and Katz
ranks of ∇

′. From relation (11) we get

[3 :3L ] = [3 :3L(∇
′)] = [3 :3κ ′(∇

′)] + [3κ ′(∇
′) :3L(∇

′)].

According to [Corel 2004, proof of Proposition 5.1, page 1390], we have

06 [3κ ′(∇′) :3L(∇
′)]6 1

2 n(n− 1)κ ′− 1
2 i(End ∇

′),

while Proposition 1 yields

(p′− κ ′)
∑
j>1

ρ j 6 [3 :3κ ′(∇
′)]6 1

2 n(n− 1)(p′− κ ′)− 1
2

∑
j>0

1 j (1 j
− 1),

where ρ j
= rk(δ3−λidV )

j and1 j
=ρ j
−ρ j+1. Clearly i(End ∇

′)= i(End ∇) and
p′ and κ ′ respectively are equal to the Poincaré and Katz ranks of End ∇. Adding
these two inequalities, we get

(p′− κ ′)
∑
j>1

ρ j 6 [3 :3L ]6
1
2 n(n− 1)p′− 1

2 i(End ∇)− 1
2

∑
j>0

1 j (1 j
− 1).

for the case where the map δ3 has only one eigenvalue. If we have several eigen-
values λ1, . . . , λt , then p′ = p. Relation (11) implies

t∑
i=1

(pi−κi )
∑
j>1

ρ
j

i 6 [3 :3L ]

6
t∑

i=1

1
2 ni (ni−1)pi−

t∑
i=1

1
2 i(End∇i )−

1
2

t∑
i=1

∑
j>0

1
j
i (1

j
i −1),

where ni = dimC Ei and pi is the Poincaré rank of the subconnection End∇i over
the lattice 3∩Wi . However, we have pi 6 p and pi < p if and only if J (δi ) = 0;



EXPONENTS OF A CONNECTION ON A COMPACT RIEMANN SURFACE 277

therefore we can replace everywhere pi with p. By definition,

K (δ)= K (δ3)=
1
2

t∑
i=1

∑
j>0

1
j
i (1

j
i − 1) and J (δi )=

∑
j>1

ρ
j

i .

The eigenvalues of the irregular part (determinant factors) of End∇i are among
those of End∇; therefore we have κi 6 κ and hence

t∑
i=1

(p− κi )J (δi )> (p− κ)
t∑

i=1

J (δi )= (p− κ)J (δ),

since δ =
⊕t

i=1 δi and distinct δi have no common eigenvalue. Finally, by the
argument used in [Corel 2004, top of page 1391], we get

t∑
i=1

1
2 i(End∇i )+

∑
i< j

ni n jp=
1
2 i(End ∇)= 1

2 ix(End∇). �

R. R. Gontsov [2004] gives an analogous relation, with the weaker bounds rk δ
instead of J (δ) and

∑t
i=11

i
0(1

i
0− 1) instead of K (δ).

3.2. Fuchs inequalities for a holomorphic vector bundle.

Definition 6. With the previous notation, we define

Jx(∇)= J (δx), Kx(∇)= K (δx), L x(∇)= (px(End∇)− κx(End∇))J (δx),

where δx is a representative of (PM∇)x if px(∇) > 0, and δx = 0 otherwise.

Theorem 4 (Fuchs inequalities). Let∇ be a meromorphic connection over a vector
bundle E of rank n. The sum of exponents satisfies the inequalities

deg E− 1
2 n(n− 1)h(End E)+ 1

2 i(End∇)+ K (E)6
∑
x∈X

n∑
i=1

µE,x
i 6 deg E− L(E),

where

L(E)=
∑
x∈X

L x(∇), i(End∇)=
∑
x∈X

ix(End∇), K (E)=
∑
x∈X

1
ρx(∇)

Kx(∇).

Proof. Assume ∇ is unramified. Proposition 4 and relation (10) imply

L(E)6 deg E− deg EL 6
1
2 n(n− 1)h(End E)− 1

2 i(End∇)− K (E)

when ∇ has no ramification, whence the result by Theorem 3. Let now X̃ π
−→X be

an admissible ramified cover. The connection π∗∇ is unramified; hence we have

(12)
L(π∗E)6 degπ∗E− deg EL(π)

6 1
2 n(n− 1)h(End π∗E)− 1

2 i(End π∗∇)− K (π∗E).
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Let x̃ ∈ X̃ and put for simplicity e = ex̃(π) and x = π(x̃). If the map (PM∇)x
has matrix M for a given local basis of sections of E and a local coordinate
at x , then there exist a local basis of sections of π∗E and a local coordinate
at x̃ such that (PM π∗∇)x̃ has matrix eM . Therefore K x̃(π

∗E) = Kx(E), and
K (π∗E)=

∑
x∈X |π

−1(x)|Kx(E). If π is the minimal covering with apparent ram-
ification at x0 /∈ S, we get |π−1(x)| = ρx(∇) degπ . Since End π∗∇ = π∗ End∇
and px̃(π

∗
∇) = epx(∇), we get κx̃(End π∗∇) = e κx(End∇) and i x̃(End π∗∇) =

e ix(End∇). In particular, Jx̃(π
∗
∇)= eJx(∇). Therefore we get

J (π∗E)=
∑
x̃∈X̃

ex̃(π)Jπ(x̃)(∇)= degπ
∑
x∈X

Jx(∇)= degπ J (∇).

The same holds for any subconnection; therefore L(π∗E) = (degπ)L(E). In the
same way, h(End π∗E) = (degπ)h(End E) and i(End π∗∇) = (degπ)i(End∇).
Since degπ∗E= degπ deg E, dividing out (12) by degπ gives the claim. �

Corollary 6. The ∇-defect of E satisfies

L(E)6 d∇(E)6 1
2 n(n− 1)h(End E)− 1

2 i(End∇)− K (E).

Note 3. We can refine all these estimates by replacing the quantity L(E) with
`(E)=

∑
x∈X

∑t
i=1(px(End∇i )−κx(End∇i ))Jx(∇i ), where (∇1, . . . ,∇t) are the

local formal subconnections given by the Sibuya splitting of E at x .
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37077 GÖTTINGEN

GERMANY

ecorel@gwdg.de




