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In dimension three, we show the existence of weak solutions (u, H, E) to
the Landau–Lifshitz equation coupled with the time-dependent Maxwell
equation such that u is Hölder continuous away from a closed set 6 that
has locally finite 3-dimensional parabolic Hausdorff measure. For two re-
duced Maxwell equations, Hölder continuity of ∇u away from 6 is also
established.

1. Introduction

For a bounded, smooth domain�⊆R3, we consider the Landau–Lifshitz–Maxwell
equation:

∂u
∂t
= β1u× (1u+ H)−β2u× (u× (1u+ H)) in �×R+,(1-1)

∇ × H = ε0
∂E
∂t
+ σ E in R3

×R+,(1-2)

∇ × E =− ∂
∂t
(H +βu) in R3

×R+,(1-3)

where u :�×R+→ S2 is the magnetization field, H :R3
×R+→R3 is the magnetic

field, E :R3
×R+→R3 is the electric field, H e

≡4Z+H is the effective magnetic
field, β1 is the gyromagnetic coefficient, β2 ≥ 0 is the Gilbert damping coefficient,
ε0 ≥ 0, σ ≥ 0 is the conductivity constant, β is the magnetic permeability of free
space, and u is an extension of u such that u= 0 outside�. The system (1-1)–(1-3)
was originally proposed by Landau and Lifshitz [1935] to model the dynamics of
magnetization, magnetic field and electric field for the ferromagnetic materials.

The coupled Maxwell equations (1-2) and (1-3) can be written as

(1-4) ∂B
∂t
=−∇ × E and ∂D

∂t
+ σ E =∇ × H in R3

×R+,
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where D and B are the electric and magnetic displacements, given by

(1-5) D = ε0 E, B = H +βu in R3
×R+.

Note that when H = E = 0 and β = 0, the system (1-1)–(1-3) reduces to the
Landau–Lifshitz–Gilbert equation for Z :�×R+→ S2:

(1-6) ∂Z
∂t
= β1 Z ×4Z −β2 Z × (Z ×4Z).

Equation (1-6) is a hybrid between the Schrödinger flow into S2 (∂u/∂t = u×1u
for β2 = 0) and the heat flow of a harmonic map into S2 (∂u/∂t = 1u + |∇u|2u
for β1 = 0). There have been many works on both the existence and regularity of
weak solutions to (1-6) in recent years. Zhou and Guo [1987] proved the existence
of global weak solutions of (1-6) under suitable initial-boundary conditions. The
unique smooth solution of (1-6) in dimension one was established in [Zhou et al.
1991]. Alouges and Soyeur [1992] proved that given 0 < β2 and the initial data
u0 :R

3
→ S2 with ∇u0 ∈ L2(R3), there exists a global weak solution of (1-6) in R3.

Moreover, if u0∈H 1(�) and β2>0, the Neumann boundary value problem of (1-6)
in a bounded domain �⊂ R3 may admit infinitely many weak solutions. For reg-
ularity of weak solutions to (1-6), Guo and Hong [1993] established the existence
of a global, weak solution with finitely many singular points in dimension two,
and Chen, Ding and Guo [1998] proved the uniqueness of weak solutions whose
energies are nonincreasing in time at dimension two. In dimension three, Melcher
[2005] proved the existence of global weak solutions to (1-6) for�=R3, which are
smooth away from a closed set of locally finite 3-dimensional parabolic Hausdorff
measure. Later, Wang [2006] established the existence of partially smooth weak
solutions to (1-6) in any bounded domain � of dimension at most 4. It is unknown
whether these results of Melcher and Wang can be extended to higher dimensions.
It is also an interesting question to study the regularity of suitable weak solutions
to (1-6). Moser [2002] proved, in dimensions n≤ 4, a partial regularity theorem of
weak solutions to (1-6) that are stationary, a notion analogous to that of heat flow
of harmonic maps introduced in [Feldman 1994; Chen et al. 1995; Chen and Wang
1996] (see also [2004]). More recently, Ding and Wang [2007] proved that short-
time, smooth solutions to (1-6) may develop a finite-time singularity in dimensions
3 and 4 for suitable initial-boundary data.

Motivated by these studies of (1-6), we are interested in the Landau–Lifshitz
system coupled with the time-dependent Maxwell equations (1-1)–(1-3).

There has been some work on the system (1-1)–(1-3). Guo and Su [1997] used
Galerkin’s method to establish the existence of global, weak solutions with periodic
initial conditions in dimension three. Carbou and Fabrie [1998] used the Ginzburg–
Landau approximation scheme to show the existence of global, weak solutions to
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the system (1-1)–(1-3) under the Neumann boundary condition in dimension three,
and studied the long-time behavior of the weak solution by the method of time
average. See also [Joly et al. 2000; Ding et al. 2007] for related results.

The regularity issue of the system (1-1)–(1-3) is a challenging problem. There
are very few results in the literature. Ding and Guo [2004] proved a partial regular-
ity theorem for stationary solutions to the Landau–Lifshitz equation (1-1) coupled
with the quasistationary Maxwell equation

(1-7) div(H +βu)= 0 and ∇ × H = 0 in D′(R3).

By modifying the techniques by [Wang 2006], Ding and Guo [2008] proved the
existence of partially smooth weak solutions to (1-1)+(1-7) in dimension three.

There is an essential difference between (1-7) and (1-2)–(1-3): the former is
elliptic and H ∈

⋂
p>1 L p(R3,R3), while (1-2)–(1-3) is a hyperbolic system and

the regularity for H( · , t) and E( · , t) is no better than that of H( · , 0) and E( · , 0).
The hyperbolicity of (1-2) and (1-3) imposes serious difficulties to studying the
regularity of (1-1).

In this paper, we establish the existence of partially regular, weak solutions of
the Landau–Lifshitz–Maxwell system (1-1)–(1-3) with respect to the following
initial-boundary conditions:

∂u
∂ν
= 0 on �×R+,(1-8)

u(x, 0)= u0(x) in �,(1-9)

H(x, 0)= H0(x) in R3,(1-10)

E(x, 0)= E0(x) in R3.(1-11)

We assume throughout the paper that

(1-12) |u0| = 1 a.e. in �, H0 ∈ L2(R3,R3), E0 ∈ L2(R3,R3).

For convenience, we study an equivalent form of the Landau–Lifshitz–Maxwell
equation (1-1) (see [Guo and Hong 1992; 1993]):

(1-13) α1
∂u
∂t
+α2u× ∂u

∂t
=
(
1u+ |∇u|2u

)
+ (H −〈H, u〉 u) in �×R+,

where α1, α2 ∈ R represent suitable normalizations of β2 and β1 such that

0< α1 < 1, α2
1 +α

2
2 = 1.

Definition 1.1. The triple (u, H, E) is a weak solution of the system (1-13)+(1-2)–
(1-3) with the initial-boundary conditions (1-8)–(1-11) if

(i) u∈ L∞loc(R+,H 1(�, S2)), ∂u/∂t ∈ L2
loc(�×R+) and H,E ∈ L∞loc(R+, L2(R3));
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(ii) u satisfies (1-13) in the distribution sense, that is, for any8∈C∞(�×R+,R3)

with 8( · , 0)=8( · ,+∞)= 0,

(1-14)
∫
�×R+

(
α1
∂u
∂t
+α2u× ∂u

∂t

)
·8=

∫
�×R+

(
−∇u · ∇8+ |∇u|2u ·8

)
+

∫
�×R+

(H −〈H, u〉 u) ·8

and u( · , 0)= u0 in the sense of trace;

(iii) for any 8 ∈ C∞(R3
×R+,R3) with 8( · ,+∞)= 0,

(1-15) −
∫

R3×R+

(
ε0 E · ∂8

∂t
+H ·∇×8

)
+σ

∫
R3×R+

E ·8 = ε0

∫
R3

E0(x)·8(x, 0);

(iv) for any 8 ∈ C∞(R3
×R+,R3) with 8( · ,+∞)= 0,

(1-16) −
∫

R3×R+

(H +βu) · ∂8
∂t
+

∫
R3×R+

E · ∇ ×8

= β

∫
�

u0(x) ·8(x, 0)+
∫

R3
H0(x) ·8(x, 0).

To state our results, we also need some notation. For z0 = (x0, t0) ∈R3
×R and

r > 0, set

Br (x0)=
{

x ∈ R3
: |x − x0|< r0

}
and Pr (z0)= Br (x0)× (t0− r2, t0).

For any subset D⊂R4, the three-dimensional parabolic Hausdorff measure, P3(D),
is defined by

P3(D)= limδ↓0

(
inf
{ ∞∑

i=1
r3

i : D ⊂
∞⋃

i=1
Pri (zi ), 0< ri ≤ δ

})
.

We say a subset D ⊂ R4 has locally finite three-dimensional parabolic Hausdorff
measure if

P3 (D ∩ PR(0)) <+∞ for all R > 0.

Theorem 1.2. For any u0 ∈ H 1(�, S2), H0 ∈ L2(R3,R3) and E0 ∈ L2(R3,R3),
there exists a global weak solution (u, H, E) to the Landau–Lifshitz–Maxwell sys-
tem (1-13)+(1-2)–(1-3) under the initial-boundary conditions (1-8)–(1-11) such
that there exists a closed subset 6 ⊂ �×R+ having locally finite 3-dimensional
parabolic Hausdorff measure and satisfying u ∈ C1/2(�×R+ \6, S2).

To study the higher-order regularity of weak solutions to (1-13)+(1-2)–(1-3)
obtained by Theorem 1.2, we restrict to two special cases:
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(i) The constant ε0 vanishes in (1-2), and (1-2)–(1-3) become

(1-17) ∇ × (∇ × H)=−σ ∂
∂t
(H +βu) in R3.

(ii) The constant β vanishes in (1-3), and (1-2)–(1-3) become

(1-18) ∇ × H = ε0
∂E
∂t
+ σ E, ∇ × E =−∂H

∂t
in R3.

Theorem 1.3. Assume that δ > 0 is a constant. For any u0 ∈ H 1(�, S2) and H0 ∈

H 1(R3,R3) satisfying ∇ · (H0 + βu0) = 0 in D′(R3), there exists a weak solution
(u, H) of the Landau–Lifshitz system (1-13) coupled with (1-17) under the initial-
boundary conditions (1-8)–(1-10) such that H ∈

⋂
T>0 H 1(R3

×[0, T ],R3) and
there exists a closed subset 6 ⊂ �×R+ of locally finite 3-dimensional parabolic
Hausdorff measure and satisfying ∇u ∈ Cα(�×R+ \6) for some 0< α < 1, and
∇

2u, ∂u/∂t ∈ L6
loc(�×R+ \6).

Theorem 1.4. For any u0 ∈ H 1(�, S2) and H0, E0 ∈ H 1(R3,R3) that satisfy
∇ · H0 = ∇ · E0 = 0 in D′(R3), there exists a weak solution (u, H, E) of the
Landau–Lifshitz system (1-13) coupled with (1-18) under the initial-boundary con-
ditions (1-8)–(1-11) such that ∂H/∂t, ∂E/∂t ∈ L∞loc(R+, L2(R3)), and there exists
a closed subset 6 ⊂ �×R+ having locally finite 3-dimensional parabolic Haus-
dorff measure and satisfying ∇u ∈ Cα(� × R+ \ 6) for some 0 < α < 1, and
∇

2u, ∂u/∂t ∈ L6
loc(�×R+ \6).

The ideas to approach these theorems are based on an analysis of the Ginzburg–
Landau approximate equation: for ε > 0,

(1-19) α1
∂uε

∂t
+α2uε× ∂uε

∂t
=1uε+ 1

ε2 (1−|u
ε
|
2)uε+uε×(H ε

×uε) in �×R+.

By using an argument similar to the one in [Ding and Wang 2007], it is not hard to
see that the corresponding partial regularity property at the boundary also holds for
the weak solution obtained in Theorems 1.2, 1.3, and 1.4. For example, Theorem
1.2 can be extended so that there exists a closed subset 61 ⊆ ∂�, with P3(61) <

+∞, such that u ∈ C1/2(� \ (6 ∪61), S2).
The paper is written as follows. In Section 2, we establish a uniform energy

estimate for (1-19). In Section 3, we sketch the time slice monotonicity. In Section
4 we establish a lower bound estimate of solutions to (1-19). In Section 5, we
obtain the decay estimate of solutions to (1-19) under the smallness condition and
prove Theorem 1.2. In Section 6, we establish a partial Cα-regularity of ∇u and
prove both Theorems 1.3 and 1.4.
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2. Estimate of the energy in (1-19)

In this section, we sketch the existence of global weak solutions to (1-19)+(1-2)–
(1-3), associated with (1-8)–(1-11) by Galerkin’s method and their corresponding
energy estimates. Here we modify an argument from [Carbou and Fabrie 1998] to
handle (1-19). Note the difference between (1-19) and the approximate equation
employed by that paper: we approximate H−〈H, u〉u in (1-13) by uε×(H ε

×uε)
in (1-19), while Carbou and Fabrie approximate the same term in (1-13) by H ε. An
advantage of our approximation is that we have the upper bound |uε| ≤ 1, which
plays a crucial role in establishing a priori continuity estimates for uε, and hence
the existence of partially smooth solutions, while theirs yields an optimal energy
inequality [Carbou and Fabrie 1998, page 387, (2.12)], which is important in their
study of long-time behaviors by the method of time average.

We begin with a general L∞-estimate of weak solutions uε to (1-19).

Lemma 2.1. For ε > 0, assume u0 ∈ H 1(�, S2), H0 ∈ L2(R3,R3) and E0 ∈

L2(R3,R3). Let (uε, H ε, Eε) be any weak solution of (1-19)+(1-2)–(1-3) under
conditions (1-8)–(1-11). Then |uε|(x, t)≤ 1 for any (x, t) ∈�×R+.

Proof. Multiplying (1-19) by uε and using the equalities uε ·uε×(∂uε/∂t)= 0 and
uε · uε× (H ε

× uε)= 0, we have

(2-1)
(
α1
∂
∂t
−1

)
(|uε|2− 1)=−2

(
|∇uε|2+ 1

ε2 (|u
ε
|
2
− 1)|uε|2

)
;

hence (
α1
∂
∂t
−1

)
(|uε|2− 1)+ ≤ 0 in �×R+,

where (|uε|2−1)+ is the positive part of (|uε|2−1). The conclusion now holds by
the weak maximum principle of the heat equation [Lieberman 1996]. �

Now we sketch the existence of weak solutions to (1-19) that enjoy energy esti-
mates by Galerkin’s method. We borrow some notation from [Carbou and Fabrie
1998, pages 388–395]. Let {φk}k ⊆ H 2(�) be eigenfunctions of 1 with zero Neu-
mann boundary condition that form an orthonormal basis in L2(�) and an orthog-
onal basis in H 1(�) and H 2(�). For 1 ≤ N <+∞, set VN = span {φ1, . . . , φN }.
Define

Hcurl(R
3)=

{
ψ ∈ L2(R3,R3), ∇ ×ψ ∈ L2(R3,R3)

}
.

Let {ψk}k be an orthogonal basis of Hcurl(R
3) that is orthonormal in L2(R3) and

WN = span {ψ1, . . . , ψN }. Denote by5VN : L
2(�)→VN , and5WN : L

2(�)→WN

the orthogonal projections. Define the retraction map 5 : R3
→ B1 by setting

5(p)=
{

p if |p| ≤ 1,
p/|p| if |p|> 1.
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Define functions uN ∈ VN and HN , EN ∈WN by

(2-2)

uN (x, t)=
N∑

k=1
vk(t)φk(x), HN (x, t)=

N∑
k=1

hk(t)ψk(x), EN (x, t)=
N∑

k=1
ek(t)ψk(x),

satisfying, for all 8∈VN and 9 ∈WN ,

(2-3)
∫
�

(
α1
∂uN

∂t
+α2uN×

∂uN

∂t

)
·8

=

∫
�

(
−∇uN ·∇8+

1
ε2 (1− |uN |

2)uN ·8

)
+

∫
�

5(uN )× (HN ×5(uN )) ·8,

(2-4)
∫

R3

(
ε0
∂EN

∂t
+ σ EN

)
·9 =

∫
R3

HN · (∇ ×9),

(2-5)
∫

R3

∂
∂t
(HN +βuN ) ·9 =−

∫
R3

EN · (∇ ×9),

under the initial conditions

(2-6) uN
∣∣
t=0 =5VN (u0), HN

∣∣
t=0 =5WN (H0), EN

∣∣
t=0 =5WN (E0).

Throughout this section, we will use the following fact:

(2-7) lim
N→∞

∫
�

eε(uN (0))=
∫
�

1
2
|∇u0|

2.

Note that (2-3)–(2-6) reduces to a system of first order ODEs for (vk, hk, ek)k .
Moreover, since P(uN )(v)=α1v+α2uN×v :R

3
→R3 is one-to-one, we can solve

(2-3) for the derivative in time. Hence there exists a local solution (uN , HN , EN )

of (2-3)–(2-6). The following uniform estimate shows that (uN , HN , EN ) is also
global in time and converges to a global weak solution of (1-19)+(1-2)–(1-3).

Lemma 2.2. For ε > 0, assume u0 ∈ H 1(�, S2), H0 ∈ L2(R3,R3) and E0 ∈

L2(R3,R3). Then there exists a global weak solution (uε, H ε, Eε) to (1-19)+(1-2)–
(1-3) under conditions (1-8)–(1-11), such that for any 0< T <+∞ we have

(2-8) σ

∫ T

0

∫
R3
|Eε|2+α1

∫ T

0

∫
�

∣∣∣∂uε

∂t

∣∣∣2+Eε(T )≤ eCT E0,

where C > 0 depends only on β and α1, and

E0 =

∫
�

1
2 |∇u0|

2
+

∫
R3

( 1
2ε0|E0|

2
+

1
2 |H0|

2),
Eε(t)=

∫
�

eε(uε(t))+
∫

R3

( 1
2ε0|Eε(t)|2+ 1

2 |H
ε(t)|2

)
(2-9)
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with eε(uε(t))= 1
2 |∇uε(t)|2+ 1

4ε2

(
1− |uε(t)|2

)2.

Proof. We first establish the estimate (2-8) for Galerkin’s approximate solutions
(uN , HN , EN ). Then we employ this estimate to extract a subsequence that con-
verges to a global weak solution (uε, H ε, Eε) to (1-19)+(1-2)–(1-3).

Testing (2-3) with 8= ∂uN/∂t and integrating over � gives

(2-10)
∫
�

α1

∣∣∣∂uN

∂t

∣∣∣2+ d
dt

∫
�

eε(uN )=

∫
�

5(uN )× (HN ×5(uN )) ·
∂uN

∂t

≤

∫
�

|HN |

∣∣∣∂uN

∂t

∣∣∣,
where we used the inequalities |5(uN )| ≤ 1 and

∣∣5(uN )×(HN×5(uN ))
∣∣≤ |HN |.

Testing (2-4) with 9 = EN and integrating over R3 gives

(2-11)
∫

R3
∇ × HN · EN =

d
dt

∫
R3

1
2ε0|EN |

2
+

∫
R3
σ |EN |

2.

Testing (2-5) with 9 = HN and integrating over R3 gives

(2-12) −

∫
R3
∇ × EN · HN =

d
dt

∫
R3

1
2 |HN |

2
+β

∫
�

HN ·
∂uN

∂t
.

Adding together (2-11) and (2-12), and using the identity∫
R3
(∇ × HN · EN −∇ × EN · HN )= 0,

we obtain

(2-13) d
dt

∫
R3

( 1
2ε0|EN |

2
+

1
2 |HN |

2)
+ σ

∫
R3
|EN |

2
=−β

∫
�

HN ·
∂uN

∂t

≤ β

∫
�

|HN |

∣∣∣∂uN

∂t

∣∣∣.
Adding (2-10) and (2-13) together gives

(2-14) σ

∫
R3
|EN |

2
+α1

∫
�

∣∣∣∂uN

∂t

∣∣∣2+ d
dt

(∫
�

eε(uN )+

∫
R3

( 1
2ε0|EN |

2
+

1
2 |HN |

2))
≤ (1+β)

∫
�

|HN |

∣∣∣∂uN

∂t

∣∣∣ ≤ α1

4

∫
�

∣∣∣∂uN

∂t

∣∣∣2+ (1+β)2
α1

∫
R3
|HN |

2,

where we used the Cauchy–Schwarz inequality in the last step. Using Grönwall’s
inequality in (2-14) and integrating from t = 0 to t = T gives
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(2-15)

σ

∫ T

0

∫
R3
|EN |

2
+α1

∫ T

0

∫
�

∣∣∣∂uN

∂t

∣∣∣2+(∫
�

eε(uN )+

∫
R3

( 1
2ε0|EN |

2
+

1
2 |HN |

2))(T )
≤ eCT

(∫
�

eε(uN )+

∫
R3

( 1
2ε0|EN |

2
+

1
2 |HN |

2))(0)
≤ eCT

(
o(1)+

∫
�

eε(u0)+

∫
R3

( 1
2ε0|E0|

2
+

1
2 |H0|

2))
= eCT (E0+ o(1)).

Here we have used (2-7) and o(1) denotes a quantity that tends to 0 as N tends to∞.
It follows from the bound (2-15) that there exists a subsequence of (uN , HN , EN ),
still written the same, such that for any 0< T <+∞,

uN ⇀ uε weak∗ in L∞([0, T ], H 1(�)),
∂uN

∂t
⇀
∂uε

∂t
in L2(�×[0, T ]),

EN ⇀ Eε, HN ⇀ H ε weak∗ in L∞([0, T ], L2(R3)).

By Aubin’s Lemma (see also [Carbou and Fabrie 1998]),

uN → uε strongly in L4(�×[0, T ]).

Since |5(uN )| ≤ |uN | and
∫
� |∇(5(uN ))|

2
≤
∫
� |∇uN |

2, we also have

5(uN )→5(uε) strongly in L4(�×[0, T ]).

It is readily seen that (2-15) implies that (uε, H ε, Eε) satisfies (2-8) and the initial
conditions (1-8)–(1-11). It is also not hard to see that (H ε, Eε) are weak solutions
to (1-2)–(1-3). Similarly to [Carbou and Fabrie 1998, page 392], we can check that

(2-16) α1
∂uε

∂t
+α2uε× ∂uε

∂t
=1uε+ 1

ε2 (1−|u
ε
|
2)uε+5(uε)× (H ε

×5(uε)).

Multiplying (2-16) by uε and observing that5(uε)×(H ε
×5(uε))·uε= 0, we see

that uε satisfies (2-1). Hence Lemma 2.1 implies that |uε| ≤ 1. Thus 5(uε) = uε

and (2-16) yields (1-19). �

In order to establish a partial Cα-regularity of ∇u for weak solutions u to (1-13)
coupled with the Maxwell equations (1-17) or (1-18), we need uniform estimates
of H ε, Eε in H 1

loc(R
3
×R+). More precisely:

Lemma 2.3. Suppose that u0 ∈ H 1(�, S2) and H0 ∈ H 1(R3,R3) satisfy the con-
dition ∇ · (H0+βu0) = 0 in D′(R3). Then there exists a global weak solution
(uε, H ε) to (1-19)+(1-17) under the initial-boundary conditions (1-8)–(1-10) such
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that for any 0< T <+∞,

(2-17) α1

∫ T

0

∫
�

∣∣∣∂uε

∂t

∣∣∣2+ ∫ T

0

∫
R3

(∣∣∣∂H ε

∂t

∣∣∣2+ |∇H ε
|
2
)

+

(∫
�

eε(uε)+
∫

R3

( 1
2σ |H

ε
|
2
+ |∇H ε

|
2))(T )

≤

∫
R3
|∇H0|

2
+ eCT

(∫
�

|∇u0|
2
+

∫
R3
|H0|

2
)
,

for some C = C(β, α1) > 0.

Proof. For N ≥ 1, let (uN , HN ) ∈ VN ×WN be given by (2-2) such that uN solves
(2-3) and HN solves

(2-18)
∫

R3
(∇ × HN ) · (∇ ×9)=−σ

∫
R3

∂
∂t
(HN +βuN ) ·9 for all 9 ∈WN

subject to the initial condition (uN , HN )|t=0 = (5VN (u0),5WN (H0)).
Testing (2-18) with 9 = HN and integrating over R3 gives

(2-19) d
dt

∫
R3

σ

2
|HN |

2
+

∫
R3
|∇×HN |

2
=−βσ

∫
�

HN ·
∂uN

∂t
≤βσ

∫
�

|HN |

∣∣∣∂uN

∂t

∣∣∣.
Combining (2-19) with (2-10) and applying the Cauchy–Schwarz inequality yields

(2-20)
∫
�

α1

∣∣∣∂uN

∂t

∣∣∣2+ d
dt

(∫
�

eε(uN )+

∫
R3

1
2σ |HN |

2
)
+

∫
R3
|∇ × HN |

2

≤ C(α1, β)

∫
R3
|HN |

2.

This, combined with Grönwall’s inequality, yields that for any 0< T <+∞,

(2-21) α1

∫ T

0

∫
�

∣∣∣∂uN

∂t

∣∣∣2+ ∫ T

0

∫
R3
|∇ × HN |

2
+

(∫
�

eε(uN )+

∫
R3

1
2σ |HN |

2
)
(T )

≤ eCT
(

o(1)+
∫
�

|∇u0|
2
+

∫
R3

1
2σ |H0|

2
)

for some C = C(β, α1) > 0, where we have used (2-7).
Now testing (2-18) with 9 = ∂HN/∂t and integrating over R3, we have

(2-22) d
dt

∫
R3

1
2 |∇ × HN |

2
+ σ

∫
R3

∣∣∣∂HN

∂t

∣∣∣2 =−βσ∫
�

∂HN

∂t
·
∂uN

∂t
.

Thus, by the Cauchy–Schwarz inequality,

(2-23) d
dt

∫
R3
|∇ × HN |

2
+ σ

∫
R3

∣∣∣∂HN

∂t

∣∣∣2 ≤ 16β2σ

∫
R3

∣∣∣∂uN

∂t

∣∣∣2.
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Integrating for 0≤ t ≤ T and applying (2-21), this implies∫
R3
|∇ × HN |

2(T )+ σ
∫ T

0

∫
R3

∣∣∣∂HN

∂t

∣∣∣2(2-24)

≤

∫
R3
|∇H0|

2
+ 16β2σ

∫ T

0

∫
�

∣∣∣∂uN

∂t

∣∣∣2
≤

∫
R3
|∇H0|

2
+ eCT

(
o(1)+

∫
�

|∇u0|
2
+

∫
R3
|H0|

2
)
.

Adding (2-21) and (2-24) together, we obtain

(2-25) α1

∫ T

0

∫
�

∣∣∣∂uN

∂t

∣∣∣2+ ∫ T

0

∫
R3

(∣∣∣∂HN

∂t

∣∣∣2+ |∇ × HN |
2
)

+

(∫
�

eε(uN )+

∫
R3

( 1
2σ |HN |

2
+ |∇ × HN |

2))(T )
≤

∫
R3
|∇H0|

2
+ eCT

(
o(1)+

∫
�

|∇u0|
2
+

∫
R3

1
2σ |H0|

2
)
.

From (2-25) we may assume, after taking subsequences, that for any 0< T <+∞,

uN ⇀ uε weak∗ in L∞([0, T ], H 1(�)),
∂uN

∂t
⇀
∂uε

∂t
in L2(�×[0, T ]),

HN ⇀ H ε,
∂HN

∂t
⇀
∂H ε

∂t
, ∇ × HN ⇀ ∇ × H ε in L2(R3

×[0, T ]).

As in Lemma 2.2, we can show that (uε, H ε) are weak solutions to (1-19)+(1-17),
under the initial condition (1-8)–(1-10). By lower semicontinuity, we also see that
(2-25) holds with (uN , HN ) replaced by (uε, H ε). To obtain the L2-norm bound
for ∇H , we need to use the condition ∇ · (H0+βu0)= 0 in D′(R3). Note that∫

R3
(∇ × H ε) · (∇ ×9)=−σ

∫
R3

∂
∂t
(
H ε
+βuε

)
·9, ∀9 ∈ H 1(R3).

Since δ > 0, by choosing 9 =∇ψ for ψ ∈ C∞0 (R
3) and observing ∇× (∇ψ)= 0

in R3, we have ∫
R3

∂
∂t
(
H ε
+βuε

)
· ∇ψ = 0

so that for a.e. t > 0,∫
R3
∇ · (H ε

+βuε)ψ =
∫

R3
∇ · (H0+βu0)ψ = 0.

Thus

∇ · (H ε
+βuε)= 0 in D′(R3) for a.e. t > 0.
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To proceed, we claim that∫
R3
|∇H |2 =

∫
R3
(|∇ × H |2+ |∇ · H |2) for all H ∈ H 1(R3,R3).

Since C∞0 (R
3,R3) is dense in H 1(R3,R3), it suffices to verify this inequality for

H ∈ C∞0 (R
3,R3). This can be seen as follows:∫

R3
|∇H |2 =

∫
R3

3∑
i, j=1

(H i
j )

2
=

∫
R3

∑
i 6= j
(H j

i )
2
+

∫
R3

3∑
i=1
(H i

i )
2

=

∫
R3

( ∑
1≤i< j≤3

(H j
i − H i

j )
2
+ 2

∑
1≤i< j≤3

H j
i H i

j

)
+

∫
R3

(( 3∑
i=1

H i
i

)2
− 2

∑
1≤i< j≤3

H i
i H j

j

)
=

∫
R3

(
|∇ × H |2+ |∇ · H |2

)
+ 2

∫
R3

∑
1≤i< j≤3

(H j
i H i

j − H i
i H j

j )

=

∫
R3

(
|∇ × H |2+ |∇ · H |2

)
,

where the vanishing of
∫

R3

∑
1≤i< j≤3(H

j
i H i

j − H i
i H j

j )= 0 in the last step comes
from integrating by parts twice. Thus∫

R3
|∇H ε

|
2
=

∫
R3
(|∇ × H ε

|
2
+ |∇ · H ε

|
2)≤ C(β)

(∫
R3
|∇ × H ε

|
2
+

∫
�

|∇uε|2
)

and hence (2-25), with (uN , HN )= (uε, H ε), yields (2-17). �

For the system (1-19)+(1-18), we have:

Lemma 2.4. For any u0∈H 1(�, S2), H0∈H 1(R3,R3) and E0∈H 1(R3,R3) with
∇ · E0 = ∇ · H0 = 0 in D′(R3), there exists a global weak solution (uε, H ε, Eε)
to (1-19)+(1-18) under the initial-boundary conditions (1-8)–(1-11) such that, for
any 0< T <+∞,

(2-26)
∫ T

0

∫
�

∣∣∣∂uε

∂t

∣∣∣2+Eε(T )

+

∫
R3

(
|H ε
|
2
+ |Eε|2+

∣∣∣∂H ε

∂t

∣∣∣2+ ∣∣∣∂Eε

∂t

∣∣∣2+ |∇H ε
|
2
+ |∇Eε|2

)
(T )

≤ C(ε0, σ, T )
(∫

�

|∇u0|
2
+

∫
R3

(
|H0|

2
+ |E0|

2
+ |∇H0|

2
+ |∇E0|

2)).
Proof. For N ≥ 1, let (uN , HN , EN ) ∈ VN × WN × WN of the form (2-2) be a
solution to (2-3)–(2-6). Since β = 0 in this case, testing (2-4) with 9 = EN and
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(2-5) with 9 = HN and adding the resulting identities together gives

(2-27) d
dt

∫
R3

(
|HN |

2
+ ε0|EN |

2)
+ 2σ

∫
R3
|EN |

2
= 0.

Differentiating (2-4) and (2-5) with respect to t and testing the resulting equations
with 9 = ∂EN/∂t and 9 = ∂HN/∂t respectively, we have∫

R3

(
∂EN

∂t
· ∇ ×

∂HN

∂t
−
∂HN

∂t
· ∇ ×

∂EN

∂t

)
=

∫
R3

(
∂EN

∂t
·

(
ε0
∂2 EN

∂t2 + σ
∂EN

∂t

)
+
∂HN

∂t
·
∂2 HN

∂t2

)
.

Since ∫
R3

(
∂EN

∂t
· ∇ ×

∂HN

∂t
−
∂HN

∂t
· ∇ ×

∂EN

∂t

)
= 0,

we obtain

(2-28) d
dt

∫
R3

(
ε0

∣∣∣∂EN

∂t

∣∣∣2+ ∣∣∣∂HN

∂t

∣∣∣2)+ 2σ
∫

R3

∣∣∣∂EN

∂t

∣∣∣2 = 0.

Combining (2-27) with (2-28), we get

(2-29) d
dt

∫
R3

(
|HN |

2
+ ε0

(
|EN |

2
+

∣∣∣∂EN

∂t

∣∣∣2)+ ∣∣∣∂HN

∂t

∣∣∣2)
=−2σ

∫
R3

(
|EN |

2
+

∣∣∣∂EN

∂t

∣∣∣2).
Since

∂HN

∂t

∣∣∣
t=0
=−∇ × (5WN (E0)), ε0

∂E
∂t

∣∣∣
t=0
=∇ × (5WN (H0))− σ5WN (E0),

integrating (2-29) for 0≤ t ≤ T yields

(2-30)
∫

R3

(
|HN |

2
+ ε0

(
|EN |

2
+

∣∣∣∂EN

∂t

∣∣∣2)+ ∣∣∣∂HN

∂t

∣∣∣2)(T )
+2σ

∫ T

0

∫
R3

(
|EN |

2
+

∣∣∣∂EN

∂t

∣∣∣2)
≤

∫
R3

(
|5WN (H0)|

2
+ ε0|5WN (E0)|

2
+ |∇ × (5WN (E0))|

2

+ε−1
0 |∇ × (5WN (H0))− σ5WN (E0)|

2)
≤ C(ε0, σ )

∫
R3

(
|H0|

2
+ |E0|

2
+ |∇H0|

2
+ |∇E0|

2).
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For uN , by testing (2-3) with 8= ∂uN/∂t as in (2-10) of Lemma 2.2, we have

(2-31) α1

∫
�

∣∣∣∂uN

∂t

∣∣∣2+ d
dt

∫
�

eε(uN )≤ C
∫

R3
|HN |

2.

This, with the help of (2-30) and (2-7), implies that for any 0< T <+∞,

(2-32) α1

∫ T

0

∫
�

∣∣∣∂uN

∂t

∣∣∣2+ ∫
�

eε(uN (T ))

≤ CT
∫

R3

(
|H0|

2
+ |E0|

2
+ |∇H0|

2
+ |∇E0|

2)
+

∫
�

|∇u0|
2
+ o(1).

It follows from (2-30), (2-4), and (2-5) with β = 0 that

(2-33)
∫

R3

(
|∇×HN |

2
+|∇×EN |

2)(T )≤ C
∫

R3

(∣∣∣∂EN

∂t

∣∣∣2+ |EN |
2
+

∣∣∣∂HN

∂t

∣∣∣2)(T )
≤ C

∫
R3

(
|H0|

2
+|E0|

2
+|∇H0|

2
+|∇E0|

2).
From (2-30), (2-32), and (2-33) we may assume, after taking subsequences, that

for any 0< T <+∞,

uN ⇀ uε weak∗ in L∞([0, T ], H 1(�)),
∂uN

∂t
⇀
∂uε

∂t
in L2(�×[0, T ]),

HN ⇀ H ε,
∂HN

∂t
⇀
∂H ε

∂t
, ∇ × HN ⇀ ∇ × H ε in L2(R3

×[0, T ]),

EN ⇀ Eε,
∂EN

∂t
⇀
∂Eε

∂t
, ∇ × EN ⇀ ∇ × Eε in L2(R3

×[0, T ]).

As in the previous lemmas, it is a standard exercise to check that (uε, H ε, Eε)
solves (1-19)+(1-18) and the initial-boundary conditions (1-8)–(1-11). Moreover,
by lower semicontinuity, we have, for 0< T <+∞,

(2-34)
∫ T

0

∫
�

∣∣∣∂uε

∂t

∣∣∣2+Eε(T )

+

∫
R3

(
|H ε
|
2
+ |Eε|2+

∣∣∣∂H ε

∂t

∣∣∣2+ ∣∣∣∂Eε

∂t

∣∣∣2+ |∇ × H ε
|
2
+ |∇ × Eε|2

)
≤ C(ε0, σ, T )

(∫
�

|∇u0|
2
+

∫
R3

(
|H0|

2
+ |E0|

2
+ |∇H0|

2
+ |∇E0|

2)).
As in the previous lemma, we can check that ∇ ·H0=∇·E0= 0 is preserved under
(1-18), that is,

(2-35) ∇ · H ε(t)=∇ · Eε(t)= 0 a.e. t > 0.

Finally, it is not hard to see that (2-34) and (2-35) yield (2-26). �
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Remark 2.5. Lemmas 2.3 and 2.4 show that, for any 0<T <+∞, H ε is uniformly
bounded in L∞([0, T ], H 1(R3)). Hence by the Sobolev embedding inequality, H ε

is uniformly bounded in L∞([0, T ], L6(R3)). This property plays an important
role in the proof of Cα-regularity of ∇u claimed in Theorems 1.3 and 1.4.

We end this section with a local energy inequality.

Lemma 2.6. There exists C > 0 such that for any ε > 0, u0 ∈ H 1(�, S2), H0 ∈

L2(R3,R3) and E0 ∈ L2(R3,R3), if (uε, H ε, Eε) is the global weak solution of
(1-19)+(1-2)–(1-3) with conditions (1-8)+(1-9)–(1-11) obtained in Lemma 2.2,
then for any x0 ∈�, t0 > 0, and 0< r <min{dist(x0, ∂�),

√
t0/2}, we have

(2-36) r−1
∫

Pr/2(z0)

∣∣∣∂uε

∂t

∣∣∣2+ r−1 max
t∈[t0−r2/4,t0]

∫
Br/2(x0)

eε(uε)

≤ Cr−3
∫

Pr (z0)

eε(uε)+Cr−1
∫

Pr (z0)

|H ε
|
2.

Proof. Write (u, H) for (uε, H ε). For x0 ∈� and 0< r <min{dist(x0, ∂�),
√

t0},
by Fubini’s theorem there is α ∈ ( 1

2 ,
7
8) such that

(2-37)
∫

Br (x0)

eε(u)(t0−α2r2)≤ 8r−2
∫

Pr (z0)

eε(u).

Let φ(x) ∈ C∞0 (Br (x0)) be such that 0 ≤ φ ≤ 1, φ ≡ 1 on Br/2(x0). Multiplying
(1-19) by φ2(∂u/∂t) and integrating over Br (x0), we get

(2-38) α1

∫
Br (x0)

∣∣∣∂u
∂t

∣∣∣2φ2
+

d
dt

∫
Br (x0)

eε(u)φ2

=−2
∫

Br (x0)

φ∇φ∇u · ∂u
∂t
−

∫
Br (x0)

φ2u× (H × u) · ∂u
∂t

≤
α1
2

∫
Br (x0)

∣∣∣∂u
∂t

∣∣∣2φ2
+C(α1)

∫
Br (x0)

(
|∇φ|2|∇u|2+φ2

|H |2
)
.

Integrating (2-38) from t0 − α2r2 to t ∈ [t0 − r2/4, t0] and applying (2-37), we
obtain (2-36). �

3. Energy monotonicity on time slices

An energy monotonicity property analogous to that of [Struwe 1988] (see also
[Chen and Struwe 1989; Chen and Lin 1993]) is unknown for Landau–Lifshitz
type equations. In order to derive an prior estimate for (uε, Eε, H ε) under the
small energy condition, we need an energy monotonicity of uε on time slices,
which can be derived by a Pohozaev-type argument as in [Wang 2006].
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Lemma 3.1. For ε > 0, let (uε, H ε) be a weak solution to (1-19). For a.e. t > 0,
any x0 ∈�, and 0< r ≤ R <min{1, dist(x0, ∂�)}, we have

(3-1) r−1 Eε(uε, Br (x0))≤ 2R−1 Eε(uε, BR(x0))+C0 R
∫

BR(x0)

(∣∣∣∂uε

∂t

∣∣∣2+|H ε
|
2
)
,

(3-2)
∫

BR

|x − x0|
−1 (1− |u

ε
|
2)2

ε2

≤ 2R−1 Eε
(
uε, BR(x0)

)
+C0 R

∫
BR(x0)

(∣∣∣∂uε

∂t

∣∣∣2+ |H ε
|
2
)

for some C0 = C0(α1) > 0, where

Eε(uε, A)=
∫

A

(
1
2 |∇uε|2+

(1− |uε|2)2

2ε2

)
, A ⊆ R3.

Proof. The proof is a modification of [Wang 2006] (see also [Ding and Guo 2004;
Melcher 2005]). We sketch it here. First observe that for a.e. t > 0, we have
1u ∈ L2(�) and hence ∇2u ∈ L2(�). For p ∈ R3, define R(p) : R3

→ R3 by

R(p)(v)= α1v−α2 p× v for all v ∈ R3.

Assume x0 = 0 ∈�. Write (u, H)= (uε, H ε) and Br = Br (0). Multiplying (1-19)
by x · ∇u and integrating over Br yields

(3-3)
∫

Br

〈
R(u)

(
∂u
∂t

)
+ u× (u× H), x · ∇u

〉
=

∫
Br

〈
1u+ 1

ε2 (1− |u|
2)u, x · ∇u

〉
= r

∫
∂Br

(∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2− (1−|u|

2)2

4ε2

)
+

∫
Br

(
1
2 |∇u|2+ 3(1−|u|2)2

4ε2

)
≥ r

∫
∂Br

(∣∣∣∂u
∂r

∣∣∣2− 1
2 |∇u|2− (1−|u|

2)2

4ε2

)
+ Eε(u, Br ).

Hence we have

(3-4) d
dr

(
r−1 Eε(u, Br )− r−1

∫
Br

〈
R(u)

(
∂u
∂t

)
+ u× (u× H), x · ∇u

〉)
≥ r−1

∫
∂Br

(∣∣∣∂u
∂r

∣∣∣2+ (1−|u|2)2
4ε2

)
−r−1

∫
∂Br

〈
R(u)∂u

∂t
+u×(u×H), x ·∇u

〉
.

Since |u| ≤ 1, we have |u × (u × H)| ≤ |H | and |R(u)(∂u/∂t)| ≤ |∂u/∂t |. The
second term of the right hand side of (3-4) can be estimated by
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(3-5) − r−1
∫
∂Br

〈
R(u)

(
∂u
∂t

)
+ u× (u× H), x · ∇u

〉
≥−

1
4

r−1
∫
∂Br

∣∣∣∂u
∂r

∣∣∣2− r
∫
∂Br

(∣∣∣∂u
∂t

∣∣∣2+ |H |2).
The second term of the left hand side of (3-4) can be estimated by

(3-6)
∣∣∣∣r−1

∫
Br

〈
R(u)

(
∂u
∂t

)
+ u× (u× H), x · ∇u

〉∣∣∣∣
≤

1
4 Eε(u, Br )+ r

∫
Br

(∣∣∣∂u
∂t

∣∣∣2+ |H |2).
Putting (3-5) and (3-6) into (3-4) and integrating from r to R gives

(3-7) 2R−1 Eε(u, BR)+ R
∫

BR

(∣∣∣∂u
∂t

∣∣∣2+ |H |2)
≥

1
2r−1 Eε(u, Br )− r

∫
Br

(∣∣∣∂u
∂t

∣∣∣2+ |H |2)
+

∫
BR\Br

1
|x |

(∣∣∣∂u
∂r

∣∣∣2+ (1− |u|2)2
4ε2

)
−

∫ R

0
s
∫
∂Bs

(∣∣∣∂u
∂t

∣∣∣2+ |H |2).
Since

r
∫

Br

(∣∣∣∂u
∂t

∣∣∣2+ |H |2)≤ R
∫

BR

(∣∣∣∂u
∂t

∣∣∣2+ |H |2)
and ∫ R

0
s
∫
∂Bs

(∣∣∣∂u
∂t

∣∣∣2+ |H |2)≤ R
∫
∂BR

(∣∣∣∂u
∂t

∣∣∣2+ |H |2),
(3-7) clearly implies both (3-1) and (3-2). �

4. On the lower bound of |uε|

We will now establish a lower bound estimate of |uε| on generic time slices, under
the smallness condition r−3

∫
Pr

eε(uε).

Definition 4.1. For any ε ∈ (0, 1
2), x0 ∈�, t0 > 0, 0< r <min{dist(x0, ∂�),

√
t0},

and 3> 0, we define the set of good time slices by

(4-1) G3
z0,r =

{
t ∈ [t0− r2, t0) :

∫
Br (x0)

∣∣∣∂uε

∂t

∣∣∣2 ≤ 32

r2

∫
Pr (z0)

∣∣∣∂uε

∂t

∣∣∣2},
and the set of bad time slices by

(4-2) B3z0,r = [t0− r2, t0) \G3
z0,r .
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By Fubini’s theorem,

(4-3)
∣∣B3z0,r

∣∣≤ r2

32 .

Similarly to [Melcher 2005; Wang 2006], we have:

Lemma 4.2. For ε > 0, let (uε, H ε) be the weak solution of (1-19) in Lemma 2.2.
Denote

‖H ε
‖L∞t L2

x (R
3×[0,t0]) = C0.

Then for any 3 > 0, there exist η0 > 0 and r0 > 0 depending on 3 and C0 such
that for any z0 = (x0, t0) ∈�× (0,+∞) and 0< r <min{dist(x0, ∂�),

√
t0, r0} if

(4-4) r−3
∫

Pr (z0)

eε(uε)≤ η2
0,

then

(4-5) |uε|(x, t)≥ 1
2

for all x ∈ Br/4(x0) and t ∈ G3
z0,r/2.

Proof. The proof is a modification of [Melcher 2005; Wang 2006]. We prove
a C1/2-estimate of uε( · , s) for s ∈ G3

z0,r/2 (see also [Melcher 2005, page 577,
Lemma 5]). Define vε(x, t) = uε(x0 + εx, s + ε2t) : B2 × [−4, 4] → R3. Then
wε(x)≡ vε(x, 0) satisfies

(4-6) 1wε = R(wε)
(
∂vε

∂t
(0)
)
− (1− |wε|2)wε −wε× (H̃ ε

×wε),

where H̃ ε(x)= ε2 H ε(εx, s). By the standard W 2,2 estimate, we have

(4-7) ‖∇
2wε‖2L2(B1)

≤ C
(

1+
∥∥∥∂wε
∂t

∥∥∥2

L2(B2)
+‖H̃ ε

‖
2
L2(B2)

)
≤ C

(
1+ ε

∫
B2ε(x0)

(∣∣∣∂uε

∂t

∣∣∣2+ |H ε
|
2
)
(s)
)

≤ C
(

1+C2
0 + r

∫
Br/2(x0)

∣∣∣∂uε

∂t

∣∣∣2(s)) ≤ C(1+C2
0+3

2ε2
0),

where we have used both (4-1) and Lemma 2.6 in the last step. Therefore, by the
Sobolev embedding theorem, wε ∈ C1/2(B1). Moreover, by rescaling and (4-7),

(4-8) (uε(s))C1/2(Br/2(x0)) ≤ C(3, η0,C0)ε
−1/2 for all s ∈ G3

z0,r/2.

Suppose that (4-5) were false. Then there exists z1 = (x1, t1) ∈ Br/4(x0)×G3
z0,r/2

such that |uε(z1)| <
1
2 . Hence for sufficiently small θ0 > 0, if y ∈ Bθ2

0 ε
(x1), we

would have

|uε|(y, t1)≤ |uε|(x1, t1)+ (uε(t1))C1/2 |y− x1|
1/2
≤

1
2 +C(3, η0,C0)θ0 ≤

3
4 ,
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so that

(4-9)
∫

B
θ2
0 ε
(x1)

|x − x1|
−1 (1− |u

ε
|
2)2(x, t1)
ε2 ≥ C1.

At the same time, the bound (4-4) gives sup
x∈Br/2(x0)

(r
2

)−3
∫

Pr/2(x,t0)
eε(uε) ≤ 8η2

0. This,
combined with Lemma 2.6, implies

(4-10) sup
t∈[t0−r2/16, t0)

sup
x∈Br/4(x0)

(r
4

)−1
∫

Br/4(x)
eε(uε)≤ C(η2

0+C2
0r).

By the definition of G3
z0, r/2 and Lemma 2.6, we have

(4-11) sup
t∈G3

z0,r/2

sup
x∈Br/4(x0)

r
∫

Br/4(x)

∣∣∣∂uε

∂t

∣∣∣2(t)
≤ sup

t∈G3
z0, r/2

r
∫

Br/2(x0)

∣∣∣∂uε

∂t

∣∣∣2(t)
≤ C

(
32

r3

∫
Pr (z0)

eε(uε)+32r‖H ε
‖

2
L∞t L2

x

)
≤ C32(η2

0+C2
0r).

With (4-10), (4-11), and the monotonicity inequality (3-2), we obtain∫
B
θ2
0 ε
(x1)

|x − x1|
−1 (1− |u

ε
|
2)2

ε2
0

(t1)(4-12)

≤ C
(

r−1
∫

Br/4(x1)

eε(uε)(t1)+ r
∫

Br/4(x1)

(∣∣∣∂uε

∂t

∣∣∣2+ |H ε
|
2
)
(t1)

)
≤ C(32η2

0+C2
0r0).

This contradicts (4-9) provided r0 > 0 and η0 > 0 are chosen sufficiently small. �

5. Energy decay estimates and proof of Theorem 1.2

In this section, we first establish the decay estimate of the normalized energy
r−3

∫
Pr (z)

eε(uε), provided that it is sufficiently small. Then we give a proof of
Theorem 1.2. The techniques employed in the proof are suitable modifications of
that by Hélein [1990] and Evans [1991] in the context of harmonic maps.

Lemma 5.1. For any L > 0 and δ > 0, there exist C(δ) > 0, η(δ) > 0, and
ε1(δ) > 0, such that if (uε, H ε) is the weak solution of (1-19) in Lemma 2.2 and
we take z0 = (x0, t0) ∈ �× R+, 0 < r < min{dist(x0, ∂�),

√
t0, ε2

1(δ)/L2
}, and

0< ε ≤ η(δ)r satisfying

(5-1) ‖H ε
‖L∞t L2

x (Pr (z0)) ≤ L and r−3
∫

Pr (z0)

eε(uε)≤ ε2
1(δ),
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then we have

(5-2)
(r

8

)−3
∫

Pr/8(z0)

eε(uε)≤ δ
(

r−3
∫

Pr (z0)

eε(uε)+ r‖H ε
‖

2
L∞t L2

x (Pr (z0))

)
+

C(δ)
δ

r−5
∫

Pr (z0)

|uε − uεPr (z0)
|
2,

where uεPr (z0)
is the average of uε over Pr (z0):

uεPr (z0)
=

1
|Pr (z0)|

∫
Pr (z0)

uε, r > 0.

Proof. We follow [Wang 2006, page 1631, Proposition 5.1] with suitable modifica-
tions, and outline the key steps here. For simplicity, write (u, H) = (uε, H ε) and
assume z0 = (x0, t0) = (0, 1) ∈ �×R+. For r > 0, let ur (x, t) = u(r x, 1+ r2t)
and Hr (x, t) = r2 H(r x, 1+ r2t) for (x, t) ∈ P1. Then it follows from (1-19) that
(ur , Hr ) satisfies

R(ur )

(
∂ur

∂t

)
=1ur +

(1− |ur |
2)

ε̂2 ur + ur × (Hr × ur ) in P1,

where ε̂ = r−1ε. Moreover,∫
P1

eε̂(ur )= r−3
∫

Pr (0,1)
eε(u)≤ ε2

1(δ),

‖Hr‖
2
L∞t L2

x (P1)
= r‖H‖2L∞t L2

x (Pr (0,1))
≤ L2r ≤ ε2

1(δ),

as r ≤
ε2

1(δ)

L2 . From this scaling argument, we may further assume that r = 1 and

(5-3) ‖H‖L∞t L2
x (P1(0,1)) ≤ ε1(δ).

Now we write ∫
P1/8(0,1)

eε(u)= I+ II,

with

(5-4) I=
∫
(1−(1/8)2,1)∩G3

(0,1),1/2

∫
B1/8

eε(u), II=
∫
(1−(1/8)2,1)∩B3(0,1),1/2

∫
B1/8

eε(u).

By (4-3) and Lemma 2.6, we have the estimate

(5-5) II ≤ |B3(0,1),1/2| sup
t∈B3(0,1),1/2

t∈[1−(1/8)2,1]

∫
B1/8

eε(u) ≤
1
32

∫
P1(0,1)

(eε(u)+ |H |2).

To estimate I, observe that (5-3) and Lemma 4.2 imply that

(5-6) |u|(x, t)≥ 1
2 for all x ∈ B1/4 and t ∈ G3

(0,1),1/2.
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This, combined with the fact |u| ≤ 1 in �×R+, implies

|∇u|2 ≤ 4|u|2|∇u|2 = 4|∇u× u|2+ |∇|u|2|2 ≤ 4(|∇u× u|2+ |∇|u||2).

Therefore
∫

B1/8
eε(u)≤ III+ IV for t ∈ G3

(0,1),1/2, with

(5-7) III= 2
∫

B1/8

|∇u× u|2, IV=+
∫

B1/8

(
2|∇|u||2+

(1− |u|2)2

4ε2

)
.

By the definition of G3
(0,1),1/2 and Lemma 2.6, we have∫

B1/2

eε(u)+
∫

B1/2

∣∣∣∂u
∂t

∣∣∣2 ≤ C32
(∫

P1(0,1)
eε(u)+

∫
P1(0,1)

|H |2
)

(5-8)

≤ C32
(∫

P1(0,1)
eε(u)+‖H‖2L∞t L2

x (P1(0,1))

)
.

Hence, for t ∈ G3
(0,1),1/2,

(5-9) sup
x∈B1/4

{∫
B1/4(x)

eε(u)+
∫

B1/4(x)

∣∣∣∂u
∂t

∣∣∣2}≤ C32
∫

P1(0,1)
eε(u)

+C32
‖H‖2L∞t L2

x (P1(0,1))
.

It follows from (5-9) and Lemma 3.1 that

(5-10) sup
{

s−1
∫

Bs(x)
|∇u|2 : x ∈ B1/4, 0< s < 1

4

}
≤ C32

∫
P1(0,1)

eε(u)+C32
‖H‖2L∞t L2

x (P1(0,1))
.

To estimate III, let φ ∈ C∞0 (B1/4) be such that 0 ≤ φ ≤ 1, φ ≡ 1 in B1/8, and
|∇φ| ≤ 128. Then we have, by integration by parts,

(5-11)
∫

B1/8

|∇u× u|2 ≤
∫

R3
φ2
|∇u× u|2 =

∫
R3
φ2(∇u× u) · (∇u× u)

=

∫
R3
φ2(∇u× u) ·

(
∇(u− c1/4(t))× u

)
=

∫
R3

(
φ2(∇u× u)×∇u

)
·
(
u− c1/4(t)

)
−

∫
R3
∇ ·
(
φ2(∇u× u)

)
·
(
(u− c1/4(t))× u

)
,

where

cr (t)=
1
|Br |

∫
Br

u(t) for r > 0.
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Setting

λ=

∫
R3 φ

2(∇u× u)×∇u∫
R3 φ2 ,

we can rewrite the expression on the last two lines of (5-11) to obtain∫
B1/8

|∇u× u|2 = III1+ III2+ III3,

where

III1 =

∫
R3
φ2((∇u× u)×∇u− λ

)
· (u− c1/4(t)), III2 = λ

∫
R3
φ2(u− c1/4(t)),

III3 =−

∫
R3
∇ ·
(
φ2(∇u× u)

)
·
(
(u− c1/4(t))× u

)
.

It follows from Lemma 2.6 that

(5-12) |λ| ≤ C
∫

B1/4

|∇u|2 ≤ C
(∫

P1(0,1)
eε(u)+‖H‖2L∞t L2

x (P1(0,1))

)
so that by Hölder’s inequality and Poincaré’s inequality,

|III2| ≤ |λ|‖ u− c1/4(t)‖L2(B1/4)(5-13)

≤ C
(∫

P1(0,1)
eε(u)+‖H‖2L∞t L2

x (P1(0,1))

)
‖∇u‖L2(B1/4)

≤ C
(∫

P1(0,1)
eε(u)+‖H‖2L∞t L2

x (P1(0,1))

)3/2

.

To estimate III3, we first note that (1-19) is equivalent to

(5-14) ∇ · (∇u× u)=
(

R(u)
(
∂u
∂t

)
+ u× (u× H)

)
× u.

Hence, by using (5-14), (5-10), and Lemma 2.6,∫
R3
|∇ · (φ2

∇u× u)|2 ≤
∫

R3

(
|∇φ|2|∇u|2+φ2

|∇ · (∇u× u)|2
)

≤ C
∫

B1/4

|∇u|2+C
∫

B1/4

(∣∣∣∂u
∂t

∣∣∣2+ |H |2)
≤ C32

(∫
P1(0,1)

eε(u)+‖H‖2L∞t L2
x (P1(0,1))

)
.

Therefore, by Hölder’s inequality we have, for any δ > 0,
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(5-15) |III3| ≤ ‖∇ · (φ
2
∇u× u)‖L2(R3)‖u− c1/4(t)‖L2(B1/4)

≤
δ
4

(∫
P1(0,1)

eε(u)+‖H‖2L∞t L2
x (P1(0,1))

)
+C3

2

δ
‖u−c1/4(t)‖2L2(B1/4)

.

To estimate III1, we utilize the duality between Hardy and BMO spaces (see also
[Hélein 1990; Evans 1991; Wang 2006]). First, by the definition of the BMO norm,
the Poincaré inequality, and (5-10), we have

(u− c1/4(t))2BMO(B1/4)
≤ sup

{
s−1

∫
Bs(x)
|∇u|2 : x ∈ B1/4, 0< s < 1

4

}
(5-16)

≤ C32
(∫

P1(0,1)
eε(u)+‖H‖2L∞t L2

x (P1(0,1))

)
.

Therefore by (5-15), (5-16), and [Wang 2006, Propositions 5.6–5.8], we have

|III1| =

∣∣∣∣ ∫
R3
φ2((∇u× u)×∇u− λ

)
· (u− c1/4(t))

∣∣∣∣(5-17)

≤ C
∥∥φ2((∇u× u)×∇u− λ)

∥∥
H1(R3)

u− c1/4(t)BMO(B1/4)

≤ C
∥∥φ2(∇u× u)×∇u

∥∥
H1(B1/4,B1/2)

(u− c1/4(t))BMO(B1/4)

≤ C(u− c1/4(t))BMO(B1/4)

(
‖∇u‖2L2(B1/2)

+‖∇·(∇u× u)‖2L2(B1/2)

)
≤ C33

(∫
P1(0,1)

eε(u)+‖H‖2L∞t L2
x (P1(0,1))

)3/2

.

Putting the estimates (5-3), (5-13), (5-15) and (5-17) together, we get

(5-18)
∫

B1/8

|∇u× u|2 ≤
(

C33ε1(δ)+
δ
4

)(∫
P1(0,1)

eε(u)+‖H‖2L∞t L2
x (P1(0,1))

)
+C3

2

δ

∫
B1/4

|u− c1/4(t)|2.

Now we estimate IV as follows. It follows from (5-6) that we can write u = ρω,
with ρ = |u| ≥ 1

2 and ω = u/|u|. Then ρ satisfies

(5-19) 1ρ− ρ|∇ω|2+
(1−ρ2)ρ

ε2 = R(u)
(
∂u
∂t

)
·ω in B1/4.

Multiplying (5-19) by φ2(1− ρ) for φ ∈ C∞0 (B1/4) and integrating over B1/4, we
can write

(5-20)
∫

B1/4

φ2
(
|∇ρ|2+

(1−ρ)2

ε2 ρ(1+ ρ)
)
= IV1+ IV2+ IV3,
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where

IV1 =

∫
B1/4

(1− ρ)∇ρ · ∇φ2, IV2 =

∫
B1/4

φ2(1− ρ)R(u)
(
∂u
∂t

)
·ω,

IV3 =

∫
B1/4

φ2ρ(1− ρ)|∇ω|2.

Since |∇ρ| ≤ |∇u|, Lemma 2.6 gives

|IV1| ≤

∫
B1/4

|∇u|(1− |ρ|2)≤ ε
(∫

B1/4

|∇u|2
)1/2(∫

B1/4

(1−|u|2)2

ε2

)1/2

(5-21)

≤ C32ε

(∫
P1(0,1)

eε(u)+‖H‖L∞t L2
x (P1(0,1))

)
.

For IV2, we have

(5-22) |IV2| ≤

∫
B1/4

∣∣∣∂u
∂t

∣∣∣(1− |ρ|2)≤ ε(∫
B1/4

∣∣∣∂u
∂t

∣∣∣2)1/2(∫
B1/4

(1−|u|2)2

ε2

)1/2

≤ C32ε

(∫
P1(0,1)

eε(u)+‖H‖2L∞t L2
x (P
+

1 (0,1))

)
.

Since |ω| = 1 and ρ ≥ 1
2 , we have |∇ω|2 ≤ 14|∇u× u|2. Hence

(5-23) |IV3| ≤ C
∫

B1/4

|∇u× u|2.

Therefore, for t ∈ G3
(0,1),1/2,

(5-24) |IV| ≤ C32ε

(∫
P1(0,1)

eε(u)+‖H‖2L∞t L2
x (P1(0,1))

)
+C

∫
B1/4

|∇u× u|2.

Putting the estimates for III and IV together, we obtain for any t ∈ G3
(0,1),1/2,

(5-25)
∫

B1/8

eε(u)≤
(

C32(ε+3ε1(δ))+
δ
4

)(∫
P1(0,1)

eε(u)+‖H‖2L∞t L2
x (P1(0,1))

)
+C3

2

δ

∫
B1

|u− c1(t)|2.

Integrating (5-25) over t ∈ G3
(0,1),1/2 and adding (5-5), we obtain

(5-26)
(1

8

)−3
∫

P1/8(0,1)
eε(u)

≤

(
C32(ε+3ε1(δ))+

δ
4
+

1
32

)(∫
P1(0,1)

eε(u)+‖H‖2L∞t L2
x (P1(0,1))

)
+

C32

δ

∫
P1(0,1)

|u− c1(t)|2.
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Lemma 5.1 will be proved if we choose, for any fixed small δ > 0, a sufficiently
large 3 = 2/

√
δ > 0, a sufficiently small ε = δ/(16C) and ε1(δ) = δ

5/2/(32C).
Here we have also used in the last step the fact that∫

P1(0,1)
|u− c1(t)|2 ≤ 2

∫
P1(0,1)

|u− u P1(0,1)|
2. �

Lemma 5.2. There exists a constant C0 > 0 such that for any L > 0, θ ∈ (0, 1
4)

there are ε(θ), ε1(θ) > 0 such that if (uε, H ε) is the weak solution of (1-19) in
Lemma 2.2 and we take 0< r <min{dist(x0, ∂�),

√
t0, ε2

1(θ)/L2
}, ε < ε(θ)r , and

z0 = (x0, t0) ∈�×R+ satisfying

(5-27) ‖H ε
‖L∞t L2

x (Pr (z0)) ≤ L and
∫

Pr (z0)

eε(uε)≤ ε2
1(θ),

then

1
(θr)5

∫
Pθr (z0)

|uε − uεPθr (z0)
|
2
≤ C0θ

2 max
{

r−3
∫

Pr (z0)

eε(uε), r‖H ε
‖

2
L∞t L2

x (Pr (z0))

}
where uεPθr (z0)

is the average of uε over Pθr (z0).

Proof. Write (u, H) for (uε, H ε). Assume that z0 = (0, 1), r = 1, and

‖H‖L∞t L2
x (P1(0,1)) ≤ ε1(θ).

Now we argue by contradiction. Suppose that Lemma 5.2 is false. Then there are
θ0 ∈ (0, 1

4), εk ↓ 0, and a sequence of weak solutions (uk, H k) of (1-19) corre-
sponding to ε = εk such that

(5-28)
∫

P1(0,1)
eεk (u

k)= δ2
k ↓ 0, ‖H k

‖
2
L∞t L2(P1(0,1))

≤ δ2
k ,

but
(5-29)

θ−5
0

∫
Pθ0 (0,1)

|uk
− uk

Pθ0 (0,1)
|
2
≥ kθ2

0 max
{∫

P1(0,1)
eεk (u

k), ‖H k
‖

2
L∞t L2(P1(0,1))

}
.

Define

vk
=

uk
− uk

P1(0)

δk
.

By Lemma 2.6, {vk
} is uniformly bounded in H 1(P1/2(0, 1)) and (vk)P1(0,1) = 0.

Assume that vk
→ v weakly in H 1(P1/2(0, 1),R3), strongly in L2(P1/2(0, 1),R3),

and uk
→ p for some p ∈ S2. It is not hard to show that v ∈ Tp S2 and hence we

have R(p)(∂v/∂t)−1v ∈ Tp S2. Observe that(
R(uk)

(
∂vk

∂t

)
−1vk

− δ−1
k (uk

× (H k
× uk))

)
× uk
= 0,
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and (5-29) implies∣∣δ−1
k (uk

× (H k
× uk))× uk

∣∣≤ |H k
|

δk
→ 0 in L2(P1(0, 1)) as k→∞.

By sending k to∞, we conclude that v solves(
R(p)∂v

∂t
−1v

)
× p = 0.

Therefore

(5-30) R(p)∂v
∂t
−1v = 0 in P1/2(0, 1).

Standard parabolic theory [Lieberman 1996] implies

θ−5
0

∫
Pθ0 (0,1)

|v|2 ≤ Cθ2
0

∫
P1

|∇v|2,

which contradicts (5-29). �

Combining Lemma 5.1 and Lemma 5.2, we can prove:

Lemma 5.3. For any γ ∈ (0, 1), there are θ ∈ (0, 1
4), C1 > 0, k0 > 0, ε2 > 0

such that if (uε, H ε) is the weak solution of (1-19) in Lemma 2.2 and we take z0 =

(x0, t0) ∈�×R+, L > 0, 0< r <min{dist(x0, ∂�),
√

t0, ε2
2/L2
}, and 0< ε ≤ k0r

satisfying

(5-31) ‖H ε
‖L∞t L2

x (Pr (z0)) ≤ L and r−3
∫

Pr (z0)

eε(uε)≤ ε2
2,

then

(5-32) (θr)−3
∫

Pθr (z0)

eε(uε)≤ C1

(
θ2γ r−3

∫
Pr (z0)

eε(uε)+ θr‖H ε
‖

2
L∞t L2

x (Pr (z0))

)
.

Proof. Again we write (u, H) for (uε, H ε). As in the proof of Lemmas 5.1 and
5.2, we may assume that z0 = (0, 1), r = 1, and

(5-33) ‖H‖L∞t L2
x (P1(0,1)) ≤ ε2.

Set δ = 8−3 and

θ = θ(γ )≤
(

δ2

2C0C(δ)

)1/(2−2γ )
.

Here C0 > 0 and C(δ) > 0 are given by Lemma 5.2 and Lemma 5.1 respectively.
Let k ≥ 1 be such that 8kθ = 1. For 0< ρ < 1, set

E(u, ρ)= ρ−3
∫

Pρ(0,1)
eε(u), F(H, ρ)= ρ‖H‖2L∞t L2

x (Pρ(0,1))
.
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For 0 ≤ i ≤ k− 1, if E(u, 8i+1θ) ≤ ε2
1(δ) and E(u, 1) ≤ ε2

1(8
i+1θ), then Lemmas

5.1 and 5.2 imply

(5-34) E(u, 8iθ)

≤ δmax
{

E(u, 8i+1θ), F(H, 8i+1θ)
}
+

C0C(δ)
δ

max
{

E(u, 1), F(H, 1)
}
.

Now we choose

ε2 ≡
δ

2C0C(δ)
min

{
ε1(8θ), . . . , ε1(8kθ), ε1(δ)

}
.

Since F(H, ρ)≤ ρF(H, 1)≤ F(H, 1)≤ ε2
2 , (5-34) implies that

E(u, 8iθ)≤min
{
ε2

1(8θ), . . . , ε
2
1(8

kθ), ε2
1(δ)

}
for all 0≤ i ≤ k.

Hence by iteration, (5-34) implies

(5-35) E(u,θ)

≤ δk E(u,1)+ F(H,1)
k∑

i=1

(8δθ)i + C0C(δ)
1−64δ

(
θ
δ

)2
max

{
E(u,1),F(H,1)

}
≤ δk E(u,1)+ 8δθ

1−8δθ
F(H,1)+ C0C(δ)

1−64δ

(
θ
δ

)2
max

{
E(u,1),F(H,1)

}
.

According to the definition, δk
= θ3 and 2C0C(δ)/δ2

≤ θ2−2γ . So (5-35) gives
E(u, θ)≤max

{
C1θ

2γ E(u, 1),C1θF(H, 1)
}
, which clearly implies (5-32). �

The following proposition plays a crucial role in the proof of Theorem 1.2:

Proposition 5.4. For any u0 ∈ H 1(�, S2), H0 ∈ L2(R3,R3), E0 ∈ L2(R3,R3),
ε > 0 and 0< T <+∞, let

(uε, H ε, Eε) ∈ H 1(�×[0, T ],R3)× L2(R3
×[0, T ],R3)× L2(R3

×[0, T ],R3)

be the weak solution of (1-19)+(1-2)–(1-3) under conditions (1-8)–(1-11) obtained
in Lemma 2.2. Then there exist universal constants k0 > 0, ε3 > 0, C2 > 0, such
that for any z0 = (x0, t0) ∈�×R+, 0< r <min{dist(x0, ∂�),

√
t0, ε2

3/C2}, if

(5-36) E(uε, z0, r)≡ r−3
∫

Pr (z0)

eε(uε)≤ ε2
3,

then for any z ∈ Pr/2(z0), ε/k0 ≤ ρ ≤
1
4r ,

(5-37) ρ−3
∫

Pρ(z)

(
eε(uε)+ρ2

∣∣∣∂uε

∂t

∣∣∣2)≤C2
ρ
r

max
{
E(uε, z0,r), r‖H ε

‖
2
L∞t L2

x (Pr (z0))

}
.



270 SHIJIN DING, XIANGAO LIU AND CHANGYOU WANG

Proof. By (2-8) of Lemma 2.2, we have H ε
∈ L∞([0, T ], L2(R3)) and

(5-38) ‖H ε
‖L∞t L2

x (R
3×[0,T ]) ≤ eCT

(∫
�

|∇u0|
2
+

∫
R3
(ε0|E0|

2
+ |H0|

2)

)
≡ C2.

This implies that for any 0< ρ ≤ r and z ∈ Pr/2(z0)

ρ‖H ε
‖L∞t L2

x (Pρ(z)) ≤ r‖H ε
‖L∞t L2

x (R
3×[0,T ]) ≤ rC2 ≤ ε

2
3.

Choose ε3 ≤ ε2, where ε2 is given by Lemma 5.3. Then the condition (5-31) of
Lemma 5.3 is satisfied for Pr/2(z) with z ∈ Pr/2(z0). Hence we can repeatedly
apply Lemma 5.3 with γ = 1

2 to obtain that for 0< ρ < r
4 , ε ≤ k0ρ,

(5-39) E(uε, z, ρ)≤ C1
ρ
r

max
{
E(uε, z0, r), r‖H ε

‖
2
L∞t L2

x (Pr (z0))

}
.

This, combined with Lemma 2.6, implies (5-37). �

Proof of Theorem 1.2. For ε > 0, let (uε, H ε, Eε) be the weak solution of the
system (1-19)+(1-2)–(1-3) with conditions (1-8)–(1-11) obtained in Lemma 2.2. It
follows from (2-8) that we may assume that uε→ u weakly in H 1

loc(�×R+,R3),
(H ε, Eε)→ (H, E) weakly in L2

loc(R
3
×R+,R3). By the argument in [Carbou and

Fabrie 1998], we know that (u, H, E) is a weak solution of the Landau–Lifshitz–
Maxwell system (1-13)+(1-2)–(1-3) under the initial-boundary conditions (1-8)–
(1-11).

Now we want to show partial regularity of u as follows. Let ε3 be given by
Proposition 5.4, and define the concentrate set of uε by

(5-40) 6 =
⋂
r>0

{
z ∈�×R+ : lim inf

ε→0
r−3

∫
Pr (z)

eε(uε)≥ ε2
3

}
.

Then a standard covering argument (see [Chen and Struwe 1989]) shows that
P3(6 ∩ K ) < ∞ for any compact subset of � × R+. Since u is a weak limit
in H 1

loc(�× R+,R3) of uε as ε ↓ 0, we conclude that for any z0 ∈ �× R+ \6,
the lower semicontinuity, (5-40), and Proposition 5.4 imply that there exists r0 > 0
such that for any z ∈ Pr/2(z0) and 0< ρ ≤ 1

4r ,

(5-41) ρ−3
∫

Pρ(z)

(
|∇u|2+ ρ2

∣∣∣∂u
∂t

∣∣∣2)≤ C3
ρ
r

for some universal constant C3 > 0. This implies that u ∈ C1/2(�×R+ \6, S2),
by the parabolic version of Morrey’s Lemma [Chen et al. 1995]. This completes
the proof of Theorem 1.2. �
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6. Cα-regularity of ∇u and proofs of Theorems 1.3 and 1.4

This section is devoted to the discussion of partial Cα-regularity of ∇u, when
(u, H, E) is a weak solution of (1-13)+(1-2)–(1-3) obtained as in Theorem 1.2 in
two special cases: (i) either ε0 = 0 in (1-2) or (ii) β = 0 in (1-3). For case (i), we
assume that the initial data (u0, H0) ∈ H 1(�, S2)× H 1(R3,R3) and H0 satisfies
∇ · (H0 + βu0) = 0. For case (ii), we assume that the initial data (u0, H0, E0) ∈

H 1(�, S2)× H 1(R3,R3)× H 1(R3,R3) and H0, E0 satisfy ∇ · H0 =∇ · E0 = 0.
There are two steps to proving Cα-regularity of ∇u in �×R+ \6, where 6 is

the concentration set (5-40). The first step is to use H ∈ L∞t L6
x(R

3
×[0, T ]) for

any 0 < T < +∞ to show that u ∈ Cγ (�×R+ \6, S2) for any γ ∈ (0, 1). The
second step is to employ a parabolic hole-filling technique similar to [Giaquinta
and Hildebrandt 1982; Giaquinta and Struwe 1982] to show that for z ∈�×R+\6,

ρ−5
∫

Pρ(z)
|∇u− (∇u)Pρ(z)|

2
≤ Cρ2α for some α ∈ (0, 1).

This can be summarized as follows.

Lemma 6.1. For any u0 ∈ H 1(�, S2), H0 ∈ H 1(R3,R3), and 0 < T < +∞, let
(u, H)∈ H 1(�×[0, T ], S2)×L∞t L2

x(R
3
×[0, T ],R3) be a weak solution to (1-13)

coupled with (1-17) under the initial-boundary conditions (1-8)–(1-10) obtained as
the weak limit of (uε, H ε) given by Lemma 2.3. Let 6 ⊂ �× R+ be defined by
(5-40). For any z0 ∈ �×R+ \6, there exists r0 > 0 such that ∇u ∈ Cα(Pr0(z0))

for some α ∈ (0, 1).

Proof. By (2-17) of Lemma 2.3,

(6-1) sup
ε>0

(
‖H ε
‖L∞t L2

x (R
3×[0,T ])+‖∇H ε

‖L∞t L2
x (R

3×[0,T ])
)

≤ eCT (
‖∇u0‖

2
L2(�)+‖H0‖

2
L2(R3)+‖∇H0‖

2
L2(R3)

)
.

By the Sobolev embedding theorem, (6-1) implies H ε
∈ L∞t L6

x(R
3
×[0, T ]) and

(6-2) sup
ε>0
‖H ε
‖L∞t L6

x (R
3×[0,T ]) ≤ C3 ≡ C

(
T, ‖u0‖H1(�), ‖H0‖H1(R3)

)
.

Since z0 ∈�×R+ \6, by (5-40), there exists 0< r0 ≤ ε
2
3/C

2
3 such that

E(uε, z0, r0)≡ r−3
0

∫
Pr0 (z0)

eε(uε)≤ ε2
3, F(H ε, z0, r0)≡ r0‖H ε

‖
2
L∞t L2

x (Pr0 (z0))
≤ ε2

3.

Hence we can apply Lemma 5.3 to conclude that for any θ ∈ (0, 1
2), γ ∈ (0, 1),

z ∈ Pr0/2(z0) and 0< r < r0/2, there is C4 > 0 such that

(6-3) E(uε, z, θr)≤ C4θ
2γE(uε, z, r)+C4θF(H ε, z, r).
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By Hölder’s inequality we have

F(H ε, z, r)≤ r3
‖H ε
‖L∞t L2

x (Pr (z)) ≤ C3r3 for all 0< r ≤ r0.

Therefore (6-3) yields, for z ∈ Pr0/2(z0) and 0< r < r0/2,

(6-4) E(uε, z, θr)≤ C5
(
θ2γE(uε, z, r)+ θr3) .

Iterating (6-4) k times, we obtain

E(uε, z, θ kr)≤ (C5θ
2γ )kE(uε, z, r)+

( k−1∑
i=0

(C5θ
2γ )k−1−i (θ3)i

)
r3(6-5)

≤ (C5θ
2γ )k

(
E(uε, z, r)+ r3

C5θ2γ−θ3

)
.

In particular,

E(uε, z, s)≤
( s

r0

)2γ(
E
(

uε, z, r0
2

)
+C6r3

0

)
for all z ∈ Pr0/2(z0), 0< s ≤ r0

2
.

In view of Lemma 2.6 and taking ε ↓ 0, this implies that for z ∈ Pr0/2(z0) and
0< s ≤ r0/2,

(6-6) s−3
∫

Ps(z)

(
|∇u|2+ s2

∣∣∣∂u
∂t

∣∣∣2)≤ ( s
r0

)2γ
(ε2

3 +C6r3
0 ).

Hence the parabolic version of Morrey’s Lemma implies that u ∈Cγ (Pr0/2(z0), S2)

for any 0< γ < 1, and

(6-7) oscPr (z0)u ≤ C
( r

r0

)γ
(ε2

3 +C6r3
0 ), 0< r ≤ r0

2
.

Next we will use a parabolic hole-filling argument to show ∇u ∈ Cα(Pr0/2(z0))

for some α ∈ (0, 1). The linear map R(u)ξ = α1ξ + α2u × ξ : R3
→ R3 can be

represented by

R(u)=

 α1 −α2u3 α2u2

α2u3 α1 −α2u1

−α2u2 α2u1 α1

 .
It is easy to check that R(u) has an inverse M(u), and that this inverse a uniformly
elliptic matrix. Now we can rewrite the equation of u as

(6-8)
∂u
∂t
−∇ · (M(u)∇u)= M(u)

(
|∇u|2u+ (H −〈H, u〉u)

)
−∇(M(u)) · ∇u.

For any z1 ∈ Pr0/2(z0) and 0 < r < r0/2, consider an auxiliary equation for v :
Pr (z1)→ R3:

(6-9)
∂v

∂t
−∇ · (M(u(z1))∇v)= 0 in Pr (z1), v = u on ∂p Pr (z1),
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where ∂p Pr (z1) denotes the parabolic boundary of Pr (z1). It follows from the
maximum principle, (6-7), and (6-6) that

(6-10) oscPr (z1)v ≤ C7rγ ,
∫

Pr (z1)

|∇v|2 ≤

∫
Pr (z1)

|∇u|2 ≤ C7r3+2γ .

Multiplying (6-8) and (6-9) by w ≡ u− v and integrating over Pr (z1), we obtain

(6-11)
∫

Pr (z1)

〈M(u(z1))∇w,∇w〉 ≤ I+ II,

with I=C8

∫
Pr (z1)

(
|∇u|2+|H |

)
|w| and II=C8

∫
Pr (z1)

∣∣M(u)−M(u(z1))
∣∣|∇u||∇w|.

By the ellipticity of M(u(z1)), we have∫
Pr (z1)

〈M(u(z1))∇w,∇w〉 ≥ α1

∫
Pr (z1)

|∇w|2.

By Hölder’s inequality, (6-7) and (6-10), we have I ≤ C9

( r
r0

)3+3γ
(ε2

0 + r3
0 ), and

II≤ α1
2

∫
Pr (z1)

|∇u|2+C10(oscPr (z1)u)
2
∫

P1(z1)

|∇w|2(6-12)

≤
α1
2

∫
Pr (z1)

|∇u|2+C10

( r
r0

)3+4γ
.

Putting these estimates into (6-11), we obtain

(6-13)
∫

Pr (z1)

|∇w|2 ≤ C11r3+3γ .

Since v solves (6-9), standard parabolic theory implies that for any 0< ρ < r ,

(6-14)
∫

Pρ(z1)

∣∣∇v− (∇v)Pρ(z1)

∣∣2 ≤ C12

(
ρ
r

)7
∫

Pr (z1)

∣∣∇v− (∇v)Pr (z1)

∣∣2 .
Combining (6-13) with (6-14), we obtain that∫

Pρ(z1)

∣∣∇u− (∇u)Pρ(z1)

∣∣2 ≤ ∫
Pρ(z1)

∣∣∇v− (∇v)Pρ(z1)

∣∣2+ ∫
Pr (z1)

|∇w|2(6-15)

≤ C12

(
ρ
r

)7
∫

Pr (z1)

|∇u|2+C12r3+3γ .

We now choose some γ ∈ (2
3 , 1), whence 3 + 3γ > 5. Applying the algebraic

Lemma 2.1 in [Giaquinta 1983, Chapter III], we conclude that

(6-16) ρ−5
∫

Pρ(z1)

∣∣∇u− (∇u)Pρ(z1)

∣∣2 ≤ C13ρ
3γ−2

(
1+ r−(3+3γ )

∫
Pr (z1)

|∇u|2
)

for any z1 ∈ Pr0/2(z0) and 0< ρ ≤ r ≤ r0/2.
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A well known characterization of Hölder continuous functions due to Cam-
panato [1965] yields that ∇u ∈ C (3γ−2)/2(Pr0/2(z0)). This completes the proof of
Lemma 6.1. �

Completion of proof of Theorem 1.3. It follows immediately from Lemma 6.1 that
∇u ∈ Cα(�×R+ \6) for some α ∈ (0, 1). It remains to show that ∇2u, ∂u/∂t ∈
L6

loc(�×R+ \6). To see this, observe that∣∣∣∂u
∂t
−∇ · (M(u)∇u)

∣∣∣= ∣∣M(u)|∇u|2u−∇(M(u)) · ∇u+M(u) (H −〈H, u〉u)
∣∣

≤ C14(|∇u|2+ |H |) ∈ L6(PR),

for any PR b�×R+\6. Since M(u) is Hölder continuous and uniformly elliptic,
from the W 2,1

p -estimate for the linear parabolic equation [Lieberman 1996], we
can conclude that ∇2u, ∂u/∂t ∈ L6(PR/2). This implies the second conclusion of
Theorem 1.3. �

Proof of Theorem 1.4. By applying Lemma 2.4, we can conclude H ε is bounded
in L∞t L6

x(R
3
× [0, T ]) for any 0 < T < +∞, uniformly in ε. Hence applying the

same argument of Lemma 6.1 shows ∇u ∈ Cα(�×R+ \6) for some α ∈ (0, 1),
and ∇2u, ∂u/∂t ∈ L6

loc(�×R+ \6). We leave the details to interested readers. �

Acknowledgements

The first two authors would like to thank Department of Mathematics at the Uni-
versity of Kentucky for its hospitality where most parts of this joint work were
conducted. We thank the referee for several useful comments.

References

[Alouges and Soyeur 1992] F. Alouges and A. Soyeur, “On global weak solutions for Landau–
Lifshitz equations: existence and nonuniqueness”, Nonlinear Anal. 18:11 (1992), 1071–1084. MR
93i:35148 Zbl 0788.35065

[Boling and Fengqiu 1997] G. Boling and S. Fengqiu, “Global weak solution for the Landau–
Lifshitz–Maxwell equation in three space dimensions”, J. Math. Anal. Appl. 211:1 (1997), 326–346.
MR 98e:35159 Zbl 0877.35122

[Campanato 1965] S. Campanato, “Equazioni ellittiche del II deg ordine espazi L(2,λ)”, Ann. Mat.
Pura Appl. (4) 69 (1965), 321–381. MR 33 #395 Zbl 0145.36603

[Carbou and Fabrie 1998] G. Carbou and P. Fabrie, “Time average in micromagnetism”, J. Differen-
tial Equations 147:2 (1998), 383–409. MR 2000i:82089 Zbl 0931.35170

[Chen and Lin 1993] Y. M. Chen and F.-H. Lin, “Evolution of harmonic maps with Dirichlet bound-
ary conditions”, Comm. Anal. Geom. 1:3-4 (1993), 327–346. MR 95a:58028 Zbl 0845.35049

[Chen and Struwe 1989] Y. M. Chen and M. Struwe, “Existence and partial regularity results for the
heat flow for harmonic maps”, Math. Z. 201:1 (1989), 83–103. MR 90i:58031 Zbl 0652.58024

http://dx.doi.org/10.1016/0362-546X(92)90196-L
http://dx.doi.org/10.1016/0362-546X(92)90196-L
http://www.ams.org/mathscinet-getitem?mr=93i:35148
http://www.ams.org/mathscinet-getitem?mr=93i:35148
http://www.emis.de/cgi-bin/MATH-item?0788.35065
http://dx.doi.org/10.1006/jmaa.1997.5467
http://dx.doi.org/10.1006/jmaa.1997.5467
http://www.ams.org/mathscinet-getitem?mr=98e:35159
http://www.emis.de/cgi-bin/MATH-item?0877.35122
http://dx.doi.org/10.1007/BF02414377
http://www.ams.org/mathscinet-getitem?mr=33:395
http://www.emis.de/cgi-bin/MATH-item?0145.36603
http://dx.doi.org/10.1006/jdeq.1998.3444
http://www.ams.org/mathscinet-getitem?mr=2000i:82089
http://www.emis.de/cgi-bin/MATH-item?0931.35170
http://www.ams.org/mathscinet-getitem?mr=95a:58028
http://www.emis.de/cgi-bin/MATH-item?0845.35049
http://dx.doi.org/10.1007/BF01161997
http://dx.doi.org/10.1007/BF01161997
http://www.ams.org/mathscinet-getitem?mr=90i:58031
http://www.emis.de/cgi-bin/MATH-item?0652.58024


THE LANDAU–LIFSHITZ–MAXWELL EQUATION IN DIMENSION THREE 275

[Chen and Wang 1996] Y. Chen and C. Wang, “Partial regularity for weak heat flows into Rie-
mannian homogeneous spaces”, Comm. Partial Differential Equations 21:5-6 (1996), 735–761.
MR 98b:58043 Zbl 0861.58034

[Chen et al. 1995] Y. M. Chen, J. Li, and F.-H. Lin, “Partial regularity for weak heat flows into
spheres”, Comm. Pure Appl. Math. 48:4 (1995), 429–448. MR 96e:58039 Zbl 0827.35024

[Chen et al. 1998] Y. Chen, S. Ding, and B. Guo, “Partial regularity for two-dimensional Landau–
Lifshitz equations”, Acta Math. Sinica (N.S.) 14:3 (1998), 423–432. MR 2000g:35192 Zbl 0906.
35025

[Ding and Guo 2004] S. Ding and B. Guo, “Hausdorff measure of the singular set of Landau–Lifshitz
equations with a nonlocal term”, Comm. Math. Phys. 250:1 (2004), 95–117. MR 2005g:58034
Zbl 1068.58009

[Ding and Guo 2008] S. Ding and B. Guo, “Existence of partially regular weak solutions to Landau–
Lifshitz–Maxwell equations”, J. Differential Equations 244:10 (2008), 2448–2472. MR 2009h:
35210 Zbl 1143.35376

[Ding and Wang 2007] S. Ding and C. Wang, “Finite time singularity of the Landau–Lifshitz–Gilbert
equation”, Int. Math. Res. Not. 2007:4 (2007), Art. ID rnm012. MR 2008h:35156 Zbl 1130.35304

[Ding et al. 2007] S. Ding, B. Guo, J. Lin, and M. Zeng, “Global existence of weak solutions
for Landau–Lifshitz–Maxwell equations”, Discrete Contin. Dyn. Syst. 17:4 (2007), 867–890. MR
2008a:35274 Zbl 1157.35109

[Evans 1991] L. C. Evans, “Partial regularity for stationary harmonic maps into spheres”, Arch.
Rational Mech. Anal. 116:2 (1991), 101–113. MR 93m:58026 Zbl 0754.58007

[Feldman 1994] M. Feldman, “Partial regularity for harmonic maps of evolution into spheres”,
Comm. Partial Differential Equations 19:5-6 (1994), 761–790. MR 95i:58057 Zbl 0807.35021

[Giaquinta 1983] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear el-
liptic systems, Annals of Math. Studies 105, Princeton University Press, Princeton, NJ, 1983.
MR 86b:49003 Zbl 0516.49003

[Giaquinta and Hildebrandt 1982] M. Giaquinta and S. Hildebrandt, “A priori estimates for harmonic
mappings”, J. Reine Angew. Math. 336 (1982), 124–164. MR 84b:58035 Zbl 0508.58015

[Giaquinta and Struwe 1982] M. Giaquinta and M. Struwe, “On the partial regularity of weak solu-
tions of nonlinear parabolic systems”, Math. Z. 179:4 (1982), 437–451. MR 83f:35062 Zbl 0469.
35028

[Guo and Hong 1992] B. L. Guo and M. C. Hong, “Landau–Lifshitz equations of the ferromag-
netic spin chain and harmonic maps”, Adv. in Math. (China) 21:4 (1992), 501–503. MR 1204969
Zbl 0782.58053

[Guo and Hong 1993] B. L. Guo and M. C. Hong, “The Landau–Lifshitz equation of the ferromag-
netic spin chain and harmonic maps”, Calc. Var. Partial Differential Equations 1:3 (1993), 311–334.
MR 94m:58059 Zbl 0798.35139

[Hélein 1990] F. Hélein, “Régularité des applications faiblement harmoniques entre une surface et
une sphère”, C. R. Acad. Sci. Paris Sér. I Math. 311:9 (1990), 519–524. MR 92a:58034 Zbl 0728.
35014

[Joly et al. 2000] P. Joly, A. Komech, and O. Vacus, “On transitions to stationary states in a Maxwell–
Landau–Lifschitz–Gilbert system”, SIAM J. Math. Anal. 31:2 (2000), 346–374. MR 2001c:78006
Zbl 1025.78005

[Landau and Lifshitz 1935] L. Landau and D. Lifshitz, “On the theory of the dispersion of magnetic
permeability in ferromagnetic bodies”, Phys. Z. Soviet Union 8 (1935), 153–169. Zbl 0012.28501

http://dx.doi.org/10.1080/03605309608821206
http://dx.doi.org/10.1080/03605309608821206
http://www.ams.org/mathscinet-getitem?mr=98b:58043
http://www.emis.de/cgi-bin/MATH-item?0861.58034
http://www.ams.org/mathscinet-getitem?mr=96e:58039
http://www.emis.de/cgi-bin/MATH-item?0827.35024
http://www.ams.org/mathscinet-getitem?mr=2000g:35192
http://www.emis.de/cgi-bin/MATH-item?0906.35025
http://www.emis.de/cgi-bin/MATH-item?0906.35025
http://dx.doi.org/10.1007/s00220-004-1120-9
http://dx.doi.org/10.1007/s00220-004-1120-9
http://www.ams.org/mathscinet-getitem?mr=2005g:58034
http://www.emis.de/cgi-bin/MATH-item?1068.58009
http://dx.doi.org/10.1016/j.jde.2008.02.029
http://dx.doi.org/10.1016/j.jde.2008.02.029
http://www.ams.org/mathscinet-getitem?mr=2009h:35210
http://www.ams.org/mathscinet-getitem?mr=2009h:35210
http://www.emis.de/cgi-bin/MATH-item?1143.35376
http://www.ams.org/mathscinet-getitem?mr=2008h:35156
http://www.emis.de/cgi-bin/MATH-item?1130.35304
http://www.ams.org/mathscinet-getitem?mr=2008a:35274
http://www.ams.org/mathscinet-getitem?mr=2008a:35274
http://www.emis.de/cgi-bin/MATH-item?1157.35109
http://dx.doi.org/10.1007/BF00375587
http://www.ams.org/mathscinet-getitem?mr=93m:58026
http://www.emis.de/cgi-bin/MATH-item?0754.58007
http://dx.doi.org/10.1080/03605309408821034
http://www.ams.org/mathscinet-getitem?mr=95i:58057
http://www.emis.de/cgi-bin/MATH-item?0807.35021
http://www.ams.org/mathscinet-getitem?mr=86b:49003
http://www.emis.de/cgi-bin/MATH-item?0516.49003
http://www.ams.org/mathscinet-getitem?mr=84b:58035
http://www.emis.de/cgi-bin/MATH-item?0508.58015
http://dx.doi.org/10.1007/BF01215058
http://dx.doi.org/10.1007/BF01215058
http://www.ams.org/mathscinet-getitem?mr=83f:35062
http://www.emis.de/cgi-bin/MATH-item?0469.35028
http://www.emis.de/cgi-bin/MATH-item?0469.35028
http://www.ams.org/mathscinet-getitem?mr=1204969
http://www.emis.de/cgi-bin/MATH-item?0782.58053
http://dx.doi.org/10.1007/BF01191298
http://dx.doi.org/10.1007/BF01191298
http://www.ams.org/mathscinet-getitem?mr=94m:58059
http://www.emis.de/cgi-bin/MATH-item?0798.35139
http://www.ams.org/mathscinet-getitem?mr=92a:58034
http://www.emis.de/cgi-bin/MATH-item?0728.35014
http://www.emis.de/cgi-bin/MATH-item?0728.35014
http://dx.doi.org/10.1137/S0036141097329949
http://dx.doi.org/10.1137/S0036141097329949
http://www.ams.org/mathscinet-getitem?mr=2001c:78006
http://www.emis.de/cgi-bin/MATH-item?1025.78005
http://www.emis.de/cgi-bin/MATH-item?0012.28501


276 SHIJIN DING, XIANGAO LIU AND CHANGYOU WANG

[Lieberman 1996] G. M. Lieberman, Second order parabolic differential equations, World Scien-
tific, River Edge, NJ, 1996. MR 98k:35003 Zbl 0884.35001

[Liu 2004] X.-G. Liu, “Partial regularity for the Landau–Lifshitz system”, Calc. Var. Partial Differ-
ential Equations 20:2 (2004), 153–173. MR 2005a:58025 Zbl 1058.58008

[Melcher 2005] C. Melcher, “Existence of partially regular solutions for Landau–Lifshitz equa-
tions in R3”, Comm. Partial Differential Equations 30:4-6 (2005), 567–587. MR 2006i:35354
Zbl 1074.35023

[Moser 2002] R. Moser, “Partial regularity for the Landau–Lifshitz equation in small dimensions”,
preprint 26/2002, Max-Planck-Institut Leipzig, 2002, Available at http://www.mis.mpg.de/preprints/
2002/preprint2002 26.pdf.

[Struwe 1988] M. Struwe, “On the evolution of harmonic maps in higher dimensions”, J. Differential
Geom. 28:3 (1988), 485–502. MR 90j:58037 Zbl 0631.58004

[Wang 2006] C. Wang, “On Landau–Lifshitz equation in dimensions at most four”, Indiana Univ.
Math. J. 55:5 (2006), 1615–1644. MR 2007h:35180 Zbl 1105.35049

[Zhou and Guo 1987] Y. L. Zhou and B. L. Guo, “Weak solution of system of ferromagnetic chain
with several variables”, Sci. Sinica Ser. A 30 (1987), 1251–1266. MR 89h:35323 Zbl 0656.35123

[Zhou et al. 1991] Y. L. Zhou, B. L. Guo, and S. B. Tan, “Existence and uniqueness of smooth solu-
tion for system of ferro-magnetic chain”, Sci. China Ser. A 34:3 (1991), 257–266. MR 92i:82030
Zbl 0752.35074

Received December 4, 2008. Revised February 9, 2009.

SHIJIN DING

DEPARTMENT OF MATHEMATICS

SOUTH CHINA NORMAL UNIVERSITY

GUANGZHOU, GUANGDONG 510631
CHINA

dingsj@scnu.edu.cn

XIANGAO LIU

SCHOOL OF MATHEMATICS

FUDAN UNIVERSITY

SHANGHAI, 200433
CHINA

xgliu@fudan.edu.cn

CHANGYOU WANG

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF KENTUCKY

LEXINGTON, KY 40506
UNITED STATES

cywang@ms.uky.edu
http://www.ms.uky.edu/~cywang

http://www.ams.org/mathscinet-getitem?mr=98k:35003
http://www.emis.de/cgi-bin/MATH-item?0884.35001
http://dx.doi.org/10.1007/s00526-003-0231-z
http://www.ams.org/mathscinet-getitem?mr=2005a:58025
http://www.emis.de/cgi-bin/MATH-item?1058.58008
http://dx.doi.org/10.1081/PDE-200050122
http://dx.doi.org/10.1081/PDE-200050122
http://www.ams.org/mathscinet-getitem?mr=2006i:35354
http://www.emis.de/cgi-bin/MATH-item?1074.35023
http://www.mis.mpg.de/preprints/2002/preprint2002_26.pdf
http://projecteuclid.org/getRecord?id=euclid.jdg/1214442475
http://www.ams.org/mathscinet-getitem?mr=90j:58037
http://www.emis.de/cgi-bin/MATH-item?0631.58004
http://dx.doi.org/10.1512/iumj.2006.55.2810
http://www.ams.org/mathscinet-getitem?mr=2007h:35180
http://www.emis.de/cgi-bin/MATH-item?1105.35049
http://www.ams.org/mathscinet-getitem?mr=89h:35323
http://www.emis.de/cgi-bin/MATH-item?0656.35123
http://www.ams.org/mathscinet-getitem?mr=92i:82030
http://www.emis.de/cgi-bin/MATH-item?0752.35074
mailto:dingsj@scnu.edu.cn
mailto:xgliu@fudan.edu.cn
mailto:cywang@ms.uky.edu
http://www.ms.uky.edu/~cywang

	1. Introduction
	2. Estimate of the energy in (1-19)
	3. Energy monotonicity on time slices
	4. On the lower bound of the norm of muˆepsilon
	5. Energy decay estimates and proof of Theorem 1.2
	6. C-regularity of u, proof of Theorem 1.3 and Theorem 1.4
	Acknowledgements
	References

