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We give an intrinsic generalization of spacelike manifolds. We define the
intrinsic mean curvature flow and study it on certain closed generalized
spacelike manifolds. Then we prove the existence of hyperbolic structures
on them.

1. Introduction

Recall that a Riemannian manifold (M, g) is hyperbolic if it has constant negative
sectional curvature. These manifolds all come from the quotient of hyperbolic
space H n by discrete isometry groups. However, it is difficult to find a good in-
trinsic characterization for whether hyperbolic structures exist on a given manifold.
First, we know that some negatively pinched Riemannian manifolds do not admit
a hyperbolic metric. The n ≥ 4 counterexample in [Gromov and Thurston 1987]
contrasts sharply with the pinching theorem of positively curved manifolds, and
implies that is it not always possible to deform by geometric flow a given negatively
curved metric into one with constant negative curvature. However, this paper will
show that a hyperbolic structure exists naturally on a large class of manifolds.

Consider the well known model of hyperbolic space by the imaginary unit sphere
in Minkowski space R1,n , where the Minkowski metric in Cartesian coordinates
(x0, x1, . . . , xn) is

g =−(dx0)2+ (dx1)2+ · · ·+ (dxn)2

and the equation of the imaginary unit sphere is

−(x0)2+ (x1)2+ · · ·+ (xn)2 =−1.

That the imaginary unit sphere has sectional curvature equal to −1 can be seen
from the Gauss–Codazzi equations

Ri jkl − (hilh jk − hikh jl)= 0 and ∇i h jk −∇ j hik = 0,
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where hi j is the second fundamental form, and hi j equals gi j on the imaginary unit
sphere. In this paper, we are interested in an intrinsic generalization of this model.

Definition 1.1. We call a triple (M, gi j , hi j ) a spacelike manifold if (M, gi j ) is a
Riemannian manifold and hi j is a symmetric tensor satisfying the Gauss–Codazzi
equations

Ri jkl − (hilh jk − hikh jl)= 0 and ∇i h jk −∇ j hik = 0.

Remark 1.2. It follows from this definition that there is a locally isometric and
spacelike embedding of (M, g) into R1,n , and we can globally embed the universal
cover of (M, g) into R1,n as a spacelike hypersurface.

Our main theorem is this:

Theorem 1.3. Let (M, g, h) be an n-dimensional closed spacelike manifold with
hi j > 0 and n ≥ 4. Then M admits a hyperbolic metric.

The idea is to use geometric flows. In contrast with extrinsic mean curvature
flow, we define an intrinsic mean curvature flow of (g, h) by

(1-1)
∂t gi j =−2Ri j + 2himhnj gmn,

∂t hi j =4hi j − Rimhnj gmn
− R jmhni gmn

+ 2hikhlmhnj gkl gmn
− |A|2hi j ,

with gi j (x, 0)= g̃i j (x), the initial metric on M , and hi j (x, 0)= h̃i j (x), the initial
data of hi j . Here |A|2 = gik g jlhi j hkl and ∂t := ∂/∂t . We will solve (1-1) intrinsi-
cally and show that the solution exists for all times in [0,∞) and converges (after
normalization) to a hyperbolic metric.

Remark 1.4. Mean curvature flows have been intensively studied in recent years.
See [Huisken 1984] for Euclidean ambient space and [Ecker and Huisken 1991;
Ecker 1997] for Minkowski ambient space. Note that in extrinsic mean curvature
flow (with ambient space R1,n), we deform the position vector F by the evolution
equation ∂F/∂t = −H . With the Gauss–Codazzi equations we begin with the
equations of the metric and the second fundamental form that come from the ex-
trinsic mean curvature flow, and change them to the weakly parabolic system (1-1).
This system is intrinsically defined and interesting in its own right.

Remark 1.5. In [Ecker 1997], it was shown that there is a long-time solution for
mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space.
If we were to lift (M, g) to its universal cover and deform the universal cover by
the extrinsic mean curvature flow, we would get a long-time solution. Then to
get an induced solution on M , we would need a uniqueness theorem for the mean
curvature flow. Here, we try a completely different method.
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2. Short-time existence and uniqueness

System (1-1) is not strictly parabolic, so in order to apply the theory of such systems
to get short-time existence, we will use a trick of De Turck: We will combine our
evolution (1-1) with the harmonic map flow.

Let (Mn, gi j (x)) and (N m, sαβ(y)) be Riemannian manifolds with F :Mn
→N m

a map between them. The harmonic map flow is an evolution equation for maps
from Mn to N m and is given by

(2-1)
∂t F(x, t)=4F(x, t) for x ∈ Mn and t > 0,

F(x, 0)= F(x) for x ∈ Mn,

where 4 is defined by using the metrics gi j (x) and sαβ(y) through

4Fα(x, t)= gi j (x)∇i∇ j Fα(x, t),

and

(2-2) ∇i∇ j Fα(x, t)= ∂2 Fα

∂x i∂x j −0
k
i j
∂Fα

∂xk + 0̃
α
βγ
∂Fβ

∂x i
∂Fγ

∂x j .

Here we use {x i
} and {yα} to denote the local coordinates of Mn and N m , respec-

tively, and 0k
i j and 0̃αβγ are the corresponding Christoffel symbols of gi j and sαβ .

The harmonic map flow is strictly parabolic, so for any initial data, there exists a
short-time smooth solution.

Let (gi j (x, t), hi j (x, t)) be a complete smooth solution of our system (1-1).
Then the harmonic map flow coupled with our evolution equation is the system

(2-3)
∂t F(x, t)=4t F(x, t) for x ∈ Mn and t > 0,

F(x, 0)= identity for x ∈ Mn,

where 4t is defined by using the metrics gi j (x, t) and sαβ(y).
Let (F−1)∗g and (F−1)∗h be the one-parameter families of pulled-back met-

rics and tensors on the target (N n, sαβ). Write ĝαβ(y, t) = ((F−1)∗g)αβ(y, t) and
ĥαβ(y, t)= ((F−1)∗h)αβ(y, t). Then by direct calculations, ĝαβ(y, t) and ĥαβ(y, t)
satisfy the evolution equations

(2-4)

∂t ĝαβ(y, t)=−2R̂αβ(y, t)+ 2ĥασ ĥρβ ĝσρ +∇αVβ +∇βVα,

∂t ĥαβ(y, t)=4ĥαβ(y, t)− R̂ασ ĥρβ ĝσρ − R̂βσ ĥρα ĝσρ

+ 2ĥαλĥµν ĥρβ ĝλµĝνρ − | Â|2ĥαβ + ĥβγ∇αV γ
+ ĥαγ∇βV γ ,

where V α
= gβγ (0αβγ (ĝ)− 0̃

α
βγ (s)), and 0αβγ (ĝ) and 0̃αβγ (s) are the Christoffel

symbols of the metrics ĝαβ(y, t) and sαβ(y), respectively. Here we analyze the
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principal part of the right side of (2-4). One can see that

−2R̂αβ(y, t)+ 2ĥασ ĥρβ ĝσρ +∇αVβ +∇βVα = ĝµν
∂2ĝαβ
∂yµ∂yν

+ (lower order terms)

and

4ĥαβ(y, t)− R̂ασ ĥρβ ĝσρ − R̂βσ ĥρα ĝσρ

+ 2ĥαλĥµν ĥρβ ĝλµĝνρ − | Â|2ĥαβ + ĥβγ∇αV γ
+ ĥαγ∇βV γ

= ĝµν
(
∂2ĥαβ
∂yµ∂yν

−
∂0σαµ

∂yν
ĥσβ −

∂0σβµ

∂yν
ĥσα

)
− ĝµν

(
−
∂0σαµ

∂yν
+
∂0σµν

∂yα

)
ĥσβ

− ĝµν
(
−
∂0σβµ

∂yν
+
∂0σµν

∂yβ

)
ĥσα + ĝµν

∂0
γ
µν

∂yα
ĥγβ + ĝµν

∂0
γ
µν

∂yβ
ĥγα

+ (lower order terms)

= ĝµν
∂2ĥαβ
∂yµ∂yν

+ (lower order terms).

Hence

(2-5)
∂t ĝαβ(y, t)= ĝµν

∂2ĝαβ
∂yµ∂yν

+ (lower order terms),

∂t ĥαβ(y, t)= ĝµν
∂2ĥαβ
∂yµ∂yν

+ (lower order terms),

and we know (2-4) is a strictly parabolic system. By the theory of such equations,
there exists a smooth short-time solution of (2-4) for any initial data.

We can recover the solution (g, h) for the original evolution equations from the
solution (ĝ, ĥ), as follows. Let (N n, sαβ)= (Mn, gαβ( · , 0)). Since

(2-6) V α
= gβγ (0αβγ (ĝ)− 0̃

α
βγ (s))=−(4F ◦ F−1)α,

we have

(2-7) ∂t F =−V ◦ F.

Now once we have ĝαβ , we know V and can solve (2-7), which is just a system of
ordinary differential equations on the domain M . Hence (g, h) can be recovered
as the pull-backs g = F∗ĝ and h = F∗ĥ.

Now we claim uniqueness of the solutions of (1-1) with given smooth initial
conditions on a compact manifold. Suppose (g1, h1) and (g2, h2) are two solutions
that agree at t = 0. We can solve the coupled harmonic map flow (2-3) for maps
F1 and F2 with the metrics g1 and g2 on M into the same target N , with the same
fixed s and initial data. Then we have two solutions ĝ1 and ĝ2 on N with the same
initial metric. By the standard uniqueness result for strictly parabolic equations, we
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have (ĝ1, ĥ1)= (ĝ2, ĥ2). Hence by (2-6) the corresponding vector fields V1 = V2.
Then the solutions of the ordinary differential equations ∂t F1 = −V1 ◦ F1 and
∂t F2 = −V2 ◦ F2 with the same initial values must coincide, and the solutions
(g1, h1)= F∗(ĝ1, ĥ1) and (g2, h2)= F∗(ĝ2, ĥ2) of (1-1) must agree.

3. Preservation of the Gauss–Codazzi equations

Here we will show that the Gauss–Codazzi equations are preserved under (1-1).
Let Gi jkl = Ri jkl − (hilh jk − hikh jl) and Ci jk =∇i h jk −∇ j hik .

Proposition 3.1. If the tensor hi j satisfies the Gauss–Codazzi equations

Ri jkl − (hilh jk − hikh jl)= 0 and ∇i h jk −∇ j hik = 0

at time t = 0, then it also does so for t > 0.

Proof. By direct calculations, we have

∂t0
k
i j =

1
2 gkl(∇ j (∂t gil)+∇i (∂t g jl)−∇l(∂t gi j )),

∂t Rk
i jl =∇i (∂t0

k
jl)−∇ j (∂t0

k
il),

∂t Ri jkl = ghk∂t Rh
i jl + ∂t ghk Rh

i jl .

With these identities we get

∂t Ri jkl =∇i∇k R jl −∇i∇l R jk −∇ j∇k Ril +∇ j∇l Rik

−∇i∇k(h jmhnl gmn)+∇i∇l(h jmhnk gmn)

+∇ j∇k(himhnl gmn)−∇ j∇l(himhnk gmn)

− Ri jks(Rtl − htmhnl gmn)gst
− Ri jsl(Rtk − htmhnk gmn)gst

and the identity

4Ri jkl=−2(Bi jkl−Bi jlk−Bil jk+Bik jl)+∇i∇k R jl−∇i∇l R jk−∇ j∇k Ril+∇ j∇l Rik

+ Rmjkl Rni gmn
+ Rimkl Rnj gmn,

where Bi jkl = Rmi js Rnklt gmngst . Then we obtain

(3-1) (∂t −4)Ri jkl − 2(Bi jkl − Bi jlk − Bil jk + Bik jl)

=−Ri jks(Rtl − htmhnl gmn)gst
− Ri jsl(Rtk − htmhnk gmn)gst

− Rs jkl(Rti − htmhni gmn)gst
− Riskl(Rt j − htmhnj gmn)gst

− Rs jklhtmhni gmngst
− Risklhtmhnj gmngst

−∇i∇k(h jmhnl gmn)+∇i∇l(h jmhnk gmn)

+∇ j∇k(himhnl gmn)−∇ j∇l(himhnk gmn).



156 KUN ZHANG

To simplify the evolution equations, we will use a moving frame trick. Let us
pick an abstract vector bundle V over M isomorphic to the tangent bundle T M .
Choose an orthonormal frame Fa = F i

a∂/∂x i for a = 1, . . . , n of V at t = 0; then
evolve Fa

i by the equation

∂t F i
a = gi j (R jk − h jmhnk gmn)Fk

a .

Then the frame F = {F1, . . . , Fa, . . . , Fn} will remain orthonormal for all time.
We will use indices a, b, . . . on a tensor to denote its components in the evolving
orthonormal frame. In this frame we have

(3-2) (∂t −4)Rabcd − 2(Babcd − Babdc− Badcb+ Bacbd)

=−Rsbcdhtmhnagmngst
− Rascdhtmhnbgmngst

−∇a∇c(hbmhnd gmn)+∇a∇d(hbmhncgmn)

+∇b∇c(hamhnd gmn)−∇b∇d(hamhncgmn)

and

(3-3) (∂t −4)hab =−|A|2hab.

By calculations, we have

(3-4) (∂t −4)(Rabcd − (hadhbc− hachbd))

= 2(Babcd − Babdc− Badcb+ Bacbd)

− Rsbcdhtmhnagmngst
− Rascdhtmhnbgmngst

−∇a∇c(hbmhnd gmn)+∇a∇d(hbmhncgmn)

+∇b∇c(hamhnd gmn)−∇b∇d(hamhncgmn)

+ 2|A|2(hadhbc− hachbd)+ 2(∇mhad∇nhbc−∇mhac∇nhbd)gmn.

Then we want to replace Babcd by

B̃abcd =
(
Rmabs − (hmshab− hmbhas)

)(
Rmcds − (hmshcd − hmdhcs)

)
gmngst

and replace terms including ∇h and ∇∇h by C and ∇C , respectively. That is,

Babcd − Babdc− Badcb+ Bacbd(3-5)

= B̃abcd − B̃abdc− B̃adcb+ B̃acbd

− Rmabshdnhtcgmngst
− Rmcdshbnhtagmngst

+ Rmabshcnhtd gmngst
+ Rmdcshbnhtagmngst

− Rmadshnt hcbgmngst
+ Rmadshcnhtbgmngst

− Rmbcshnt had gmngst
+ Rmbcshdnhtagmngst
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+ Rmacshnt hdbgmngst
− Rmacshdnhtbgmngst

+ Rmbdshnt hacgmngst
− Rmbdshcnhtagmngst

− hamhbshcnhdt gmngst
+ hamhbshdnhct gmngst

+ hadhbc|A|2− hamhdshnt hbcgmngst
− hbmhcshnt had gmngst

− hachbd |A|2+ hamhcshnt hbd gmngst
+ hbmhdshnt hacgmngst

and

(3-6) −∇a∇c(hbmhnd gmn)+∇a∇d(hbmhncgmn)+∇b∇c(hamhnd gmn)

−∇b∇d(hamhncgmn)+ 2(∇mhad∇nhbcgmn
−∇mhac∇nhbd gmn)

=−∇c(∇ahbm −∇bham)hnd gmn
−∇a(∇chdm −∇dhcm)hnbgmn

+∇d(∇ahbm −∇bham)hncgmn
−∇b(∇chdm −∇dhcm)hnagmn

− (∇ahbm −∇bham)(∇chdn −∇dhcn)gmn

− (∇ahdm −∇mhad)∇chbngmn
− (∇dham −∇mhad)∇bhcngmn

+ (∇ahcm −∇mhac)∇dhbngmn
+ (∇cham −∇mhac)∇bhdngmn

+ (∇mhbc−∇chmb)∇nhad gmn
+ (∇mhbc−∇bhmc)∇nhad gmn

− (∇mhbd −∇dhmb)∇nhacgmn
− (∇mhbd −∇bhmd)∇nhacgmn

− Racbmhnshtd gmngst
− Racmshndhtbgmngst

+ Rbcamhnshtd gmngst

+ Rbcmshndhtagmngst
+ Radbmhnshtcgmngst

+ Radmshnchtbgmngst

− Rbdamhnshtcgmngst
− Rbdmshnchtagmngst .

Let us denote the curvature tensor by Rm and denote any tensor product of tensors
S and T by S ∗T when we do not need the precise expression. If we replace terms
including Rm ∗h ∗ h by terms G ∗ h ∗ h and if we use (3-4), (3-5) and (3-6), then
some calculations gives

(3-7) (∂t −4)G = G ∗G+G ∗ h ∗ h+∇C ∗ h+C ∗∇h+C ∗C,

where Gi jkl = Ri jkl − (hilh jk − hikh jl) and Ci jk =∇i h jk −∇ j hik . Since

∂t∇i h jk =∇i (∂t h jk)− (∂t0
l
i j )hlk − (∂t0

l
ik)hl j

=∇i (4h jk − R jmhnk gmn
− Rkmhnj gmn

+ 2h jmhnshtk gmngst
− |A|2h jk)

− (∂t0
l
i j )hlk +∇i Rkmhnj gmn

+∇k Rimhnj gmn
−∇m Rikhnj gmn

−∇i hkmhnsht j gmngst
−∇i hmshnkht j gmngst

−∇khimhnsht j gmngst

−∇khmshni ht j gmngst
+∇mhishnj htk gmngst

+∇mhkshnj hti gmngst
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and

4(∇i h jk)= gmn
∇m∇n(∇i h jk)

=∇i (4h jk)+ Rim∇nh jk gmn
+ 2(Rmi js∇nhtk + Rmiks∇nht j )gmngst

+∇ j Rimhnk gmn
−∇m Ri j hnk gmn

+∇k Rimhnj gmn
−∇m Rikhnj gmn,

we get

(3-8) (∂t −4)∇i h jk + (∂t0
l
i j )hlk

=−R jm∇i hnk gmn
− Rkm∇i hnj gmn

− Rim∇nh jk gmn

+∇i (2h jmhnshtk gmngst
− |A|2h jk)

−∇i R jmhnk gmn
−∇ j Rimhnk gmn

− 2(Rmi js∇nhtk + Rmiks∇nht j )gmngst

−∇i hkmhnsht j gmngst
−∇i hmshnkht j gmngst

−∇khimhnsht j gmngst
−∇khmshni ht j gmngst

+∇mhishtkhnj gmngst
+∇mhkshti hnj gmngst .

Then in the moving frame we obtain

(3-9) (∂t −4)∇ahbc+ |A|2∇ahbc+ (∂t0
l
i j )hlk F i

a F j
b Fk

c

=−∇ahcmhnshtbgmngst
−∇ahmbhnshtcgmngst

−∇mhbchnshtagmngst

+ 2∇ahbmhnshtkcgmngst
+ 2∇ahcmhnshtbgmngst

+ 2∇ahmshnbhtcgmngst
− 2∇ahmshnt hbcgmngst

−∇ahcmhnshtbgmngst
−∇ahmshnbhtcgmngst

−∇chamhnshtbgmngst

+∇mhashnbhtcgmngst
+∇mhcshnbhtagmngst

− 2Rmabs∇nhtcgmngst
− 2Rmacs∇nhtbgmngst .

Then we replace terms including ∇h by C and terms including Rm by G. Finally,
we have

(3-10) (∂t −4)C =−|A|2C +C ∗ h ∗ h+C ∗Rm+G ∗∇h.

Combing (3-7) and (3-10), we obtain

(3-11)

(∂t −4)(|G|2+ |C |2)

≤ C1(|G|2+ |C |2)− 2|∇G|2− 2|∇C |2

+〈G,G ∗G+G ∗ h ∗ h+∇C ∗ h+C ∗∇h+C ∗C〉

+ 〈C,−|A|2C +C ∗ h ∗ h+C ∗Rm+G ∗∇h〉

≤ C2(|G|2+ |C |2),
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where we use the Cauchy–Schwarz inequality, and for 0≤ t < δ we have bounded
|Rm|, |A| and |∇h|. Thus, by the standard maximum principle

d
dt
(|G|2+ |C |2)max ≤ C2(|G|2+ |C |2)max,

we get
(|G|2+ |C |2)max(t)≤ eC2t(|G|2+ |C |2)max(0).

Since (|G|2+|C |2)max(0)= 0, the Gauss–Codazzi equations are preserved as long
as the solution exists. �

In the following we will still call hi j (x, t) the second fundamental form and its
trace H the mean curvature.

4. Evolution of the metric and curvature

Using the Gauss–Codazzi equations, we rewrite our evolution equations:

Proposition 4.1.

∂t gi j = 2Hhi j .(4-1a)

(∂t −4)hi j = 2Hhimhnj gmn
− |A|2hi j .(4-1b)

(∂t −4)H =−H |A|2.(4-1c)

(∂t −4)|A|2 =−2|∇A|2− 2|A|4.(4-1d)

Since hi j is positive at t =0 and M is compact, there are some ε>0 and β >0 such
that βHgi j ≥ hi j ≥ εHgi j holds on M at t = 0. We want to show that inequality
remains true as long as the solution of our evolution equations (1-1) exists. For
this purpose we need the following maximum principle for tensors on manifolds,
which is proved in [Hamilton 1982].

On a compact manifold M , let uk be a vector field and Mi j and Ni j be symmetric
tensors, all of which may depend on time t . Assume that Ni j = p(Mi j , gi j ) is a
polynomial in Mi j formed by contracting products of Mi j with itself using the
metric. Suppose this polynomial satisfies the condition Ni j X i X j

≥ 0 for any null-
eigenvector X of Mi j .

Theorem 4.2 [Hamilton 1986]. Suppose that the evolution equation

∂t Mi j =4Mi j + uk
∇k Mi j + Ni j

holds on 0≤ t<T , where Ni j = p(Mi j , gi j ) satisfies the null-eigenvector condition
above. If Mi j ≥ 0 at t = 0, then it remains so on 0≤ t < T .

Proposition 4.3. If εHgi j ≤ hi j ≤ βHgi j and H > 0 at t = 0, then these relations
continue to hold as long as the solution of (1-1) exists.
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Proof. First, by using maximum principle on the equation (∂t −4)H = −H |A|2,
we know H > 0 as long as the solution of (1-1) exists. Then we consider

Mi j = hi j − εHgi j ,

∂t Mi j = ∂t hi j − ε∂t Hgi j − εH∂t gi j

=4hi j + 2Hhimhnj gmn
− |A|2hi j − ε(4H − |A|2 H)gi j − εH(2Hhi j )

=4Mi j + 2Hhimhnj gmn
− |A|2(hi j − εHgi j )− 2εH 2hi j .

For any null vector vi of Mi j , we have

(2Hhimhnj gmn
− |A|2(hi j − εHgi j )− 2εH 2hi j )v

j

= 2Hhim gmn(εHvn)− 2εH 2(εHvi )

= 2H(εHvi )εH − 2εH 2(εHvi )= 0.

Thus, εHgi j ≤ hi j follows from Theorem 4.2. Then hi j ≤ βHgi j follows in the
same way. �

Finally, we state the higher derivative estimate.

Proposition 4.4. There exist constants Cm for m = 1, 2, . . . such that if the second
fundamental form of a complete solution to our evolution equation is bounded by
|A| ≤ M up to time t with 0< t ≤ 1/M , then the covariant derivative of the second
fundamental form is bounded by

|∇A| ≤ C1 M/
√

t

and the m-th covariant derivative of the second fundamental form is bounded by

|∇
m A| ≤ Cm M/tm/2.

Here the norms are taken with respect to the evolving metric.

Proof. By direct calculation, for any m we have an equation

(∂t −4)|∇
m A|2 =−2|∇m+1 A|2+

∑
i+ j+k=m

∇
i A ∗∇ j A ∗∇k A ∗∇m A.

So we can follow the same way using a somewhat standard Bernstein estimate in
partial differential equations to get our theorem; see [Shi 1989] for the argument
in the case of Ricci flow. �

5. Monotonicity formula and long-time behaviors

First, by the positivity of hi j we have H 2/n ≤ |A|2 < H 2. Then from (4-1c) we
get

−H 3 < (∂t −4)H ≤−H 3/n.
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Thus by maximum principle we obtain

(5-1) 1√
2t+1/H 2

min(0)
< H(t)≤ 1√

2t/n+1/H 2
max(0)

.

With applying maximum principle on (4-1d), we have

|A|2(t)≤ 1
2t+1/|A|2max(0)

.

Since
1

2nt+n/H 2
min(0)

< H 2(t)/n ≤ |A|2(t),

we get

(5-2) 1
2nt+n/H 2

min(0)
< |A|2(t)≤ 1

2t+1/|A|2max(0)
.

In particular, (5-2) implies |A| → 0 as t→+∞. Combining this with our deriva-
tives estimate, Proposition 4.4, we conclude the solution of (1-1) exists for all time.

We need the monotonicity formula below to understand the long-time behavior
of the solution to (1-1).

Proposition 5.1. If (gi j (t), hi j (t)) is the solution of (1-1), then we have the formula

∂
∂t

∫
M

H ndµt =−n(n− 1)
∫

M

|∇H |2

H 2 H ndµt − n
∫

M

∣∣∣hi j −
1
n

Hgi j

∣∣∣2 H ndµt .

Proof. It follows from the evolution equations of Proposition 4.1 and direct calcu-
lation. �

From Proposition 5.1, we know

(5-3) 0<
∫

M
H ndµt < C for all t ∈ [0,+∞).

This implies ∫
∞

0

∫
M

(
|∇H |2

H 2 + |hi j −
1
n

Hgi j |
2
)

H ndµt dt <∞.

In particular, there is a sequence tk→+∞ such that

tk

∫
M

|∇H |2

H 2 H ndµtk → 0 as k→∞,(5-4)

tk

∫
M

∣∣∣hi j −
1
n

Hgi j

∣∣∣2 H ndµtk → 0 as k→∞.(5-5)
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Let εk = 1/|A|max(tk). We parabolically scale the solution and shift the time tk
to the origin 0 by letting

g̃k
i j ( · , t̃)= ε−2

k gi j ( · , tk + ε2
k t̃),

h̃k
i j ( · , t̃)= ε−1

k hi j ( · , tk + ε2
k t̃), where t̃ ∈ [−tk/ε2

k ,+∞).

We can check that (g̃k
i j ( · , t̃), h̃k

i j ( · , t̃)) is still a solution to (1-1). From

| Ãk( · , t̃)|2 = |A( · , tk + ε2
k t̃)|2/|A|2max(tk)

and (5-2), it follows that

(5-6) 1/C1 < | Ãk( · , t̃)|2 < C1 for t̃ ∈ [−tk/2ε2
k , 0],

where the constant C1 is independent of k.
By our derivatives estimate, Proposition 4.4, the uniform bound of the second

fundamental form | Ãk( · , t̃)| implies the uniform bound on all the derivatives of
the second fundamental form at t̃ = 0 for all k. By Gauss’s equation, we have
uniform bounds of the curvature and all its derivatives at t̃ = 0 for all k.

By (5-3) we know that
∫

M(H̃
k( · , 0))ndµ̃0<C2. Combining this with (5-1), we

find

(5-7) Vol(M, g̃k
i j ( · , 0)) < C3.

On the other hand, by Proposition 4.3, (5-2), and the Gauss equation, we have

(5-8) 0>−1/C4 ≥ Sec(M, g̃k
i j ( · , 0))≥−1,

where Sec means sectional curvature.

Theorem 5.2 [Gromov 1978]. Let M be an n-dimensional closed Riemannian
manifold of negative curvature and suppose Sec(M)≥−1. Then

Vol(M)≥
{

C(1+ d(M)) if n ≥ 8,
C(1+ d1/3(M)) if n = 4, 5, 6, 7,

where we denote by Vol(M) and d(M) the volume and diameter of M , and the
constant C > 0 depends only on n.

Combining (5-8) and (5-7) and this theorem of Gromov, we have

(5-9) diam(M, g̃k
i j ( · , 0))≤ C5 and Vol(M, g̃k

i j ( · , 0))≥ 1/C5.

Now we know (M, g̃k
i j ( · , 0), h̃k

i j ( · , 0)) is a sequence of Riemannian manifolds
that have uniformly bounded sectional curvature, uniform upper bound on their
diameters, and uniform lower bound on their volumes. Using Cheeger’s lemma
in [Cheeger and Ebin 1975], we have the uniform lower bound of their injective
radii with respect to g̃k

i j ( · , 0) for n ≥ 4. Then we can apply the argument used
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to prove Hamilton’s compactness theorem of [1995] to extract a convergent sub-
sequence (M, g̃kl

i j ( · , 0), h̃kl
i j ( · , 0)) from (M, g̃k

i j ( · , 0), h̃k
i j ( · , 0)). More precisely,

there exists a triple (M∞, g̃∞i j ( · , 0), h̃∞i j ( · , 0)) and a sequence of diffeomorphisms
fl : M∞ → Ml . Notice that M∞ is diffeomorphic to M , since we have uniform
diameter bound. Also the pull-back metrics ( fl)

∗g̃kl
i j ( · , 0) and second fundamental

forms ( fl)
∗h̃kl

i j ( · , 0) converge in the C∞ topology to (g̃∞i j ( · , 0), h̃∞i j ( · , 0)).
From (5-4) and (5-5) we obtain

tklε
−2
kl

∫
M

|∇̃ H̃ kl |
2(0)

(H̃ kl )2(0)
(H̃ kl )n(0)dµ̃tkl

→ 0 as l→∞,

tklε
−2
kl

∫
M

∣∣∣h̃kl
i j −

1
n

H̃ kl g̃kl
i j

∣∣∣2(0)(H̃ kl )n(0)dµ̃tkl
→ 0 as l→∞.

Here the norm is taken with respect to g̃kl
i j (0). Noting that tklε

−2
kl

and |H̃ kl (0)| and
Vol(M, g̃kl

i j ( · , 0)) have uniform lower bound, we have

|∇̃ H̃ kl |(0)→ 0 as l→∞,∣∣∣h̃kl
i j −

1
n

H̃ kl g̃kl
i j

∣∣∣(0)→ 0 as l→∞.

Therefore, by Gauss’s equation, we know Sec(M∞, g̃∞i j ( · , 0), h̃∞i j ( · , 0)) is a con-
stant equal to −1/n.
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