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We provide two characterizations of helicoids in S2 ×R and in H2 ×R. First,
we show that any nontrivial ruled minimal surface in S2 × R and in H2 × R

is a part of a helicoid. Second, we also show that these surfaces can be
characterized as the only surface with zero mean curvature with respect to
both the Riemannian product metric and the Lorentzian product metric on
S2 × R or H2 × R.

1. Introduction

The papers [Abresch and Rosenberg 2004] and [Rosenberg 2002] generated recent
study of constant mean curvature surfaces in S2

×R or H2
×R, including minimal

ones. The latter were studied in general 3-dimensional product manifolds M2
×R

in [Elbert and Rosenberg 2008; Meeks and Rosenberg 2004; 2005], while minimal
or constant mean curvature surfaces in the manifolds S2

×R and in H2
×R were

given a detailed treatment in [Masal’tsev 2004; Nelli and Rosenberg 2002; Sa Earp
and Toubiana 2005].

Here, we study ruled minimal surfaces (RMSs) in S2
×R and in H2

×R. RMSs
in three-dimensional space forms are well studied. The classical Catalan theorem
states that any nontrivial RMS in E3 is a part of a complete helicoid; Lawson [1970]
showed that any nontrivial RMS in S3 is a part of a spherical helicoid of the form
(cos kx cos y, sin kx cos y, cos x sin y, sin x sin y) for some k > 0, while do Carmo
and Dajczer [1983] showed that any nontrivial RMS in H3 is a part of a helicoid
of the form (cosh kx cosh y, sinh kx cosh y, cos x sinh y, sin x sinh y).

For RMSs in S2
×R or H2

×R, Masal’tsev [2004] showed that any nontrivial
complete RMS is a helicoid (see Section 4.2 for a discussion on the definition of
helicoids of various types and Remark 4.6 for case of helicoids that was not given
in [Masal’tsev 2004]). The completeness assumption was used in an essential way
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in the proof in [Masal’tsev 2004], in order to simplify the differential equations.
Without the completeness assumption, we show in the first part of this paper that
any RMS is a part of a complete helicoid. Our proof is intrinsic in that — unlike
the proof in [Masal’tsev 2004] — we do not assume S2

×R or H2
×R is embedded

in R4. Instead we use a Jacobi field argument, which we think is new in studying
RMSs. Hence our computations and results are local.

A less well-known aspect of the helicoid in E3 is that it is the only nontrivial
surface whose mean curvature is everywhere zero with respect to both the stan-
dard Riemannian and the standard Lorentzian metric [Kim et al. 2009b; Kobayashi
1983]. We show that the same is true for the helicoid in S2

×R or H2
×R. The idea

of considering both the Riemannian and the Lorentzian metric on the same space
is not new; see for example [Albujer and Alı́as 2009; Alı́as and Palmer 2001].
The idea of this paper applies as well to RMSs in the Riemannian 3-dimensional
Heisenberg group Nil3 to give similar results [Kim et al. 2009a].

2. Ruled surfaces in M × R

Let M be a 2-dimensional Riemannian manifold. We consider the Riemannian
product manifold M ×R, with Levi-Civita connection ∇.

2.1. A parametrization of ruled surfaces in M ×R. Let 6 ⊂ M×R be a surface
ruled by geodesics, and let p∈6 be a point such that Tp6 is transverse to the height
direction. Since a curve u(t) = (u1(t), u2(t)) in M ×R is a geodesic if and only
if u1(t) is a geodesic in M and u2(t) is a geodesic in R, 6 has a parametrization
in a neighborhood of p given by

(1)
X (s, t)= (ϕ(s, t), g(s)t + h(s))⊂ M ×R,

ϕ(s, t)= expα(s)(tx(s))

for some functions g(s) and h(s), where α(s) is a unit speed curve in M , and x(s) is
a vector field along α consisting of unit vectors tangent to M , with 〈x(s), α′(s)〉≡0.
We say that a ruled surface 6 is horizontally ruled if g(s)= 0 in this parametriza-
tion, that is, if the ruling geodesics are orthogonal to the height direction.

The definition of the curvature function implies this:

Lemma 2.2. Let κ(s) be the curvature function of the curve α(s). Then

x′(s)= κ(s)α′(s).

For the parametrization ϕ(s, t) on M , let e1(s, t) = dϕ
(
∂
∂t

)
, and let e2(s, t) be

the parallel translation of α′(s) along the geodesic γs(t) := ϕ(s, t). Then e1, e2 is
an orthonormal frame field tangent to M along ϕ(s, t), and one has

∇e1e1 = 0 and ∇e1e2 = 0.
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By abuse of the notation we will consider e1 and e2 as vector fields in M ×R.

2.3. Jacobi fields. Set V (s, t) := dϕ(∂/∂s)|(s,t). Then V (s, · ) is a Jacobi field
along the geodesic γs(t) with

(2) V (s, 0)= α′(s)= e2(s, 0).

Since ∇dϕ(∂/∂t)dϕ(∂/∂s)=∇dϕ(∂/∂s)dϕ(∂/∂t), one has by Lemma 2.2

(3)
∇e1 V (s, 0)=∇dϕ(∂/∂t)dϕ

(
∂
∂s

)∣∣
(s,0)

=∇dϕ(∂/∂s)dϕ
(
∂
∂t

)∣∣
(s,0) = x′(s)= κ(s)e2(s, 0).

3. Ruled minimal surfaces in S2 × R

Let 6 ⊂ S2
×R be a ruled surface with the parametrization (1).

3.1. Ruled surfaces in S2 ×R. Since the curvature of S2 is (assumed to be) 1, the
Jacobi field along γs(t) with the initial conditions (2) and (3) is computed as

dϕ
(
∂
∂s

)
= V (s, t)= (κ(s) sin t + cos t)e2(s, t).

Now we compute ∇e2e1 and ∇e2e2. Since

∇dϕ(∂/∂t)dϕ
(
∂
∂s

)
=∇e1(κ(s) sin t + cos t)e2

= (κ(s) cos t − sin t)e2+ (κ(s) sin t + cos t)∇e1e2

= (κ(s) cos t − sin t)e2,

∇dϕ(∂/∂s)dϕ
(
∂
∂t

)
=∇(κ(s) sin t+cos t)e2e1

= (κ(s) sin t + cos t)∇e2e1,

∇dϕ(∂/∂t)dϕ
(
∂
∂s

)
=∇dϕ(∂/∂s)dϕ

(
∂
∂t

)
,

one has

∇e2e1 =
κ(s) cos t − sin t
κ(s) sin t + cos t

e2.

Since 〈∇e2e2, e1〉 = −〈e2,∇e2e1〉 and 〈∇e2e2, e2〉 = 0, one also has

(4) ∇e2e2 = −
κ(s) cos t − sin t
κ(s) sin t + cos t

e1.
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Let e3 be a unit vector field on 6 tangent to R. Then, for the parametrization X
in (1), one has

Xs = dϕ
(
∂
∂s

)
+ (g′(s)t + h′(s))e3

= V + (g′(s)t + h′(s))e3

= (κ(s) sin t + cos t)e2+ (g′(s)t + h′(s))e3,

X t = dϕ
(
∂
∂t

)
+ g(s)e3 = e1+ g(s)e3.

The coefficients of the first fundamental form are

E = 〈Xs, Xs〉 = (κ(s) sin t + cos t)2+ (g′(s)t + h′(s))2,

F = 〈Xs, X t 〉 = g(s)(g′(s)t + h′(s)),

G = 〈X t , X t 〉 = 1+ g(s)2,

and the unit normal vector field n of 6 is

n= 1
W

(
g(s)(κ(s) sin t + cos t)e1+ (g′(s)t + h′(s))e2− (κ(s) sin t + cos t)e3

)
,

where W = ((1+ g(s)2)(κ(s) sin t + cos t)2 + (g′(s)t + h′(s))2)1/2. By abuse of
notation, let ∇ be the covariant differentiation in S2

×R. Since ∇e1e3 =∇e2e3 = 0
one has by (4)

∇Xs Xs = κ
′(s) sin te2+ (g′′(s)t + h′′(s))e3+ (κ(s) sin t + cos t)2∇e2e2

=−(κ(s) sin t + cos t)(κ(s) cos t − sin t)e1+ κ
′(s) sin te2

+ (g′′(s)t + h′′(s))e3,

∇X t Xs = (κ(s) cos t − sin t)e2+ g′(s)e3,

∇X t X t = 0.

The coefficients of the second fundamental form are

l = 〈∇Xs Xs,n〉

=
1
W

(
−g(s)(κ(s) sin t + cos t)2(κ(s) cos t − sin t)

+ κ ′(s) sin t (g′(s)t + h′(s))− (κ(s) sin t + cos t)(g′′(s)t + h′′(s))
)
,

m = 〈∇X t Xs,n〉

=
1
W

(
(κ(s) cos t − sin t)(g′(s)t + h′(s))− (κ(s) sin t + cos t)g′(s)

)
,

n = 〈∇X t X t ,n〉 = 0.

3.2. Ruled minimal surfaces in S2 × R. In this section, we are to find all not
necessarily complete RMSs in S2

× R. We first note that the horizontal level
surface S2

× {z0} for z0 ∈ R is a RMS in S2
×R. Other trivial RMS are those of

the form γ×R, where γ is a geodesic in S2.
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Lemma 3.3. Let 6 be a ruled minimal surface in S2
×R whose parametrization

is given by (1). Then g(s)= 0, that is, 6 is horizontally ruled and h(s) is a linear
function. If h(s) is constant, 6 is a part of the horizontal level surface S2

× {z0}.
If h(s) is nonconstant, the curvature κ(s) of the base curve α(s) is constant.

Proof. We may assume that α(s) is a nonconstant curve. Recall the formula

H = 1
2

Gl−2Fm+En
EG−F2 ,

where H is the mean curvature. Since 6 is minimal, we have Gl−2Fm+En= 0.
A computation gives

(5) A(s) cos3 t + B(s) sin3 t +
2∑

k=0

Ak(s)tk cos t +
2∑

k=0

Bk(s)tk sin t = 0,

where

A(s)=−g(1+ g2)(κ3
− 3κ),

B(s)=−g(1+ g2)(3κ2
− 1),

A0(s)= g(1+ g2)(κ3
− 2κ)+ (1+ g2)h′′+ 2gκh′2− 2gg′h′,

B0(s)= g(1+ g2)(2κ2
− 1)− κ ′(1+ g2)h′+ (1+ g2)h′′κ − 2gh′2− 2gg′κh′,

A1(s)= (1+ g2)g′′+ 4gg′h′κ − 2gg′2,

B1(s)=−κ ′(1+ g2)g′+ (1+ g2)g′′κ − 4gg′h′− 2gg′2κ,

A2(s)= 2gκg′2,

B2(s)=−2gg′2.

Since the functions cos3 t , sin3 t , t2 cos t , t2 sin t , t cos t , t sin t , cos t , sin t are
linearly independent, all the coefficients above are zero. From

A(s)=−g(s)(1+ g(s)2)(κ(s)3− 3κ(s))= 0,

B(s)=−g(s)(1+ g(s)2)(3κ(s)2− 1)= 0,

one has g(s)= 0, and (5) reduces to

h′′(s) cos t + (h′′(s)κ(s)− κ ′(s)h′(s)) sin t = 0.

Finally this equation gives h′′(s)= 0 and κ ′(s)h′(s)= 0. Therefore h(s)= as+ b
for some constant a and b. If a = 0, it is clear that 6 ⊂S2

×{z0} for some z0 ∈R.
If a 6= 0, one has κ ′(s)= 0 from κ ′(s)h′(s)= 0. �

If a ruled minimal surface 6 coincides with a helicoid or S2
× {z0} in an open

set U ⊂ 6, then 6 coincides with the helicoid or S2
× {z0} along all the ruling
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Figure 1. Helicoid in S2
×R. The lines of latitude in the surface

represent the rulings by radial geodesics on S2.

geodesics through U . By Lemma 3.3, the condition that a ruled minimal surface6
coincides with a helicoid along the base curve is an open and closed condition.

Theorem 3.4. A ruled minimal surface in S2
× R is either a part of a cylinder

γ×R over a geodesic γ, a horizontal level surface S2
×{z0} or a helicoid.

Proof. It suffices to consider the case when the curvature κ(s) of the base curve
α(s) is constant. Any constant curvature curve in S2 is a circle, so let p be its
center. Then 6 is a helicoid in S2

×R with axis {p}×R. �

Since a totally geodesic surface is an RMS, we have the following:

Corollary 3.5. A totally geodesic surface in S2
×R is either a part of a cylinder

γ×R over a geodesic γ or a horizontal level surface S2
×{z0}.

Remark 3.6. Take a parameter s such that h(s)=bs for a constant b. Let p∈S2 be
the center of the circle α(s) in Theorem 3.4. Considering S2

×R as the hypersurface
in R4 with coordinates (x1, x2, x3, x4) given by the equation x2

1 + x2
2 + x2

3 = 1 and
chosen so that p = (0, 0,±1, 0), one obtains the parametrization

x1(s, t)= cos s cos t, x2(s, t)= sin s cos t, x3(s, t)= sin t, x4(s, t)= bs.

of the ruled minimal surface 6 ⊂ S2
×R given in [Masal’tsev 2004].
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4. Ruled minimal surfaces in H2 × R

We consider in this section RMSs in H2
× R. The computations are almost the

same as those of the previous section, but we include them here for the sake of
completeness. Let 6 ⊂ H2

×R be a ruled surface.

4.1. Ruled surfaces in H2 × R. Since the curvature of H2 is (assumed to be) −1,
the Jacobi field along γs(t) with the initial conditions (2) and (3) is computed as

dϕ
(
∂
∂s

)
= V (s, t)= (κ(s) sinh t + cosh t)e2(s, t).

Now we compute ∇e2e1 and ∇e2e2. Since

∇dϕ(∂/∂t)dϕ
(
∂
∂s

)
=∇e1(κ(s) sinh t + cosh t)e2 = (κ(s) cosh t + sinh t)e2,

∇dϕ(∂/∂s)dϕ
(
∂
∂t

)
=∇(κ(s) sinh t+cosh t)e2e1 = (κ(s) sinh t + cosh t)∇e2e1,

∇dϕ(∂/∂t)dϕ
(
∂
∂s

)
=∇dϕ(∂/∂s)dϕ

(
∂
∂t

)
,

one has

∇e2e1 =
κ(s) cosh t + sinh t
κ(s) sinh t + cosh t

e2.

Since 〈∇e2e2, e1〉 = − 〈e2,∇e2e1〉 and 〈∇e2e2, e2〉 = 0, one also has

(6) ∇e2e2 =−
κ(s) cosh t + sinh t
κ(s) sinh t + cosh t

e1.

Let e3 be a unit vector field on 6 tangent to R. Then, for the parametrization X
in (1), one has

Xs = dϕ
(
∂
∂s

)
+ (g′(s)t + h′(s))e3 = V + (g′(s)t + h′(s))e3

= (κ(s) sinh t + cosh t)e2+ (g′(s)t + h′(s))e3,

X t = dϕ
(
∂
∂t

)
+ g(s)e3 = e1+ g(s)e3.

The coefficients of the first fundamental form are

E = 〈Xs, Xs〉 = (κ(s) sinh t + cosh t)2+ (g′(s)t + h′(s))2,

F = 〈Xs, X t 〉 = g(s)(g′(s)t + h′(s)),

G = 〈X t , X t 〉 = 1+ g(s)2,

and the unit normal vector field n of 6 is

n= 1
W

(
g(s)(κ(s) sinh t+cosh t)e1+ (g′(s)t+h′(s))e2− (κ(s) sinh t+cosh t)e3

)
,

where W = ((1+ g(s)2)(κ(s) sinh t + cosh t)2+ (g′(s)t + h′(s))2)1/2.
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By abuse of notation once again let ∇ be the covariant differentiation in H2
×R.

Since ∇e1e3 =∇e2e3 = 0, one has by (6)

∇Xs Xs = κ
′(s) sinh te2+ (g′′(s)t + h′′(s))e3+ (κ(s) sinh t + cosh t)2∇e2e2

=−(κ(s) sinh t + cosh t)(κ(s) cosh t + sinh t)e1+ κ
′(s) sinh te2

+ (g′′(s)t + h′′(s))e3,

∇X t Xs = (κ(s) cosh t + sinh t)e2+ g′(s)e3,

∇X t X t = 0.

The coefficients of the second fundamental form are

l = 〈∇Xs Xs,n〉

=
1
W

(
−g(s)(κ(s) sinh t + cosh t)2(κ(s) cosh t + sinh t)

+ κ ′(s) sinh t (g′(s)t + h′(s))− (κ(s) sinh t + cosh t)(g′′(s)t + h′′(s))
)
,

m = 〈∇X t Xs,n〉

=
1
W

(
(κ(s) cosh t + sinh t)(g′(s)t + h′(s))− (κ(s) sinh t + cosh t)g′(s)

)
,

n = 〈∇X t X t ,n〉 = 0.

4.2. Ruled minimal surfaces in H2 × R. Here we will find all not necessarily
complete RMSs in H2

×R. The horizontal level surface H2
×{z0} for z0 ∈ R is an

RMS in H2
×R. Other obvious RMSs are those of the form γ ×R, where γ is a

geodesic in H2.

Lemma 4.3. Let 6 be a ruled minimal surface in H2
×R whose parametrization

is given by (1). Then g(s)= 0, that is, 6 is horizontally ruled and h(s) is a linear
function. If h(s) is constant, 6 is a part of the horizontal level surface H2

× {z0}.
If h(s) is nonconstant, the curvature κ(s) of the base curve α(s) is constant.

Proof. We may assume that α(s) is a nonconstant curve. Since 6 is minimal, we
have Gl − 2Fm+ En = 0. A computation gives

(7) C(s) cosh3 t + D(s) sinh3 t +
2∑

k=0

Ck(s)tk cosh t +
2∑

k=0

Dk(s)tk sinh t = 0,

where

C(s)=−g(1+ g2)(κ3
+ 3κ),

D(s)=−g(1+ g2)(3κ2
+ 1),

C0(s)= g(1+ g2)(κ3
+ 2κ)− (1+ g2)h′′− 2gκh′2+ 2gg′h′,

D0(s)=−g(1+ g2)(2κ2
+ 1)+ κ ′(1+ g2)h′− (1+ g2)h′′κ − 2gh′2+ 2gg′κh′,

C1(s)=−(1+ g2)g′′− 4gg′h′κ + 2gg′2,
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Figure 2. Helicoid in H2
×R of elliptic type. H2 is shown in the

Poincaré disk model.

D1(s)= κ ′(1+ g2)g′− (1+ g2)g′′κ − 4gg′h′+ 2gg′2κ,

C2(s)=−2gκg′2,

D2(s)=−2gg′2.

Since the functions cosh3 t , sinh3 t , t2 cosh t , t2 sinh t , t cosh t , t sinh t , cosh t ,
sinh t are linearly independent, all the above coefficients are zero. From D(s)= 0
one has g(s)= 0, and (7) reduces to

−h′′(s) cosh t − (h′′(s)κ(s)− κ ′(s)h′(s)) sinh t = 0.

Hence finally one has h′′(s) = 0 and κ ′(s)h′(s) = 0. Therefore h(s) = as + b for
some constant a and b. If a = 0, it is clear that 6 ⊂H2

×{z0} for some z0 ∈ R. If
a 6= 0, one has κ ′(s)= 0 from κ ′(s)h′(s)= 0. �

Any nonconstant curve in H2 with constant curvature is a geodesic circle, a
horocircle, an equidistance curve, or a geodesic. If the α(s) of Lemma 4.3 is a
geodesic circle, that is, if κ(s) > 1, let p ∈H2 be its center, and let Rot(p) denote
a rotation on H2 with respect to p. Then Lemma 4.3 shows that these RMSs
are invariant under a screw motion Rot(p)× Trans : H2

× R→ H2
× R, where

Trans : R→ R denotes a translation, and hence are helicoids in this case.
On the other hand, if 0 ≤ κ(s) ≤ 1, that is, if the curve α(s) is a geodesic, an

equidistance curve or a horocircle, the surface 6 is not invariant under a screw
motion. However, if we extend the classical notion of helicoid to include surfaces
invariant under Iso+ × Trans : H2

× R → H2
× R, where Iso+ : H2

→ H2 is
an orientation preserving isometry, then 6 can be regarded as a helicoid in this
generalized sense. The similarity of the parametrization (1) of these surfaces to
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Figure 3. Helicoid in H2
×R of parabolic type and its top view.

H2 is shown in the Poincaré disk model. The height is given in the
same scale as the diameter of H2.

the classical helicoid (that is, the case when the base curve α(s) is a geodesic
circle) backs up this viewpoint. Following [Casson and Bleiler 1988], let us call a
(complete) RMS 6 a helicoid of elliptic type if α(s) is a geodesic circle, a helicoid
of parabolic type if α(s) is a horocircle, and a helicoid of hyperbolic type if α(s)
is a geodesic or an equidistance curve. As in the case of S2

× R, we have the
following.

Theorem 4.4. A ruled minimal surface in H2
× R is either a part of a cylinder

γ×R over a geodesic γ, a horizontal level surface H2
×{z0}, or a helicoid.

Corollary 4.5. A totally geodesic surface in H2
×R is either a part of a cylinder

γ×R over a geodesic γ, or a horizontal level surface H2
×{z0}.

Remark 4.6. By taking the hyperboloid model of H2, let us consider H2
× R

as the hypersurface in the Lorentz–Minkowski space R3,1 given by the equation
−x2

0 + x2
1 + x2

2 = −1 with x0 > 0. By for example [Dillen and Kühnel 1999], the
orientation preserving isometries of H2 of elliptic type, of parabolic type and of
hyperbolic type are given respectively as follows:x0

x1

x2

→
1 0 0

0 cos s sin s
0 − sin s cos s

x0

x1

x2
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Figure 4. Helicoid in H2
×R of hyperbolic type and its top view.

H2 shown in the Poincaré disk model. The height is given in the
same scale as the diameter of H2.

x0

x1

x2

→
1+ s2/2 − s2/2 s

s2/2 1− s2/2 s
s − s 1

x0

x1

x2


x0

x1

x2

→
cosh s sinh s 0

sinh s cosh s 0
0 0 1

x0

x1

x2


Hence we have the following parametrization for helicoids of each type:

(1) elliptic type


1 0 0 0
0 cos s sin s 0
0 − sin s cos s 0
0 0 0 0




cosh t
sinh t

0
0

+


0
0
0
bs

=


cosh t
sinh t cos s
− sinh t sin s

bs


(2) parabolic type


1+ s2/2 − s2/2 s 0

s2/2 1− s2/2 s 0
s −s 1 0
0 0 0 0




cosh t
sinh t

0
0

+


0
0
0
bs

=


cosh t + s2e−t/2
sinh t + s2e−t/2

se−t

bs
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(3) hyperbolic type
cosh s sinh s 0 0
sinh s cosh s 0 0

0 0 1 0
0 0 0 0




cosh t
0

sinh t
0

+


0
0
0
bs

=


cosh s cosh t
sinh s cosh t

sinh t
bs


These give the parametrizations of helicoids in [Masal’tsev 2004]. In fact, that of
parabolic type is missed there, as the author omits the case when the rotation axis
vector is lightlike.

5. Minimal and maximal surfaces in S2 × R and H2 × R

We show in this section that the helicoid in S2
×R or H2

×R is the only nontrivial
surface whose mean curvature is everywhere zero with respect to both the standard
Riemannian product metric and the standard Lorentzian product metric. For both
cases, we write the inner product as 〈 · , · 〉 and the Levi-Civita connection as ∇.

5.1. Riemannian and Lorentzian metrics on M × R. Suppose (M, ds2) is a 2-
dimensional Riemannian manifold. Consider the Riemannian metric g= ds2

+dz2

and the Lorentzian metric h = ds2
− dz2 on the product space M × R, where z

is a canonical coordinate and dz2 is the canonical metric on R. A surface in the
Lorentzian product space is called spacelike if its induced metric is Riemannian.
A spacelike surface is called maximal if its mean curvature is zero everywhere.

5.2. A frame field on M × R. Take a frame e1, e2, e3 = ∂/∂z on M ×R so that
∇e3e1=∇e3e2= 0 and so that e1 and e2 are orthonormal vectors tangent to M×{c}
for every c ∈ R. Then e1, e2, e3 form an orthonormal frame with respect to both g
and h. A computation gives

(8)

∇e1e1 = ae2, ∇e1e2 =−ae1, ∇e1e3 = 0,

∇e2e1 =−be2, ∇e2e2 = be1, ∇e2e3 = 0,

∇e3e1 =∇e3e2 =∇e3e3 = 0,

where a = 〈∇e1e1, e2〉 and b = 〈∇e2e2, e1〉.

5.3. Graphs in M ×R. Let 6 be the graph of a function f : M→R. We assume
when considering the metric h that e1( f )2 + e2( f )2 < 1. In other words, we
consider the spacelike graph in the Lorentzian product space. At a point of 6,
both T1 = e1 + e1( f )e3 and T2 = e2 + e2( f )e3 are tangent to 6 with respect to
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either g or h. Then

ng =
1

Wg

(
−e1( f )e1− e2( f )e2+ e3

)
, where Wg =

√
e1( f )2+ e2( f )2+ 1,

nh =
1

Wh
(−e1( f )e1− e2( f )e2− e3), where Wh =

√
1− e1( f )2− e2( f )2.

are the unit normal vector fields of 6 with respect to g and h. By differentiating
〈ng,ng〉g = 1 and 〈nh,nh〉h =−1, one can easily check the following:

Lemma 5.4. With Wg and Wh given above, we have

e1

(e1( f )
Wg

)
e1( f )+ e1

(e2( f )
Wg

)
e2( f )+ e1

( 1
Wg

)
= 0,

e2

(e1( f )
Wg

)
e1( f )+ e2

(e2( f )
Wg

)
e2( f )+ e2

( 1
Wg

)
= 0,

e1

(e1( f )
Wh

)
e1( f )+ e1

(e2( f )
Wh

)
e2( f )− e1

( 1
Wh

)
= 0,

e2

(e1( f )
Wh

)
e1( f )+ e2

(e2( f )
Wh

)
e2( f )− e2

( 1
Wh

)
= 0.

5.5. Mean curvature of a graph in the Riemannian product M × R. Now let Sg

be the shape operator of the graph 6 in the Riemannian product space (M×R, g).
By (8) and Lemma 5.4, one computes

Sg(T1)=−∇T1ng =−∇e1ng − e1( f )∇e3ng =−∇e1ng

= e1

(e1( f )
Wg

)
e1+ e1

(e2( f )
Wg

)
e2− e1

( 1
Wg

)
e3

+
e1( f )

Wg
∇e1e1+

e2( f )
Wg
∇e1e2−

1
Wg
∇e1e3

=

(
e1

(e1( f )
Wg

)
− a

e2( f )
Wg

)
e1+

(
e1

(e2( f )
Wg

)
+ a

e1( f )
Wg

)
e2− e1

( 1
Wg

)
e3

=

(
e1

(e1( f )
Wg

)
− a

e2( f )
Wg

)
T1+

(
e1

(e2( f )
Wg

)
+ a

e1( f )
Wg

)
T2,

Sg(T2)=−∇T2ng =−∇e2ng

=

(
e2

(e1( f )
Wg

)
+ b

e2( f )
Wg

)
e1+

(
e2

(e2( f )
Wg

)
− b

e1( f )
Wg

)
e2− e2

( 1
Wg

)
e3

=

(
e2

(e1( f )
Wg

)
+ b

e2( f )
Wg

)
T1+

(
e2

(e2( f )
Wg

)
− b

e1( f )
Wg

)
T2.

Now set fi = ei ( f ) and fi j = e j (ei ( f )) for i, j = 1, 2. Note then that fi j 6= f j i in
general. Then the mean curvature Hg of 6 as a surface in the Riemannian product
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space (M ×R, g) is computed as

Hg =
1
2 tr Sg =

1
2

(
e1

(e1( f )
Wg

)
+ e2

(e2( f )
Wg

)
− a

e2( f )
Wg
− b

e1( f )
Wg

)
=

1
2W 3

g

(
f11W 2

g − f1( f1 f11+ f2 f21)+ f22W 2
g

− f2( f1 f12+ f2 f22)− a f2W 2
g − b f1W 2

g
)

=
1

2W 3
g

(
f11(1+ f 2

2 )− ( f21+ f12) f1 f2+ f22(1+ f 2
1 )− (a f2+ b f1)W 2

g
)
.

5.6. Mean curvature of a spacelike graph in the Lorentzian product M ×R. Let
Sh be the shape operator of the graph6 in the Lorentzian product space (M×R, h).
By (8) and Lemma 5.4, one computes

Sh(T1)=−∇T1nh =−∇e1nh

= e1

(e1( f )
Wh

)
e1+ e1

(e2( f )
Wh

)
e2+ e1

( 1
Wh

)
e3

+
e1( f )

Wh
∇e1e1+

e2( f )
Wh
∇e1e2+

1
Wh
∇e1e3

=

(
e1

(e1( f )
Wh

)
− a

e2( f )
Wh

)
T1+

(
e1

(e2( f )
Wh

)
+ a

e1( f )
Wh

)
T2,

Sh(T2)=

(
e2

(e1( f )
Wh

)
+ b

e2( f )
Wh

)
T1+

(
e2

(e2( f )
Wh

)
− b

e1( f )
Wh

)
T2.

The mean curvature Hh of 6 as a surface in (M ×R, h) is computed as

Hh =
1
2 tr Sh =

1
2

(
e1

(e1( f )
Wh

)
+ e2

(e2( f )
Wh

)
− a

e2( f )
Wh
− b

e1( f )
Wh

)
=

1
2W 3

h

(
f11W 2

h + f1( f1 f11+ f2 f21)+ f22W 2
h

+ f2( f1 f12+ f2 f22)− a f2W 2
h − b f1W 2

h
)

=
1

2W 3
h

(
f11(1− f 2

2 )+ ( f21+ f12) f1 f2+ f22(1− f 2
1 )− (a f2+ b f1)W 2

h
)
.

5.7. Another characterization of (generalized) helicoids in S2 × R and H2 × R.
In this section we show that — except for the trivial level surfaces S2

× {z0} and
H2
×{z0}— helicoids are the only surfaces in S2

×R and H2
×R that are minimal

with respect to the Riemannian product metric g and at the same time maximal
with respect to the Lorentzian product metric h.

Lemma 5.8. Let 6 be a surface in M × R that is spacelike with respect to the
Lorentzian metric h. If Hg = Hh = 0, then 6 is horizontally ruled by geodesics.
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Proof. To prove the theorem, it is enough to show that 6∩{z = c} is a geodesic in
M ×R. Since 6 is spacelike with respect to h, 6 is locally a graph of a function
f : M→ R. The vector field X = f2e1− f1e2 is tangent to the curve 6 ∩ {z = c}.
Since Hg = 0 and Hh = 0, one has respectively

(9)
f11(1+ f 2

2 )−( f21+ f12) f1 f2+ f22(1+ f 2
1 )−(a f2+b f1)(1+ f 2

1+ f 2
2 )= 0,

f11(1− f 2
2 )+( f21+ f12) f1 f2+ f22(1− f 2

1 )−(a f2+b f1)(1− f 2
1− f 2

2 )= 0.

Subtracting the first of these from the second, one has

(10) 0= f11 f 2
2 − ( f12+ f21) f1 f2+ f22 f 2

1 − (a f2+ b f1)( f 2
1 + f 2

2 ).

Now, one has

∇X X = f2∇e1( f2e1− f1e2)− f1∇e2( f2e1− f1e2)

= ( f2 f21+ a f1 f2− f1 f22+ b f 2
1 )e1+ (− f2 f11+ a f 2

2 + f1 f12+ b f1 f2)e2.

Then, the vector X ∧∇X X , which is orthogonal to X and to ∇X X , is computed as

X ∧∇X X =
(

f2(− f2 f11+ a f 2
2 + f1 f12+ b f1 f2)

+ f1( f2 f21+ a f1 f2− f1 f22+ b f 2
1 )
)
e3

=−
(

f11 f 2
2 − ( f12+ f21) f1 f2+ f22 f 2

1 − (a f2+ b f1)( f 2
1 + f 2

2 )
)
e3,

which vanishes by (10). This implies that the vector field ∇X X is parallel to X .
Thus 6 ∩ {z = c} is a geodesic in M ×R since X is a vector field tangent to it. �

Let 6 be a surface in S2
×R with Hg = Hh = 0. Then 6 is a horizontally ruled

surface in the Riemannian product space by Lemma 5.8, and then 6 is S2
× {z0}

or a helicoid by Theorem 3.4. Note that the surface γ ×R is excluded since it is
not spacelike. Now let 6 be a surface in H2

×R with Hg = Hh = 0. Then 6 is
a horizontally ruled surface in the Riemannian product space by Lemma 5.8, and
then 6 is a H2

×{z0} or a generalized helicoid by Theorem 4.4. Again the surface
γ×R is excluded since it is not spacelike. We state this result as follows:

Theorem 5.9. (1) A surface in S2
×R with Hg=Hh=0 is S2

×{z0} or a helicoid.

(2) A surface in H2
×R with Hg = Hh = 0 is H2

×{z0} or a helicoid.
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