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Let S be a finite alphabet. An injective word over S is a word over S such
that each letter in S appears at most once in the word. For an abstract
simplicial complex 1, let 0(1) be the Boolean cell complex whose cells are
indexed by all injective words over the sets forming the faces of 1. The
boundary of a cell indexed by a given word w consists of those cells that are
indexed by subwords of w.

For a partial order P on S, we study the subcomplex 0(1, P) of 0(1)

consisting of those cells that are indexed by words whose letters are ar-
ranged in increasing order with respect to some linear extension of the
order P .

For a graph G= (S, E) on vertex set S and a word w over S, let [w] be the
class of all words that we can obtain from w via a sequence of commutations
ss′ → s′s such that {s, s′} is not an edge in E. We study the Boolean cell
complex 0/G(1) whose cells are indexed by commutation classes [w] of
words indexing cells in 0(1). We prove:
• If 1 is shellable then so are 0(1, P) and 0/G(1).
• If 1 is Cohen–Macaulay (respectively sequentially Cohen–Macaulay)

then so are 0(1, P) and 0/G(1).
• The complex 0(1) is partitionable.
Our work generalizes work by Farmer and by Björner and Wachs on the

complex of all injective words.

1. Introduction

A word ω over a finite alphabet S is called injective if no letter appears more than
once; that is ω=ω1 · · ·ωr for some ω1, . . . , ωr ∈ S and ωi 6=ω j for 1≤ i < j ≤ r .
For n + 1 = #S we denote by 0n the set of all injective words on S. A word
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ω=ω1 · · ·ωr with r letters is said to be of length r . A subword of a word ω1 · · ·ωr

is a word ω j1 · · ·ω js such that 1 ≤ j1 < · · · < js ≤ r . Clearly, a subword of an
injective word is injective. We order 0n by saying that ρ1 · · · ρs � ω1 · · ·ωr if
and only if ρ1 · · · ρs is a subword of ω1 · · ·ωr . We write c(w) for the content
{ω1, . . . , ωr } of the word w = ω1 · · ·ωr . Then for any A ⊆ c(w) there is a unique
subword v�w of w with A= c(v). This implies the well-known fact (see [Farmer
1979]) that 0n together with the partial order � is the face poset of a Boolean cell
complex. Recall that a Boolean cell complex is a regular CW-complex for which
the poset of faces of each cell is a Boolean lattice. Clearly, simplicial complexes
are special cases of Boolean cell complexes. From now on we will identify the
poset 0n with the Boolean cell complex with face poset 0n . In particular, we also
identify the injective words of length d+1 with d-cells. Thus the faces of a given
d-cell w are the cells corresponding to all subwords of w.

The complex 0n is a well-studied object. Farmer [1979] demonstrated that 0n is
homotopy equivalent to a wedge of spheres of top dimension. Björner and Wachs
[1983] proved the stronger result that 0n is shellable. See [Hanlon and Hersh
2004; Reiner and Webb 2004] for further refinements. Our generalizations are
partly motivated by specific examples of complexes of injective words that are
used in algebraic K -theory; see for example [van der Kallen 1980; Suslin 1984;
Gerdes 1991; Knudson 2001; Mirzaii and van der Kallen 2002; Kerz 2005]. After
the next paragraph, when the main objects of the paper are defined, we will make
this connection more precise.

All our simplicial complexes and Boolean cell complexes are assumed to be
finite. In this paper, we generalize 0n in three directions:

• Given a simplicial complex 1 whose ground set is the alphabet S, we define
a subcomplex 0(1) of 0n by restricting to injective words w ∈ 0n such that
the content c(w) is a face of 1.

• Given a partially ordered set P = (S,≤P) on the alphabet S, we define a
subcomplex of 0n by restricting to words ω1 · · ·ωr such that i < j whenever
ωi <P ω j . For a simplicial complex 1 on S we write 0(1, P) for the set of
all words w ∈ 0(1) satisfying this restriction. In particular, 0(1, P) ∼=1 if
P is a total order and 0(1, P)= 0(1) if P is an antichain.

• Given a graph G = (S, E) on the alphabet S, we define the equivalence class
[w] of an injective word w ∈ 0n as the set of all words v that can be obtained
from w by applying a sequence of commutations ss ′→ s ′s such that {s, s ′} is
not an edge in E . For a simplicial complex1 over S we write 0/G(1) for the
set of equivalence classes [w] of injective words w with content c(w) in 1.
We order 0/G(1) by saying [v] � [w] if there are representatives v′ ∈ [v]
and w′ ∈ [w] such that v′ �w′. In particular, if E =∅ then 0/G(1)∼=0(1).
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Before we proceed we list a few other appearances of complexes 0(1). In
connection with work on Grassmann homology [Suslin 1984; Gerdes 1991], for a
finite dimensional vector space V and a number s ≤ dim V , the complex 0(1V,s)

appears for the simplicial complex 1V,s of all collections {v0, . . . , vl} of vectors
from V such that any subset of size at most s is linearly independent. It is crucial
that homology vanishes except for the top degree (see [Suslin 1984, Lemma 2.2]
for the case s = dim V ). In [Kerz 2005] the same vanishing of the homology of the
“classical” complex 0n is applied. Finally, in [Mirzaii and van der Kallen 2002]
several classes of Boolean cell complexes are studied. For example, for a given
ring R the complex 0(1R) is studied for the simplicial complex 1R of all subsets
{x0, . . . , xr } of R such that the ideal generated by x0, . . . , xn is R. Again vanishing
of homology of this complex in low dimensions is applied in algebraic K -theory.
All these examples have in common that they emerge in the following way. Given a
group G one searches for a (chain) complex with free action of G. This is achieved
by considering the cellular chain complex of 0(1) for a G-invariant simplicial
complex over a ground set with free G-action. Recently and outside of algebraic
K -theory, the complex 0/G(1) has appeared in connection with Coxeter groups in
[Ragnarsson and Tenner 2009]. Indeed, the topological consequence of Theorem
3.4 in that reference can be seen as a consequence of our Theorem 1.2.

After having outlined some of the motivation for the study of the objects defined
above, we proceed with the development of the results. It is easy to see that 0(1)
and 0(1, P) are lower order ideals in 0n and therefore can be seen as subcom-
plexes of 0n . This in turn implies that we can also regard them as Boolean cell
complexes. Slightly more care is needed to recognize 0/G(1) as a Boolean cell
complex.

Lemma 1.1. 0/G(1) is a Boolean cell complex.

Proof. Clearly, if two words are in the same equivalence class, then their contents
must coincide. Also [v] � [w] implies that the content of v is a subset of the
content of w. These facts show that for a word w of length r there is a surjective
poset map from {[v] | [v] � [w]} to the Boolean lattice of subsets of an r -element
set. In order to show that it is an isomorphism we need to see that if v1 and v2

are words with the same content and [v1], [v2] � [w] then [v1] = [v2]. We may
assume that v1 �w and v2 �w

′ for some w′ ∈ [w]. Since w and w′ are equivalent,
there is a sequence of commutations that leads from w to w′. The commutations
that involve only letters from c(v1) can then be used to move from v1 to v2. In
particular, [v1] = [v2]. �

The following three theorems are our main results. Their proofs are provided
in the subsequent sections. The concepts from topological combinatorics used
to formulate the theorems are introduced in the corresponding section. For further
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reference we refer to the survey [Björner 1995] and for particular information about
sequential Cohen–Macaulay (CM) complexes to [Björner et al. 2009].

Theorem 1.2. Let 1 be a shellable simplicial complex on the vertex set S.

(i) Let P = (S,≤P) be a partial order on S. Then the Boolean cell complex
0(1, P) is shellable.

(ii) Let G = (S, E) be a simple graph on S. Then the Boolean cell complex
0/G(1) is shellable.

Using the preceding theorem for 1 being a simplex and poset fiber theorems
from [Björner et al. 2005], we derive our second main result.

Theorem 1.3. Let 1 be a sequentially homotopy CM (respectively sequentially
CM over K) simplicial complex on the vertex set S.

(i) If P= (S,≤P) is a partial order on S, then the Boolean cell complex 0(1, P)
is sequentially homotopy CM (respectively sequentially CM over K). In par-
ticular, if 1 is homotopy CM (respectively CM over K), then so is 0(1, P).

(ii) If G = (S, E) is a graph on vertex set S, then the Boolean cell complex
0/G(1) is sequentially homotopy CM (respectively sequentially CM over K).
In particular, if 1 is homotopy CM (respectively CM over K), then so is
0/G(1).

Our third result exhibits a general property of the complexes 0(1, P) in the
case that P is the antichain.

Theorem 1.4. Let 1 be a simplicial complex on vertex set S. Then the complex
0(1) of injective words derived from 1 is partitionable.

2. Auxiliary lemmas

In this section we list some lemmas that give more insight into the structure of the
complexes 0(1, P) and 0/G(1) and also serve as ingredients for the proofs in
later sections.

For a partial order P = (S,≤P) and a set B ⊆ S, let P|B be the induced partial
order on B. For a linear extension w = a1a2 · · · ar of P|{a1,a2,...,ar }, P+w denotes
the partial order obtained from P by adding the relations ai < ai+1 for 1≤ i ≤ r−1
and taking the transitive closure of the resulting set of relations. For example, if
a, b are incomparable in P then P + ab is the partial order obtained from P by
adding the relation c < d for all pairs (c, d) satisfying c ≤P a and b ≤P d.

For a Boolean cell complex 0 and a facew∈0, let fdel0(w) denote the complex
obtained by removing the face w and all faces containing w. Let st0(w) be the
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complex consisting of all faces w′ of 0 such that some face of 0 contains both w
and w′. We call fdel0(w) the deletion of w in 0 and st0(w) the star of w in 0.

If 1 and 0 are simplicial complexes on disjoint ground sets, then the join 1∗0
is the simplicial complex

1 ∗0 := {σ ∪ τ : σ ∈1, τ ∈ 0}.

Still restricting to simplicial complexes, we define the link of τ in 0 to be the
simplicial complex

lk0(τ ) := {σ : σ ∪ τ ∈ 0, σ ∩ τ =∅}.

Clearly, for a simplicial complex 0 we have that st0(τ )= 2τ ∗ lk0(τ ).

Lemma 2.1. Let P = (S,≤P) be a partial order on S and let σ and τ be subsets
of S. If w is a linear extension of P|σ , then there exists a linear extension w′ of
P|σ∪τ containing w as a subword.

Proof. By a simple induction argument, it suffices to consider the case τ = {x},
where x ∈ S\σ . If x is maximal in P|τ+x , then we may choose x to be the maximal
element in w′. Otherwise, let y be the leftmost element in w such that x <P y. Let
w′ be the word obtained from w by inserting x just before y. Then w′ is a linear
extension of P|σ+x . Namely, if z <P x , then z <P y, which implies that z appears
before y and hence before x in w′. �

Lemma 2.2. Let1 be a simplicial complex on the vertex set S and let P= (S,≤P)

be a partial order on S. If w ∈ 0(1, P), then

0(st1(c(w)), P +w)= st0(1,P)(w)

Proof. A cell w′ belongs to the left-hand side if and only if c(w)∪ c(w′) ∈1 and
w′ is a linear extension of (P +w)|c(w′). By Lemma 2.1, there is then a face w′′

of 0(1, P +w) containing w′ such that c(w′′) = c(w)∪ c(w′). This implies that
w′ ∈ st0(1,P+w)(w). As a consequence,

0(st1(c(w)), P +w)⊆ st0(1,P+w)(w)= st0(1,P)(w).

Conversely, w′ belongs to the right-hand side if and only if there is a face w′′ of
0(1, P) with content c(w)∪c(w′) such that w′′ is a linear extension of the partial
order (P +w)|c(w)∪ c(w′). This implies that the two families are identical. �

3. Shellable complexes

A pure Boolean cell complex is a Boolean cell complex in which all cells that are
maximal with respect to inclusion have the same dimension. We define the class
of shellable Boolean cell complexes as follows. A finite Boolean cell complex 0
is called shellable if 0 satisfies one of the following two conditions:
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(i) 0 = 2� for some finite set �.

(ii) 0 is pure and there is a cell σ in 0 that is contained in a unique maximal cell
τ such that fdel0(σ ) is shellable.

Note that we allow�=∅ and 0={∅} in (i) and σ = τ in (ii). Also in the situation
of (ii) we have fdel0(σ )= 0 \ [σ, τ ], where [σ, τ ] = {ρ : σ ⊆ ρ ⊆ τ }.

A simple inductive argument yields the following.

Proposition 3.1. Let 0 be a pure d-dimensional Boolean cell complex and let
τ1, . . . , τr be its inclusion maximal cells. Then 0 is shellable if and only if there is
an ordered partition of 0 into intervals [σ1, τ1], . . . , [σr , τr ] such that for 1 ≤ k ≤
r − 1 the union

⋃k
i=1[σi , τi ] is a shellable Boolean cell complex of dimension d.

In particular, 0 is homotopy equivalent to a wedge of d-spheres. The number of
spheres is given by #{ j | σ j = τ j }.

To sketch a proof of the proposition, suppose that 0 satisfies (ii) above, and assume
inductively that fdel0(σ ) admits an ordered partition into intervals [σ1, τ1], . . . ,

[σr , τr ] with properties as in the proposition. Adding the interval [σ, τ ] at the end
of the partition, we obtain an ordered partition of 0 with desired properties.

We refer to such an ordered partition as described in Proposition 3.1 as a shelling
order. Indeed the usual definition of a shellable Boolean cell complex 0 of dimen-
sion d postulates that 0 is pure and that there is linear order τ1, . . . , τr of its d-
dimensional cells such that the intersection of the complex generated by τ1, . . . , τi

and the cell τi+1 is shellable of dimension d − 1 for all 1 ≤ i ≤ r − 1. It is easy
to check that the existence of such an ordering is equivalent to the existence of a
shelling order in our sense.

Lemma 3.2. If 0 is a pure Boolean cell complex and ρ is a face such that 01
=

fdel0(ρ) and 02
= st0(ρ) are shellable of dimension d , then 0 is shellable of

dimension d.

Proof. Let
[αi1, βi1], . . . , [αiri , βiri ]

be a shelling order of0i for i=1, 2. Note that each β2 j contains the face ρ, because
each maximal face of a star complex st0(ρ) contains ρ. In the interval [α2 j , β2 j ],
there is a unique minimal face γ2 j containing ρ. Namely, the intersection of two
such faces would again lie in the interval and contain ρ. We claim that the above
shelling order on 01, together with

[γ21, β21], . . . , [γ2r2, β2r2],

yields a shelling order on 0 = 01
∪02. Namely, the faces in [α2 j , β2 j ] \ [γ2 j , β2 j ]

are all contained in 01. In particular, the family obtained by removing the intervals
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[γ2 j , β2 j ], . . . , [γ2r2, β2r2] is a pure Boolean cell complex for each j ∈ [r ]. By an
induction argument, starting with 01, we hence obtain that 01

∪02 is shellable. �

Proof of Theorem 1.2 (i). If P is a linear order, then 0 := 0(1, P) is isomorphic
to 1 and hence shellable. Otherwise, let a ∈ S be maximal such that a is incom-
parable to some other element in S (with respect to the order on P). Let b ∈ S \ a
be minimal such that a and b are incomparable.

Note that if c <P b, then c <P a by minimality of b. Analogously, if a <P c,
then b <P c. This implies that if w is a face of 0 such that {a, b} 6⊆ c(w), then
w is a linear extension of (P + ba)c(w). Namely, by Lemma 2.1, there is a linear
extensionw′ of P|c(w)∪{a,b} such thatw is a subword ofw′. Suppose that a appears
before b in w′. Then all elements c between a and b in w′ are incomparable to a
and b with respect to P by the above properties. In particular, we may insert a just
before b or insert b just after a and obtain a word with the desired properties.

As a consequence, we have that

0(1, P + ba)= fdel0(ab).

In particular, if ab is not in 1, then 0 coincides with 0(1, P+ba). By induction
on P , we obtain that 0(1, P) is shellable in this case.

If ab ∈1, then define

01
= 0(1, P + ba)= fdel0(ab);

02
= 0(st1(ab), P + ab)= st0(ab);

the very last equality is a consequence of Lemma 2.2. Note that 0 = 01
∪02. By

induction on P , we have that 01 is shellable. Moreover, since

st1(ab)= 2{a,b} ∗ lk1(ab)∼= Cone2(lk1(ab)),

st1(ab) is shellable; shellability of simplicial complexes is closed under links and
cones. Induction on P yields that 02 is shellable.

Using Lemma 3.2, we deduce that 0 = 01
∪02 is shellable. �

Example 3.3. Let 1 = 1M be the simplicial complex of independent sets of a
matroid M of rank n. Is is well-known that 1M is shellable (see [Björner 1992]
for this fact and further background on matroids). Thus 0(1M) is shellable and
hence its homology is concentrated in top dimension. As a consequence,

rankZ H̃n−1(0(1M);Z)=
∑

F∈1M

(−1)n−#F #F ! .(3-1)

This clearly is a matroid invariant. If1M is the full simplex, then already Farmer’s
results [1979] show that the left-hand side of (3-1) equals the number of fixed point
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free permutations on #M letters. We have not been able to recognize the numerical
value in (3-1) for other matroids M .

Question 3.4. For a given matroid M , does there exist a “nice” class of combina-
torial objects counted by the value in (3-1)?

A special case of Example 3.3 also appears in [van der Kallen 1980; Suslin
1984, Lemma 2.1]. There the following situation is considered. For finite dimen-
sional vector spaces V and W let1V,W be the simplicial complex of all collections
{(v0, w0), . . . , (vl, wl)} of pairs (vi , wi ) ∈ V ×W , 0 ≤ i ≤ l, such that v0, . . . , vl

are linearly independent. One easily checks that if V and W are vector spaces
over a finite field then 1V,W indeed is the set of independent sets of a matroid.
Now van der Kallen’s result [1980], which says that the homology of 0(1V,W ) is
concentrated in top dimension, is a special case of Example 3.3.

For the proof of Theorem 1.2 (ii) it will turn out to be profitable to code classes
[w] by acyclic orientations. Let 1 be a simplicial complex on the vertex set S and
let G = (S, E) be a simple graph on the same vertex set. To w ∈ 0(1) we assign
a directed graph Dw = (c(w), Ew) with vertex set c(w) and with a directed edge
from a to b whenever {a, b} ∈ E and a precedes b in the word w.

Lemma 3.5. Let1 be a simplicial complex on ground set S and let G = (S, E) be
a simple graph. Then the following hold:

(i) For w ∈ 0(1) the directed graph Dw is acyclic.

(ii) For [w] ∈ 0/G(1) and w′ ∈ [w] we have Dw = Dw′ . In particular, the map
[w] 7→ Dw is well defined for [w] ∈ 0/G(1).

(iii) For each face σ ∈ 1, the map [w] 7→ D[w] provides a bijection between
faces of 0/G(1) with content σ and acyclic orientations of the induced sub-
graph G|σ .

(iv) The map [w] 7→ Dw is an isomorphism of partially ordered sets between
0/G(1) and the set of acyclic orientations of induced subgraphs G|σ for
σ ∈1 ordered by inclusion of vertex and edge sets.

Proof. (i) Since edges in Dw are directed from left to right in w, the graph Dw

cannot have any directed cycles.

(ii) D[w] is well-defined, because if e = ab ∈ G and a appears before b in some
representative w, then a appears before b in every representative. This is because
any sequence of commutations of neighboring letters transforming w into a word
in which b appears before a must contain a step in which a and b are transposed,
which is forbidden.



COMPLEXES OF INJECTIVE WORDS AND THEIR COMMUTATION CLASSES 321

(iii) To prove that the map is surjective, simply note that every acyclic digraph D
on ground set σ admits a linear extension w, that is, a linear ordering of σ such
that all edges of D go from smaller to larger vertices. Then clearly D = Dw.

To prove that the map is injective, suppose that [w] and [w′] yield the same
acyclic orientation Dw = Dw′ . Let b be the first element of w and write w = bγ
and w′ = a1a2 · · · ar bγ ′, where γ and γ ′ denote words and a1, . . . , ar letters. By
construction, Dw contains no edge directed to b. Since Dw = Dw′ this implies
that b is not adjacent to any ai , 1 ≤ i ≤ r , in G. In particular, we may apply a
sequence of commutations on w′ to obtain the word w′′ = ba1a2 · · · arγ

′. By a
simple induction argument, we may transform a1a2 · · · arγ

′ into γ via a sequence
of commutations, which yields that w and w′′, and hence w and w′, belong to the
same commutation class [w].

(iv) By (iii), it remains to verify that [w′] � [w] if and only if Dw′ is the subgraph
of Dw induced on c(w′). This fact is immediate from the definition of Dw. �

Proof of Theorem 1.2 (ii). By Lemma 3.5, we may identify a given face [w] of 0
with the acyclic orientation Dw of G|c(w) induced by [w].

Fix a linear order on S. For vertices i and j of a digraph D, we write i D
→ j if

there is a directed path from i to j . By convention, i D
→i for all i .

In the following we set up functions on vertex sets of digraphs and an order
relation on these functions that will later be the key ingredient in the definition of
the shelling.

For a digraph D on vertex set ρ, define a function δD = δ : ρ→ ρ by

δ(i)=min{ j | i D
→ j}.

Note that δ(i) ≤ i and δ2(i) = δ(i) for all i . Since δ2
= δ, it is clear that δ(i) = i

whenever #δ−1({i}) = 1. For two functions δ1, δ2 : ρ → ρ, say that δ1 > δ2 if
δ1(x)≥ δ2(x) for all x ∈ ρ with strict inequality for some x .

Claim 1. Let D be an acyclic orientation of G|ρ and let x ∈ ρ. If δ−1
D ({x}) = {x}

then the restriction of δD to ρ \ {x} coincides with δD\{x}.

Proof. Suppose that we have a path from a vertex y 6= x to x . By construction,
δD(y)= a for some a < x . Since there is no path from x to a it follows that there
is a path from y to a in D \ {x} and hence that δD\{x}(y)= a. �

Claim 2. Let D be an acyclic orientation of G|ρ and let x ∈ S \ ρ. Then there
is a unique acyclic orientation D′ of G|ρ+x containing D such that the restriction
of δD′ to ρ coincides with δD and such that δD′(x) = x. The digraph D′ has the
property that δD′ > δD′′ for all other digraphs D′′ on ρ+ x containing D.

Proof. Let A be the subset of ρ consisting of all elements a such that δD(a) < x .
Consider an acyclic orientation D′′ of G|ρ+x containing D. Let e= xb be an edge
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in G|ρ+x . If b ∈ A and e is directed from x to b, then δD′′(x) ≤ δD(b) < x . If
b ∈ ρ \ A and e is directed from b to x , then δD′′(b) ≤ x < δD(b). Thus for the
conditions in Claim 2 to hold, we must direct e from b to x whenever b ∈ A and
from x to b whenever b ∈ ρ \ A. For the particular face D′ with this property,
one easily checks that the conditions are indeed satisfied. The final statement in
Claim 2 follows immediately. �

To show that 0/G(1) is shellable, it suffices to verify the following claim.

Claim 3. Let τ be a maximal face of 1 and let σ ⊆ τ . Then the family

0σ,τ := {Dw ∈ 0/G(1) | σ ⊆ c(w)⊆ τ }

admits a partition into intervals

(3-2) [D1|σ1, D1], . . . , [Dr |σr , Dr ]

such that Di |σi is not a subdigraph of D j unless i ≤ j and such that each Di is
an acyclic orientation of G|τ . Here, Di |σi is the induced subdigraph of Di on the
vertex set σi .

Before we proceed to the proof of Claim 3 we provide the arguments that show
the sufficiency of Claim 3 for shellability of 0/G(1).

From the shellability of 1 we deduce from Proposition 3.1 that there is a maxi-
mal face τ and a face σ ⊆ τ such that1\[σ, τ ] is shellable. Since 0/G(1)\0σ,τ =
0/G(1\[σ, τ ]), Claim 3 implies by inductive applications of Proposition 3.1 that
0/G(1) is shellable.

Proof of Claim 3. Let D1, . . . , Dr be the acyclic orientations of G|τ ordered such
that i < j whenever δDi > δD j . For any Di , let X i be the set of elements x ∈ τ \σ
such that δ−1

Di
({x})= {x}. Define σi = τ \ X i .

We claim that the intervals [Di |σi , Di ] yield the desired partition. First, repeated
application of (i) yields that δDi |σi

is the restriction of δDi to σi . Moreover, repeated
application of (ii) yields that δDi (x) ≥ δD j (x) for all x ∈ τ whenever Di |σi is a
subdigraph of D j and that the inequality is strict for some x , and hence i < j ,
if Di 6= D j . By a similar argument, one obtains that any digraph Di |ρ such that
σi ⊆ ρ ⊆ τ has the same property. In particular, we obtain the desired claim.

Now, let [σ, τ ] be the last interval in the shelling order of 1. By induction, we
know that 00 = 0/G(1 \ [σ, τ ]) is shellable. Suppose that we have an ordered
partition of the form (3-2) of the remaining family {D ∈0/G(1)\σ ⊆ V (D)⊆ τ }
with properties as above. For 1≤ i ≤ r , define 0i = 0i−1 ∪ [Di |σi , Di ].

We claim that each 0i defines a pure Boolean cell complex; by definition and
induction on i , this will imply that each 0i is a shellable Boolean cell complex. By
assumption the claim is true for i = 0. Assume that i > 0. All maximal cells of 0i

have the same dimension dim1, because this is true in 00, and 0i is the union of
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i Di δDi Di [σi ] i Di δDi Di [σi ]

1 1234 1234** ∅ 16 2364 *234*4 64

2 1243 1233** 43 17 2436 *233*6 436

3 1423 1232** 42 18 2643 *233*3 643

4 1342 1222** 342 19 4236 *232*6 426

5 3124 1214** 31 20 6423 *232*2 642

6 3142 1212** 3142 21 3426 *222*6 3426

7 4312 1211** 431 22 3642 *222*2 3642

8 2134 1134** 21 23 3456 **3456 5

9 2143 1133** 2143 24 3465 **3455 65

10 4213 1131** 421 25 3645 **3454 645

11 2314 1114** 231 26 3564 **3444 564

12 2431 1111** 2431 27 4356 **3356 435

13 3421 1111** 3421 28 4365 **3355 4365

14 4231 1111** 4231 29 6435 **3353 6435

15 2346 *234*6 6 30 5643 **3333 5643

Table 1. Shelling order for the complex 0/G(1), where 1 and
G are defined in Example 3.6.

00 and a sequence of intervals in which each top element has dimension dim1. It
remains to prove that all subfaces of Di belong to 0i . Let Di |ρ be such a subface.
If Di |ρ belongs to 00, then we are done. Otherwise, Di |ρ ∈ [D j |σ j , D j ] for some
1≤ j ≤ r . By construction, j ≤ i , which implies that Di |ρ ∈ 0i as desired. �

Example 3.6. Let 1 be the simplicial complex on ground set S = {1, . . . , 5} with
maximal faces 1234, 2346, 3456. The ordered partition

[∅, 1234], [6, 2346], [5, 2345]

defines a shelling order of 1. Let G be the graph with vertex set S and edge set
{12, 13, 24, 34, 46, 56}. Table 1 provides a shelling order of 0/G(1) constructed
as in the proof of Theorem 1.2 (ii) from the given shelling order on 1 with the
natural order on S. In the table, each acyclic orientation Di is represented by its
lexicographically smallest representative. The function δDi is represented as a word
a1a2a3a4a5a6, where ai = δDi (i) if i ∈ V (Di ) and ai = ∗ otherwise. Underlined
values k have the property that δ−1({k})= {k}.
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An analysis of the proof of Theorem 1.2 (ii) allows us to describe the rank of
the homology groups of 0/G(1) for shellable 1.

Corollary 3.7. Let 1 be a shellable d-dimensional simplicial complex on ground
set S with shelling order [σ1, τ1], . . . , [σr , τr ]. Fix a linear order < on S. Then
the rank of the unique nonvanishing reduced homology group H̃d(0/G(1);Z) of
0/G(1) equals the number of pairs (τi , D) where 1 ≤ i ≤ r and D is an acyclic
orientation of G|τi such that for all x ∈ τi \ σi there is a y ∈ τi \ {x} such that one
of the following conditions holds.

(C1) y < x and there is a directed path from x to y in D.

(C2) y > x and there is a directed path from y to x in D and for no z < x there is
a directed path from y to z in D.

Proof. From the proof of Theorem 1.2 (ii) and Proposition 3.1 we deduce that
rankZ H̃d(0/G(1);Z) is given by the number of pairs (τi , D) where 1≤ i ≤ r and
D is an acyclic orientation of G|τi such that for all x ∈τi\σi we have δ−1

D ({x}) 6= {x}.
We distinguish two cases:

(1) δ−1
D ({x})=∅. In this case there is a y < x for which there is a directed path

from x to y in D.

(2) #δ−1
D ({x})≥ 2. In this case there is a y > x for which there is a directed path

from y to x in D and for no z < y there is a directed path from y to z in D.

It is easy to see that (1) and (2) are equivalent to (C1) and (C2), respectively. �

Example 3.8. Let G be a graph on the set S = {1, . . . , n} and 1n = 2S the full
simplex. We consider the natural order on S. By Corollary 3.7 the rank of the top
homology group of 0/G(2S) is equal to the number of acyclic orientations D of
G such that for each vertex x ∈ S there is a y ∈ S satisfying at least one of (C1)
and (C2) from Corollary 3.7.

(i) For the complete graph G = Kn , by the work of Farmer [1979] the homology
rank is known to be the number of fix-point free permutations. It is an interesting
question whether there exists a simple bijection between such permutations and
acyclic orientations of Kn satisfying the conditions of Corollary 3.7.

(ii) Now we consider the graph G on vertex set S with all edges present except
for {1, 2}, {2, 3}, . . . , {n − 1, n}, {1, n}. To avoid trivialities consider only n ≥ 4.
Computer calculations for 4≤ n ≤ 9 suggest that

rankZ H̃n−1(0/G(1n),Z)− (−1)n = an,

where an is the number of ways to arrange n nonattacking kings on an n × n
chessboard with two sides identified to form a cylinder, with one king in each
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row and one king in each column. Is this indeed true for all n ≥ 4 ? Is there a
nice bijective proof? Note that the left-hand side equals the absolute value of the
unreduced Euler characteristic of 0/G(1n).

We refer the reader to [Abramson and Moser 1967] for more information on the
number an . The first few values are a4= 0, a5= 10, a6= 60, a7= 462, a8= 3920,
a9 = 36954, and a10 = 382740.

4. Cohen–Macaulay and sequentially Cohen–Macaulay complexes

For the formulation of the results of this section we need to review some facts about
(sequential) Cohen–Macaulay complexes. Recall that a simplicial complex 1 is
called sequentially homotopy Cohen–Macaulay (SHCM for short) if for all r ≥ 0
and all σ ∈1 the subcomplex (lk1(σ ))〈r〉 generated by all maximal faces of dimen-
sion≥ r in lk1(σ ) is (r−1)-connected (see for example [Björner et al. 2009]). For
K a field or K=Z a simplicial complex 1 is called sequentially Cohen–Macaulay
over K (SCM/K for short) if for all r ≥ 0 and all σ ∈1 the subcomplex (lk1(σ ))〈r〉

generated by all maximal faces of dimension ≥ r in lk1(σ ) has vanishing reduced
simplicial homology in dimensions 0 through (r − 1).

In order to define SHCM, SCM/K, HCM and CM/K for partially ordered sets
we need to introduce the order complex. For a partially ordered set Q = (M,≤Q)

on ground set M we denote by 1(Q) = {m0 <Q · · · < ml | mi ∈ M, l ≥ −1} its
order complex. If Q is the face poset of a Boolean cell complex 0 then 1(Q) is
the barycentric subdivision of 0.

We call a partially ordered set Q = (M,≤Q) on ground set M SHCM (respec-
tively SCM/K, HCM, CM/K) if 1(Q) is SHCM (respectively SCM/K, HCM,
CM/K). In particular, we call a Boolean cell complex 0 SHCM (respectively
SCM/K, HCM, CM/K) if its barycentric subdivision1(0) is SHCM (respectively
SCM/K, HCM, CM/K).

A partially ordered set Q= (M,≤Q) is called pure if all inclusionwise maximal
faces of 1(Q) have the same dimension. For m ∈ M , we denote by Q≤m the
subposet of Q on ground set M≤m = {m′ ∈ M | m′ ≤Q m}. We call Q semipure
if the poset Q≤m is pure for all m ∈ M . The rank of an element m ∈ M is the
dimension of the simplicial complex 1(Q≤m). Note that if Q is a pure partially
ordered set then the concepts SHCM and HCM (respectively SCM/K and CM/K)
coincide. It is well-known and easy to prove that shellable Boolean cell complexes
are HCM and hence also CM/K. For simplicial complexes, it is well-known that
the properties of being SHCM, SCM/K, HCM, and CM/K are preserved under
barycentric subdivision.

The key ingredients to the proof of Theorem 1.3 are Theorem 1.2 and the fol-
lowing results from [Björner et al. 2005].
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Proposition 4.1 [Björner et al. 2005, Theorem 5.1]. Let R = (N ,≤R) and Q =
(M,≤Q) be semipure partially ordered sets and let f : R→ Q be a surjective and
rank-preserving map of partially ordered sets.

(i) Assume that for all m ∈ M the fiber 1( f −1(Q≤m)) is HCM. If Q is SHCM,
then so is R.

(ii) Let K be a field or K= Z. Assume that for all m ∈ M the fiber1( f −1(Q≤m))

is SCM/K. If Q is SCM/K, then so is R.

Proof of Theorem 1.3. (i) Consider the map φ :0(1, P)→1 that sends an injective
word ω1 · · ·ωr in 0(1, P) to

φ(ω1 · · ·ωr ) := {ω1, . . . , ωr } ∈1.

Clearly, φ is a monotone map if we consider 0(1, P) and 1 as posets ordered
by the subword order and inclusion respectively. Surjectivity is obvious as well.
Since the rank of a word from 0(1, P) is given by one less than the cardinal-
ity of its content and since the rank of an element of 1 is again one less than
its cardinality the map is rank preserving. Now for a simplex σ ∈ 1 we study
the preimage φ−1(1≤σ ), which consists of all ω1 · · ·ωr ∈ 0(1, P) for which
{ω1, . . . , ωr } ⊆ σ . Hence, if we again denote by P|σ the restriction of P to σ
we can identify φ−1(1≤σ ) with the complex 0(2σ , P). Since the full simplex 2σ

is shellable, 0(2σ , P) is a shellable Boolean cell complex by Theorem 1.2 (i).
Therefore, 0(2σ , P) is HCM (CM/K). Thus by Proposition 4.1 it follows that
0(1, P) is SHCM (respectively SCM/K) if 1 is.

(ii) Consider the map φ : 0/G(1)→1 sending a class [ω1 · · ·ωr ] in 0(1, P) to
φ([ω1 · · ·ωr ]) := {ω1, . . . , ωr } ∈1. As in the first case, we arrive at the conclusion
that φ is a rank preserving, surjective, and monotone map.

The preimage φ−1(1≤σ ) of a simplex σ ∈1 consists of all [ω1 · · ·ωr ]∈0/G(1)
for which {ω1, . . . , ωr } ⊆ σ . As a consequence, we can identify φ−1(1≤σ ) with
the complex 0/G|σ (2σ ), where G|σ is the induced subgraph of G on the set σ .
Since 2σ is shellable, so is 0/G|σ (2σ ) by Theorem 1.2 (ii). Therefore, 0/G|σ (2σ )
is HCM (CM/K). Thus by Proposition 4.1 it follows that the poset 0/G(1) is
SHCM (respectively SCM/K) if 1 is. �

5. Complexes of injective words are partitionable

A cell complex 0 is partitionable if 0 admits a partition into pairwise disjoint
intervals [σi , τi ] such that each τi is maximal in 0. Any shellable Boolean cell
complex is partitionable, but the converse is not true in general. In fact, somewhat
surprisingly, for P equal to the antichain A = (S,≤A), all complexes of injective
words are partitionable:
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Proof of Theorem 1.4. Let V be the vertex set of1 and define a total order� on V .
With the vertices in each face of 1 arranged in increasing order from left to right,
this induces a lexicographic order on the faces. Specifically, let σ ≤ τ if and only
if either τ is a prefix of σ or if σ is lexicographically smaller than τ . For example,
for the complex on the vertex set [4] (naturally ordered) with maximal faces 123
and 234, we have that

123≺ 12≺ 13≺ 1≺ 234≺ 23≺ 24≺ 2≺ 34≺ 3≺ 4≺∅.

For a word w = w0 · · ·wr , recall that c(w)= {w0, . . . , wr }. Write 0 := 0(1, A).
Define a function f : 0→ 1 by f (w) = c(w)∪ f0(w), where f0(w) is minimal
with respect to � among all faces of lk1(c(w)). Note that f (w) is necessarily a
maximal face of 1. Define another function g : 0 → 0 by letting g(w) be the
shortest prefix v of w such that f (v) = f (w). Let 0v be the family of faces w
such that g(w)= v. It is clear that the families 0v constitute a partition of 0.

Now, consider a nonempty family 0v. We claim that

0v = {vw | c(w)⊆ f0(v)}.

Namely, every member of 0v certainly belongs to the set in the right-hand side.
Moreover, if vw belongs to this set, then f0(v)= c(w)∪ f0(vw). Namely, suppose
that some face σ of lk1(c(vw)) is smaller than f0(vw). Then c(w)∪ σ is smaller
than c(w)∪ f0(vw), which is a contradiction.

As a conclusion, we may write

0v = v ·0′ = {vσ | σ ∈ 0′},

where 0′ is the complex of injective words derived from the full simplex on the
vertex set f0(v). Since 0′ is shellable, we may partition 0′ into intervals [u, w]
such that each top cell w is maximal in 0′. This induces a partition of 0v into
intervals [vu, vw] such that each top cell vw is maximal in 0v and hence in 0. �

The h-polynomial h(0; t) :=
∑

i hi t i of a Boolean cell complex of dimension d
is defined by∑

i

hi t i
=

∑
i

fi t i (1− t)d+1−i
⇐⇒

∑
i

fi t i
=

∑
i

hi t i (1+ t)d+1−i ,

where fi is the number of cells of dimension i − 1 in 0.

Corollary 5.1. Let 1 be a pure simplicial complex. Then all coefficients of the
h-polynomial of 0(1) are nonnegative.

Proof. By Theorem 1.4, we may partition 0(1) into a disjoint union of intervals
[σi , τi ] such that each τi has maximum dimension d . It follows that h(0(1); t)=∑

t#σi . �
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A partition into intervals of a Boolean cell complex0 induces a matching of cells
such that the only unmatched cells in the complex are the ones that form singleton
intervals [τ, τ ] in the partition. Specifically, consider the graph on the set of faces
of 0, where we have an edge between two faces σ and τ whenever σ < τ and
there is no face γ for which σ < γ < τ . Thus this graph is the graph of the Hasse
diagram of 0. Now, for two faces σ < τ of 0, each interval [σ, τ ] is a Boolean
lattice and therefore the associated Hasse diagram has a perfect matching if and
only if σ 6= τ . In particular, this shows that on the Hasse diagram of a partitionable
Boolean cell complex there is a matching whose only unmatched faces are the ones
corresponding to one-element intervals. In discrete Morse theory [Forman 1998],
matchings of the Hasse diagram of the face poset of a regular CW-complex are
used to determine the topological structure of the complex. However, in general,
discrete Morse theory [Forman 1998] does not apply to the matchings constructed
above. Namely, a matching relevant to discrete Morse theory has to satisfy the
additional assumption that if one directs all edges from the matching upward by
dimension and all other edges downward, then the resulting directed graph must
be acyclic.

For example, consider the complex with maximal faces 12 and 34. The induced
order of the faces is

12≺ 1≺ 2≺ 34≺ 3≺ 4≺∅,
which yields 0∅

= {∅, 1, 2, 12, 21}, 03
= {3, 34} and 04

= {4, 43}. We obtain
a partition consisting of the four intervals [∅, 12], [21, 21], [3, 34] and [4, 43],
which yields a matching including the pairs {3, 34} and {4, 43}. This is illegal in
terms of discrete Morse theory.
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