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A CAPILLARITY PROBLEM FOR COMPRESSIBLE LIQUIDS

MARIA ATHANASSENAS AND JULIE CLUTTERBUCK

We study the existence and regularity of solutions to the capillarity problem
for compressible liquids in a tube. We introduce an appropriate space of
functions of bounded variation, in which the energy functional introduced
recently by Robert Finn can be defined. We prove existence of a locally
Lipschitz minimizer in this class.

1. Introduction

A capillary surface is the free interface between two immiscible fluids (liquid-gas or
liquid-liquid); as an authoritative introduction we refer to [Finn 1986]. Extensive
work has been published on the behavior of such interfaces when one liquid is
assumed to be incompressible. Finn [2001; 2004] introduced a new model, in
which the assumption of incompressibility was removed.

The established techniques used for finding existence and regularity for the in-
compressible model may be divided into two groups: classical PDE techniques
for surfaces of prescribed mean curvature, as, for example, in [Ladyzhenskaya and
Ural’tseva 1970; Huisken 1985; Gilbarg and Trudinger 2001, Chapter 16]; and
functions of bounded variation and sets of finite perimeter setting for minimizing
the energy, as, for example, in [Emmer 1973; Gerhardt 1974; Giusti 1980; Gon-
zalez et al. 1980; Huisken 1985]. In contrast, results concerned with compressible
liquids are very recent and comparatively few [Athanassenas and Finn 2006; Finn
and Luli 2007].

Here, we consider a capillary tube of cross section � ⊂ Rn , which is bounded,
simply connected and has Lipschitz boundary 6 := ∂�. We will also assume that
it satisfies an interior sphere condition of radius R.

The capillary surface S is given as the graph of a function u over the domain �.
We assume uniform downwards gravity g and consider a compressible fluid of
density 8. (In the incompressible case, 8 is constant.)

One can assume prescribed mass M , but the results in the present paper are for
an infinite container.

MSC2000: 49Q20, 76B45, 76N10.
Keywords: capillarity, function of bounded variation, compressible liquid.

213

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2009.243-2


214 MARIA ATHANASSENAS AND JULIE CLUTTERBUCK

We consider the energy for a capillary surface to consist of the following com-
ponents:

Energy of the free surface (surface tension):

ES =
σ
ρ0

∫
�

8(u; p0)
√

1+ |Du|2 dx;

Potential energy:

W = g
∫
�

∫ u

0
h8(h; p0) dh dx;

Wetting energy:

E6 =−σ
∫
6

β

∫ u

0
8(h; p0) dh ds.

Here β ∈ L∞(6) is the relative adhesion coefficient, satisfying |β| ≤ 1− a with
a > 0; σ and g are the surface tension and gravitational constants; 8(h; p0) is the
density function depending on height h and pressure p, which we assume to be
given by one of the two models proposed in [Finn 2001; Athanassenas and Finn
2006]. In the following, p0 and ρ0 will denote pressure and density at a reference
level u ≡ 0.

Mass: In the case of a mass constraint, a term λM is added to the energy,
where λ is a Lagrange multiplier and the mass is

M =
∫
�

∫ u

0
8(h; p0) dh dx .

The total energy (and in particular the wetting energy) need not be positive.
A smooth minimizer of the total energy ES +W + E6 + λM will satisfy the

Euler–Lagrange equation

(1-1) div
Du√

1+ |Du|2
=

gρ0

σ
u+

D18(u; p0)

8(u; p0)

1√
1+ |Du|2

+ λ
ρ0

σ
on �,

with boundary condition

β =
1
ρ0

Du ·ν√
1+|Du|2

on 6,

via standard calculus of variations techniques.
The present paper is based on one of the models proposed by Finn for an isother-

mal fluid: the density is assumed to be linear in the pressure, from which one
obtains that 8(h; p0)= ρ0e−χgh , for some positive constant χ .

We may assume that χ = 1, g= 1, ρ0= 1, σ = 1; other values of these constants
correspond to different weightings on the components of the energy (that is, our
energy becomes γ1 ES + γ2W + γ3 E6 + γ4λM for γi > 0), and a scaling of the
domain �.
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With these conventions
8(h; p0)= e−h,

and the diverse components of the energy are as follows:

ES =

∫
�

e−u
√

1+ |Du|2 dx,

W =
∫
�

∫ u

0
he−h dh dx =

∫
�

(
1− e−u(1+ u)

)
dx,

E6 =−
∫
6

β

∫ u

0
e−h dh ds =−

∫
6

β(1− e−u) ds,

M =
∫
�

∫ u

0
e−h dh dx =

∫
�

(1− e−u) dx .

As we are dealing with the case of an infinite container, we choose λ= 0. Without
loss of generality (this will be shown when necessary, in Lemma 3.6) we may set
γi ≡ 1, and then seek to minimize the energy

J(u) := ES(u)+W (u)+ E6(u).

The following results have been recently obtained for the capillarity problem of a
compressible fluid.

For slightly compressible fluids, Finn [2001] introduced the model we are us-
ing here. In the case of a tube closed at the bottom, he found that the necessary
condition on the mass for existence of a solution is M < ρ0|�|/χg.

The boundary contact angle is denoted by γ , with cos γ = β. For a circular
tube, Finn and Luli [2007] showed that when 0 ≤ γ < π there is at least one
symmetric solution of the problem, and that the height of this solution will lie
above any prescribed level if M is sufficiently large. If γ ≤ π/2, the solution is
unique among symmetric solutions with that mass.

The classical PDE approach was chosen by Athanassenas and Finn [2006] to
study the unconstrained case, including the situation where the term (ρ0g/σ)u on
the right-hand side of the prescribed mean curvature equation (1-1) is replaced
by (eχgu

− 1)(ρ0 − χp0)/(σχ). The results vary depending on the regularity of
the boundary of the domain: for smooth domains height and gradient estimates
and existence of smooth solutions were obtained, but only variational solutions
for domains with Lipschitz boundaries. As with the incompressible case, they
observe that existence of solutions depends discontinuously on the opening angle
of the corners of the domain. In the case with the alternative right-hand side
of (1-1), they show nonexistence whenever the domain is small, that is, when
|�|(ρ0−χp0)/(σχ) <−|6|β (here β is taken to be constant).

In the present paper we use techniques involving functions of bounded variation.



216 MARIA ATHANASSENAS AND JULIE CLUTTERBUCK

In Section 2, we introduce BV, the space of functions of bounded variation.
After a transformation of u, the weighted surface area term is well defined in BV.
Transforming the remaining components of the energy gives us a new energy, J1.
We collect and give simple proofs of known results for the reader’s convenience.

In Section 3, we prove height estimates. In order to do so, we use two (possibly
new) extensions to the well-known Stampacchia lemma.

In Section 4, we show that the energy functional is bounded from below and
that a minimizing sequence for the energy functional is uniformly bounded in the
BV-norm. Existence then follows via the standard compactness theorem and by
the lower semicontinuity of the functional.

Finally, in Section 5 we show that there exists a locally Lipschitz minimizer,
which is analytic in � and has bounded gradient up to the boundary.

2. The energy in the isothermal case

Let � be open, simply connected and have a Lipschitz boundary. As in [Giusti
1984; Bemelmans and Dierkes 1987], we define∫
�

√
1+ |Du|2

:= sup
{∫

�

gn+1+ u divn g dx : gi ∈ C1
0(�) ∀i = 1, . . . , n+ 1,

n+1∑
i=1

gi
2
≤ 1

}
,∫

�

|Du| := sup
{∫

�

u divn g dx : gi ∈ C1
0(�) ∀i = 1, . . . , n,

n∑
i=1

gi
2
≤ 1

}
,

where divn is the divergence of the first n components: divn g =
∑n

i=1 Di gi .
One then defines the spaces

BV(�) := {u ∈ L1(�) :

∫
�

√
1+ |Du|2 <∞},

BV+(�) := {u ∈ BV(�) : u ≥ 0 almost everywhere in �} .

When |�| <∞, this definition of BV(�) is equivalent to the classic one given in
[Giusti 1984].

In the case that u ∈C1(�), the surface energy term ES =
∫
� e−u

√
1+ |Du|2 dx

may be simplified by writing v = e−u , so ES =
∫
�

√
v2+ |Dv|2 dx , which bears a

close resemblance to the integral
∫
�

√
v+ |Dv|2/4 dx investigated in [Bemelmans

and Dierkes 1987]; see also [Dierkes and Huisken 1990].
The focus of our investigation now shifts to v, rather than u itself. Define∫

�

√
v2+ |Dv|2

:= sup
{∫

�

v(gn+1+ divn g) dx : gi ∈ C1
0(�) ∀i = 1, . . . , n+ 1,

n+1∑
i=1

gi
2
≤ 1

}
.
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Lemma 2.1. If v is smooth,
∫
�

√
v2+ |Dv|2 =

∫
�

√
v2+ |Dv|2 dx.

Proof. We consider the test function gε = χε
(
v2
+|Dv|2

)−1/2
(−Dv, v), where χε

is a sequence of C∞0 (�) functions with χε ≤ 1, converging to χ�, the characteristic
function of �, in L1. Then∫

�

√
v2+ |Dv|2 ≥

∫
�

v(gεn+1+ divn gε) dx =
∫
�

gεn+1v− Dv · gε dx

=

∫
�

χε
√
v2+ |Dv|2 dx,

which approaches
∫
�

√
v2+ |Dv|2 dx as ε→ 0. The other direction is similar. �

The next statement, while useful, is not very surprising:

Lemma 2.2. The quantity
∫
�

√
v2+ |Dv|2 is finite exactly when v is in BV(�).

Proof. Suppose that v is in BV(�). Then∫
�

√
v2+ |Dv|2

= sup
{∫

�

v
(
gn+1+ divn g

)
dx : gi ∈ C1

0(�),
n+1∑
i=1

gi
2
≤ 1

}
≤ sup

{∫
�

(
|v| + 1

)
gn+1+ v divn g dx : gi ∈ C1

0(�),
n+1∑
i=1

gi
2
≤ 1

}
≤ sup

{∫
�

gn+1+ v divn g dx : gi ∈ C1
0(�),

n+1∑
i=1

gi
2
≤ 1

}
+ sup

{∫
�

gn+1|v| dx : gn+1 ∈ C1
0(�), gn+1

2
≤ 1

}
=

∫
�

√
1+ |Dv|2+‖v‖L1(�) <∞.

Conversely, if
∫
�

√
v2+ |Dv|2<∞, then v∈ L1(�), since if not, we can take gi=0

for i<n+1 and gn+1=χε (where χε is as in Lemma 2.1) so that
∫
�

√
v2+ |Dv|2≥∫

� |v|χε dx→∞ as ε→ 0, contradicting our assumption.
Finally we can check that∫

�

√
1+ |Dv|2

= sup
{∫

�

gn+1+ v divn g+ vgn+1− vgn+1 dx : gi ∈ C1
0(�),

n+1∑
i=1

gi
2
≤ 1

}
≤ sup

{∫
�

v divn g+ vgn+1 dx : gi ∈ C1
0(�),

n+1∑
i=1

gi
2
≤ 1

}
+ sup

{∫
�

gn+1(1− v) dx : gn+1 ∈ C1
0(�), gn+1

2
≤ 1

}
≤

∫
�

√
v2+ |Dv|2+‖v‖L1(�)+ |�|<∞. �



218 MARIA ATHANASSENAS AND JULIE CLUTTERBUCK

Corollary 2.3. If v is in BV(�) and vk is a mollification of v, then∫
�

√
v2

k + |Dvk |
2
→

∫
�

√
v2+ |Dv|2.

This can be proved in the same manner as [Gerhardt 1974, Lemma A1].
Under the transformation v = e−u , the wetting energy is

E6 =−
∫
6

β(1− e−u) ds =−
∫
6

β(1− v) ds,

where we consider v|6 as a trace of v. As in [Giusti 1984, Theorem 2.10], if 6
is Lipschitz, each function in BV(�) has a trace in L1(6). Furthermore, if 6 also
satisfies an interior sphere condition with radius R, then the following estimate
holds [Gerhardt 1974, Remark 2]:

(2-1)
∫
6

|v| ds ≤
∫
�

|Dv| + cR

∫
�

|v| dx,

where cR depends on n, R, and 6.
The integrand of W , the potential energy term, becomes

∫ v
1 ln h dh and so the

complete energy, in the isothermal case, is

(2-2) J1(v)=

∫
�

√
v2+ |Dv|2+

∫
�

∫ v

1
ln h dh dx −

∫
6

β(1− v) ds.

Here we are reminded of the energy studied by Claus Gerhardt [1974], which was∫
�

√
1+ |Dv|2+

∫
�

∫ v

0
H(x, h) dh dx −

∫
6

βv ds

for β ∈ L∞(6) and H satisfying the conditions (a) ∂H/∂h>0, and (b) H(x, h0)≥

(1+ c), H(x,−h0)≤−(1+ c) for some h0 ≥ 0 and a given c.

3. Height bounds

In this section, we assume that v minimizes J1 in BV(�) and seek height bounds.
A bound from above on v corresponds to a bound from below on u, while a strictly
positive bound from below on v corresponds to a bound from above on u.

At the end of this section we show an easier way to find one-sided estimates
when β is either positive (for which we show v bounded from above) or negative
(for which we show v bounded from below).

Height bounds from above on v. To estimate a minimizer v from above, we fol-
low an approach similar to those in [Gerhardt 1974; Huisken 1985] leading to a
Stampacchia iteration. Note that in the original Stampacchia lemma [1966], the
right-hand side of (3-1) is simply B(k)γ , rather than k B(k)γ .



A CAPILLARITY PROBLEM FOR COMPRESSIBLE LIQUIDS 219

Lemma 3.1. Suppose B(t), nonnegative and nonincreasing in t , satisfies

(3-1) (h− k)B(h)≤ Ck
(
B(k)

)γ
,

for all h, k such that 0 < k0 ≤ k < h, for some constants C , k0 > 0 and γ > 1.
Then B(K )= 0 for some sufficiently large K dependent on C, γ, k0 and B(k0).

The proof uses another lemma:

Lemma 3.2. For all α > 1 and d >−α, the sequence

sm =

(
1+ d

αm

)(
1+ d

αm−1

)
· · ·

(
1+ d

α

)
,

converges to a nonzero limit.

Proof. We examine the sequence {ln sm}, writing each term as the partial sum∑m
j=1 ln(1+ d/α j ) and using the ratio test for the convergence of series:

lim
j→∞

ln
(

1+ d
α j+1

)/
ln
(

1+ d
α j

)
= lim

j→∞

(
∂

∂ j
ln
(

1+ d
α j+1

)/ ∂

∂ j
ln
(

1+ d
α j

))
= lim

j→∞

(
d lnα
α j+1+d

/ d lnα
α j+d

)
=

1
α
.

As this series converges to some limit L , {sm} converges to eL > 0. �

Proof of Lemma 3.1. We begin by defining the sequence km := k0sm , where sm

is as in the preceding lemma, with α = 2 and d = C(B(k0))
γ−12γ /(γ−1) > 0 (we

assume here that B(k0) 6= 0, otherwise the lemma is trivially true). Note that as
km+1 − km = k0d2−(m+1) > 0, {km} is positive and increasing, and, by the above
result, converges to some limit K .

We now prove that B(km)≤ B(k0)2µm for µ= (1− γ )−1 < 0, by induction.
The base step, for m = 1, is as follows: by assumption (3-1),

(k1− k0)B(k1)≤ Ck0 B(k0)
γ ,

and so using k1− k0 = k0d/2 we find that

B(k1)≤ C 21−µ

d
B(k0)

γ−1 B(k0)2µ = 21−µ−γ /(γ−1)B(k0)2µ = B(k0)2µ.

Now we make the inductive assumption that B(km) ≤ B(k0)2µm . We use this and
condition (3-1) to estimate

B(km+1)≤ C 2m+1

d
B(km)

γ
≤ C 2m+1

d
(
B(k0)2µm)γ

= 2m+1−γ /(γ−1)B(k0)
1−γ (B(k0)2µm)γ

≤ B(k0)2µ(m+1).

By the monotonicity of B, B(K )≤ limm→∞ B(km)≤ limm→∞ B(k0)2µm
= 0. �
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Theorem 3.3. Suppose that v minimizes J1 in BV+(�). Then there exists a bound
from above on v, v ≤ c, L1-almost everywhere.

Proof. We set A(k)={x ∈� : v(x)> k}. The goal is to show that the nonincreasing
|A(k)| vanishes for some large k. Let w :=min(v, k). As v minimizes J1, we have
J1(v) ≤ J1(w), which after rearranging and taking into account that w ∈ BV(�),
that Dw = Dv in � \ A(k), and that Dw = 0 in A(k), gives

(3-2)

0 ≥
{∫

A(k)

√
v2+ |Dv|2−

∫
A(k)

k dx
}
+

∫
A(k)

∫ v

k
ln h dh dx +

∫
6

β(v−w) ds.

We estimate the boundary term using (2-1):∣∣∣∣ ∫
6

β(v−w) ds
∣∣∣∣≤ (1− a)

(∫
�

|D(v−w)| + cR

∫
�

|v−w| dx
)
.

One can easily show that
∫
� |Dv| ≤

∫
�

√
v2+ |Dv|2, so that (3-2) gives

(3-3) k |A(k)| ≥ a
∫

A(k)
|D(v− k)| + (ln k− (1− a)cR)

∫
A(k)
|v− k| dx .

For BV functions on Lipschitz domains �, we have the Sobolev inequality(∫
�

| f |n/(n−1) dx
)(n−1)/n

≤ c�

(∫
�

|D f | +
∫
�

| f | dx
)
;

see, for example, [Giusti 1984, Theorem 1.28]. We rearrange this inequality as

a
∫
�

|D f | ≥ a
c�

(∫
�

| f |n/(n−1) dx
)(n−1)/n

− a
∫
�

| f | dx .

Using the estimate above with f = v−w, (3-3) becomes

k|A(k)|≥ a
c�

(∫
�

|v−w|n/(n−1) dx
)(n−1)/n

+
(
ln k−(1−a)cR−a

) ∫
A(k)
|v−w| dx .

By choosing k large enough, we can ensure that the quantity ln k− (1− a)cR − a
is positive, and drop this term altogether. The Hölder inequality gives

‖ f ‖Ln/(n−1)(A(k)) ≥ ‖ f ‖L1(A(k))|A(k)|
−1/n,

and so for all h, k with h > k ≥ k0 for a certain choice of k0, we have

a
c�
(h− k)|A(h)| ≤ a

c�

∫
A(k)

(v− k) dx ≤ k|A(k)|1+1/n.

Now we apply Lemma 3.1 and find that |A(K )| = 0 for sufficiently large K . �
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Height bounds on v from below. The proof is similar to that of Theorem 3.3.
However, a different Stampacchia-type result is needed, with a yet weaker condi-
tion on the right-hand side.

Theorem 3.4. Suppose that v minimizes J1 in BV+(�). Then there exists a bound
from below on v, 0≤ c ≤ v, L1-almost everywhere.

Lemma 3.5. Suppose B(t), nonnegative and nonincreasing in t , satisfies

(3-4) (h− k)B(h)≤ Ch
(
B(k)

)γ
,

for all h, k such that 0< k0 ≤ k < h, for some constants C , k0 > 0 and γ > 1. If

(3-5) C B(k0)
γ−1 < 1,

then there exists a K <∞ such that B(K )= 0.

Proof. From (3-5), we may choose d>0 and α>1 such that C B(k0)
γ−1αγ /(γ−1)

≤

d < α.
Next, define the sequence km := k0/sm = km−1(1− d/αm)−1, where sm is as in

Lemma 3.2 (but note the change of sign on d); here {km} is positive, increasing,
and by Lemma 3.2, convergent to some K .

We now prove that B(km)≤ B(k0)α
−m/(γ−1) by induction.

The base step, for m = 1, is as follows: by the definition of the sequence, we
have k1 = k0(1− d/α)−1, and so our assumption (3-4) gives

(k1− k0)B(k1)≤ Ck1 B(k0)
γ ,

which leads to
B(k1)≤

Cα
d

B(k0)
γ
≤ B(k0)α

−1/(γ−1).

Now we make the inductive assumption that B(km) ≤ B(k0)α
−m/(γ−1), and show

that this then holds for km+1: we use (3-4) to estimate

B(km+1)≤ C
km+1

km+1− km
B(km)

γ

≤ C α
m+1

d
B(k0)

γ−1α
−mγ
γ−1 +

m+1
γ−1

[
B(k0)α

−(m+1)
γ−1

]
≤ B(k0)α

−(m+1)
γ−1 .

Finally, the monotonicity of B implies that

B(K )≤ lim
m→∞

B(km)≤ lim
m→∞

B(k0)α
−m/(γ−1)

= 0. �

We will need to show that the measure of the set where v is small is small enough
to satisfy (3-5). This is the only place in this paper where it is not immediately
clear that rescaling the constants γi to 1 does not result in a loss of generality.
Consequently, we include the arbitrary weightings in J1 in the following step.
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Lemma 3.6. Let v minimize J1 = γ1 ES+ γ2W + γ3 E6 in BV+(�), and set

Ã(k) := {x ∈� : v(x) < 1/k}.

Then for all η > 0 we can find a k such that | Ã(k)| ≤ η.

Proof. Define the comparison functionw :=max{v, 1/k}∈BV+(�) for any k≥ k0,
k0 to be chosen later. Note that 0≤ w− v ≤ 1/k. Since v minimizes J1, we have
J1(v)≤ J1(w). We use

∫ √
u2+ |Du|2 ≥

∫
|u| dx for u ∈ BV+(�) to estimate

0≥ J1(v)−J1(w)

= γ1

∫
Ã(k)

√
v2+ |Dv|2− γ1

∫
Ã(k)

1
k

dx − γ3

∫
6

β(w− v) ds

+ γ2

∫
Ã(k)

v ln v− v− 1
k

ln 1
k
+

1
k

dx

≥

∫
Ã(2k)
−|γ1− γ2|

∣∣∣v− 1
k

∣∣∣+ γ2

(
v ln v− 1

k
ln 1

k

)
dx

+

∫
Ã(k)\ Ã(2k)

−|γ1− γ2|

∣∣∣v− 1
k

∣∣∣+ γ2

(
v ln v− 1

k
ln 1

k

)
dx

− γ3(1− a)|6| 1
k

(now choose k0 large enough so that x ln x is decreasing for 0< x ≤ 1/k0)

≥

∫
Ã(2k)
−|γ1−γ2|

1
k
+γ2

( 1
2k

ln 1
2k
−

1
k

ln 1
k

)
dx+

∫
Ã(k)\ Ã(2k)

−|γ1−γ2|
1

2k
dx

− γ3(1− a)|6| 1
k

≥−|γ1− γ2|
2
k
|�| − γ3(1− a)|6| 1

k
+ γ2

∫
Ã(2k)

(
−

1
2k

)
(ln ξ + 1) dx

for some ξ ∈
( 1

2k
,

1
k

)
≥−|γ1− γ2|

2
k
|�| − γ3(1− a)|6| 1

k
+ γ2| Ã(2k)|

(
−

1
2k

) (
ln 1

2k
+ 1

)
.

Rearranging, and choosing k0 large enough that ln(2k0) > 1, we find that

| Ã(2k)| ≤
4|γ1− γ2| |�| + γ3(1− a)|6|

γ2 (ln 2k− 1)
< η

for sufficiently large k > k0. �

Proof of Theorem 3.4. Let Ã(k) be defined as above. Set w := max(v, 1/k), for
some k ≥ k0. Again, as v minimizes J1, then J1(v) ≤ J1(w). Proceeding exactly
as in the proof of Theorem 3.3, we obtain
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0≥ a
∫
�

|D(v−w)| − 1
k
| Ã(k)| −

(
(1− a)cR + ln(1/k)

) ∫
�

|v−w| dx

≥
a

c�
‖v−w‖Ln/(n−1)(�)−

1
k
| Ã(k)| −

(
(1− a)cR + ln(1/k)+ a

) ∫
�

|v−w| dx,

and if we choose k0 large so that ln k ≥ cR(1−a)+a, then the final term above is
positive. We drop it and apply the Hölder inequality to the Ln/(n−1) term, leaving
us with (1/k)| Ã(k)|≥ (a/c�)‖v−w‖L1( Ã(k))| Ã(k)|

−1/n , and so for each h> k≥ k0

we have
(h− k)| Ã(h)| ≤ Ch| Ã(k)|1+1/n.

Lemma 3.6 implies that we can find k0 large enough that C Ã(k0)
1/n < 1. We

can then apply the Stampacchia-type Lemma 3.5 to conclude that | Ã(K )| = 0 for
large K , and so v ≥ 1/K almost everywhere. �

Height estimates in the cases β ≤ 0 and β ≥ 0. Height estimates are easier to
obtain in case β is either nonpositive or nonnegative.

We begin by observing a height bound for v in the surface energy term. This
closely follows [Bemelmans and Dierkes 1987, Lemma 5], and may be proved in
the same way.

Lemma 3.7. Let v ∈ BV+(�) and suppose that A(k) = {x ∈ � : v(x) > k} has
positive measure. Then w =min(v, k) ∈ BV+(�) and for almost all k,∫

�

√
w2+ |Dw|2 <

∫
�

√
v2+ |Dv|2.

Theorem 3.8. Suppose that v ∈ BV+(�) minimizes J1, and that β ≥ 0. Then v is
bounded from above.

Proof. Set w=min(v, k). Suppose that A(k) is of positive measure for some k≥ 1.
We may choose k so that Lemma 3.7 gives us∫

�

√
w2+ |Dw|2−

∫
�

√
v2+ |Dv|2 < 0.

We note that∫
�

∫ w

1
ln h dh dx −

∫
�

∫ v

1
ln h dh dx =

∫
�

∫ w

v

ln h dh dx

=

∫
�∩{x :v(x)≥k}

∫ k

v

ln h dh dx ≤ 0.

Finally,

−

∫
6

β(1−w) ds+
∫
6

β(1− v) ds =
∫
6

β(w− v) ds ≤ 0
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if β ≥ 0. Together, these inequalities give J1(w)−J1(v) < 0, contradicting that v
was a minimum. It follows that |A(k)| cannot be positive, and so v ≤ k. �

Lemma 3.9. Suppose that v minimizes J1, and β ≤ 0. Then v ≥ e−1.

Proof. Set w =max(v, ε), and write Ã(ε)= {x ∈� : v(x) < ε}. Then

J1(v)−J1(w)

=

∫
Ã(ε)

√
v2+|Dv|2−

∫
Ã(ε)

√
w2+|Dw|2−

∫
�

∫ max(v,ε)

v

ln h dh dx−
∫
6

β(w−v) ds

=

∫
Ã(ε)

√
v2+|Dv|2−

∫
Ã(ε)
ε dx−

∫
Ã(ε)

∫ ε

v

ln h dh dx−
∫
6

β
(

max(v, ε)−v
)

ds

≥

∫
Ã(ε)

√
v2+|Dv|2−

∫
Ã(ε)
(ε−v+v) dx+(−ln ε)

∫
Ã(ε)
(ε−v) dx

=

∫
Ã(ε)

√
v2+|Dv|2−

∫
Ã(ε)
v dx+(−ln ε−1)

∫
Ã(ε)
(ε−v) dx > 0

for all ε < e−1, if
∫

Ã(ε) |ε− v| 6= 0. However, this would contradict our assumption
that v is minimal for J1, so we conclude that | Ã(ε)| = 0 for small enough ε. �

4. Existence of a minimizer

Lemma 4.1 (Lower bounds for the energy). If v ∈ BV+(�), then

J1(v)≥ C(n, R, a, |�|),

where C is not necessarily positive.

Proof. As before, we can incorporate the wetting energy into the surface tension
term using (2-1), so that

J1(v)≥

∫
�

√
v2+ |Dv|2+

∫
�

∫ v

1
ln h dh dx

−(1− a)cR

∫
�

|1− v| dx − (1− a)
∫
�

|Dv|

≥ a
∫
�

|Dv| +
∫
�

f (v) dx,

where f (v) := v(ln v− 1)+ 1− cR(1− a)|1− v| is bounded below by a constant
dependent on cR and a. The result follows. �

We define a minimizing sequence for J1 as a sequence v j ∈ BV+(�) with

lim
j→∞

J1(v j )= inf
w∈BV+(�)

J1(w)=: m.

Lemma 4.2. A minimizing sequence for J1 is uniformly bounded in the BV-norm.
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Proof. We can assume that J1(v j )≤m+ 1 for j large enough. As in the previous
lemma, where we defined f , we then have

m+ 1≥ J1(v j )≥ a
∫
�

|Dv j | +

∫
�

f (v j ) dx,

so the uniform bound follows from the lower bound on f :∫
�

|Dv j | ≤
1
a

(
m+ 1− |�| inf

h∈R+
f (h)

)
.

Also, since there exist positive constants α1, α2 such that f (t)≥ α1t−α2, we have
the uniform L1 bound

‖v j‖L1(�) ≤
1
α1

(∫
�

(
f (v j )+α2

)
dx
)
≤

1
α1
(m+ 1+α2|�|). �

Lemma 4.3 (Lower semicontinuity of J1). A sequence vk ∈ BV+(�) with vk→ v

in L1(�) satisfies
J1(v)≤ lim inf

k→∞
J1(vk).

Proof. We show that the surface energy term is lower semicontinuous. For any
admissible g, we have∫

�

v (gn+1+ divn g) dx = lim
k→∞

∫
�

vk (gn+1+ divn g) dx

= lim inf
k→∞

∫
�

vk (gn+1+ divn g) dx

≤ lim inf
k→∞

∫
�

√
v2

k + |Dvk |
2.

Lower semicontinuity follows by taking the supremum over all admissible g.
Continuity of the remaining terms of J1 follows as in [Gerhardt 1974, Appen-

dix II]. �

Combining all of the above results we have:

Theorem 4.4 (Existence of a minimizer). There exists a function v ∈ BV+(�),
such that

J1(v)= inf
w∈BV+(�)

J1(w).

Proof. Let {v j } be the minimizing sequence of Lemma 4.2, with ‖v j‖BV(�) ≤ C .
By the standard compactness theorem (for example [Giusti 1984, Theorem 1.19])
there exists a subsequence v j ′→ v in L1(�).

Since the BV-norm is lower semicontinuous, v is also in BV+(�), and J1(v)≥

infv∈BV+(�) J1(w) = m. Lower semicontinuity of J1, as in Lemma 4.3, gives
J1(v)≤ lim inf J1(v j ′)= m, completing the proof. �
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5. Regularity

We now show, using a procedure similar to [Gerhardt 1974], that a minimizer
v ∈BV+(�) of J1 is locally Lipschitz in �. Then we show that the corresponding
minimizer u = − ln v of the energy J is a variational solution in the sense of
[Athanassenas and Finn 2006], so the results of that paper yield regular solutions u.

Theorem 5.1. The energy J1 has a locally Lipschitz minimizer in BV+(�).

Proof. Let v be a minimizer of J1 in BV+(�). We mollify v over the whole
of �. The mollification vε is in C∞(�), and shares the height bounds derived
for v in Section 3 (that is, bounded above and bounded from below away from
zero). Furthermore, since v ∈ BV(�),

vε→ v in L1(�) and
∫
�

|Dvε| →
∫
�

|Dv|.

Corollary 2.3 for the surface energy and standard convergence results for the re-
maining energy terms then imply that

(5-1) J1(vε)→ J1(v).

Let B ⊂ � be any ball of sufficiently small radius ρ, and consider the following
two related Dirichlet problems:div Dwε√

wε2+|Dwε|2
=

wε√
wε2+|Dwε|2

+ lnwε in B,

wε = vε on ∂B
(5-2)

and div Duε√
1+|Duε|2

= σ

(
−

1√
1+|Duε|2

+ uε

)
in B,

uε =−σ ln(vε) on ∂B.
(5-3)

The second expression is in fact a family of problems, indexed by σ ∈ [0, 1].
This family is of mean curvature type. Note that for smooth wε and uε, (5-2) is
equivalent to (5-3) for σ = 1, with the correspondence wε = e−uε .

Our next step is to solve (5-3) for σ = 1 using the continuity method. We apply
[Gilbarg and Trudinger 2001, Theorem 13.8]. A prerequisite for this is to show that
a smooth solution uσ of (5-3), for any σ ∈ [0, 1], has height and gradient bounds
independent of σ .

The height bound may be found in [Serrin 1969]; however, the geometric nature
of our problem admits a shorter proof, which we present as the following lemma.

Lemma 5.2. Let uσ be a smooth solution to (5-3) corresponding to σ ∈ [0, 1].
Then, for some M1 depending only on sup� |ln vε|, we have

(5-4) supB |u
σ
|< M1.
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Proof. Suppose that uσ achieves a positive interior maximum, uσ (x̃)= M̃ at some
point x̃ ∈ B. If M̃ > 1, then the mean curvature H(uσ )= div(Duσ/

√
1+ |Duσ |2)

at x̃ must be strictly positive. But a point of positive mean curvature cannot corre-
spond to an interior maximum, contradicting the assumption M̃ > 1. We conclude
that

uσ ≤min
{
1, sup∂B |σ ln vε|

}
≤min

{
1, sup∂B |ln vε|

}
.

Similarly, uσ has no negative internal minimum, so uσ ≥− sup∂B |ln vε|. �

We continue with the proof of Theorem 5.1. We find that the gradient bound

(5-5) supB |Duσ | ≤ M2

is an application of standard results. Firstly, an interior gradient bound can either
be derived by applying a maximum principle to the elliptic equation satisfied by
the gradient; or by using [Ladyzhenskaya and Ural’tseva 1970, Theorem 4], which
gives

(5-6) supB ′ |Duσ | ≤ M3

where B ′ b B and M3 is dependent on dist(B ′, ∂B), n and sup |uσ |.
Secondly, a boundary gradient estimate

sup∂B |Duσ | ≤ M4

results from Corollary 14.5 with the structure condition (14.33) of [Gilbarg and
Trudinger 2001]. Here M4 is dependent on |ln vε|C2(∂B), n, sup |uσ |, and ρ. To-
gether these two gradient estimates give us (5-5).

The conditions for the continuity method being satisfied, the problem (5-3), with
σ = 1, has a C2,α(B) solution which we call uε. It has height and gradient bounds
(5-4) and (5-5). It is also unique: the proof is similar to that of Theorem 2.2 in
[Athanassenas and Finn 2006], adjusted to Dirichlet boundary data.

We set wε= e−uε . This is a C2,α(B) solution of (5-2) with height bound e−M1 ≤

wε ≤ eM1 and gradient bound |Dwε| ≤ M2eM1 .
Note that (5-2) is the Euler–Lagrange equation for the energy

J2(w) :=

∫
B

√
w2+ |Dw|2+

∫
B

∫ w

1
ln h dh dx,

and so wε is a critical point of J2 in the class of H 1,2(B) functions with boundary
data vε. Furthermore, as the integrand of J2 is convex in (w, Dw), wε is also a
minimizer in this class (see, for example, the remark in Section 8.2.3 of [Evans
1998]) and hence in the smaller set C2,α(B).
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In particular, if we compare wε to vε, we have

(5-7)
∫

B

√
wε2+ |Dwε|2+

∫
B

∫ wε

1
ln h dh dx

≤

∫
B

√
vε2+ |Dvε|2+

∫
B

∫ vε

1
ln h dh dx .

Now let ṽε be defined by

ṽε =

{
wε in B,

vε in � \ B.

Using (5-7) for the region B where ṽε may be different to vε, we see that J1(ṽε)≤

J1(vε).

Now we will show that ṽε converges to a BV(�) function which is locally Lip-
schitz.

Uniform L1(� \ B) bounds are given by the height bounds for v in Section 3.
Uniform L1(B) bounds are given by supB |wε| ≤ eM1 where M1 is the constant in
(5-4); M1 also depends on the height bounds for v.

As a consequence of (5-1), we may assume that J1(vε) ≤ J1(v) + 1. Then
J1(ṽε)≤ J1(v)+ 1, and so∫
�

√
ṽ2
ε + |Dṽε|

2
≤ J1(v)+ 1−

∫
�

∫ ṽε

1
ln h dh dx +

∫
6

β
(
1− ṽε

)
ds

≤ J1(v)+ 1+ |�| supinf v≤h≤sup v(h ln h− h+ 1)

+|6| sup6|β|(1+ sup�|v|)

which is bounded above, independently of ε. Uniform BV bounds follow as in
Lemma 2.2. Therefore a subsequence of ṽε converges to v0 ∈ BV(�), and v0 is
Lipschitz in B ′ with bounds given by (5-6).

Lower semicontinuity of the functional now gives

J1(v0)≤ lim inf J1(ṽε)≤ lim inf J1(vε)= J1(v)

but as v was assumed to minimize J1 these must all be equal.
We can cover the interior of � with such sets B ′, and by repeating the argument

above for each of them, we conclude that there exists a minimizer of J1 that is
locally Lipschitz on interior sets. �

Reconsidering the problem of a capillary surface S=graph u that minimizes the
original energy functional J given in the introduction, we conclude that the found
v corresponds to a minimizer in the class {w : e−w ∈ BV+(�)}. This solution is
given by u =−ln v, and is locally Lipschitz on interior sets.
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We move on to show that under the condition v ∈ H 1,1(�), the corresponding u
is a variational solution, satisfying (5-9), which will be used in the regularity proof.

Theorem 5.3. A minimizer v of J1 in H 1,1(�) is a variational solution in the sense
of [Athanassenas and Finn 2006], that is, satisfies the equation

(5-8)
∫
�

Dv√
v2+|Dv|2

η dx +
∫
�

v√
v2+|Dv|2

η dx

+

∫
�

ln v η dx +
∫
∂�

βη ds = 0 ,

for all η ∈ L∞ ∩ H 1,1(�).

Proof. (See also [Finn and Gerhardt 1977, Lemma 2, Section 3].) Since v mini-
mizes J1,

J1(v+ εη)−J1(v)≥ 0

holds for any η ∈ H 1,1(�) and ε ∈ R. We have

J1(v+ εη)−J1(v)=

∫
�

(√
(v+ εη)2+ |D(v+ εη)|2−

√
v2+ |Dv|2

)
dx

+

∫
�

∫ v+εη

v

ln h dh+
∫
∂�

βεη ds dx

=

∫
�

∫ ε

0

D(v+λη)√
(v+λη)2+|D(v+λη)|2

· Dη dλ dx

+

∫
�

∫ ε

0

(v+λη)√
(v+λη)2+|D(v+λη)|2

η dλ dx

+

∫
�

∫ ε

0
ln(v+ λη)η dλ dx +

∫
∂�

βεη ds ,

after adding and subtracting
∫
�

√
v2+ |D(v+ εη)|2, and with θ ∈ [v, v+ εη].

We note that

lim
λ→0

D(v+λη)√
(v+λη)2+|D(v+λη)|2

=
Dv√

v2+|Dv|2
,

lim
λ→0

v+λη√
(v+λη)2+|D(v+λη)|2

=
v√

v2+|Dv|2
,

for almost all x ∈�, and that∣∣∣∣ D(v+λη)√
(v+λη)2+|D(v+λη)|2

∣∣∣∣< 1 and
∣∣∣∣ v+λη√
(v+λη)2+|D(v+λη)|2

∣∣∣∣< 1

for all λ. Also, limλ→0 ln(v + λη) = ln v, with bounds from the height estimates
on v and the L∞ norm of η.



230 MARIA ATHANASSENAS AND JULIE CLUTTERBUCK

By the dominated convergence theorem, we conclude

∂J1

∂ε

∣∣∣
ε=0
=

∫
�

Dv√
v2+|Dv|2

· Dη dx +
∫
�

(
v√

v2+|Dv|2
+ ln v

)
η dx +

∫
∂�

βη ds

= lim
ε→0

J1(v+ εη)−J1(v)

ε
= 0 ,

since J1(v+ εη)−J1(v)≥ 0 for both positive and negative ε. �

Corollary 5.4. If v ∈ H 1,1(�) minimizes J1 in �, then u =− ln v ∈ H 1,1(�) is a
variational solution in the sense of [Athanassenas and Finn 2006, Equation (13)],
that is, satisfies the equation

(5-9)
∫
�

Du√
1+|Du|2

η dx +
∫
�

u η dx =
∫
�

1√
1+|Dv|2

η dx +
∫
∂�

βη ds ,

for all η ∈ L∞ ∩ H 1,1(�).

Theorem 5.5. Let u ∈ BV(�) minimize J, and assume � ⊂ Rn to be open and
bounded with Lipschitz boundary 6, which satisfies an interior sphere condition.
Then u is analytic in �, and there is a constant c such that the gradient |Du| is
bounded up to the boundary of �:

|Du| ≤ c.

Proof. We use the transformation v = e−u , as defined above, and which was
shown to be locally Lipschitz in � (Theorem 5.1). By Rademacher’s theorem,
v is differentiable almost everywhere in �, and as such v ∈ H 1,1(�), since the
weak derivatives of v are equal to the strong derivatives wherever they exist and
also v ∈ BV(�).

By Theorem 5.3, the function v, which minimizes J1 in the v formulation of the
problem, is a variational solution satisfying (5-8). By Corollary 5.4 we conclude
that u ∈ H 1,1(�) is a variational solution in the sense of [Athanassenas and Finn
2006, Equation (13)]. In that paper the authors prove that u is analytic in Lipschitz
domains whose boundary 6 satisfy an interior sphere condition, and they also
obtain gradient bounds up to 6, which concludes the proof. �

Acknowledgements

This paper was begun during the first author’s visit to the Max-Planck-Institut für
Gravitationsphysik, Potsdam, and the second author’s appointment at the Freie
Universität Berlin. It was completed at the Centre for Mathematics and its Appli-
cations, Australian National University, Canberra. We thank these institutions for
their support and hospitality.



A CAPILLARITY PROBLEM FOR COMPRESSIBLE LIQUIDS 231

References

[Athanassenas and Finn 2006] M. Athanassenas and R. Finn, “Compressible fluids in a capillary
tube”, Pacific J. Math. 224:2 (2006), 201–229. MR 2007f:76031 Zbl 1126.76049

[Bemelmans and Dierkes 1987] J. Bemelmans and U. Dierkes, “On a singular variational integral
with linear growth, I. Existence and regularity of minimizers”, Arch. Rational Mech. Anal. 100:1
(1987), 83–103. MR 89a:49022 Zbl 0651.49017

[Dierkes and Huisken 1990] U. Dierkes and G. Huisken, “The n-dimensional analogue of the cate-
nary: existence and nonexistence”, Pacific J. Math. 141:1 (1990), 47–54. MR 90j:49031 Zbl
0652.49029

[Emmer 1973] M. Emmer, “Esistenza, unicità e regolarità nelle superfici de equilibrio nei capillari”,
Ann. Univ. Ferrara Sez. VII (N.S.) 18 (1973), 79–94. MR 49 #1281 Zbl 0275.49005

[Evans 1998] L. C. Evans, Partial differential equations, Graduate Studies in Math. 19, Amer. Math.
Soc., Providence, RI, 1998. MR 99e:35001 Zbl 0902.35002

[Finn 1986] R. Finn, Equilibrium capillary surfaces, Grund. der Math. Wissenschaften 284, Spring-
er, New York, 1986. MR 88f:49001 Zbl 0583.35002

[Finn 2001] R. Finn, “On the equations of capillarity”, J. Math. Fluid Mech. 3:2 (2001), 139–151.
MR 2002c:76026 Zbl 0999.76025

[Finn 2004] R. Finn, “Capillarity problems for compressible fluids”, Mem. Differential Equations
Math. Phys. 33 (2004), 47–55. MR 2005k:76116 Zbl 1101.76050

[Finn and Gerhardt 1977] R. Finn and C. Gerhardt, “The internal sphere condition and the capillary
problem”, Ann. Mat. Pura Appl. (4) 112 (1977), 13–31. MR 55 #7106 Zbl 0349.49019

[Finn and Luli 2007] R. Finn and G. K. Luli, “On the capillary problem for compressible fluids”, J.
Math. Fluid Mech. 9:1 (2007), 87–103. MR 2008i:76036 Zbl 1151.76400

[Gerhardt 1974] C. Gerhardt, “Existence and regularity of capillary surfaces”, Boll. Un. Mat. Ital.
(4) 10 (1974), 317–335. MR 51 #1569 Zbl 0314.49019

[Gilbarg and Trudinger 2001] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equa-
tions of second order, Springer, Berlin, 2001. Reprint of the 1998 edition. MR 2001k:35004
Zbl 1042.35002

[Giusti 1980] E. Giusti, “The pendent water drop. A direct approach”, Boll. Un. Mat. Ital. A (5) 17:3
(1980), 458–465. MR 82c:49036 Zbl 0435.49004

[Giusti 1984] E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Math.
80, Birkhäuser Verlag, Basel, 1984. MR 87a:58041 Zbl 0545.49018

[Gonzalez et al. 1980] E. Gonzalez, U. Massari, and I. Tamanini, “Existence and regularity for
the problem of a pendent liquid drop”, Pacific J. Math. 88:2 (1980), 399–420. MR 83j:49042b
Zbl 0415.49028

[Huisken 1985] G. Huisken, “Capillary surfaces over obstacles”, Pacific J. Math. 117:1 (1985), 121–
141. MR 87c:49047 Zbl 0561.49009

[Ladyzhenskaya and Ural’tseva 1970] O. A. Ladyzhenskaya and N. N. Ural’tseva, “Local estimates
for gradients of solutions of non-uniformly elliptic and parabolic equations”, Comm. Pure Appl.
Math. 23 (1970), 677–703. MR 42 #654 Zbl 0193.07202

[Serrin 1969] J. Serrin, “The problem of Dirichlet for quasilinear elliptic differential equations with
many independent variables”, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413–496. MR 43
#7772 Zbl 0181.38003

http://www.ams.org/mathscinet-getitem?mr=2007f:76031
http://www.emis.de/cgi-bin/MATH-item?1126.76049
http://dx.doi.org/10.1007/BF00281248
http://dx.doi.org/10.1007/BF00281248
http://www.ams.org/mathscinet-getitem?mr=89a:49022
http://www.emis.de/cgi-bin/MATH-item?0651.49017
http://projecteuclid.org/getRecord?id=euclid.pjm/1102646773
http://projecteuclid.org/getRecord?id=euclid.pjm/1102646773
http://www.ams.org/mathscinet-getitem?mr=90j:49031
http://www.emis.de/cgi-bin/MATH-item?0652.49029
http://www.emis.de/cgi-bin/MATH-item?0652.49029
http://www.ams.org/mathscinet-getitem?mr=49:1281
http://www.emis.de/cgi-bin/MATH-item?0275.49005
http://www.ams.org/mathscinet-getitem?mr=99e:35001
http://www.emis.de/cgi-bin/MATH-item?0902.35002
http://www.ams.org/mathscinet-getitem?mr=88f:49001
http://www.emis.de/cgi-bin/MATH-item?0583.35002
http://dx.doi.org/10.1007/PL00000966
http://www.ams.org/mathscinet-getitem?mr=2002c:76026
http://www.emis.de/cgi-bin/MATH-item?0999.76025
http://www.ams.org/mathscinet-getitem?mr=2005k:76116
http://www.emis.de/cgi-bin/MATH-item?1101.76050
http://dx.doi.org/10.1007/BF02413473
http://dx.doi.org/10.1007/BF02413473
http://www.ams.org/mathscinet-getitem?mr=55:7106
http://www.emis.de/cgi-bin/MATH-item?0349.49019
http://dx.doi.org/10.1007/s00021-005-0203-5
http://www.ams.org/mathscinet-getitem?mr=2008i:76036
http://www.emis.de/cgi-bin/MATH-item?1151.76400
http://www.ams.org/mathscinet-getitem?mr=51:1569
http://www.emis.de/cgi-bin/MATH-item?0314.49019
http://www.ams.org/mathscinet-getitem?mr=2001k:35004
http://www.emis.de/cgi-bin/MATH-item?1042.35002
http://www.ams.org/mathscinet-getitem?mr=82c:49036
http://www.emis.de/cgi-bin/MATH-item?0435.49004
http://www.ams.org/mathscinet-getitem?mr=87a:58041
http://www.emis.de/cgi-bin/MATH-item?0545.49018
http://projecteuclid.org/getRecord?id=euclid.pjm/1102779522
http://projecteuclid.org/getRecord?id=euclid.pjm/1102779522
http://www.ams.org/mathscinet-getitem?mr=83j:49042b
http://www.emis.de/cgi-bin/MATH-item?0415.49028
http://projecteuclid.org/getRecord?id=euclid.pjm/1102706930
http://www.ams.org/mathscinet-getitem?mr=87c:49047
http://www.emis.de/cgi-bin/MATH-item?0561.49009
http://dx.doi.org/10.1002/cpa.3160230409
http://dx.doi.org/10.1002/cpa.3160230409
http://www.ams.org/mathscinet-getitem?mr=42:654
http://www.emis.de/cgi-bin/MATH-item?0193.07202
http://dx.doi.org/10.1098/rsta.1969.0033
http://dx.doi.org/10.1098/rsta.1969.0033
http://www.ams.org/mathscinet-getitem?mr=43:7772
http://www.ams.org/mathscinet-getitem?mr=43:7772
http://www.emis.de/cgi-bin/MATH-item?0181.38003


232 MARIA ATHANASSENAS AND JULIE CLUTTERBUCK

[Stampacchia 1966] G. Stampacchia, Èquations elliptiques du second ordre à coefficients disconti-
nus, Séminaire Math. Sup. (Été, 1965) 16, Les Presses de l’Univ. de Montréal, 1966. MR 40 #4603
Zbl 0151.15501

Received December 2, 2008.

MARIA ATHANASSENAS

SCHOOL OF MATHEMATICAL SCIENCES

MONASH UNIVERSITY

VIC 3800
AUSTRALIA

maria.athanassenas@sci.monash.edu.au

JULIE CLUTTERBUCK

MATHEMATICAL SCIENCES INSTITUTE

AUSTRALIAN NATIONAL UNIVERSITY

ACT 0200
AUSTRALIA

Julie.Clutterbuck@maths.anu.edu.au

http://www.ams.org/mathscinet-getitem?mr=40:4603
http://www.emis.de/cgi-bin/MATH-item?0151.15501
mailto:maria.athanassenas@sci.monash.edu.au
mailto:Julie.Clutterbuck@maths.anu.edu.au

	1. Introduction
	2. The energy in the isothermal case
	3. Height bounds
	4. Existence of a minimizer
	5. Regularity
	Acknowledgements
	References

