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In dimension three, we show the existence of weak solutions (u, H, E) to
the Landau-Lifshitz equation coupled with the time-dependent Maxwell
equation such that « is Holder continuous away from a closed set X that
has locally finite 3-dimensional parabolic Hausdorff measure. For two re-
duced Maxwell equations, Holder continuity of Vu away from X is also
established.

1. Introduction

For a bounded, smooth domain Q C R3, we consider the Landau—Lifshitz—Maxwell
equation:

(1-1) %:ﬁlux(Au—i—H)—[)’zux(ux(Au—i—H)) in Q xRy,
(1-2) VxH= 60% +0E in R* x Ry,
(1-3)  VxE :—%(H—i—ﬂﬁ) inR® xRy,

where u: Qx R, — S is the magnetization field, H : R? x R, — R? is the magnetic
field, E : R3 x Ry — R3 is the electric field, H¢ = AZ+ H is the effective magnetic
field, S, is the gyromagnetic coefficient, 5, > 0 is the Gilbert damping coefficient,
g0 > 0, o > 0 is the conductivity constant, f is the magnetic permeability of free
space, and u is an extension of u such that # = 0 outside €. The system (1-1)—(1-3)
was originally proposed by Landau and Lifshitz [1935] to model the dynamics of
magnetization, magnetic field and electric field for the ferromagnetic materials.
The coupled Maxwell equations (1-2) and (1-3) can be written as

-4y  2B_ _vxE and PLGE=VxH inR xR,

ot ot
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where D and B are the electric and magnetic displacements, given by
(1-5) D=gE, B=H+pi inR>xRy.

Note that when H = £ = 0 and f = 0, the system (1-1)—(1-3) reduces to the
Landau-Lifshitz—Gilbert equation for Z : Q x R, — §:

(1-6) %:ﬂlzxAZ—ﬂZZx(ZxAZ).

Equation (1-6) is a hybrid between the Schrodinger flow into S2 (6u /0t =u X Au
for > = 0) and the heat flow of a harmonic map into S? (du/dt = Au+ |Vul?u
for f; = 0). There have been many works on both the existence and regularity of
weak solutions to (1-6) in recent years. Zhou and Guo [1987] proved the existence
of global weak solutions of (1-6) under suitable initial-boundary conditions. The
unique smooth solution of (1-6) in dimension one was established in [Zhou et al.
1991]. Alouges and Soyeur [1992] proved that given 0 < £, and the initial data
uo: R3 — §% with Vug e L2(R3), there exists a global weak solution of (1-6) in R3.
Moreover, if ug € H' (Q) and f, > 0, the Neumann boundary value problem of (1-6)
in a bounded domain Q C R? may admit infinitely many weak solutions. For reg-
ularity of weak solutions to (1-6), Guo and Hong [1993] established the existence
of a global, weak solution with finitely many singular points in dimension two,
and Chen, Ding and Guo [1998] proved the uniqueness of weak solutions whose
energies are nonincreasing in time at dimension two. In dimension three, Melcher
[2005] proved the existence of global weak solutions to (1-6) for Q = R3, which are
smooth away from a closed set of locally finite 3-dimensional parabolic Hausdorff
measure. Later, Wang [2006] established the existence of partially smooth weak
solutions to (1-6) in any bounded domain € of dimension at most 4. It is unknown
whether these results of Melcher and Wang can be extended to higher dimensions.
It is also an interesting question to study the regularity of suitable weak solutions
to (1-6). Moser [2002] proved, in dimensions n < 4, a partial regularity theorem of
weak solutions to (1-6) that are stationary, a notion analogous to that of heat flow
of harmonic maps introduced in [Feldman 1994; Chen et al. 1995; Chen and Wang
1996] (see also [2004]). More recently, Ding and Wang [2007] proved that short-
time, smooth solutions to (1-6) may develop a finite-time singularity in dimensions
3 and 4 for suitable initial-boundary data.

Motivated by these studies of (1-6), we are interested in the Landau-Lifshitz
system coupled with the time-dependent Maxwell equations (1-1)—(1-3).

There has been some work on the system (1-1)—(1-3). Guo and Su [1997] used
Galerkin’s method to establish the existence of global, weak solutions with periodic
initial conditions in dimension three. Carbou and Fabrie [1998] used the Ginzburg—
Landau approximation scheme to show the existence of global, weak solutions to
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the system (1-1)—(1-3) under the Neumann boundary condition in dimension three,
and studied the long-time behavior of the weak solution by the method of time
average. See also [Joly et al. 2000; Ding et al. 2007] for related results.

The regularity issue of the system (1-1)—(1-3) is a challenging problem. There
are very few results in the literature. Ding and Guo [2004] proved a partial regular-
ity theorem for stationary solutions to the Landau-Lifshitz equation (1-1) coupled
with the quasistationary Maxwell equation

(1-7) div(H +pii) =0 and V x H=0 in %' (R%).

By modifying the techniques by [Wang 2006], Ding and Guo [2008] proved the
existence of partially smooth weak solutions to (1-1)+(1-7) in dimension three.

There is an essential difference between (1-7) and (1-2)—(1-3): the former is
elliptic and H € (., L”(R*, R?), while (1-2)=(1-3) is a hyperbolic system and
the regularity for H(-,t) and E (-, t) is no better than that of H(-, 0) and E(-, 0).
The hyperbolicity of (1-2) and (1-3) imposes serious difficulties to studying the
regularity of (1-1).

In this paper, we establish the existence of partially regular, weak solutions of
the Landau-Lifshitz—Maxwell system (1-1)—(1-3) with respect to the following
initial-boundary conditions:

ou
(1-8) 5=0 on Q xRy,
(1-9) u(x,0) =up(x) inQ,
(1-10) H(x,0) = Hy(x) inR%,
(1-11) E(x,0) = Eyp(x) in[R>.

We assume throughout the paper that
(1-12) lupl =1 ae.inQ, Hye L*(R*, R, EjeL’(R*RY).

For convenience, we study an equivalent form of the Landau-Lifshitz—Maxwell
equation (1-1) (see [Guo and Hong 1992; 1993]):

(1-13) alg—b;+a2uxg—?:(Au+|Vu|2u)+(H—(H,u)u) in Qx Ry,

where a1, a; € R represent suitable normalizations of f, and £ such that
O<a; <1, a%+a%=l.

Definition 1.1. The triple (u, H, E) is a weak solution of the system (1-13)+(1-2)—
(1-3) with the initial-boundary conditions (1-8)—(1-11) if

() ueL® Ry, H'(Q, §?)),0u/ote L? (QxRy)and H, E € L= (R, L>(R%));

loc loc loc
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(ii) u satisfies (1-13) in the distribution sense, that is, for any ® € C*°(Q xR, [R{3)
with ®(-,0) =D(-, 4+00) =0,

(1-14) / (ala—u+a2uxa—u)-d):/ (—Vu-V(I)+|Vu|2u-®)
QxR, ot ot QxR,

+ (H— (H,u)u) @
QxR4

and u (-, 0) = ug in the sense of trace;

(iii) for any ® € C®°(R3 x R, R?) with @ (-, +00) =0,

(1-15) —/ (SOE-@+H-V><<D)+0/ E-(I):go/ Eo(x)-®(x, 0);
R3 xR, ot R3 xR, R3

(iv) for any ® € C*(R3 x R, R?) with ® (-, +00) =0,

(1-16) —/ (H+ﬁﬁ)-@+/ E-Vx®
R ot R3 xR,

3xRy

Zﬁ/guo(x)'®(x,0)+/R3Ho(x)-(D(x,O).

To state our results, we also need some notation. For zg = (xg, ty) € R3 x R and
r > 0, set

B (xo) ={xeR’:|x —xo| <ro} and P(z0) = Br(x0) x (to — 17, t0).

For any subset D C R*, the three-dimensional parabolic Hausdorff measure, 3 (D),
is defined by

o o
P3(D) = limg o (inf{ >r}:Dc U P,(z), 0<r < 5}).
i=1 i=1

We say a subset D C R* has locally finite three-dimensional parabolic Hausdorff
measure if

P (DN PR(0)) < +oo forall R > 0.

Theorem 1.2. For any ug € H'(Q, S?), Hy € L*>(R*, R®) and Ey € L*(R3, R?),
there exists a global weak solution (u, H, E) to the Landau—Lifshitz—Maxwell sys-
tem (1-13)+(1-2)—(1-3) under the initial-boundary conditions (1-8)—(1-11) such
that there exists a closed subset ¥ C Q x Ry having locally finite 3-dimensional
parabolic Hausdorff measure and satisfying u € C'2(Q x Ry \ £, §?).

To study the higher-order regularity of weak solutions to (1-13)+(1-2)—(1-3)
obtained by Theorem 1.2, we restrict to two special cases:
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(1) The constant ¢y vanishes in (1-2), and (1-2)—(1-3) become
(1-17) V x (VxH):—a%(H+ﬁﬁ) in B3,
(i) The constant £ vanishes in (1-3), and (1-2)—(1-3) become

(1-18) VxH=eL +oE, VxE=-22 ngr
ot ot

Theorem 1.3. Assume that § > 0 is a constant. For any ug € H' (Q, §%) and Hy €
H'(R3, R?) satisfying V - (Hy + Bitg) = 0 in @' (R?), there exists a weak solution
(u, H) of the Landau—Lifshitz system (1-13) coupled with (1-17) under the initial-
boundary conditions (1-8)—(1-10) such that H € (7, H' (R} x [0, T], R?) and
there exists a closed subset T C Q x Ry of locally finite 3-dimensional parabolic
Hausdorff measure and satisfying Vu € C*(Q x Ry \ X) for some 0 < a < 1, and
V2u,ou/ot € LS (Q x Ry \ 2).

Theorem 1.4. For any uy € H'(Q, S?) and Hy, Eg € H'(R?, R®) that satisfy
V-Hy=V-Ey=0in DR, there exists a weak solution (u, H, E) of the
Landau—Lifshitz system (1-13) coupled with (1-18) under the initial-boundary con-
ditions (1-8)—(1-11) such that 9H /0t, OE /0t € Ly, (R, L?(R%)), and there exists
a closed subset £ C Q x Ry having locally finite 3-dimensional parabolic Haus-
dorff measure and satisfying Vu € C*(Q x Ry \ X) for some 0 < a < 1, and
V2u,ou/ot € LS (Q x Ry \ 2).

The ideas to approach these theorems are based on an analysis of the Ginzburg—
Landau approximate equation: for ¢ > 0,

(1-19) alaa—u; +au’x aa_u: =Au’+ 81—2(1 — WP uf+uf x (HExu®) in Qx R,
By using an argument similar to the one in [Ding and Wang 2007], it is not hard to
see that the corresponding partial regularity property at the boundary also holds for
the weak solution obtained in Theorems 1.2, 1.3, and 1.4. For example, Theorem
1.2 can be extended so that there exists a closed subset X; C 0Q, with @3(21) <
+00, such that u € C'2(Q\ (Z U £1), §?).

The paper is written as follows. In Section 2, we establish a uniform energy
estimate for (1-19). In Section 3, we sketch the time slice monotonicity. In Section
4 we establish a lower bound estimate of solutions to (1-19). In Section 5, we
obtain the decay estimate of solutions to (1-19) under the smallness condition and
prove Theorem 1.2. In Section 6, we establish a partial C*-regularity of Vu and
prove both Theorems 1.3 and 1.4.
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2. Estimate of the energy in (1-19)

In this section, we sketch the existence of global weak solutions to (1-19)+(1-2)-
(1-3), associated with (1-8)—(1-11) by Galerkin’s method and their corresponding
energy estimates. Here we modify an argument from [Carbou and Fabrie 1998] to
handle (1-19). Note the difference between (1-19) and the approximate equation
employed by that paper: we approximate H — (H, u)u in (1-13) by u® x (H? x u®)
in (1-19), while Carbou and Fabrie approximate the same term in (1-13) by H¢. An
advantage of our approximation is that we have the upper bound |u?| < 1, which
plays a crucial role in establishing a priori continuity estimates for u®, and hence
the existence of partially smooth solutions, while theirs yields an optimal energy
inequality [Carbou and Fabrie 1998, page 387, (2.12)], which is important in their
study of long-time behaviors by the method of time average.
We begin with a general L*>-estimate of weak solutions u° to (1-19).

Lemma 2.1. For ¢ > 0, assume ug € H'(Q, $%), Hy € L>*(R?, R?) and E, €
L*(R3, R%). Let (u®, H?, E?) be any weak solution of (1-19)+(1-2)—(1-3) under
conditions (1-8)—(1-11). Then |u®|(x,t) <1 for any (x,t) € Q x Ry.

Proof. Multiplying (1-19) by u® and using the equalities u® - u® x (6u®/0t) =0 and
u®-uf x (H® x u®) =0, we have

eh  (aZ = A)(P - 1) ==2(19u P+ (e P DlutP);

ot
hence
(a1§ —A)(W =1 <0 inQxRy,
where (|u?|> — 1) is the positive part of (|u?|> — 1). The conclusion now holds by
the weak maximum principle of the heat equation [Lieberman 1996]. g

Now we sketch the existence of weak solutions to (1-19) that enjoy energy esti-
mates by Galerkin’s method. We borrow some notation from [Carbou and Fabrie
1998, pages 388-395]. Let {¢:};, € H?(Q) be eigenfunctions of A with zero Neu-
mann boundary condition that form an orthonormal basis in L>(Q) and an orthog-
onal basis in H'(Q) and H?(Q). For | < N < 400, set Vy =span{¢y, ..., ¢y}
Define

Heurt(R) = {y € L*(R*,R%), V x y € L*(R*,RY)} .

Let {w}; be an orthogonal basis of Heuri (R?) that is orthonormal in L?(R?) and
Wy =span{y1, ..., yn}. Denote by Ily, :L*(Q) — Vy, and w, (L2(Q)— Wy
the orthogonal projections. Define the retraction map IT : R* — By by setting

if [p| <1,
H(p)=[” D
p/lpl if |p| > 1.
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Define functions uy € Vy and Hy, Ey € Wy by
(2-2)

N N N
un(x, 1) => o) (x), Hy(x,1) =D hi(t)yi(x), En(x,1) = ex(t)yir(x),
k=1 k=1 =1

satisfying, for all ®eVy and ¥ € Wy,

(2 3) / auN i auN ®
- o— +a X—-
o \ Mg TN,
=/ (—WN.vq>+l2(1—|uN|2)uN-q>)
Q &

+ / M) x (Hy x T(uy)) - ©,
Q

OEyN
(2-4) /(80 +0EN)-‘P=/ Hy - (VxY),
R3 ot R3

(2-5) /%(HN+ﬁﬁN)-‘P=—/ Ey-(VxY),
R R

under the initial conditions

(2-6)  un|_o=My, (o), Hy|_,=Mwy(Ho), En|_,=1Tlw,(Eo).

Throughout this section, we will use the following fact:

(2-7) Jim_ /Q e;(un(0)) = /Q %moﬁ.

Note that (2-3)—(2-6) reduces to a system of first order ODEs for (vg, A, ex)x.
Moreover, since P (uy)(v) = a0 +asruy xv : R? — R3 is one-to-one, we can solve
(2-3) for the derivative in time. Hence there exists a local solution (uy, Hy, En)
of (2-3)—(2-6). The following uniform estimate shows that (uy, Hy, Ey) is also
global in time and converges to a global weak solution of (1-19)+(1-2)—(1-3).
Lemma 2.2. For ¢ > 0, assume ug € H'(Q, $?), Hy € L*>(R*,R>®) and E, €
L%(R3, R3). Then there exists a global weak solution (u?, H?, E?) to (1-19)+(1-2)—
(1-3) under conditions (1-8)—(1-11), such that for any 0 < T < 400 we have

T T
(2-8) 0/ |E8|2—|—a1//
0 R3 0 JQ

where C > 0 depends only on f and a1, and

%oz/ %|Vuo|2+/3(§eo|Eo|2+§|Ho|2),
Q R

@9 60 = [ e+ [ GulEOF +HHOF)

12
aa”t () < €T,
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: : 1 :
with e, (u®(t)) = §|VLK(I)|2 + 4—2(1 — |u®(1)| )

Proof. We first establish the estimate (2-8) for Galerkin’s approximate solutions
(un, Hy, Exn). Then we employ this estimate to extract a subsequence that con-
verges to a global weak solution (1%, H?, E¥) to (1-19)+(1-2)—(1-3).

Testing (2-3) with ® = du /0t and integrating over Q gives

@10 [T o= [ T x (i x 1) - S
Q t dt

ot
OMN
/|HN|\

where we used the inequalities [I1(ux)| <1 and ‘H(uN) x (Hy X H(uN))| <|Hpy].
Testing (2-4) with ¥ = E and integrating over R> gives

B

(2-11) /VXHN Ey = d/ 30|EN|2+/ c|En|*.
R3 dt R3
Testing (2-5) with ¥ = Hy and integrating over R> gives
d ouy
2-12 VxEy-H H H .
(2-12) /R3XNth/2|N|+ﬁ/Nat

Adding together (2-11) and (2-12), and using the identity
/R3(V><HN-EN—VXEN-HN)=O,
we obtain
(2-13) %/R( el En|* + 5| Hy| )+0/ |En|? —l)’/ Hy - auN
<5/ |HN|\8“N

Adding (2-10) and (2-13) together gives

(2-14) a/ |En| +a1/ }6” (/eg(uNH/( el EnI>+ 1| Hy| ))

<(1+ﬂ)/|HN|\a“N /\a”N (1+ﬁ)2/3|HN|2,

a1

where we used the Cauchy—Schwarz inequality in the last step. Using Grénwall’s
inequality in (2-14) and integrating from t =0 to t =T gives
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(2-15)

T T P 9

0/0 - |EN|2+0“/0 /Q‘% +(/Qes(”N)+/R3(%80IENI2+%Iszlz))(T)
5eCT(/Qeg(uN)-i‘/Rs(%EMENF—i-%|HN|2))(O)

feCT(O(l)+/Q€e(uo)+/R3(%80|Eo|2+%|H0|2))

=T (€y+0(1)).

Here we have used (2-7) and o(1) denotes a quantity that tends to 0 as N tends to oo.
It follows from the bound (2-15) that there exists a subsequence of (uy, Hy, En),
still written the same, such that for any 0 < 7' < 400,

. 5 5
Uy — 1 weak® in L=([0, T], H'(Q)), % . a—“t in L2(Q x [0, T),

Ey — E?, Hy — H? weak® in L*([0, T], L*>(R%)).
By Aubin’s Lemma (see also [Carbou and Fabrie 1998]),
uy — u® strongly in L*(Q x [0, T]).
Since [ (un)| < luy| and [, V(I (un))* < [ IVuy|?, we also have
M(uy) — I (u®) strongly in LY Q x [0, T]).

It is readily seen that (2-15) implies that (u®, H?, E®) satisfies (2-8) and the initial
conditions (1-8)—(1-11). It is also not hard to see that (H¢, E*) are weak solutions
to (1-2)—(1-3). Similarly to [Carbou and Fabrie 1998, page 392], we can check that

2-16) a1 2% +aput x O = Au + 2(1—|u Py +TI(w®) x (H® x TL(u?)).

ot ot
Multiplying (2-16) by u® and observing that IT(u®) x (H® x I1(u?))-u® =0, we see
that u® satisfies (2-1). Hence Lemma 2.1 implies that |u?| < 1. Thus IT(#%) = u®
and (2-16) yields (1-19). Il

In order to establish a partial C*-regularity of Vu for weak solutions u to (1-13)
coupled with the Maxwell equations (1-17) or (1-18), we need uniform estimates
of H?, E? in H} (R? x R, ). More precisely:

loc

Lemma 2.3. Suppose that uy € H'(Q, S?) and Hy € H'(R3, R?) satisfy the con-
dition V - (Hy + Biig) = 0 in @' (R*). Then there exists a global weak solution
(u®, H?) to (1-19)+(1-17) under the initial-boundary conditions (1-8)—(1-10) such
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that for any 0 < T < +00,

2-17) al/OT/Q 581‘ //W(aHé +|VH8|2)
+ e )+ | (3o|H > +|VH*) |(T)
(fetrs [, )
s/R} |VHO|2+eCT(/Q|wo|2+/[Rp |Ho|2),

Proof. For N > 1, let (uy, Hy) € Vi x Wy be given by (2-2) such that uy solves
(2-3) and Hy solves

for some C = C(f5, a1) > 0.

(2-18) /(VXHN)-(VX‘P)z—a/ %(HN+ﬁﬁN)-‘I’ forall ¥ € Wy
R3 R3

subject to the initial condition (uy, Hy)|r=0 = (I1y, (10), Iw, (Hp)).
Testing (2-18) with ¥ = Hy and integrating over R> gives

@19 5 [ Zianb [ 19xayi=—po | X <pa [ 1] 5|

Combining (2-19) with (2-10) and applying the Cauchy—Schwarz inequality yields

oun |2
@20 [ ZE[ ([ e [ dot?)+ [ 19 H?
Q ot dt R3

sC(al,ﬂ)/R} |Hy|?.

This, combined with Gronwall’s inequality, yields that for any 0 < 7' < 400,

(2-21) al//‘auzv / |VxHN|2+(Aeg(uN>+AS%a|HN|2)(T)
SeCT(O(l)-i-/QIVMoIZ-l-/W %GIHolz)

for some C = C(f, a1) > 0, where we have used (2-7).
Now testing (2-18) with ¥ = 0 Hy /0t and integrating over R?, we have

OHy |2 OHy oOuy
2-22 — V x Hy|”+ ’ = / _— .
(2-22) / 5| I U/ ot o

Thus, by the Cauchy—Schwarz inequality,
0Hy |2
(2-23) i/ |VxHN|2+a/ ‘—N 516,820/
dt R3 R3 | Ot R3

auN 2
ot
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Integrating for 0 < ¢ < T and applying (2-21), this implies

(2-24) / IV x Hy| (T)+a//
R3
/ IV Hol? + 16 a//‘a“N
|VH0|2+eCT(o(1)+/ IVM0|2+/ |Ho|2).
R3 Q R3

Adding (2-21) and (2-24) together, we obtain

T
(2-25) al//]a”’v +//(8HN‘ +|vaN|)
0 JR3

+ (/Qee(uN) +/R3(%U|HN|2+ |V x HNIZ))(T)

|VH0|2+eCT(o(1)+/ IVM0|2+/ %GIHOIZ)-
R Q R?

From (2-25) we may assume, after taking subsequences, that for any 0 < 7" < 400,

8HN

oun out

uy — u® weak® in L>([0, T, H'(Q)), — o in L2(Q x [0, T]),
oHy  0H®
Hy — H*, a—t’va o V x Hy — V x H® in LA(R3 x [0, T]).

As in Lemma 2.2, we can show that (u®, H?) are weak solutions to (1-19)+(1-17),
under the initial condition (1-8)—(1-10). By lower semicontinuity, we also see that
(2-25) holds with (uy, Hy) replaced by (u?, H?). To obtain the L%-norm bound
for VH, we need to use the condition V - (Hy + Bitg) = 0 in @' (R?). Note that

€ _ 0 & 1 3
/W(VXH)-(VX‘P)——G/ at(H + pua’) - ¥, V¥eH'(R).

Since J > 0, by choosing ¥ = Vy for y € CSO(R3) and observing V x (Vy) =0
in R3, we have

0 (e
/Wat (H®+ Bu®) - Vy =0

so that for a.e. t > 0,

/V'(Hg-f—ﬁb_le)w:/ V- (Hy+ Bug)y =0.
R3 R3
Thus

V. (H®+ pia®) =0 in %' (R®) forae.r>0.
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To proceed, we claim that
/ \VH|? :/ (\Vx HP?>+|V-H|*) forall He H'(R?, RY).
R3 R3

Since C° (R3, R%) is dense in H'(R?, R%), it suffices to verify this inequality for
H e Cy (R3, R?). This can be seen as follows:

=/Rs( > (H —H)+2 3 H,.f'H;I)

1<i<j<3 I<i<j<3
3 N2 .
+/ ((ZH;) 2y H;HJ!)
R3 \Ni=1 1<i<j<3
=/(|V><H|2—|—|V-H|2)+2 > (H/H! - H/H))
R3 R3 1<i<j<3 !

:/R3(|V x HI* 4|V -HP?),

where? the Var.lishing of [rs lei< j<3(H H; — H/ H]) = 0 in the last step comes
from integrating by parts twice. Thus

/ |VH5|2=/ (|V><H8|2+|V-H€|2)§C(ﬂ)(/ |V><H8|2+/ |Vu8|2)
R3 R3 R3 Q

and hence (2-25), with (uy, Hy) = (u®, H?), yields (2-17). O
For the system (1-19)+(1-18), we have:

Lemma 2.4. Foranyugc H'(Q, §?), Hye H'(R?, R}) and Ey € H' (R3, R3) with
V.-Ey=V-Hy=0in9 (R, there exists a global weak solution (u®, H?, E?)
to (1-19)+(1-18) under the initial-boundary conditions (1-8)—(1-11) such that, for
any 0 < T < +o0,

T
81482
(2-26) /0 /Q u

&
+/ (|H"|2+|E8|2+)5H
R3 ot

+€.(T)

OE®
ot

2
d

2 2 2
+|VH® | +|VE®| )(T)

< oo T)( [ 9P+ [ (HP + 1B+ 19 o+ 1V EP) )
Q R’

Proof. For N > 1, let (uy, Hy, En) € Vy x Wy x Wy of the form (2-2) be a
solution to (2-3)—(2-6). Since f = 0 in this case, testing (2-4) with ¥ = Ey and
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(2-5) with ¥ = Hy and adding the resulting identities together gives

d

(2-27) a7

[ (1HNP - eol En P +20/ |Exl?=0.

Differentiating (2-4) and (2-5) with respect to ¢ and testing the resulting equations
with ¥ = 0Ey /0t and ¥ = 0 Hy /0t respectively, we have

aEN aHN aHN 6EN
-V x - VX ——
R\ ot ot ot ot

/ 0Ey azEN+ 0EyN +aHN 0%Hy
= -l & o . .
w\or "V a2 ot or o2

Since
oE o0H o0H OE

/ NV x N Ny x 2N =0,

3\ Ot ot ot ot
we obtain

oE o0H O0EN |2
(2-28) 4 ( o ( N ) / NP
dt R3 R3 6t

Combining (2-27) with (2-28), we get

d o0EN OHpy |2

(2-29) E/ (|HN| +80(|EN| —i—‘ |)+ Py ‘)
aE

R3

Since
oH OE
=V X My (Eo)). eo-| =V x (I, (Ho)) o My, (Eo),

integrating (2-29) for 0 <t < T yields

(2-30) /(|HN| +so(|EN| |2 )+ il )(T)

o [ 22

/(|HWN(HO)| + 0wy (Eo)|* + |V x (T, (Eo))|?
+ey ' IV x (Iw, (Ho)) — o My, (Eo)|?)

< Clen.a) [ (HP + EoP + 1V HoP + [V Eof).
R
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For uy, by testing (2-3) with ® = duy /0t as in (2-10) of Lemma 2.2, we have

(2-31) al/ )a”N /ep(uN)sc/WlHle.

This, with the help of (2-30) and (2-7), implies that for any 0 < T < 400,

(2-32) al/ / ‘a”N‘ +/eé(uN(T))

SCT/RS(IH0|2+|E0|2+|VH0|2+IVE0|2)+/QIVM0|2+0(1)-

It follows from (2-30), (2-4), and (2-5) with § = 0 that
@33 [ (VxHxPHTXEN) D) <C [ (\ = mﬂ?(z)m
< C/R3(|H0|2+|E0|2+|VH0|2+|VEOI2)-

From (2-30), (2-32), and (2-33) we may assume, after taking subsequences, that
forany 0 < T < 400,
ouy out

uy — u® weak® in L°([0, T'1, H'(Q)), = o in L>(Q x [0, T)),
oHy  OH®
HNAH“",a—tN . VX Hy =V x H in L2(R® x [0, T),
0Ey  OEF
Ey — E°, 8tN = VX Ey—VxE in LAR3 x [0, TY).

As in the previous lemmas, it is a standard exercise to check that (u®, H?, E?)
solves (1-19)+(1-18) and the initial-boundary conditions (1-8)—(1-11). Moreover,
by lower semicontinuity, we have, for 0 < T < +o00,

T &2
a3 [ [ 12 e
€12
+ (|H8|2+|E8|2+ oH
R3 at

< oo T)( [ IVl + [ (H0P+ B0+ 19+ 1VE)).
Q R

OE® 2
ot

+

+|V x HE > 4|V x E6|2)

As in the previous lemma, we can check that V- Hy= V- Ey =0 is preserved under
(1-18), that is,

(2-35) V-H®(@t)=V-E°(t)=0 ae.r>0.

Finally, it is not hard to see that (2-34) and (2-35) yield (2-26). O
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Remark 2.5. Lemmas 2.3 and 2.4 show that, forany 0 <7 <400, H? is uniformly
bounded in L°([0, T'1, H'(R?)). Hence by the Sobolev embedding inequality, H*
is uniformly bounded in L°([0, T'], L°(R?)). This property plays an important
role in the proof of C*-regularity of Vu claimed in Theorems 1.3 and 1.4.

We end this section with a local energy inequality.

Lemma 2.6. There exists C > 0 such that for any ¢ > 0, ug € H'(Q, §?), Hy €
L*(R3, R®) and Ey € L>(R®, R%), if (u®, H?, E?) is the global weak solution of
(1-19)+(1-2)—-(1-3) with conditions (1-8)+(1-9)—(1-11) obtained in Lemma 2.2,
then for any xo € Q, to > 0, and 0 < r < min{dist(xo, 6Q), /19/2}, we have

2
(2-36) r7! / +r~'  max / e (u’)
P,2(20) telto—r2/4,10] J B, /2 (xo)

§Cr_3/ eg(ug)—l—Cr_l/ |H*|%.
Pr(20) Pr(20)

Proof. Write (u, H) for (u®, H®). For xy € Q and 0 < r < min{dist(xo, 6Q), \/7},
by Fubini’s theorem there is a € (%, %) such that

ou’
ot

(2-37) / e.(u)(to — a2r2) < 8r_2/ e.(u).
B (x0)

Py (ZO)

Let ¢(x) € C3°(Br(x0)) be such that 0 < ¢ <1, ¢ =1 on B,2(xo). Multiplying
(1-19) by ¢(6u/ot) and integrating over B, (xo), we get

(2-38) a /
Br(x(J)

ou ‘2 . d 2
ulyr, d / e ()
ot dt B, (xo)

=—2/ ¢v¢w.a—”—/ A2 x (H x uy- 24
B, (x0) ot JB,(x) ot

ou 12
<4 [ (% g rc@ [ (VoPIVuR +gP)
B, (x0) ' O B, (x0)

Integrating (2-38) from #y — a’r’tot € [ty — r2/4, to] and applying (2-37), we
obtain (2-36). l

3. Energy monotonicity on time slices

An energy monotonicity property analogous to that of [Struwe 1988] (see also
[Chen and Struwe 1989; Chen and Lin 1993]) is unknown for Landau-Lifshitz
type equations. In order to derive an prior estimate for (u?, E?, H?) under the
small energy condition, we need an energy monotonicity of #° on time slices,
which can be derived by a Pohozaev-type argument as in [Wang 2006].
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Lemma 3.1. For ¢ > 0, let (u®, H?) be a weak solution to (1-19). For a.e. t > 0,
any xg € Q, and 0 <r < R < min{l, dist(xg, 0Q)}, we have

&2
G- 1B B ) <2R B Brteo)+Cor [ (|95 ep).
Bg(xo)

(= [u??)?
82

—1 ou’ 2 2
<2R'E, (MS,BR(X()))“FC()R/ (‘—‘ + |H?| )
B (xo)

(3-2) |x —xo|™
Bg

for some Cy = Co(ay) > 0, where

1— £12\2
Eg(ug,A):/ (%|WS|2+—( 2'”2| ) ) ACR.
A &

Proof. The proof is a modification of [Wang 2006] (see also [Ding and Guo 2004;
Melcher 2005]). We sketch it here. First observe that for a.e. r > 0, we have
Au € L*(Q) and hence V?u € L*(Q). For p € R?, define R(p) : R* — R by

R(p)(0) =ajv —azp xv forallv € R3.

Assume xo =0 € Q. Write (u, H) = (u?, H?) and B, = B,(0). Multiplying (1-19)
by x - Vu and integrating over B, yields

(3-3) /<R(u) )+u><(u><H) X - Vu>

= [ (Aut+ L0~ Py, x-u
B, &2
0?1y — A=luP) / Lo, 2o 30 —[ul?)?
= — | —Lv _U—jul”)” 1y 3(1—|u?)?
r/BBr(‘ar 21 Vul 4g2 + B, 21Vul™+ 4g2
ouiz oo (I—ul?)?
Zr/aBr(’a—r —51Vu] a2 + E.(u, B)).

Hence we have

(3-4) j—r(r_]Eg(u,Br)— /<R( )( )—I—ux(uxH) X Vu>)

Since |u| < 1, we have |u x (u x H)| < |H| and |R(u)(0u/0t)| < |6u/ot|. The
second term of the right hand side of (3-4) can be estimated by
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3-5) —rl/aB<R(u)( )+ux(uxH) X - Vu>

e 3 o)

The second term of the left hand side of (3-4) can be estimated by

r—1/<R()( )+ux(uxH)xvu> 2
<tmw e [ (| %] imr),

Putting (3-5) and (3-6) into (3-4) and integrating from r to R gives

(3-6)

2
(3-7) 2R‘1E8(u,BR)—|—R/ (g—”t“ +|H|2)
Bg

z%r‘lEg(u,Br)—r/ (a—“(2+|H|2)
_ 2
+/BR\B |X|( ‘ (1 Iul ) ) / /63 ( %‘24_”—1'2)'

Since ) 5
) <o (5 )
g, \| 01 By \| 01
and
[, () = (2
s —| +|H SR/ (—‘ +|H ),
0 0By ot 0Bg ot
(3-7) clearly implies both (3-1) and (3-2). Il

4. On the lower bound of |u¢|

We will now establish a lower bound estimate of |u?| on generic time slices, under
the smallness condition =3 [, e, (u®).

Definition 4.1. For any ¢ € (0, 1), xo € Q, o > 0, 0 < r < min{dist(xo, 0Q), \/fo},
and A > 0, we define the set of good time slices by

ous 12 A2 out 12
= < — -
orl = r? /Pr(zo) ot ,

(4-2) BA  =Ito—r*, 1)\ G2 ..

20,7

4-1) G = [z €lto—r?19):

20,7

B, (XO)

and the set of bad time slices by
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By Fubini’s theorem,

(4-3) |Bzo r| = AZ
Similarly to [Melcher 2005; Wang 2006], we have:
Lemma 4.2. For ¢ > 0, let (u®, H?) be the weak solution of (1-19) in Lemma 2.2.
Denote
1 H N o 22 3 x 10,107 = Co-

Then for any A > 0, there exist 5o > 0 and ro > 0 depending on A and Cy such
that for any 7o = (xo, tp) € Q x (0, +00) and 0 < r < min{dist(xg, 0Q), /7, ro} if

(4-4) r3 / e.(u®) < 3,
Pr(ZO)
then
(4-5) | (e 1) > % forall x € B,ja(xo) and t € G .

Proof. The proof is a modification of [Melcher 2005; Wang 2006]. We prove

a C'/?-estimate of u®(-,s) for s € GZ o (see also [Melcher 2005, page 577,

Lemma 5]). Define v°(x, 1) = u®(xo + ex, s + &%t) : By x [—4,4] — R3. Then
w*(x) =v°(x, 0) satisfies

& ~
4-6)  Aw’= R(w‘”)(%(O)) — (1= | P)w’ — w® x (H° x w),
where H® (x) = &2 H?(ex, s). By the standard W?? estimate, we have
2 22 ow* |1 e 2
@7 IViw ||L2(1.’31) = C(1 + ) or L2(By) +IH ”LZ(Bz))
&2
§C(1+e/ (ai‘ +|H8|2)(s))
Br o)\ O
) out |? 2, A2.2
<cl1+C}+r —| (&) ) = CA+Ci+A¢;
By 2(x0)

where we have used both (4-1) and Lemma 2.6 in the last step. Therefore, by the
Sobolev embedding theorem, w? € C'/2(By). Moreover, by rescaling and (4-7),

(4-8) U () c1/2(8, pxo)) < C(A, Mo, Co)e™ '/ forall s € G2 .

Suppose that (4-5) were false. Then there exists z; = (x1, t1) € By/4(xo) x GZO r/2
such that |u®(z1)| < 5. Hence for sufficiently small §y > 0, if y € Bgz (x1), we
would have

| (y, 1) < [uf|(x1, 1) + @ (1) ez ly — x1|'2 < 3+ C(A, 5o, Co)bo <
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so that

1 — |u¢ 232 1
ws) /‘ g AP
Bogc(xl) €

At the same time, the bound (4-4) gives sup (%) B / e (u’) < 8;7(2)‘ This,
combined with Lemma 2.6, implies ~ *<5r2(%0) Prp2(x.10)

-1
(4-10) sup sup (1) / e.(u®) < C(n(z) + Cgr).
4 Br/4(x)

t€[t07r2/16, to) XEBr/4(xO)

By the definition of Gg /» and Lemma 2.6, we have

,

4-11) sup sup r /
ZEG?OJ/ZXEBr/At(xO) B, /4(x)

< sup r/
t€Gly 7 Bra(xo)

AZ
= C(r_3/ ee(u8)+A2rlnglliooLz) < CA* (75 + C3r).
Py (20) ro

With (4-10), (4-11), and the monotonicity inequality (3-2), we obtain

1 — lué 242
@i [ PR A Ul AP
Bygg(xl) 80

€2
< C(rl/ eg(ug)(t1)+r/ ( aai‘ + |H8|2)(t1))
By ja(x1) By ja(x1) t

< C(AN’n} + Clro).

2

Q)

ou®
ot

ot

This contradicts (4-9) provided rg > 0 and 7y > 0 are chosen sufficiently small. [J

5. Energy decay estimates and proof of Theorem 1.2

In this section, we first establish the decay estimate of the normalized energy
r3 /, P() € (u®), provided that it is sufficiently small. Then we give a proof of
Theorem 1.2. The techniques employed in the proof are suitable modifications of
that by Hélein [1990] and Evans [1991] in the context of harmonic maps.

Lemma 5.1. For any L > 0 and 6 > 0, there exist C(d) > 0, n(d) > 0, and
£1(0) > 0, such that if (u®, H?) is the weak solution of (1-19) in Lemma 2.2 and
we take zo = (xo, 1) € Q x RT, 0 < r < min{dist(xo, dQ), /%, £7(5)/L?}, and
0 < & < n(d)r satisfying

(5-1) VN 12, o < L mdr*/‘ e (%) < £2(0),
Pr (ZO)
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then we have

r -3 _
(5-2) (g) /P-/s(zo) eg(ME) = 5(r 3/1’ (z0) eg(ug) " r”HE ”i?OL%(R(ZO)))

C(é) _5/ & € 2
+ ——r lu® —u |-,
0 P, (z0) o)

where u‘}r o) is the average of u® over P.(z0):

W ) = B v
Preo) 1P zo) gy

Proof. We follow [Wang 2006, page 1631, Proposition 5.1] with suitable modifica-
tions, and outline the key steps here. For simplicity, write (u, H) = (u?, H?) and
assume zg = (xg, %) = (0, 1) € Q x R4.. Forr > 0, let u,(x, 1) = u(rx, 1 + r2t)
and H,(x,t) =r?H(rx, 1 +r?t) for (x, t) € P;. Then it follows from (1-19) that
(u,, H,) satisfies

r>0.

ou 1 — |u,|? .
R(ur)(a—;) =t + T ) in

where & = r~'e. Moreover,

/ ec(uy) =~ / er () < £2(0),
Py P,(O,])

IH 7 2 0pyy =TI 0 25, 0,1y < LT < £100),

2
e7(0
asr < 1L(2 ). From this scaling argument, we may further assume that r = 1 and
(5-3) IH |l 2or2(py 0,1 = €1(9).

Now we write

/ e.(u)=1+11,
Py8(0,1)

with

o4 1= | et n=
(1—(1/82,DNGY, 1,  Buys (1—(1/8)2,1)NB

By (4-3) and Lemma 2.6, we have the estimate

N /B e (u).

0,1),1/2 1/8

1
(5-5) 1< [BYp,nl  sup () < 1 / (es ) + | HP).
teB(’(\)’])’]/2 By 8 P1(0,1)

te[1—(1/8)%,1]
To estimate I, observe that (5-3) and Lemma 4.2 imply that

(5-6) ul(x,1) >3 forallx € Bigandr € Gy )
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This, combined with the fact |u| <1 in Q x R4, implies
IVul* < 4ul*|Vul* = 4Vu x ul* +|VIu*[* < 4(|Vu x ul* + |V]ul*).

Therefore fBl/B e.(u) <II+1V fort € G@),l),l/z’ with

(I- Iulz)z)

(5-7) III=2/ IV x ul?, IV=+/ (2|V|u||2+ >
Bys Big 4e

By the definition of Gf(\),l)’l 2 and Lemma 2.6, we have

ou |2 2 2
(5-8) e.(u) + ol = CA e (u) + |H|
Bi)» Bi)» 4 P1(0,1) P1(0,1)

< CAZ(/ e (u) + ”H”i?oL%(Pl(O 1)))'
P1(0,1) A

Hence, for ¢ € Gf}),l),l/z’

(5:9) sup { | ew+
x€By4 L) By ja(x) Bi4(x)

2
ou| }sCAZ/ . ()
ot Pi(0,1)

2 2
+FCANH N 12(py0,1))

It follows from (5-9) and Lemma 3.1 that
(5-10) sup [s_l/ IVul>: x €Bijs, 0<s <1 ]
By (x)

< CAZ/ eg(u)+CA2||H||%goLz(pl(o 1)’
P1(0,1) ’ ’

To estimate III, let ¢ € C3°(B1/4) be such that 0 < ¢ <1, ¢ =1 in By, and
|V@| < 128. Then we have, by integration by parts,

(5-11) |Vuxu|2§/ ¢2|Vu><u|2=/ &*(Vu x u) - (Vu x u)
Bl/g R3 R3
= /R3 $*(Vu X u) - (V(u —c1/4(t)) x u)
= /R3(¢2(Vu X u) X Vu) . (u — 01/4(t))
_/[R3 V- (¢2(Vu X u)) . ((u —c1/4(1)) x u),

where
1

u(t) forr > 0.
|Br| /B,

Cr(t) =
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Setting
Jrs #*(Vu x u) x Vu
Jrs ’

we can rewrite the expression on the last two lines of (5-11) to obtain

A

/ |Vu x u|? =11, + III, + 115,
Bys
where
1114 :/ ¢2((Vu xu) X Vu — /1) “(u—ciy4(r)), 1= /1/ ¢2(u —c1/4(1)),
R3 R3
Il = — / V(2 (Vu xu) - ((u = e17a(0)) x u).

R,

It follows from Lemma 2.6 that

(5-12) |A] SC/ |VM|ZSC(/ ee(u)—i_”H”i,wa(Pl(O,l)))
Bi4 P1(0,1)

so that by Holder’s inequality and Poincaré’s inequality,

(5-13) L] < |41l u = c1/a(®)ll 2B, )

< C(/ e (u) + ||H||iooL2(pl(o 1))) IVullL2(8,,4)
Pi(0,1) P

3/2
< c( [ e+ 1t 1») |
P1(0,1) * ’

To estimate 1113, we first note that (1-19) is equivalent to
(5-14) V-(Vu xu)= (R(u)(ﬁa—b;)+u x (u xH)) X U.
Hence, by using (5-14), (5-10), and Lemma 2.6,

/ |V-(¢ZVu><u)|25/(|V¢|2|Vu|2+¢2|v(wxu)|2)
R3 R3

2
sc [ waree [ (J%f v imr)
Bi/s Bi)s ot

< CAZ(/ es () +I1H 17,2, 0 1)))'
PL0,1) R

Therefore, by Holder’s inequality we have, for any ¢ > 0,
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(5-15) |3 < |V - (Ve x )| 2oyl — c1/a(0) | 125y,
5 2
= Z(Al(o,l) eg(u)-'_”H”LOCLZ(Pl(O 1)))+C flu— cl/4(t)||L2(Bl/4)

To estimate III;, we utilize the duality between Hardy and BMO spaces (see also
[Hélein 1990; Evans 1991; Wang 2006]). First, by the definition of the BMO norm,
the Poincaré inequality, and (5-10), we have

(5-16) (u — C1/4(t))2BMO(Bl/4) < sup[s1 |Vu|2 :X€Bij, 0<s < zlt}
By (x)

< CAz(/ ee(u)+||H”L°°L2(P1(O 1)))
P

1(0.1)

Therefore by (5-15), (5-16), and [Wang 2006, Propositions 5.6-5.8], we have

(5-17) L] = ’ /R} ¢ (Vi x ) X V= 2) - (u — ¢14 (1))

< C|¢*(Vu x u) x Vu — 1) ||%1(R3)M — c1/4(1)BMO(B1 )
< C|¢*(Vu x u) x Vu| %1(31/4’31/2)@ — c1/4(1))BMO(B, 4)

< Cu—cia)pmo, o (IVull} 25, ) HIV-(Vu x 11725, )

3/2
< CA3(/ ec(u)+ | H|3 ) :
Pl(O,l) & Ly L%(Pl(O,l))

Putting the estimates (5-3), (5-13), (5-15) and (5-17) together, we get

)
(5-18) Vi x ul* < (CA381(5) + Z) (/ e:(u) + IIHIIi;oLz(PI(O 1)))
Bi/8 P1(0,1) A2 * ’
+C7 | — c1/a(0)]*.
By

Now we estimate IV as follows. It follows from (5-6) that we can write u = pw,
with p = |u| > % and w = u/|u|. Then p satisfies

)
(5-19) Ap—p|vco|2+(18—§)p =R(u)(g—”t‘) ‘@ in By

Multiplying (5-19) by ¢*(1 — p) for ¢ € Cg°(B1/4) and integrating over By 4, we
can write

(5-20) / ¢2(|V 24 d=p)r )p(1+p))—IV1+IV2+IV3,
B4
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where

Vi= [ (-pVp-V, o= $a-pRw(L) o,

Bya Bi)4

V= [ ¢*p(1—p)|Vol*.
By

Since |Vp| < |Vu|, Lemma 2.6 gives

1/2 12
(521) V| < |vu|(1_|p|2)§g( |W|2) ( (= ||>2)

Byjs B4 By &?

SCAZS(/ ex(u) + 1 Hll 2P0, 1)))
P

1(0,1)
au‘Z)”( (1= u |2)2)”2
ot 31/4 82

ou
Hla-ioby <o |
By

sCAZe(/ ec()+F 1 HI s ps )
PO LEL(P0,1)

Since |w| =1 and p > 1 we have |Vow|? < 14|Vu x u|>. Hence

For IV,, we have

(5-22) [IVy] < /
By

(5-23) ITV3] < C/ |Vu x ul?.
By

Therefore, for t € Gf}),l),l/Z’

(5-24) IIVISCA28( / eg(u>+||Hllimpl<om)+C / (Vi .
P1(0,1) * ’ B

1/4

Putting the estimates for III and IV together, we obtain for any ¢ € Gf}),l),l /20

0
(5-25) e (u) < CAZ(S + Ae1(9)) + ~ (/ e (u) + ”H” 0o )
By ( : 4) P(0,1) LEL(PIO.1)
A2
5 | - 1)
B

Integrating (5-25) over t € G@),l),l/z and adding (5-5), we obtain

1 -3
20 (1) /P RaC

1
< (CA2c+ Aer@) + 2+ -1 e )+ 1 H 2o o o
4 A P t x( 1(0,1))

LEA° lu— cr (1)
5 Pl(O,l)

1(031)



THE LANDAU-LIFSHITZ-MAXWELL EQUATION IN DIMENSION THREE 267

Lemma 5.1 will be proved if we choose, for any fixed small J > 0, a sufficiently
large A = 2/+/0 > 0, a sufficiently small ¢ = §/(16C) and ¢, (0) = 6°/%/(32C).
Here we have also used in the last step the fact that

/ |M—01(Z)|2§2/ lu—up, 0.1 O
P1(0,1) P1(0,1)

Lemma 5.2. There exists a constant Cy > 0 such that for any L > 0, 0 € (0, %)
there are €(0), €1(0) > 0 such that if (u®, H?) is the weak solution of (1-19) in
Lemma 2.2 and we take 0 < r < min{dist(xo, 0Q2),+/%0, a%(@)/Lz}, e <e@)r,and
20 = (x0, tp) € Q x Ry satisfying

(5-27) Ve 2oy < L and / e (u%) < £2(0).
Pr(ZO)

then

1
(er)s Pﬁr(ZO)

where u‘i,g (z0) IS the average of u® over Py, (zp).

Proof. Write (u, H) for (u®, H?). Assume that zo = (0, 1), r = 1, and

|u8—u§)9,<20)|2scoezmax[r—S /P ( )eg(uf), PIHC I 12 o))
r\20

IHllL2or2(py0,1)) < €1(0).
Now we argue by contradiction. Suppose that Lemma 5.2 is false. Then there are

6y € (0, %), er 4 0, and a sequence of weak solutions (x*, H¥) of (1-19) corre-
sponding to ¢ = g such that

k k
6-28) /mo y W) =040 NH W 120,y = 9

but
(5-29)

=5 k k 2 2 k k2
0() / |M - MP00(0,1)| = keo max{/ e{:k(u )a ”H ||L,°°L2(P1(0,l))}'
Py, (0,1) Pi(0,1)

Define
e " b

= 5 )
By Lemma 2.6, {v¥} is uniformly bounded in H'(P;/2(0, 1)) and (v%) p,(0.1) = O.
Assume that o* — v weakly in H!(P;/2(0, 1), R%), strongly in L2(P; »(0, 1), R?),
and u¥ — p for some p € S2. It is not hard to show that v € T, S? and hence we
have R(p)(dv/dt) — Av € T,S?. Observe that

1]

(R(uk)(aa—if> — Av* —5,:1(141‘ x (H* x uk))) x uk =0,
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and (5-29) implies
—1( k ko ok k| - [HY 12
|6 x (H* x u*)) x u ii?_ﬂ) in L=(P{(0, 1)) as k — oo.
By sending k to oo, we conclude that v solves

(R(p)g—? — Av) x p=0.

Therefore
(5-30) R(p)g—l; — Av=0in Py5(0, 1).

Standard parabolic theory [Lieberman 1996] implies

6 [ wP=ce [ v
Py, (0,1) P,

0
which contradicts (5-29). 0
Combining Lemma 5.1 and Lemma 5.2, we can prove:

Lemma 5.3. For any y € (0, 1), there are 6 € (0, %), Ci>0,ky>0,e>0
such that if (u®, H?) is the weak solution of (1-19) in Lemma 2.2 and we take zo =
(x0,0) € Qx R4, L > 0,0 <r < min{dist(xg, 0Q2), +/70, s%/Lz}, and 0 < ¢ < kor
satisfying

630 I lspan <L ad e <a
) Pr(z0)

then
(5-32) (Or)~° eg(ug)scl(ezyr* / ec<u8)+9r||H8||i,wL;<p,<m»)-
Por(20) Pr(z0)

Proof. Again we write (u, H) for (u®, H?). As in the proof of Lemmas 5.1 and
5.2, we may assume that zo = (0, 1), » = 1, and

(5-33) IH lLor2(py0,1)) = &2
Set 6 =873 and
2 \1/@-2)
0=00) = (2COC(5))
Here Cy > 0 and C(J) > 0 are given by Lemma 5.2 and Lemma 5.1 respectively.
Let k > 1 be such that 8 = 1. For 0 < p < 1, set

E(u,p)=p‘3/

e:(u), F(H,p)= P||H||i,ooL2(P,,(o,1))'
P,(0,1) !
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For 0 <i <k—1,if E(u, 87'0) <&7(5) and E(u, 1) < &}(8*10), then Lemmas
5.1 and 5.2 imply

(5-34) E(u,8'0)

< smax{E(u, 8719, F(H,810)} + C‘)C(‘”

max{E(u, 1), F(H, 1)}.
Now we choose

& = min{e;(80), ..., &1(8"0), 1(9)}.

__9

2CyC(0)

Since F(H, p) <pF(H,1)<F(H,1) < 8%, (5-34) implies that
E(u,80) <min{e1(80), ...,e7(80), e1(9)} forall 0 <i <k.

Hence by iteration, (5-34) implies

(5-35) E(u,0)

< E(u,1)+ F(H, 1)2(858) + fo%%((s) max{E (. 1), F(H,1))

800 CoC(9)

< B, 1) + g F(H ) + 7222 (S)Zmax{E(u, 1), F(H,1)}.

According to the definition, 5 = 63 and 2CyC (9)/6*> < 6>~2". So (5-35) gives
E,0) < max{Clﬁzy E(u,1),Ci10F(H, 1)}, which clearly implies (5-32). O

The following proposition plays a crucial role in the proof of Theorem 1.2:

Proposition 5.4. For any ug € H'(Q, S?), Hy € L>*(R?, R%), Ey € L*(R*, R?),
e>0and0 < T < 400, let

(u®, H®, E®) e H'(Q x [0, T], R*) x L>(R® x [0, T'], R*) x L*(R® x [0, T], R?)
be the weak solution of (1-19)+(1-2)—(1-3) under conditions (1-8)—(1-11) obtained

in Lemma 2.2. Then there exist universal constants kg > 0, ¢3 > 0, C2 > 0, such
that for any zo = (xo, to) € Q x Ry, 0 < r < min{dist(xo, 0Q), /7, s%/Cz}, if

(5-36) Eu, z0,1r) = r—3/ e.(u®) < &3,
P, (z0)
then for any z € P,2(20), € /ko < p < 37,

_ out |2
O30 » 3/1» (z)(eg(”8)+p2‘7‘ )Scz/r_)max{%(”g’ 20,7, FIH I 13, o) )
P
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Proof. By (2-8) of Lemma 2.2, we have H? € L>([0, T], L*>(R?)) and

(5-38) ||H8||L¢L3(Rax[o,mSe”( / |Vuol® + / 3(80|Eo|2+|H0|2))EC2-
Q R

This implies that for any 0 < p <r and z € P, 2(z0)

- 2
PIH Lor2(p, ) = TIH e 2 ®sxjo,ryy < rCa S €3

Choose €3 < &, where ¢g; is given by Lemma 5.3. Then the condition (5-31) of
Lemma 5.3 is satisfied for P./>(z) with z € P,/2(z0). Hence we can repeatedly
apply Lemma 5.3 with y = % to obtain that for 0 < p < £, & < kop,

(5'39) %(MS’ <, p) E Cl g max{%(u‘g, 20, r), r”Hglli?OL%(Pr(zO))}

This, combined with Lemma 2.6, implies (5-37). U

Proof of Theorem 1.2. For ¢ > 0, let (u®, H?, E?) be the weak solution of the
system (1-19)+(1-2)—(1-3) with conditions (1-8)—(1-11) obtained in Lemma 2.2. It
follows from (2-8) that we may assume that u® — u weakly in H,| (Q x Ry, R?),
(H¢, E*)— (H, E) weakly in leoc(lR3 xR, R?). By the argument in [Carbou and
Fabrie 1998], we know that (u, H, E) is a weak solution of the Landau—Lifshitz—
Maxwell system (1-13)+(1-2)—(1-3) under the initial-boundary conditions (1-8)—
(1-11).

Now we want to show partial regularity of u as follows. Let ¢3 be given by
Proposition 5.4, and define the concentrate set of u® by

e—0

(5-40) Y = ﬂ {z cQxR: 1iminfr3/ e (u®) > gg}.
Pr(2)

r>0

Then a standard covering argument (see [Chen and Struwe 1989]) shows that
P3(X N K) < oo for any compact subset of Q x R*. Since u is a weak limit
in Hﬁm(Q x Ry, R?) of u, as ¢ | 0, we conclude that for any zg € Q x Ry \ X,
the lower semicontinuity, (5-40), and Proposition 5.4 imply that there exists rg > 0

such that for any z € P,/2(z0) and 0 < p < %F,

2
(5-41) b (|Vu|2+p2 | ) <t
Pp(Z) 61‘ r

for some universal constant C3 > 0. This implies that u € C'/2(Q x R, \ I, §?),
by the parabolic version of Morrey’s Lemma [Chen et al. 1995]. This completes
the proof of Theorem 1.2. U
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6. C“-regularity of Vu and proofs of Theorems 1.3 and 1.4

This section is devoted to the discussion of partial C*-regularity of Vu, when
(u, H, E) is a weak solution of (1-13)+(1-2)—(1-3) obtained as in Theorem 1.2 in
two special cases: (i) either g = 0 in (1-2) or (ii) f = 0 in (1-3). For case (i), we
assume that the initial data (1o, Hy) € H'(Q, %) x H'(R3, R?) and H, satisfies
V - (Hop + fup) = 0. For case (ii), we assume that the initial data (ug, Hy, Eo) €
H'(Q, $?) x H'(R3, R%) x H'(R3, R®) and Hy, Ey satisfy V- Hy =V - Ey = 0.
There are two steps to proving C*-regularity of Vi in Q x Ry \ X, where X is
the concentration set (5-40). The first step is to use H € L®LS(R3 x [0, T]) for
any 0 < T < +oo to show that u € C7 (Q x R\ X, S?) for any y € (0, 1). The
second step is to employ a parabolic hole-filling technique similar to [Giaquinta
and Hildebrandt 1982; Giaquinta and Struwe 1982] to show that for 7 e Q xR\ Z,

p_S/ |Vu — (Vu)pp(z)l2 < Cp**  for some a € (0, 1).
Pp(Z)

This can be summarized as follows.

Lemma 6.1. For any ug € H'(Q, §?), Hy € H'(R*,R?), and 0 < T < 400, let
(u,H)e HI(Q %[0, T1], SZ) X LE’OL%(W x[0, T], R3) be a weak solution to (1-13)
coupled with (1-17) under the initial-boundary conditions (1-8)—(1-10) obtained as
the weak limit of (u®, H?) given by Lemma 2.3. Let ¥ C Q x Ry be defined by
(5-40). For any zo € Q x Ry \ X, there exists ro > 0 such that Vu € C*(Py,(z0))
for some a € (0, 1).

Proof. By (2-17) of Lemma 2.3,
(6-1) Sulg(lng I r2@xio,ry + I VHE |l Lo r2 @ x10,77)

- < T (V0|22 ) + I Hol 22 ey + 1V Holz ).
By the Sobolev embedding theorem, (6-1) implies H? € L®LS(R? x [0, T]) and

(6-2) sup | H¥ || e s sxo,r1) < C3 = C (T luoll 1 (s 1 Holl i1 g3)) -

e>0

Since zg € Q x R4 \ X, by (5-40), there exists 0 < rp < e%/C32 such that

€ _ =3 € 2 g € _ &2 2
€(u’, z0,10) =1 /P (Zo)eg(u )<e&5, F(HE zo,r0)=rollH ||L?°L§(Pr0(zo)) <e3.
0

Hence we can apply Lemma 5.3 to conclude that for any 8 € (0, %), y € (0, 1),
z € Pyy2(z0) and 0 < r < rg/2, there is C4 > 0 such that

(6-3) Ct, z,0r) < C407 €W’ z,r) + C40F(HE, z, 7).
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By Holder’s inequality we have

F(H,z,r) <P | H || po12(poeyy < Car® forall 0 < r <ro.
Therefore (6-3) yields, for z € Py /2(z0) and 0 <r <rp/2,
(6-4) Eu’, z,0r) < Cs (07 €W, z,r) +0r) .

Iterating (6-4) k times, we obtain

k—1

(6-5) €@’ z,0%) < (Cs07" e, z,r) + ( > (€57 Y (03)f)r3
i=0

3
< (Cs60*)" (%(u‘% &)+ m)

In particular,

2
CWt, z,5) < (ri) ’ (%(ug, Z %0) +c6r3) for all z € Py (z0),0 < < 2.
0

In view of Lemma 2.6 and taking ¢ | 0, this implies that for z € P, /2(z0) and
0<s<ry/2,

] -3 2 25_’4)2 SV (2 3
(6-6) s /PS(Z)(IWI +52| )f(ro) (&2 + Cord).

Hence the parabolic version of Morrey’s Lemma implies that u € C” (Py,2(20), S 2)
forany 0 <y <1, and

Y
(6-7) 0SCp, (z0)U < C(:—O) (e3+Cerd), 0<r< %0.

Next we will use a parabolic hole-filling argument to show Vu € C*(Py,,2(z0))
for some a € (0, 1). The linear map R(u)¢ = o1& + aou X & - R3 — R3 can be
represented by

aq —02U3 arUn
R(u) = ooU3 aq —O02Uq
—Q2Up OaU| al

It is easy to check that R(u) has an inverse M (), and that this inverse a uniformly
elliptic matrix. Now we can rewrite the equation of u as

(6-8) z—blt —V-(Mu)Vu) = M(u) (qulzu +(H — (H, u)u)) —V(Mu))-Vu.

For any z; € Py /2(z0) and 0 < r < rp/2, consider an auxiliary equation for v :
P (z1) — R3:

©9) 5 -V (M@E)Vo)=0in B, v=uond P ),
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where 9, P.(z1) denotes the parabolic boundary of P,(z1). It follows from the
maximum principle, (6-7), and (6-6) that

(6-10) 0sCp, (o0 < Cqr7, / |Vo|? 5/ |Vul*> < C7r3+%7
Pr(z1) Pr(z1)
Multiplying (6-8) and (6-9) by w = u — v and integrating over P,(z1), we obtain

(6-11) / (M(u(z1))Vw, Vw) <I1+1I,
Pr(z1)

withI:Cg/ (IVul*+|H|)|w]| and II:Cg/ |M (u)— M (u(z1))||Vul|Vwl.
P, P (z1)

(z1)
By the ellipticit}ll of M(u(z1)), we have

/ (M(u(zl))Vw,Vw)zal/ [Vwl|?.
Pr(zl)

Pr(zl)

343y
By Holder’s inequality, (6-7) and (6-10), we have I < Cg(rL) (8% + r(‘;’ ), and
0

(6-12) < % IVul? 4 Cro(0scp, (;yu)* |Vw|?
P (z1) Py(z1)

=4[ vl +co( -

Py (z1) "o

Putting these estimates into (6-11), we obtain

)3—}-4)}

(6-13) / [Vwl|? < Cyr3t37.
Pr(Zl)

Since v solves (6-9), standard parabolic theory implies that for any 0 < p <r,

2 7 2
(6-14) / Vo = (V)0 |* = C12(2) / Vo= (Vo)pep|
P,(z1) r Pr(z1)
Combining (6-13) with (6-14), we obtain that

2
615 [ Vi~ (Vuyp, > < /
Pp(zl) P/) 21

7
SC12(£)/ |Vu|? 4 C1or3t37.
"7 JP@)

2
’Vo — (Vu)pp(zl)‘ +/ |Vwl|?
) P (z1)

We now choose some y € (%, 1), whence 3 4+ 3y > 5. Applying the algebraic
Lemma 2.1 in [Giaquinta 1983, Chapter III], we conclude that

_ 2 _ _
(6-16) p 5/ Vi — (V) p, | < Cisp” 2(1+r <3+3”/ |W|2)
P,(z1) P (z1)

for any z1 € Py,2(20) and 0 < p <r <rp/2.
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A well known characterization of Holder continuous functions due to Cam-
panato [1965] yields that Vu € C®7 =2/2(p, 2(20)). This completes the proof of
Lemma 6.1. O

Completion of proof of Theorem 1.3. It follows immediately from Lemma 6.1 that
Vu e C*(Q x Ry \ X) for some a € (0, 1). It remains to show that VZu, du /ot €
LS (Qx R4\ X). To see this, observe that

loc

g—”t‘ _v. (M(u)Vu)’ = [M ()| VulPu — V(M) - Vi + M(u) (H — (H, u)u)|

< Ci4(|Vu|* + |H|) € L°(Pg),

forany Pr € Q xR\ X. Since M (u) is Holder continuous and uniformly elliptic,
from the Wg’l—estimate for the linear parabolic equation [Lieberman 1996], we
can conclude that V2u, ou /ot € L%(Pg ,2). This implies the second conclusion of
Theorem 1.3. U

Proof of Theorem 1.4. By applying Lemma 2.4, we can conclude H? is bounded
in L®L8(R? x [0, T]) for any 0 < T < +o00, uniformly in &. Hence applying the
same argument of Lemma 6.1 shows Vu € C*(Q x Ry \ Z) for some a € (0, 1),
and V2u, 6u/ot € L8 (Q x Ry \ X). We leave the details to interested readers. []

loc
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