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VIA MASLOV INDEX

MIGUEL ÁNGEL JAVALOYES AND PAOLO PICCIONE

We prove an estimate on the difference of Maslov indices relative to the
choice of two distinct reference Lagrangians of a continuous path in the
Lagrangian Grassmannian of a symplectic space. We discuss some applica-
tions to the study of conjugate and focal points along a geodesic in a semi-
Riemannian manifold.

1. Introduction

Classical comparison theorems for conjugate and focal points in Riemannian or
causal Lorentzian geometry require curvature assumptions, or Morse index argu-
ments; see [Ambrose 1957; Eschenburg and O’Sullivan 1980; Galloway 1979;
Kupeli 1986; 1988]. In the general semi-Riemannian world, this approach does
not work, because the curvature is never bounded [Dajczer and Nomizu 1980]
and the index form has always infinite Morse index. In addition, it is well known
that singularities of the semi-Riemannian exponential map may accumulate along a
geodesic [Piccione and Tausk 2003], and there is no hope to formulate a meaningful
comparison theorem using assumptions on the number of conjugate or focal points.

There are several good indications that a suitable substitute for the notion of size
of the set of conjugate or focal points along a semi-Riemannian geodesic is given
by the Maslov index. This is a symplectic integer-valued invariant associated to
the Jacobi equation, or more generally to the linearized Hamilton equations along
the solution of a Hamiltonian system. This number replaces the Morse index of the
index form, which in the general semi-Riemannian case is always infinite, and in
some nondegenerate cases it is a sort of algebraic count of the conjugate points. In
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the Riemannian or causal Lorentzian case, the Maslov index of a geodesic relative
to some fixed Lagrangian coincides with the number of conjugate (or focal) points
counted with multiplicity. The exponential map is not locally injective around non-
degenerate conjugate points [Warner 1965], or more generally around conjugate
points whose contribution to the Maslov index is nonzero [Piccione et al. 2004].

Inspired by [Lytchak 2008], in this paper we prove an estimate on the difference
between Maslov indices (Proposition 3.3), and we apply this estimate to obtain a
number of results that are the semi-Riemannian analogue of the standard compar-
ison theorems in Riemannian geometry (Section 4). These results relate the exis-
tence and the multiplicity of conjugate and focal points with the values of Maslov
indices naturally associated to a given geodesic. It is very interesting to observe that
Riemannian versions of the results proved in the present paper, which are mostly
well known, are obtained here with a proof that appears to be significantly more
elementary than the classical proof using Morse theory. Detecting conjugate points
is interesting because their presence implies multiplicity of geodesics between pairs
of points. Estimates on the number of geodesics in terms of conjugate points can
be done either via Morse theory or via bifurcation theory. Recent results in this
direction are available also in the case of non-Riemannian metrics; see for instance
[Abbondandolo et al. 2003; Abbondandolo and Majer 2008] for the Morse theory
of geodesics in globally hyperbolic Lorentzian manifolds, [Giannoni et al. 2001]
for that theory in stationary Lorentzian manifolds, and [Piccione et al. 2004] for
the bifurcation theory of geodesics in arbitrary semi-Riemannian manifolds.

As to the applications in Morse theory or bifurcation theory of the results of the
present paper, an important observation is in order. It is now well established that
in semi-Riemannian geometry there exist conjugate points that do not contribute
to the spectral flow of the second variation of the geodesic action functional. The
spectral flow is an integer-valued invariant associated to continuous paths of sym-
metric Fredholm bilinear forms, and it is a natural substitute for the Morse index in
strongly indefinite variational problems. Is is known that jumps of the Maslov in-
dex detect bifurcation of geodesics [Piccione et al. 2004]. Similarly, for the Morse
theory of geodesics, only conjugate points that contribute to the spectral flow are
relevant. The conjugate points whose existence is established in the results of this
paper are detected via jumps of the Maslov index, which by the semi-Riemannian
Morse index theorem is equal to the spectral flow. Thus, our results can indeed be
used in Morse theory and in bifurcation theory.

The paper is organized as follows. In Section 2 we recall a few basic facts about
the geometry of the Lagrangian Grassmannian3 of a symplectic space (V, ω), and
about the notion of Maslov index for continuous paths in 3. We use a generalized
notion of Maslov index, which applies to paths with arbitrary endpoints; for paths
with endpoints on the Maslov cycle, there are several conventions regarding the
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contribution of the endpoints. Here we adopt a convention slightly different from
that in [Robbin and Salamon 1993]; see (2-3), (2-4) and (2-5).

Section 3 contains the estimate (3-1) on the difference of Maslov indices relative
to the choice of two arbitrarily fixed reference Lagrangians L0 and L1. Using
the canonical atlas of charts of the Grassmannian Lagrangian and the transition
map (2-1), the proof is reduced to studying the index of perturbations of symmetric
bilinear forms; see Lemma 3.1 and Corollary 3.2. Several analogous estimates,
(3-2) and (3-3), are obtained using properties (2-4) and (2-6) of Hörmander’s index.

Section 4 discusses applications to the study of conjugate and focal points along
semi-Riemannian geodesics. In Section 4.1, we describe how to obtain Lagrangian
paths out of the flow of the Jacobi equation along a geodesic γ : [a, b] → M and
an initial nondegenerate submanifold P of a semi-Riemannian manifold (M, g).
In Lemma 4.1, we give a characterization of which Lagrangian subspaces of the
symplectic space Tγ(a)M⊕ Tγ(a)M arise from an initial submanifold construction.
Section 4.1 proves the comparison results, which include comparison between con-
jugate and focal points, as well as between conjugate points relative to distinct
initial endpoints. We conclude the paper in Section 5 with a few final remarks
concerning the question of nondegeneracy of conjugate and focal points.

2. Preliminaries

The Lagrangian Grassmannian. Let us consider a symplectic space (V, ω), with
dim(V ) = 2n; we will denote by Sp(V, ω) the symplectic group of (V, ω), which
is the closed Lie subgroup of GL(V ) consisting of all isomorphisms that preserve
ω. A subspace X ⊂ V is isotropic if the restriction of ω to X × X vanishes iden-
tically; an n-dimensional (that is, maximal) isotropic subspace L of V is called a
Lagrangian subspace. We denote by 3 the Lagrangian Grassmannian of (V, ω),
which is the collection of all Lagrangian subspaces of (V, ω), and is a compact dif-
ferentiable manifold of dimension 1

2 n(n+1). A real-analytic atlas of charts on3 is
given as follows. Start with a Lagrangian decomposition (L0, L1) of V , that is, one
in which L0, L1 ∈3 are transverse Lagrangians with V = L0⊕L1. Then denote by
30(L1) the open and dense subset of 3 consisting of all Lagrangians L transverse
to L1. A diffeomorphism ϕL0,L1 from 30(L1) to the vector space Bsym(L0) of all
symmetric bilinear forms on L0 is defined by ϕL0,L1(L)= ω(T · , · )|L0×L0 , where
T : L0 → L1 is the unique linear map whose graph in L0 ⊕ L1 = V is L . The
kernel of ϕL0,L1(L) is the space L ∩ L0.

We will need to express the transition map ϕL1,L◦ϕ
−1
L0,L , where L0, L1, L ∈3 are

three Lagrangians such that L ∩ L0 = L ∩ L1 = {0}. Note that the two charts ϕL0,L

and ϕL1,L have the same domain. If η : L1→ L0 denotes the isomorphism defined
as the restriction to L1 of the projection L ⊕ L0→ L0, then for all B ∈ Bsym(L0)
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we have (see for instance [Piccione and Tausk 2008, Lemma 2.5.4])

(2-1) ϕL1,L ◦ϕ
−1
L0,L(B)= η

∗B+ϕL1,L(L0),

where η∗ is the pull-back by η.
If (L0, L1) is a Lagrangian decomposition of V , there is a bijection between 3

and the set of pairs (P, S), where P ⊂ L1 is a subspace and S : P × P → R is
a symmetric bilinear form on P; see [Piccione and Tausk 2008, Exercise 1.17].
More precisely, to each pair (P, S) one associates the Lagrangian subspace L P,S

defined by

(2-2) L P,S =
{
v+w : v ∈ P, w ∈ L0, ω(w, · )|P + S(v, · )= 0

}
.

Maslov index. Let us recall a few notions related to symmetric bilinear forms;
for further details we recommend [Piccione and Tausk 2008]. Given a symmetric
bilinear form B on a (finite-dimensional) real vector space W , the index of B is
defined to be the dimension of a maximal subspace of W on which B is negative
definite. The coindex of B is the index of −B, and the signature sign(B) of B is
defined to be the difference coindex minus index.

We will now recall briefly the notion of Maslov index for a continuous path
` : [a, b] → 3. For a fixed Lagrangian L0 ∈ 3, the L0-Maslov index µL0(`) of `
is the unique integer such that

(a) µL0 is fixed-endpoint homotopy invariant;

(b) µL0 is additive by concatenation;

(c) if `([a, b])⊂30(L1) for some Lagrangian L1 transverse to L0, then

(2-3) µL0(`)= n+[ϕL0,L1(`(b))] − n+[ϕL0,L1(`(a))].

See [Giambò et al. 2004] for a similar discussion. Let us denote by µ−L0
the L0-

Maslov index function relative to the opposite symplectic form −ω on V . The
relation between the functions µL0 and µ−L0

is given by

(2-4) µ−L0
(`)=−µL0(`)+ dim(`(a)∩ L0)− dim(`(b)∩ L0),

for every continuous path ` : [a, b] →3.
Let us emphasize that, for curves ` whose endpoints are not transverse to L0,

there are several conventions for how the endpoints contribute to the Maslov index.
For instance, the definition of L0-Maslov index µ̄L0 in [Robbin and Salamon 1993]
is obtained by replacing (2-3) with

(2-5) µ̄L0(`)=
1
2 sign[ϕL0,L1(`(b))] −

1
2 sign[ϕL0,L1(`(a))],

in which case the Maslov index takes values in 1
2 Z.1

1In this convention, the Maslov index changes sign when one takes the opposite symplectic form.
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Given any continuous path ` : [a, b]→3 and any two Lagrangians L0, L ′0 ∈3,
the difference µL0(`) − µL ′0(`) depends only on L0 and L ′0 and the endpoints
`(a) and `(b) of `. This quantity will be denoted by q(L0, L ′0; `(a), `(b)), and it
coincides (up to some factor that is irrelevant here) with the so-called Hörmander
index; see [Hörmander 1971, Definition 3.3.2]. The Hörmander index satisfies
certain symmetries; we will need that

(2-6) q(L0, L1; L ′0, L ′1)=−q(L ′0, L ′1; L0, L1) for all L0, L1, L ′0, L ′1 ∈3.

The quantity τ(L0, L1, L2) = q(L0, L1; L2, L0) = −q(L0, L1; L0, L2) coincides
(up to some factor) with the Kashiwara index [Lion and Vergne 1980]. The Kashi-
wara index function determines completely the Hörmander index by the identity

(2-7) q(L0, L1; L ′0, L ′1)= τ(L0, L1, L ′0)− τ(L0, L1, L ′1)

for all L0, L1, L ′0, L ′1 ∈3,

which is easily proved using property (b) of the Maslov index.

3. An estimate of the difference of Maslov indices

Lemma 3.1. Let B and C be symmetric bilinear forms on a (finite dimensional)
real vector space V . Then −n−(C)≤ n+(B+C)− n+(B)≤ n+(C).

Proof. It suffices to prove the inequality n+(B+C)−n+(B)≤ n+(C); if this holds
for every B and C , replacing C with −C and B with B +C will yield the other
inequality −n−(C) ≤ n+(B +C)− n+(B). Choose W ⊂ V a maximal subspace
of V on which B+C is positive definite, so that dim(W )= n+(B+C), and write
W = W+ ⊕ W−, where B|W+×W+ is positive definite and B|W−×W− is negative
semidefinite. Since B+C is positive definite on W , it follows that C |W−×W− must
be positive definite, so that n+(C |W×W )≥ dim(W−). Then

n+(B+C)= dim(W )= dim(W−)+ dim(W+)

≤ n+(C |W×W )+ n+(B|W×W )≤ n+(B)+ n+(C). �

Corollary 3.2. Let C be a fixed symmetric bilinear form on V . Then for all
B1, B2 ∈ Bsym(V ),∣∣n+(B1)− n+(B2)− n+(B1+C)+ n+(B2+C)

∣∣≤ n−(C)+ n+(C).

Proposition 3.3. For any continuous curve ` : [a, b]→3 and any pair L0, L1 ∈3

of Lagrangians, we have

(3-1)
∣∣µL0(`)−µL1(`)

∣∣≤ n− dim(L0 ∩ L1).



48 MIGUEL ÁNGEL JAVALOYES AND PAOLO PICCIONE

Proof. Since µL0(`)−µL1(`) depends only on the endpoints `(a) and `(b), we can
assume the existence of a Lagrangian L ∈30(L0)∩3

0(L1) such that `(t)∈30(L)
for all t ∈ [a, b]. Namely, we choose L ∈30(L0)∩3

0(L1)∩3
0(`(a))∩30(`(b))

(these are dense opens subsets of 3, hence their intersection is nonempty!), and
replace ` by any continuous curve in 30(L) from `(a) to `(b).

Once we are in this situation, then the Maslov indices of ` are given by

µL0(`)= n+[ϕL0,L(`(b))] − n+[ϕL0,L(`(a))],

µL1(`)= n+[ϕL1,L(`(b))] − n+[ϕL1,L(`(a))].

Now consider the isomorphism η : L1 → L0 obtained as the restriction to L1 of
the projection L⊕ L0→ L0; using formula (2-1) for the transition function for the
charts ϕL0,L and ϕL1,L , we have for all α ∈30(L)

ϕL1,L(α)= η
∗(ϕL0,L(α)+ η∗ϕL1,L(L0)),

and so n+(ϕL1,L(α))=n+(ϕL0,L(α)+C), where C=η∗ϕL1,L(L0) does not depend
on α. Note that

n+(C)+ n−(C)= n− dim(Ker(C))= n− dim(L0 ∩ L1).

Inequality (3-1) is obtained easily from Corollary 3.2 by setting B1 = ϕL0,L(`(b))
and B2 = ϕL0,L(`(a)). �

Using the symmetry property (2-6) of Hörmander index, we also get this estimate:

Corollary 3.4. For any continuous curve ` : [a, b] →3 and any pair L0, L1 ∈3

of Lagrangians, we have

(3-2)
∣∣µL0(`)−µL1(`)

∣∣≤ n− dim(`(a)∩ `(b)).

Moreover, changing the sign of the symplectic form and using (2-4), one obtains
easily the inequalities

(3-3)

∣∣µL0(`)−µL1(`)− dim(`(a)∩ L0)+ dim(`(a)∩ L1)

+ dim(`(b)∩ L0)− dim(`(b)∩ L1)
∣∣≤ n− dim(L0 ∩ L1),∣∣µL0(`)−µL1(`)− dim(`(a)∩ L0)+ dim(`(a)∩ L1)

+ dim(`(b)∩ L0)− dim(`(b)∩ L1)
∣∣≤ n− dim(`(a)∩ `(b)).

4. Comparison results for conjugate and focal points

4.1. Geodesics and Lagrangian paths. Let us now look specifically at curves of
Lagrangians arising from the Jacobi equation along a semi-Riemannian geodesic.
Let (M, g) be a semi-Riemannian manifold of dimension n, and let ∇ be the co-
variant derivative of the Levi-Civita connection of g, with curvature tensor chosen
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with the sign convention R(X, Y )=[∇X ,∇Y ]−∇[X,Y ]. We will assume throughout
the section that γ : [a, b]→M is a given geodesic in M ; when needed, we will also
consider extensions of γ to a larger interval [a′, b′] ⊃ [a, b]. The Jacobi equation
along γ is given by (D/dt)2V − R(γ̇, V )γ̇ = 0. Consider the flow of the Jacobi
equation, which is the family of isomorphisms

8t : Tγ(a)M ⊕ Tγ(a)M→ Tγ(t)M ⊕ Tγ(t)M for t ∈ [a, b]

defined by 8t(v,w) = (Jv,w(t), (D/dt)Jv,w(t)), where Jv,w is the unique Jacobi
field along γ satisfying J (a) = v and (D/dt)J (a) = w. Consider the symplec-
tic form ω on the space V = Tγ(a)M ⊕ Tγ(a)M given by ω((v1, w1), (v2, w2)) =

g(v2, w1)−g(v1, w2). For all t ∈[a, b], define L t
0={0}⊕Tγ(t)M⊂Tγ(t)M⊕Tγ(t)M

and set `(t)=8−1
t (L t

0). An immediate calculation shows that `(t) is a Lagrangian
subspace of (V, ω), and we obtain in this way a smooth curve ` : [a, b]→3(V, ω).
Note that

(4-1) `(a)= La
0 =: L0.

Now, consider a smooth connected submanifold P ⊂ M , with γ(a) ∈ P and
γ̇(a) ∈ Tγ(a)P⊥.2 Let us also assume that P is nondegenerate at γ(a), meaning
that the restriction of the metric g to Tγ(a)P is nondegenerate.3 We will denote by
n−(g,P) and n+(g,P) respectively the index and the coindex of the restriction of
g to P, so that n−(g,P)+ n+(g,P) = dim(P). Let S be the second fundamental
form of P at γ(a) in the normal direction γ̇(a), seen as a g-symmetric operator
S : Tγ(a)P → Tγ(a)P. We say that a Jacobi field is P-Jacobi if V (a) ∈ Tγ(a)P
and V ′(a)+ S[V (a)] ∈ Tγ(a)P⊥. An instant t0 ∈ (a, b] is P-focal if there exists a
nonzero P-Jacobi field vanishing at t0. The multiplicity of a P-focal instant t0 is the
dimension of the space of P-Jacobi fields vanishing at t0. Consider the subspace
LP ⊂ V defined by

LP =
{
(v,w) ∈ Tγ(a)M ⊕ Tγ(a)M : v ∈ Tγ(a)P, w+ S(v) ∈ Tγ(a)P⊥

}
,

which is just the construction of Lagrangian subspaces described abstractly in (2-2).
If π1 : Tγ(a)M ⊕ Tγ(a)M→ Tγ(a)M is the projection onto the first summand, then
π1(LP)= Tγ(a)P is orthogonal to γ̇(a). Conversely:

Lemma 4.1. Let L ⊂ Tγ(a)M ⊕ Tγ(a)M be a Lagrangian subspace, and assume
that P = π1(L) is orthogonal to γ̇(a). Then, there exists a smooth submanifold P

orthogonal to γ̇(a) such that L = LP.

2The symbol ⊥ denotes orthogonality with respect to the semi-Riemannian metric g.
3The assumption of nondegeneracy for the initial submanifold is not strictly necessary for most

of the results of the paper. This assumption is used here for two reasons. First, it guarantees that
there are no P-focal points on an initial portion of the geodesic γ. Second, it allows us to write the
second fundamental form as a symmetric linear operator on Tγ(a)P
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Proof. Consider the Lagrangian decomposition (L0, L1) of Tγ(a)M⊕Tγ(a)M given
by L0 = {0} ⊕ Tγ(a)M and L1 = Tγ(a)M ⊕ {0}. Then there exists a symmetric
bilinear form S : P × P→ R such that L = L P,S as in (2-2). Let P0 ⊂ Tγ(a)M be
the submanifold given by the graph of the function P 3 x 7→ 1

2 S(x, x)γ̇(a) ∈ P⊥.
The desired submanifold P is obtained by taking the exponential of a small open
neighborhood of 0 in P0. It is easily seen that the tangent space to P0 at 0 is P ,
and since d expγ(a)(0) is the identity, Tγ(a)P= P . Moreover, using the fact that the
Christoffel symbols of the chart expγ(a) vanish at 0, it is easily seen that the second
fundamental form of P at γ(a) in the normal direction γ̇(a) is S. �

Let us also consider the space L0 = {0} ⊕ Tγ(a)M , which corresponds to the
Lagrangian associated to the trivial initial submanifold P={γ(a)}. Then, an instant
t ∈ ]a, b] is P-focal along γ if and only if `(t)∩ LP 6= {0}, and the dimension of
this intersection equals the multiplicity of t as a P-focal instant. In particular, t is
a conjugate instant, that is, γ(t) is conjugate to γ(a) along γ if `(t) ∩ L0 6= {0}.
Note that

(4-2) L0 ∩ LP = {0}⊕ Tγ(a)P⊥.

Thus

(4-3) dim(L0 ∩ LP)= codim(P).

For all t ∈ ]a, b], consider the space

AP[t] =
{
(D/dt)J (t) : J is a P-Jacobi field along γ with J (t)= 0

}
,

while for t = a we set AP[a] = Tγ(a)P⊥. Note that dim(AP[t])= dim(`(t)∩ LP).
When the initial submanifold is just a point, we will use the notation

(4-4)

A0[t] =
{
(D/dt)J (t) : J is a Jacobi field along γ

with J (a)= 0 and J (t)= 0
}
,

A0[a] = Tγ(a)M.

It is well known that focal or conjugate points along a semi-Riemannian geodesic
may accumulate [Piccione and Tausk 2003]; however, nondegenerate conjugate or
focal points are isolated. A P-focal point γ(t) along γ is nondegenerate when the
restriction of the metric g to the space AP[t] is nondegenerate. This is always the
case when g is positive definite (that is, Riemannian), or if g has index 1 (that is,
Lorentzian) and γ is either timelike or lightlike. Also, the initial endpoint γ(a),
which is always P-focal of multiplicity equal to the codimension of P, is always
isolated.

For all t ∈ [a, b], let us denote by n−(g,P, t), n+(g,P, t) and σ(g,P, t) re-
spectively the index, the coindex and the signature of the restriction of g to AP[t].
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If γ(t) is a nondegenerate P-focal point along γ with t ∈ ]a, b[, then t is an isolated
instant of nontransversality of the Lagrangians `(t) and LP. Its contribution to the
Maslov indexµLP(`), that is, µLP(`|[t−ε,t+ε])with ε>0 sufficiently small, is given
by the integer σ(g,P, t). The contribution of the initial point to the Maslov index
µLP(`), which as observed is always nondegenerate, is given by n+(g,P, a):

(4-5) µLP(`|[a,a+ε])= n+(g,P, a)= n+(g)− n+(g,P).

In particular,

(4-6) µL0(`|[a,a+ε])= n+(g).

Moreover, if γ(b) is a nondegenerate P-focal point along γ, then its contribution
to µLP(`) is equal to −n−(g,P, b). Thus, when g is Riemannian the Maslov
index µLP(`|[a+ε,b]) is the number of P-focal points along γ|[a,b[ counted with
multiplicity. The same holds when g is Lorentzian (that is, index equal to 1) and γ
is timelike. More generally, if all P-focal points along γ are nondegenerate, the
Maslov index µLP(`) is given by the finite sum

µP(`)= n+(g)− n+(g,P)+
∑

t∈]a,b[

σ(g,P, t)− n−(g,P, b).

All this follows easily from the following elementary result:

Lemma 4.2. Let B : I → Bsym(V ) be a C1-curve of symmetric bilinear forms on
a real vector space V . Assume that t0 ∈ I is a degeneracy instant, and denote by
B0 the restriction to Ker(B(t0)) of the derivative B ′(t0). If B0 is nondegenerate,
then t0 is an isolated degeneracy instant, and for ε > 0 sufficiently small,

n+(B(t0+ ε))− n+(B(t0))= n+(B0), n+(B(t0))− n+(B(t0− ε))=−n−(B0).

Lemma 4.2 is used to compute the Maslov index µLP as follows. Given a
P-focal instant t0 ∈ [a, b] and a Lagrangian L1 transversal to both LP and `(t0),
consider the smooth path t 7→ ϕLP,L1(`(t)) of symmetric bilinear forms on LP.
The kernel of B(t0) is identified with the space AP[t0], and the restriction of the
derivative B ′(t0) to Ker(B(t0)) with the restriction of the metric g to AP[t0]; see
for instance [Mercuri et al. 2002].

Comparison results. Let us now prove some comparison results for conjugate and
focal instants.

Proposition 4.3. Given any interval [α, β] ⊂ [a, b],

(4-7)
∣∣µL0(`|[α,β])−µLP(`|[α,β])

∣∣≤ dim(P).

Proof. It follows readily from Proposition 3.3 and (4-3). �
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In particular, we have the following result concerning the existence of conjugate
or focal instant along an arbitrary portion of a geodesic.

Corollary 4.4. For any interval [α, β] ⊂ ]a, b],

• if |µL0(`|[α,β])|> dim(P), then there is at least one P-focal instant in [α, β];

• if |µLP(`|[α,β])| > dim(P), then there is at least one conjugate instant in
[α, β].

Proof. By Proposition 4.3, if |µL0(`|[α,β])| > dim(P), then |µLP(`|[α,β])| > 0.
Since a 6∈ [α, β], this implies that there is a P-focal instant in [α, β]. The second
statement is totally analogous. �

On the other hand, the absence of conjugate (focal) instants gives an upper bound
on the number of focal (conjugate) instants.

Proposition 4.5. If γ has no conjugate instant, then∣∣µLP(`|[α,β])
∣∣≤ dim(P) for every interval [α, β] ⊂ ]a, b].

Similarly, if γ has no P-focal instant, then |µL0(`|[α,β])| ≤ dim(P).

Proof. If γ has no conjugate (respectively, P-focal) instant, then the Maslov index
µL0(`|[α,β])= 0 (respectively, µLP(`|[α,β])= 0) for all [α, β] ⊂ ]a, b]. �

All the statements above have a much more appealing version in the Riemannian
or timelike Lorentzian case, where the “Maslov index” can be replaced by the
number of conjugate or focal instants. In this situation, focal and conjugate instants
are always nondegenerate and isolated, and without using Morse theory one can
prove nice comparison results:

Corollary 4.6. Assume that either g is Riemannian or that g is Lorentzian and γ
is timelike (in which case P is necessarily a spacelike submanifold of M). Denote
by t0 and tP the instants

t0 = sup
{
t ∈ ]a, b] : there are no conjugate instants in ]a, t]

}
,

tP = sup
{
t ∈ ]a, b] : there are no P-focal instants in ]a, t]

}
.

Then tP ≤ t0, and if tP = t0, then the multiplicity of tP as a P-focal point is greater
than or equal to its multiplicity as a conjugate point.

Proof. Assume t0 < tP ≤ b and choose t ′ ∈ ] t0, tP[. Since there are no P-focal in-
stants in ]a, t ′] and P is spacelike, (4-5) implies µLP(`|[a,t ′])= codim(P)−n−(g).
On the other hand, µL0(`|[a,t ′])≥ n+(g)+ 1 since t0 is conjugate. Hence,

µL0(`|[a,t ′])−µLP(`|[a,t ′])≥ n+(g)+ n−(g)− codim(P)+ 1= dim(P)+ 1,

which contradicts (4-7).
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Assume that tP = t0 and that tP is a P-focal point. By possibly extending
the geodesic γ to a slightly larger interval [a, b′] with b′ > b, we can assume the
existence of t ′> tP with the property that there are no conjugate or P-focal instants
in ]tP, t ′]. Then µL0(`|[a,t ′]) = n+(g)+mul(tP), where mul(tP) is the (possibly
null) multiplicity of tP as a conjugate instant. Similarly

µLP(`|[a,t ′])= codim(P)− n−(g)+mulP(tP),

where mulP(tP) is the multiplicity of tP as a P-focal instant. Then

µL0(`|[a,t ′])−µLP(`|[a,t ′])= dim(P)+mul(tP)−mulP(tP)

which has to be less than or equal to dim(P), giving mul(tP)≥mulP(tP). �

It is known that the result of Corollary 4.6 does not hold without the assumption
that the metric g is positive definite or that g is Lorentzian and γ timelike. Kupeli
[1988, remark in page 585] gives a counterexample by constructing a spacelike
geodesic γ orthogonal to a timelike submanifold P of a Lorentzian manifold, with
the property that γ has conjugate points but no focal point.

In the following statements, ε will denote a small positive number with the
property that there are no conjugate or P-focal instants in ]a, a+ ε].

Proposition 4.7. We have −n−(g,P)≤ µLP(`|[a+ε,b])−µL0(`|[a+ε,b])≤ dim P.

Proof. This is a straightforward consequence of formulas (4-5), (4-6) and (4-7)
applied on the intervals [a, b] and [a+ ε, b]. �

In particular, when g is Riemannian, or g is Lorentzian and γ timelike, this
proposition says that the number of P-focal points along γ is greater than or equal
to the number of conjugate points along γ, and that their difference is less than or
equal to the dimension of P.

Corollary 4.8. If µL0(`|[a+ε,b]) > n−(g,P) or µL0(`|[a+ε,b]) < − dim(P), then
there exists at least one P-focal instant in [a+ ε, b].

Corollary 4.9. If µLP(`|[a+ε,b]) < −n−(g,P) or µLP(`|[a+ε,b]) > dim(P), then
there exists at least one conjugate instant in [a+ ε, b].

For the following result we need to recall the definition of the space A0[t] given
in (4-4); we will denote by n+(g, t) and n−(g, t) respectively the coindex and the
index of the restriction of g to A0[t]× A0[t] and mul(t0)= dim(A0[t0]).

The estimate in Corollary 3.4 can be used to obtain results of the following type:

Corollary 4.10. If t0 ∈ ]a, b] is a conjugate instant such that either

mul(t0) > n−(g)−µL0(`|[a+ε,t0]) or µL0(`|[a+ε,t0]) <−n+(g),

then for every a′ < a there is an instant t ′ ∈ [a, t0] such that γ(t ′) is conjugate to
γ(a) along γ.
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Proof. Consider the Lagrangian L ′ ⊂ V given by

L ′ =
{
(v,w) ∈ V : Jv,w(a′)= 0

}
.

If there were no instant t in [a, t0] with γ(t) conjugate to γ(a′) along γ, then
µL ′(`|[a,t0]) = dim(L ′ ∩ `(a)) = dim(L ′ ∩ `(t0)) = 0. By Corollary 3.4, it would
then be

µL0(`|[a,t0])= µL0(`|[a,t0])−µL ′(`|[a,t0])≤ n−mul(t0).

Using (4-6), we get a contradiction with the hypothesis of the corollary. Moreover,
using (3-3), we have

mul(t0)− n = dim(`(a)∩ `(t0))− n

≤ µL0(`|[a,t0])− dim(`(a)∩ L0)+ dim(`(b)∩ L0)

= µL0(`|[a,t0])− n+mul(t0),

that is, µL0(`|[a,t0])≥ 0. This together with (4-6) concludes the proof. �

When the first conjugate point is nondegenerate, we can state a more precise result.

Corollary 4.11. Let t0 ∈ ]a, b] be the first conjugate instant along γ, and assume
that it is nondegenerate and mul(t0) > n−(g)+ n−(g, t0). Then for every a′ < a
there exists and instant t ′ ∈ [a, t0] such that γ(t ′) is conjugate to γ(a′) along γ.

If g is Riemannian, then n−(g)= n−(g, t0)= 0, and the result of Corollary 4.11
holds without any assumption of the multiplicity of t0.

5. Final remarks and conjectures

If the semi-Riemannian manifold (M, g) is real-analytic, then conjugate and fo-
cal points do not accumulate along a geodesic, and higher order formulas for the
contribution to the Maslov index of each conjugate and focal points are available
[Piccione and Tausk 2009]. In this case, the statement of all the above results can
be given in terms of the partial signatures of the conjugate and the focal points,
which are a sort of generalized multiplicities.

We also observe that the nondegeneracy assumption for the conjugate and focal
points is stable by C3-small perturbations of the metric, and generic, although a
precise genericity statement seems a little involved to prove. We conjecture that,
given a differentiable manifold M and a countable set Z ⊂ T M , the set of semi-
Riemannian metrics g on M having a fixed index and for which all the geodesics
γ : [0, 1] → M with γ̇(0) ∈ Z have only conjugate points nondegenerate and of
multiplicity equal to 1 is generic. In this situation, the comparison results proved
in this paper would have a more explicit statement in terms of number of conjugate
and focal points.
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A natural conjecture is also that in the case of stationary Lorentzian metrics, all
geodesics have nondegenerate conjugate points whose contribution to the Maslov
index is positive and equal to their multiplicity. This fact has been proved in the
case of left-invariant Lorentzian metrics on Lie groups of dimension less than 6
[Javaloyes and Piccione 2006] and recently, using semi-Riemannian submersions
as in [Caponio et al. 2009], also for spacelike geodesics orthogonal to some time-
like Killing vector field. If this conjecture were true in full generality, one would
have Riemannian-like comparison results also for spacelike geodesics in stationary
Lorentz manifolds.
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