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PICARD–VESSIOT EXTENSIONS
WITH SPECIFIED GALOIS GROUP

TED CHINBURG, LOURDES JUAN AND ANDY R. MAGID

Picard–Vessiot extensions are determined by their differential module struc-
ture. For a fixed group G, Picard–Vessiot extensions with differential Ga-
lois group G are all isomorphic as G-modules but not as differential rings.
We show that isomorphism classes of Picard–Vessiot extensions with group
G correspond to G-orbits in a certain finite-dimensional vector space with
G-action.

1. Introduction

The normal basis theorem states that if K/L is a finite Galois extension of fields
with group 0, then K is isomorphic to the group ring L[0] as an L[0]-module. In
this paper we will consider a counterpart of this result in differential Galois theory.
This counterpart leads to considering the problem of recognizing a Picard–Vessiot
extension E of a differential field F from information weaker than the structure
of E as a differential field.

Recall from [Van der Put and Singer 2003; Magid 1997] some basic definitions.
Let F be a differential field of characteristic 0 having an algebraically closed field
of constants C . A field extension E/F is a Picard–Vessiot extension if E is dif-
ferentially generated over F by a full set of solutions of a monic homogeneous
differential equation over F and if E has the same field of constants as F . The
Picard–Vessiot ring R of E/F may be described as the ring of elements of E
whose iterated images under the derivation DE of E span a finite-dimensional
vector space over F . The fraction field of R is equal to E . The differential Galois
group G of E/F is the affine algebraic group over C given by the differential
automorphisms of E over F . Let C[G] be the affine coordinate ring of G over C ,
and let F[G] = F ⊗C C[G].

Our counterpart of the normal basis theorem is as follows.

Theorem 1.1. There is an F[G]-comodule isomorphism between R and F[G].
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The normal basis theorem implies that the structure of K as an L[0]-module
is not sufficient in general to determine K as a Galois extension of F . Similarly,
Theorem 1.1 shows that the F[G]-comodule structure of R does not in general
determine R or E . It is natural to try to minimize, in various ways, the amount of
information about E that is sufficient to determine E . Our first result along this
line is proved in Proposition 2.1:

Theorem 1.2. The structure of E as a differential F-module determines E.

Generally, E has infinite dimension as an F vector space. To try to determine E
from a finite amount of linear algebra data over F , one could simply note that
the differential equation over F that determines E is specified by finitely many
coefficients in F . More conceptually, the differential equation can be replaced
by an associated finite-dimensional differential module over F that is trivialized
by E ; see [Van der Put and Singer 2003]. However, there is no preferred choice
for a differential equation giving E or for an associated differential module. We
will consider the following more canonical method, which depends on choosing a
faithful finite-dimensional G-module V that admits an embedding into C[G].

We will show in Proposition 2.2 that there is an isomorphism α : R → F[G]
respecting F- and G-module structure. Using this isomorphism, we can transport
the derivation DR of R to a G-endomorphism of F[G] that makes F[G] into a
differential F-module. Define W to be the sum of the images of V in F[G] under
all G-homomorphisms. We will show in Lemma 4.1 that W is a finite-dimensional
F vector space. We will also prove that W is a rational G-module that is stable
under the above differential structure coming from DR , and that this restriction
determines DR . Let 1R be the resulting differential structure on W. The con-
struction of W and 1R is canonical up to the choice of the F- and G-module
isomorphism α : R→ F[G]. Let EndF ·G(W) and AutF ·G(W) respectively be the
groups of endomorphisms and automorphisms of W that respect the actions of F
and G on W. As a corollary of Theorem 4.2, we will prove:

Theorem 1.3. Isomorphism classes of Picard–Vessiot extensions E of F with dif-
ferential Galois group G correspond to the orbits of AutF ·G(W) on EndF ·G(W).

We note that W is a two-sided G-module. This observation permits the F- and
G-endomorphism ring of W to be calculated in principle. We include a number of
examples in Section 5.

We retain throughout the notations of this introduction. In addition, we refer to
F vector spaces with rational G action trivial on F as F ·G-modules. Some basic
results on F · G-modules are collected in Section 3 below. An F · D-module is
an F vector space having a derivation that is compatible with the derivation of F
and that is the union of finite-dimensional F subspaces that are stable under the
derivation. We denote by F〈G〉 the usual group algebra of G over F .
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2. Differential modules

We begin by showing that the differential F-module structure alone distinguishes
Picard–Vessiot extensions.

Proposition 2.1. Let E1 and E2 be Picard–Vessiot extensions of F , and assume
that they are isomorphic as differential F vector spaces. Then they are isomorphic
as differential fields. This is equivalent to the Picard–Vessiot rings of the Ei being
isomorphic as differential F vector spaces.

Proof. We may assume that both E1 and E2 are differential subfields of a Picard–
Vessiot extension of F . Let B : E1→ E2 be an F linear differential isomorphism.
Let Ri ⊂ Ei be the set of elements that satisfy monic linear homogeneous dif-
ferential equations over F . Suppose α ∈ E1 is in R1 and satisfies the differential
equation L(α) = 0, where L(X) = X (n)

+ an−1 X (n−1)
+ · · · + a0 is a monic ho-

mogeneous linear differential operator over F . We may assume that L−1(0)⊂ E1

and dimC L−1(0) = n. Now 0 = B(L(β)) = L(B(β)) for any β ∈ L−1(0), so
B(L−1(0))= L−1(0) and α ∈ L−1(0)= B(L−1(0))⊂ R2. It follows that R1 ⊆ R2.
Similar considerations apply to elements of R2. We conclude that R1 = R2, and
also that the isomorphism B carries R1 to R2. Since Ri is the Picard–Vessiot ring
of Ei and Ei is the quotient field of Ri , we have E1 = E2. Thus the identity is the
desired differential field isomorphism between E1 and E2; note that it does not,
in general, coincide with B. An examination of the proof shows that it suffices to
begin with an F · D isomorphism from R1 to R2. �

Proposition 2.1 implies that it is sufficient to consider the F ·D-module (R, DR),
that is, the F vector space R with its designated endomorphism DF (which is C ,
but not necessarily F , linear). We now consider the F ·G-module structure of R.

Proposition 2.2. Let R be the Picard–Vessiot ring of a Picard–Vessiot extension
E of F with differential Galois group G. Then R is isomorphic to F[G] as an
F ·G-module.

Proof. It is a consequence of Kolchin’s theorem [Magid 1997, Theorem 5.12]
that there is a finite Galois extension F1 of F such that F1 ⊗F R ∼= F1[G] as F1

and G-modules. Let n = [F1 : F]. As F vector spaces with G action, the two
sides of the above are isomorphic to R(n) and F[G](n), which means the two direct
sums are isomorphic as F ·G-modules. This implies that the socles of the direct
sums are isomorphic F ·G-modules, and then, by counting multiplicities of simple
components, that the socles of R and F[G] are F · G isomorphic. Since F[G]
is F ·G injective [Cline et al. 1977], the isomorphism of the direct sums implies
that R is also an injective F · G-module. Finally, injective F · G modules with
isomorphic socles are isomorphic. �
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3. F · G-modules

We recall that F[G] = F ⊗C C[G]. We associate F-valued functions on G to
elements of F[G]: If f =

∑
ai ⊗φi , then f (g)=

∑
φi (g)ai for g ∈ G. It is clear

that elements of F[G] are determined by their associated functions. Using this
functional representation, the actions of G on F[G] are the left action λ(g) f = g· f
where g· f (x)= f (xg) and the right action ρ(g) f = f ·g−1 where f ·g(x)= f (gx).

Note that λ(g)ρ(h)= ρ(h)λ(g).
We have evaluation functionals given by evg : F[G]→ F , f 7→ f (g). Note that

the only element of F[G] in the kernel of all the evaluation functionals is 0.
If X ⊂ F[G] is a left (or right) F · G-submodule, we use λ (or ρ) to denote

the G action on X , and we use evg : X → F for the evaluation restrictions. In
EndF (X) we let 3=

∑
g Fλ(g) (or P =

∑
g Fρ(g)). If X is both a left and right

F ·G-submodule, then 3 and P commute.
Suppose X is finite-dimensional. Then the fact that intersections of the kernels

of the evaluation functionals is trivial means that they span HomF (X, F).
That F[G] is F ·G injective and that the multiplicities of the simple components

of its socle are finite follow from the next lemma, whose proof and use are the same
as the familiar case where F = C [Cline et al. 1977, Proposition 1.4, page 9]:

Lemma 3.1. Let W be a finite-dimensional F · G-module, with associated F[G]
comodule structure γW : W → W ⊗F F[G]. Let eve : F[G] → F be evaluation
at the identity. Then there is an isomorphism as (right) G-modules and F vector
spaces given by

HomF ·G(W, F[G])→ HomF (W, F)

with 8 7→ eve ◦8 and f 7→ (1⊗ f ) ◦ γW .

This “duality” lemma also implies a structural result about endomorphism rings:

Lemma 3.2. Let W ⊂ F[G] be a finite-dimensional F ·G-submodule that is also
a right G-submodule, and suppose every F ·G-morphism W → F[G] has image
in W . Then EndF ·G(W )= P.

Proof. By assumption we have EndF ·G(W )=HomF ·G(W, F[G]), and Lemma 3.1
says that

HomF ·G(W, F[G])→ HomF (W, F), 8 7→ eve ◦8

is an isomorphism. For g ∈ G we have that ρ(g−1) is an F · G-endomorphism
of W , and one checks that eve ◦ ρ(g−1) = evg. Since W is finite-dimensional,
HomF (W, F) is spanned by evaluations, which means that the subring P of the
F ·G-endomorphism ring maps onto HomF (W, F) and hence coincides with the
endomorphism ring. �
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Another way to state the result of Lemma 3.2 is that the ring homomorphism
F〈G〉 → EndF ·G(W ) induced from ρ : G→ EndF ·G(W ) is surjective.

This is not necessarily the case for automorphisms. However:

Lemma 3.3. Let W be an F ·G-submodule of F[G]. The morphisms

EndF ·G(F[G])→ EndF ·G(W) and AutF ·G(F[G])→ AutF ·G(W)

induced from restriction are surjective.

Proof. By construction, W is an F · G-submodule of the injective F · G-module
F[G]. This means that F[G] contains an injective hull I of W. Then I is an
essential extension of W, which in our context means that they have the same
socle, and I , being injective, is also a direct summand of F[G]. Let B be an auto-
morphism of W. Composing B with the inclusion of W in I is a monomorphism.
Since I is injective, the inclusion of W into I factors through this monomorphism,
so that B lifts to an endomorphism B0 of I . The same argument, in the case that
B is only an endomorphism, also proves the first claim of the lemma. The kernel
of B0, if nontrivial, contains a simple submodule, which belongs to the socle of I
and therefore the socle of W. This simple module then is contained in W, and
hence in the kernel of B. That kernel is trivial, and thus so is the kernel of B0. The
image I0 = B0(I ) is then an injective submodule of I (being isomorphic to I ) and
contains B(W)=W. Again, because I is an essential extension of W, this implies
that I = I0 and B0 is onto, and hence an automorphism of I0. Now take B1 to be an
automorphism of F[G] that is B0 on I and the identity on a complementary direct
summand. �

There is a derivation of F[G] coming from F given by DF ⊗ 1. We denote
this by ∂ in this section. Note that ∂ is a G-morphism. Suppose that X is a finite-
dimensional F ·G-submodule of F[G] with ∂(X) ⊂ X and that T : X → X is an
F ·G-endomorphism. We define

T ′ = ∂ ◦ T − T ◦ ∂.

It is straightforward to check that T ′ is also an F ·G-endomorphism. If T = 1⊗ τ
for τ a G endomorphism of C[G], then T commutes with ∂ and T ′ = 0. It follows
that

if T =
∑

fiρ(gi ) then T ′ =
∑

f ′i ρ(gi ).

which we call the differentiation of coefficients formula. In these notation, we also
have the following conjugation formula:

Lemma 3.4. Let X be a finite-dimensional F · G-submodule of F[G] such that
∂(X)⊂ X , and let B : X→ X be an F ·G-automorphism. Then

B−1∂B = ∂ + B−1 B ′.
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More generally, if (X,1) is an F · D structure on X and T =1− ∂ , then we have
B−11B = ∂ + B−1 B ′+ B−1T B.

Proof. Let S = B−1∂B, so BS = ∂ ◦ B. By definition, ∂ ◦ B = B ′ + B ◦ ∂ , so
S = B−1(B ′+ B ◦ ∂)= B−1 B ′+ ∂ , as desired. The second formula is immediate
from the first. �

4. Isomorphism classes of Picard–Vessiot extensions

Let V be a faithful finite-dimensional G-module over C .

Definition 1. Let Y be any rational G-module over C . Then

W(Y )=
∑
{φ(V ) | φ ∈ HomG(V, Y )}.

For Y = F[G], we let W denote W(F[G]).

If f : Y → Z is a G-module morphism, then f (W(Y )) ⊆ W(Z), and in par-
ticular W(Y ) is stable under G-endomorphisms of Y . It is clear that W(Y ) is a
G-submodule of Y , and that W(Y ) is the image of

HomG(V, Y )⊗C V → Y, φ⊗ y 7→ φ(y).

In the special case Y = F[G] and W = F ⊗C V , we have

HomG(V, F[G])= HomF ·G(W, F[G]) and ⊗C V =⊗F W,

so that HomG(V, F[G])⊗C V =HomF ·G(W, F[G])⊗F W , from which it follows
that W(F[G]) is the image of

HomF ·G(W, F[G])⊗F W → F[G], ψ ⊗w 7→ ψ(w).

Since HomF ·G(W, F[G]) = HomF (W, F) is a finite-dimensional F-module,
this shows that W(F[G]) is a finite-dimensional F ·G-module, and that W(F[G])=∑
{ψ(W ) | ψ ∈ HomF ·G(W, F[G])}. Since R is F · G isomorphic to F[G], we

see that W(R) is also a finite-dimensional F ·G-submodule of R. Moreover, the
restriction of DE to W(R) determines DE , as we now note:

Lemma 4.1. W(R) is finite-dimensional over F and an F ·G- and F ·D-submodule
of R. The F subalgebra of R generated by W(R) has quotient field E. In particu-
lar, the restriction of DE to W(R) determines DE .

Proof. D is a G-endomorphism of R, and hence preserves W(R). This makes
W(R) an F · D-submodule of R, and hence the subalgebra generated over F by
W(R) is a differential subalgebra of R, and its quotient field K is then an interme-
diate differential field of the Picard–Vessiot extension E ⊃ F , and so is of the form
E H for a subgroup H of G. By assumption, we have an embedding V → C[G],
hence V → F[G], and therefore, by Proposition 2.2, an embedding φ : V → R.
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Then φ(V ) is a faithful G-submodule of W(R) and hence of K . Since no element
of G other then e acts trivially on K , we have H trivial and K = E . �

We are now ready to construct the invariant. We recall from Proposition 2.1 that
if we have two Picard–Vessiot rings R1 and R2 with corresponding derivations D1

and D2, then they are isomorphic as Picard–Vessiot rings if and only if there is an
F vector space isomorphism B : R1 → R2 such that D2 = B D1 B−1. If there is
such a B, then there will be one that is an F ·G-isomorphism.

We can select an F · G-isomorphism Ai : Ri → F[G], as per Proposition 2.2,
and consider the G endomorphisms Ai D A−1

i of F[G].
We have Ai (W(Ri )) = W, and hence, by Lemma 4.1, that 1i = Ai D A−1

i is
determined by its restriction to W, which we denote by the same symbol. As
previously noted, the structures Mi = (W,1i ) are F · D-modules. If the Ri are
isomorphic, then clearly so are the Mi , where by the latter we mean that there is
an F · G-module automorphism of W carrying 11 to 12. We record this and its
converse in the following result:

Theorem 4.2. For i = 1, 2, let Ei be Picard–Vessiot extensions of F with group G,
let Ri be the Picard–Vessiot ring of Ei , and let Ai : Ri → F[G] be an F · G-
isomorphism. Then the Ei are isomorphic if and only if there is an F · G-auto-
morphism B of W such that

B A1 DR1 A−1
1 B−1

|W = A2 DR2 A−1
2 |W.

Proof. If the Ei are isomorphic, then there is a differential F · G-isomorphism
R1→ R2 that produces B. Conversely, suppose we have B. If B is the restriction
to W of an F · G-automorphism B1 of F[G], then replacing A1 by B1 A1 gives
an isomorphism of R1 to F[G] such that the resulting F · D-module structure on
W coincides with that for R2, so that the Ri and hence Ei are isomorphic. So the
theorem follows from Lemma 3.3. �

Theorem 4.2 says that an isomorphism class of Picard–Vessiot extensions cor-
responds to an equivalence class of differential structures on W, the equivalence
relation coming from conjugation by F · G-automorphisms. We always have the
differential structure ∂ on W induced from DF ⊗1 on F[G] as in Section 3. Then
(W,1) is an F · D-module if and only if 1− ∂ is an F ·G-endomorphism of W.
The action of F ·G-automorphisms on differential structures on W then translates
to the following action on F ·G-endomorphisms:

For B ∈ AutF ·G(W) and T ∈ EndF ·G(W), let T B
= BT B−1

+ B−1 B ′, where
B ′= ∂◦B−B◦∂ . This defines a right action of automorphisms on endomorphisms,
called, for obvious reasons, conjugation plus logarithmic differentiation. Then
Theorem 4.2 and Lemma 3.4 imply the following:
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Corollary 4.3. Isomorphism classes of Picard–Vessiot extensions of F with group
G correspond to AutF ·G(W) orbits on EndF ·G(W) under the conjugation plus log-
arithmic differentiation right action.

5. Examples

We use dlog(x) to denote the logarithmic derivative x ′/x .
We begin with the case of finite G. Finite Galois extensions E ⊃ F are Picard–

Vessiot: There is a unique extension of the derivation DF to E , and this turns
out to have field of constants C . Moreover, in this case the Picard–Vessiot ring R
coincides with E . On the other hand, it is never the case that R is isomorphic as
an F algebra with F[G], as the latter is always just a finite product of copies of F .

Example 1. G = Z/2Z. A Picard–Vessiot extension of F with group G is then of
the form E = F(

√
d), where d is a nonsquare of F . Assume DF is extended to E .

Differentiating the equation (
√

d)2 = d shows that (
√

d)′ = d ′/(2
√

d) which we
write as 1

2 dlog(d)
√

d .
Let e denote the identity and g denote the nontrivial element of G. The ring

F[G] is all functions FG , which is isomorphic as a G-module to the group al-
gebra F〈G〉 = Fe+ Fg. (The isomorphism has e corresponding to the constant
function 1 and g to the function that is 1 on the identity and −1 on g.) There
is a G isomorphism A : E → F〈G〉 by 1 7→ e + g and

√
d 7→ e − g. (This is,

of course, a special case of the normal basis theorem.) In terms of coordinates,
A(a+b

√
d)= (a+b)e+(a−b)g while A−1(αe+βg)= 1

2(α+β)+
1
2(α−β)

√
d.

Then if D = DE , we calculate

AD A−1(αe+βg)= (α′+ 1
2(α−β)

1
2 dlog(d))e+ (β ′− 1

2(α−β)
1
2 dlog(d))g.

By Section 3, the derivation ∂=DF⊗1 of F〈G〉 is given by ∂(αe+βg)=α′e+β ′g,
and hence the determining F ·G-module endomorphism T = AD A−1

−∂ is given
by

T (αe+βg)= 1
2 dlog(d)( 1

2(α−β)e+
1
2(β −α)g).

We now specify the faithful G-module V : We choose the one-dimensional mod-
ule on which g acts nontrivially, which appears here as the module spanned by e−g.
It then follows that we may choose F(e − g) for W. On W, T becomes multi-
plication by 1

2 dlog(d). Now suppose B is any F · G-automorphism of W. Then
B is multiplication by some nonzero element α of F , so that B commutes with T
and B−1 B ′ is multiplication by dlog(α) and B−1T B+ B−1 B ′ is multiplication by
1
2 dlog(d)+ dlog(α), which can be written 1

2 dlog(α2d).
This is interpreted as follows: Picard–Vessiot extensions of F with group G are

quadratic extensions of F . Those isomorphic to F(
√

d) are of the form F(
√

c)
where c is equivalent to d modulo squares, or c = α2d for some α ∈ F .
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Example 2. G = Gm . For Picard–Vessiot extensions E ⊃ F with group Gm ,
we have E = F(y), where y is transcendental over F and satisfies y′ = ay for
some a ∈ F . Furthermore, there is no α ∈ F with α′ = aα, which says that a
is not a logarithmic derivative in F . The Picard–Vessiot ring here is F[y, y−1

],
which is isomorphic as an F-algebra and G-module to F[Gm], the isomorphism
A carrying y to the coordinate t on Gm . For V we can take the C-module spanned
by t , and then W turns out to be Ft . We compute AD A−1 on W as αt 7→ αy 7→
(α′+a)y 7→ (α′+a)t . So T = AD A−1

−∂ is multiplication by a. As in Example 1,
an F ·G-automorphism B of W is multiplication by some nonzero element b of F ,
and so B−1T B+ B−1 B ′ is multiplication by a+ dlog(b).

Suppose K is a Picard–Vessiot extension of F with group Gm such that K is Gm

differentially isomorphic to C(y). Modeling E on C(y), we see that E is generated
by z=by for some nonzero b∈ F . Then z satisfies z′= (b′+ab)y= (dlog(b)+a)z.
Thus the invariant corresponding to K is a+ dlog(b).

Example 3. G = SL2(C). As with Example 2, here all Picard–Vessiot rings
are isomorphic to F[SL2(C)]; see [Magid 1997, Theorem 5.12] and [Serre 1997,
Proposition 33]. However, in this case the classification of extensions is not avail-
able, and so we confine our attention to the specific case F = C(x), the field of
rational functions with constant coefficients and with x ′=1, and the Picard–Vessiot
extension E ⊃ F for the Airy equation Y ′′− xY . Then the Picard–Vessiot ring R
is known to be F[y, z, y′, z′]/(yz′− zy′− 1), where y, z are solutions of the Airy
equation [Magid 1997, Example 4.29].

In terms of the familiar matrix coordinates we can write

F[SL2] = F[x11, x12, x21, x22]/(x11x22− x12x21− 1).

There is an obvious F algebra isomorphism

A : R→ F[SL2], y 7→ x11, z 7→ x21, y′ 7→ x12, z′ 7→ x22.

For V , we are going to use the SL2-module C2 (column 2-tuples with the usual
left matrix multiplication action of SL2). V appears in R as Cy + Cz, which
we will use. For A to be SL2 linear, we need to use the right action of SL2 on
F[SL2]: Thus if X is the matrix [xi j ] and g ∈ SL2(C) is the matrix [xi j (g)], then
xg

i j = xi j (gX)= xi1(g)x1 j + xi2(g)x2 j .
One checks then that W is 4-dimensional over F , and hence equals

∑
Fxi j .

Then T = AD A−1 is given by T (xi1)= xi2 and T (xi2)= xxi1.
To determine the class of T , we need to know about the F ·G-automorphisms

of W. According to Lemma 3.2, all F · G-endomorphisms of W are F linear
combinations of “right” (here left) SL2 translations symbolized by X 7→ Xg. Every
2-by-2 matrix P in M2(F) can be written as an F-linear combination of matrices
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in SL2(C). Thus every F ·G-endomorphism B of W can be written as X 7→ X P
for some P in M2(F). For example, T is represented by the matrix

[
0 x
1 0

]
. An

endomorphism B will be an automorphism if and only if the representing matrix
P is invertible, in which case B−1 will be represented by P−1. By the derivation of
coefficients formula below, we know that B ′ is given by the matrix obtained from
P by differentiating entries.

So let B be an F ·G-automorphism of W represented by an invertible matrix P ,
which we write in the form δQ, where Q has determinant 1.

Let Q =
[

a b
c d

]
. Then B−1T B+ B−1 B ′ is represented by the matrix[

d −b
−c a

] [
0 x
1 0

] [
a b
c d

]
+

[
d −b
−c a

] [
a′ b′

c′ d ′

]
+ dlog(δ).
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