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We study the convergence of the volume-preserving mean curvature flow
of hypersurfaces in Euclidean space under some initial integral pinching
conditions. We prove that if the traceless second fundamental form is suffi-
ciently small, the flow will exist for all time and converge exponentially fast
to a round sphere.

1. Introduction

This paper proves the convergence of the volume-preserving mean curvature flow
of hypersurfaces under some initial integral pinching conditions. Throughout, we
discuss only closed, orientable, immersed hypersurfaces in Euclidean space.

Let M be a compact n-dimensional manifold smoothly immersed in Rn+1, and
suppose M is represented locally by an immersion

F0 : R
n
⊃U → F0(U )⊂ Rn+1.

We evolve the family of maps Ft(x) by the equation and initial condition

(1-1) ∂t Ft(x)= (h− H)ν(x, t) and Ft(x)|t=0 = F0(x),

where ν(x, t) is the outer unit normal vector on Mt = Ft(M), H(x, t) is the mean
curvature, and h(t) is its average defined by

h(t)= 1
Vt

∫
Mt

H(t)dVt .

Here Vt denotes the volume of Mt with respect to the induced metric g. We denote
by A = {hi j } the second fundamental form of M . We denote its traceless part
A− (H/n)g by Å, and we usually use the norm | Å|2 = |A|2− (1/n)H 2. For more
detailed definitions, see Section 2.

For the volume-preserving mean curvature flow or general mean curvature flow,
most of the work has focused on convexity conditions. G. Huisken [1987] (and
Gage [1986] for curves) proved that if the initial hypersurface is compact and
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uniformly convex, the flow will converge exponentially fast to a round sphere.
In an asymptotically flat manifold with positive mass, Huisken and Yau [1996]
proved convergence of the flow for an initial coordinate sphere with sufficiently
large radius, and Rigger [2004] proved analogous results in the asymptotically
hyperbolic setting. For nonconvex cases, Escher and Simonett [1998] proved that
if the initial hypersurface M0 is sufficiently close to a fixed Euclidean sphere, the
flow will converge exponentially fast to a round sphere, and Cabezas-Rivas and
Miquel [2007] discussed analogous results in hyperbolic space. For a general
ambient manifold, Alikakos and Freire [2003] proved long time existence and
convergence to a constant mean curvature surface under the hypotheses that the
initial hypersurface is close to a small geodesic sphere and that it satisfies some
nondegeneracy conditions.

The proofs in [Escher and Simonett 1998; Alikakos and Freire 2003; Cabezas-
Rivas and Miquel 2007] are based on center manifold analysis, and therefore leave
unclear how the shape of the initial hypersurface affects the convergence of the
flow. It would be preferable — and interesting — to have proofs of convergence
that start with natural conditions on the geometry of the initial hypersurface. In
this paper, we borrow the ideas from Ricci flow [Min-Oo 1990; Ye 1993] and
Kähler–Ricci flow [Chen 2006; Chen et al. 2009; Chen and Li 2009] to prove
convergence of the flow under conditions on the initial second fundamental form.
Here is our main result:

Theorem 1. Let M ⊂ Rn+1 be a compact, orientable, smoothly immersed hyper-
surface of dimension n ≥ 2 satisfying

(1-2) V ≤ v, |A| ≤3, h ≥ γ,
∫

M
| Å|2 ≤ ε

for any positive constants 3, γ and v and sufficiently small ε = ε(3, γ, v) > 0,
where V is the volume of M with respect to the induced metric. Then the volume-
preserving mean curvature flow (1-1) with the initial hypersurface M will converge
exponentially fast to a round sphere.

Remark 2. Using center manifold analysis, Escher and Simonett [1998] proved
analogous results under a somewhat different condition, that M is “sufficiently
close” to a standard sphere in h1+β norm.

Remark 3. Unlike the results of Ricci flow in [Ye 1993; Chen and Li 2009] or
mean curvature flow in [Huisken and Yau 1996; Rigger 2004], we don’t need
to assume any stability conditions of the initial hypersurface. In Theorem 1, the
assumption on h seems quite natural since h is always positive if the initial hyper-
surface is close to a sphere.
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Turning to the results of Huisken and Yau [1996] for large coordinate spheres in
an asymptotically Euclidean manifold and of Alikakos and Freire [2003] for small
geodesic balls in a general Riemannian manifold, we find that our method can be
used in these two cases with rather weak conditions. Here, we only give the result
in Euclidean space, which is a direct corollary of Theorem 1:

Corollary 4. (1) For any B1, B2, B3, B4 and δ, σ > 0, we define the set of com-
pact, orientable, smoothly immersed hypersurfaces

Bσ =
{

Mn
⊂ Rn+1

∣∣∣ ∣∣|x | − σ ∣∣≤ B1, | Å|(x)≤
B2

σ 1+δ , |∇ Å| ≤
B3

σ 2+δ , V ≤ B4σ
n
}
.

Then there is a constant σ0=σ0(B1, B2, B3, B4, δ)>0 such that for all σ ≥σ0,
the volume-preserving mean curvature flow with any initial hypersurface in
Bσ will converge exponentially fast to a round sphere.

(2) For any B1, B2, B3, B4 and δ, σ > 0, we define the set of compact orientable,
smoothly immersed hypersurfaces

B ′σ =
{

Mn
⊂Rn+1

∣∣∣ ∣∣|x |−σ ∣∣≤ B1σ
1+δ, | Å|(x)≤

B2

σ 1−δ , |∇ Å|≤
B3

σ 2−δ , V ≤ B4σ
n
}
.

Then there is a constant σ0 = σ0(B1, B2, B3, B4, δ) > 0 such that for all
σ ∈ (0, σ0), the volume-preserving mean curvature flow with any initial hy-
persurface in B ′σ will converge exponentially fast to a round sphere.

Huisken and Yau [1996] proved the convergence of the flow (1-1) under the
assumption that the mass is positive, which implies the initial coordinate sphere
is strictly stable. This assumption is crucial in their proof since it leads to the
exponential decay of the L2 norm of |H − h|. In the proof of Corollary 4 and
Theorem 1, we avoid this by proving first the exponentially decay of the traceless
second fundamental form for short time.

The proof of Theorem 1 uses methods similar to those in [Ye 1993; Chen et al.
2009; Chen and Li 2009]. First, we prove that under conditions (1-2), both | Å| and
|H−h| are small after a short time (see Proposition 13) and therefore decay expo-
nentially in a short time interval provided that the average of the mean curvature
is strictly positive (see Lemmas 15 and 16). On the other hand, that they decay
exponentially implies that they are both small in the next time interval, and we can
repeat the previous arguments. Using this iteration idea, we can prove both long
time existence and exponential decay for all time.

Next we would like to weaken the initial condition on |A|. To remove it would
be too much — in the general situation without an initial bound, one cannot even
expect uniform short time existence of the flow. We overcome this difficulty using
the ideas of ε-regularity of mean curvature flow in [Ecker 1995; Nakauchi 1993]
and Willmore flow in [Kuwert and Schätzle 2002], and we replace the bound on |A|
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by a bound on mean curvature or its average. We can then prove that the flow has
uniform short time existence and that the second fundamental form is bounded
after a short time. For simplicity of the proof, we only state the result when n = 2:

Theorem 5. Let M2
⊂ R3 be a compact, smoothly immersed surface with

(1-3) 0< v0 < V < v1, 0< γ < h <3,
∫

M
|H − h|2 ≤ ε,

∫
M
| Å|2 ≤ ε

for any positive constants v0, v1,3, γ with v0 < v1, γ < 3, and sufficiently small
ε = ε(γ,3, v0, v1) > 0. Then the volume-preserving mean curvature flow with
initial surface M will converge exponentially fast to a round sphere.

Remark 6. The assumption (1-3) can be replaced by

(1-4) v0 < V < v1, γ < H <3,

∫
M
| Å|2 ≤ ε.

The proof is similar to that of Theorem 5 but is rather long, so we omit it.

Remark 7. For higher-dimensional cases, the idea is the same, but we may assume
the Ln norms of | Å| and |H−h| are small; see [Nakauchi 1993]. The idea can also
be applied to the normalized Ricci flow (see [Ye 1993]), where we can replace the
bound on the full Riemann curvature tensors by the smallness of the Ln/2 norms
of Weyl tensors and the traceless Ricci curvature.

Roughly, the proof of Theorem 5 is as follows: We hope to use the ε-regularity
to prove that the conditions (1-2) in Theorem 1 are satisfied after a short time. First,
we prove that the L p norms of | Å| and |H − h| are small for a short time interval
under the conditions (1-3). Then standard ε-regularity together with Michael and
Simon’s Sobolev inequality implies that the L∞ norm of |A| is bounded after a
short time, and we can apply Theorem 1 to prove the convergence.

In forthcoming papers, we expect to generalize this method to hypersurfaces
in asymptotically flat manifolds and asymptotically hyperbolic manifolds with-
out necessarily positive mass. Recently, Mazzeo and Pacard [2007] proved very
interesting results for the construction of constant mean curvature foliations on
conformally compact manifolds, and we expect that our method works in this
setting. Our method can also be used for Lagrangian mean curvature flow and
symplectic mean curvature flow, and we will explore this in the future.

2. Notation and preliminary results

We follow the notation of [Huisken 1984]. Define the manifold M and the family
of maps Ft as on page 331. Since Mt is given locally by F , we can calculate

gi j (x)=
(
∂F
∂x i ,

∂F
∂x j

)
and hi j =−

(
ν(x, t), ∂2 F

∂x i∂x j

)
for x ∈ Rn.
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Using these notations, the mean curvature and the norm of second fundamental
form are given by H = gi j hi j and |A|2 = gi j gklhikh jl .

We now collect some well-known identities. The induced metric evolves by

(2-1) ∂t gi j = 2(h− H)hi j .

Hence, the volume form of Mt satisfies

(2-2) ∂
∂t

dVt = H(h− H)dVt .

Applying the Codazzi equations and interchanging derivatives, we can prove these
identities:

Lemma 8. ∂t H =1t H + (H − h)|A|2,

∂t hi j =1t hi j − 2Hhikhk j + hhikhk j + |A|2hi j ,

∂t |A|2 =1|A|2− 2|∇A|2+ 2|A|4− 2h tr(A3).

Lemma 9. ∂t | Å|2 =1| Å|2− 2|∇ Å|2+ 2|A|2| Å|2− 2h
(

tr( Å3)+
2
n

H | Å|2
)
,

∂t |∇ Å|2 =1|∇ Å|2− 2|∇2 Å|2+∇A ∗∇ Å ∗ A ∗ Å+∇ Å ∗∇ Å ∗ A ∗ A,

where A ∗ B denotes the contraction of the tensors A and B.

Proof. By Lemma 8 a straightforward computation implies

(2-3) ∂t | Å|2 =1| Å|2− 2|∇ Å|2+ 2|A|2| Å|2− 2h(tr(A3)− (1/n)|A|2 H).

Observe that in a coordinate system where hi j = κi gi j , the eigenvalues of the
traceless second fundamental form are given by

µi = κi − H/n and
∑

i µi = 0.

Then the first identity follows from (2-3) and

tr(A3)− (1/n)|A|2 H =
∑

i

(
µi +

H
n

)3
−

H
n

(
µi +

H
n

)2
=

∑
i

(
µ3

i +
2
n

Hµ2
i

)
= tr( Å3)+ (2/n)H | Å|2.

The second identity follows from [Huisken 1984]. �

3. Proof of Theorem 1 and Corollary 4

The second fundamental form. Here, we prove that under assumption (1-2), the
pointwise bound on the traceless second fundamental form will be small after a
short time. We need to use the parabolic Moser iteration for the mean curvature
flow in the form found in [Dai et al. 1996; Ye 1993; Chen and Tian 2006]:
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Theorem 10. Let f be a nonnegative function satisfying

∂t f ≤1 f + b f for t ∈ [0, T ],

where b is a nonnegative constant and 1 is the Laplacian of the induced metric
g(t) of the mean curvature flow (1-1). Then

(3-1) f (t)≤ C(n,3, b, τ )
(∫ t

t−τ

∫
M

f 2
)1/2

for t ∈ [τ, T ],

where 3= supM×[0,T ]|H |(x, t).

The constant C in (3-1) should depend on the Sobolev constant and the derivative
of the volume form of the induced metric g(t), which can be controlled by |H | in
our case. This can be seen from (2-2) and Michael and Simon’s inequality [1973]

(3-2)
(∫

M
| f |n/(n−1)

)(n−1)/n
≤ c(n)

(∫
M
|∇ f | +

∫
M
|H f |

)
.

The following result is a corollary of Theorem 10.

Proposition 11. Let f be a nonnegative function satisfying

∂t f ≤1 f + b f + εe−γt for t ∈ [0, T ],

where b and γ are nonnegative constants and 1 is the Laplacian of the induced
metric g(t) of the mean curvature flow. Then

f (t)≤ C(n,3, b, τ )
((∫ t

t−τ

∫
M

f 2
)1/2
+

ε
γ+b

e−γt
)

for t ∈ [τ, T ],

where 3= supM×[0,T ]|H |(x, t).

Proof. We apply Theorem 10 to the function | f + (ε/(γ+ b))e−γt
|. �

In the following, we need to use P. Topping’s result [2008], which relates the
upper bound of the induced diameter with the integral norm of the mean curvature.

Lemma 12. Let n ≥ 1. Suppose that M is an n-dimensional closed (compact,
no boundary) connected manifold smoothly immersed in Rn . Then its intrinsic
diameter and its mean curvature H are related by

diam≤ C(m)
∫

M
|H |m−1dV .

Proposition 13. Suppose that the solution Mt satisfies the inequalities

|A|(0)≤3, h ≥ γ > 0,
∫

M
| Å|(0)2 ≤ ε.

Then there exists a T = T (3) such that Mt satisfies

(3-3) |A|(t)≤ 23 and h ≥ γ/2 for t ∈ [0, T ]
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and for fixed τ > 0 there exists some constant C1 = C1(n, τ,3, v) such that

(3-4)
|H − h|2(t)≤ C1(n, τ,3, v)ε1/2

| Å|(t)≤ C1(n, τ,3, v)ε1/2 for t ∈ [τ, T ].

Proof. By Lemma 8, we have the inequality

∂t |A| ≤1|A| + |A|3+ h|A|2.

Using the inequality |h|(t)≤ n maxMt |A|(t), the maximum principle implies

(3-5) |A|(t)≤ 23 for t ∈ [0, T ],

where T ≤ c/32 for a numerical constant c > 0. By Lemma 9 we can calculate

∂
∂t

∫
M
| Å|2dVt

=

∫
M
−2|∇ Å|2+ 2|A|2| Å|2− 2h

(
tr( Å3)+

2
n

H | Å|2
)
+ | Å|2 H(h− H) dVt

≤ c(n)32
∫

M
| Å|2,

where we have used the facts that |H |(t)≤2n3 and |H−h|(t)≤4n3 for t ∈[0, T ].
Hence, we obtain

(3-6)
∫

M
| Å|2 ≤ ec(n)32tε for t ∈ [0, T ].

By Lemma 9 again, ∂t | Å|≤1| Å|+c(n)32
| Å| for t ∈[0, T ]. Applying the parabolic

Moser iteration, we have

(3-7) | Å|(t)≤ C(n,3, τ)
(∫ t

t−τ

∫
M
| Å|2

)1/2
≤ C(n,3, τ)ε−1/2 for t ∈ [τ, T ].

Now we estimate the change of h(t). By its definition and Lemma 8, we obtain∣∣∣dh
dt

∣∣∣= 1
Vt

∣∣∣∫
M
(H − h)|A|2+ H 2(h− H)+ h(H − h)2

∣∣∣≤ c(n)32,

which implies

h(t)≥ h(0)− c(n)32t for t ∈ [0, T ].

Finally, we estimate |H − h|. By the gradient estimates and (3-5) we have

(3-8) |∇A|(t)≤ C(τ,3) and |∇
2 A| ≤ C(τ,3) for t ∈ [τ, T ].
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Since | Å| is small, integrating by parts and Schwartz’s inequality implies

(3-9)

∫
M
|∇ Å|2 ≤

(∫
M
| Å|2

)1/2(∫
M
|1 Å|2

)1/2

≤ C(τ,3, v)ec(n)(3t)1/2ε1/2 for t ∈ [τ, T ].

By Lemma 9 and (3-8), ∂t |∇ Å| ≤ 1|∇ Å| +C(τ,3)| Å| +32
|∇ Å| for t ∈ [τ, T ].

By the parabolic Moser iteration and (3-7)(3-9), we have

(3-10) |∇ Å|(t)≤ C(τ,3, v, n)ε1/4 for t ∈ [2τ, T ].

Since n ≥ 2, [Huisken 1984, Lemma 2.2] implies

(3-11) |∇ Å|2 ≥
2(n− 1)
n(n+ 2)

|∇H |2.

Since the mean curvature is bounded, Lemma 12 implies diam(t)≤C(n,3, v) for
∈ [0, T ]. Combining (3-10) with (3-11), we obtain for t ∈ [2τ, T ] that

|H − h|(t)≤ diam(t)max|∇H | ≤ C(n,3, v)max|∇ Å| ≤ C(τ,3, v, n)ε1/4. �

The average of the mean curvature. Now we assume that the initial hypersurface
has h(0)> 0. The following lemma shows that h(t) does not decay along the mean
curvature flow if the traceless part of the second fundamental form is small.

Lemma 14. We have the following two implications:

If h(t) > 0, | Å|(t)≤ ε, |H − h|2(t)≤ ε for t ∈ [0, T ],

then h(0)e−c(n)εt
− c(n)ε3/2t ≤ h(t)≤ h(0)+ 2ε3/2t for t ∈ [0, T ].

If h(t) > 0, | Å|(t)≤ εe−γt , |H − h|2(t)≤ εe−γt for t ∈ [0, T ],

then h(0)e−c(n)ε/γ
−

c(n)
γ
ε3/2ec(n)ε/γ

≤ h(t)≤ h(0)+ 2
3γ
ε3/2 for t ∈ [0, T ].

Proof. From the definition of h, we have Vt h=
∫

M H dVt . Taking a derivative with
respect to t , we have

(3-12)

Vt
dh
dt
=

∫
M
(H − h)|A|2+ H 2(h− H)+ h(H − h)2

=

∫
M
(H − h)| Å|2− n−1

n
H 2(H − h)+ h(H − h)2

=

∫
M
(H − h)| Å|2− n−1

n
(H − h)3− (1− 2/n)h(H − h)2,

where we have used the fact that∫
M

H 2(H − h)=
∫

M
(H − h)3+ 2h(H − h)2.
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By the assumption of the first implication, we have

(3-13) −(1− 2/n)εh− c(n)ε3/2
≤

dh
dt
≤ 2ε3/2,

which directly implies its conclusion. We can prove the second similarly. �

The exponential decay. The key lemma of the proof of Theorem 1 shows that
the traceless part of the second fundamental form decays exponentially if it is
sufficiently small along the mean curvature flow.

Lemma 15. For any γ > 0, there exists an ε0 = ε0(n, γ) such that if the solution
Mt satisfies the inequalities

h(t)≥ γ > 0, | Å|(t)≤ ε, |H − h|2(t)≤ ε

for t ∈ [0, T ] and ε ∈ (0, ε0), then

| Å|(t)≤ e−αt max
M0
| Å|(0) for t ∈ [0, T ],

where α = γ/
√

2n.

Proof. Recall that Lemma 9 implies

(3-14) ∂t | Å|2 =1| Å|2− 2|∇ Å|2+ 2|A|2| Å|2− 2h(tr( Å3)+ (2/n)H | Å|2).

Note that

−2h(tr( Å3)+ (2/n)H | Å|2)

=−2H(tr( Å3)+ (2/n)H | Å|2)+ 2(H − h)(tr( Å3)+ (2/n)H | Å|2)

≤ − (4/n)H 2
| Å|2+ 2H | Å|3+ 2(H − h)(| Å|3+ (2/n)H | Å|2)

≤ − (4/n)H 2
| Å|2+ 4

(
h| Å|3+ h|H − h|| Å|2+ |H − h|| Å|3+ |H − h|2| Å|2

)
.

With this inequality, (3-14) implies

∂t | Å|2 ≤1| Å|2+ 2|A|2| Å|2− (4/n)H 2
| Å|2

+ 4
(
h| Å|3+ h|H − h|| Å|2+ |H − h|| Å|3+ |H − h|2| Å|2

)
.

Note that

2|A|2| Å|2− (4/n)H 2
| Å|2

=−(2/n)H 2
| Å|2+ 2| Å|4

=−(2/n)h2
| Å|2+ 2

(
h|H − h|| Å|2+ (H − h)2| Å|2+ | Å|4

)
,
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Combining the last two calculations with the assumptions, we have

(3-15)

∂t | Å|2 ≤1| Å|2− (2/n)h2
| Å|2

+ 6
(
h| Å|3+ h|H − h|| Å|2+ |H − h|| Å|3+ |H − h|2| Å|2+ | Å|4

)
≤1| Å|2− (1/n)(h2

− c(n)ε)| Å|2.

Since h(t)≥ γ, we choose ε small enough that (1/n)(h2
−c(n)ε)> (1/2n)γ2. The

lemma then follows from the maximum principle. �

Proposition 11 and the proof of Proposition 13 then give the exponential decay
of |H − h|.

Lemma 16. Suppose that the solution Mt satisfies

(3-16) |A|(t)≤3 and | Å|(t)≤ εe−γt for all t ∈ [0, T ].

Then for some τ > 0 we have

|H − h|2(t)≤ C(n, τ,3)εe−γt for t ∈ [τ, T ].

Proof. By the gradient estimates and (3-16) we have

(3-17) |∇A|(t)≤ C(τ,3) and |∇
2 A| ≤ C(τ,3) for t ∈ [τ/2, T ].

Since | Å| is small, Schwartz’s inequality implies

(3-18)
∫

M
|∇ Å|2 ≤

(∫
M
| Å|2

)1/2(∫
M
|1 Å|2

)1/2
≤ C(τ,3, v)e−γtε

for t ∈ [τ/2, T ].

By Lemma 9 and (3-17), ∇ Å satisfies the inequality

∂t |∇ Å| ≤1|∇ Å| +C(τ,3)| Å| +32
|∇ Å| for t ∈ [τ/2, T ].

By Proposition 11 and (3-16)(3-18), we have

(3-19) |∇ Å|(t)≤ C(τ,3, v, n)e−γt/2ε1/2 for t ∈ [τ, T ].

Since n ≥ 2, [Huisken 1984, Lemma 2.2] implies

(3-20) |∇ Å|2 ≥
2(n− 1)
n(n+ 2)

|∇H |2.

Combining (3-19) (3-20) with Lemma 12, we obtain

|H − h|(t)≤ diam(t)max
x∈M
|∇H | ≤ c(n,3, v)max

x∈M
|∇ Å|l

≤ C(n, τ,3, v)e−γt/2ε1/2 for t ∈ [τ, T ]. �
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Proof of Theorem 1. The proof consists of several steps. In each step, we need to
choose constants carefully.

Step 1. In this step, we give estimates near the initial time. Suppose the solution
satisfies (1-2) at the initial time. Then by Proposition 13 there exists T1 = T1(3)

such that
|A|(t)≤ 23 and h(t)≥ γ/2 for t ∈ [0, T1],

and for some τ < T1/4 and some constant C1 = C1(n, τ,3),

|H − h|2(t)≤ C1(n, τ,3)ε1/2 and | Å| ≤ C1(n, τ,3)ε1/2 for t ∈ [τ, T1].

Now applying Lemma 15 for t ∈ [τ, T ], we choose ε < ε0(n, γ) small so that

| Å|(t)≤ e−α(t−τ)| Å|(τ )≤ C1(τ,3, D)ε1/2e−α(t−τ) for t ∈ [τ, T1],

where α = γ/(4
√

2n) and C1ε
1/2 < 1. By Lemma 16, |H − h| decays as

|H − h|2(t)≤ C2(n, τ, 23)ε1/2e−α(t−τ) for t ∈ [2τ, T1]

with C2ε
1/2 < 1. Set C3 =max{C1,C2}. Now by Lemma 14, h(t) is bounded:

h(t)≤
√

n|A|(2τ)+ 2
3α
(C3)

3/2ε3/4 < 2
√

n3+ 1/2 for t ∈ [2τ, T1],

where we have chosen ε < ε1(τ,3, γ) < ε0 sufficiently small.

Step 2. In this step, we extend the solution to [T1, T1+T2] for some T2 > 0. Recall
these estimates for t = T1− τ :

γ/2≤ h(t) < 2
√

n3+ 1, | Å|(t)≤ C3ε
1/2ε−α(t−τ),

|A|(t)≤ 23, |H − h|2(t)≤ C3ε
1/2e−α(t−τ).

An application of Proposition 13 for the initial time t = T1− τ shows there exists
a T2 = T2(2

√
n3+ 3) > 0 such that

h(t)≥ γ/4, | Å| ≤ C4ε
1/2ε−α(T1−τ),

|A|(t)≤ 43, |H − h|2(t)≤ C4ε
1/2e−α(T1−τ) for t ∈ [T1, T1+ T2],

where C4 = C1(τ, 23)C3. Now we choose ε small enough that

C4ε
1/2 < ε0(n, γ/8).

Then by Lemma 15 and the definition of α, we have

| Å|(t)≤ e−α(t−τ)| Å|∞(τ )≤ C1ε
1/2e−α(t−τ) for t ∈ [τ, T1+ T2].

By Lemma 14, we can choose ε small enough that

h(t)≤ h(2τ)+2(C4ε
1/2e−α(T1−τ))3/2(T2+T1)< 2

√
n3+1 for t ∈ [T1, T1+T2],
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and therefore

|A|(t)≤ | Å| + |H − h| + h ≤ 2
√

n3+ 3 for t ∈ [T1, T1+ T2].

By Lemma 16,

|H − h|2 ≤ C2(n, τ, 2
√

n3+ 3)C1ε
1/2e−α(t−τ) for t ∈ [2τ, T1+ T2].

Set C6=max{C2(n, τ, 2
√

n3+3)C1,C1}. Choose ε small enough that C6ε
1/2<1.

Then by Lemma 14 we can choose ε small enough that

h(t)≥ h(τ )e−c(n)/αC6ε
1/2
− (c(n)/α)(C6ε

1/2)3/2ec(n)/α(C6ε
1/2)
≥ γ/3

for t ∈ [T1, T1+ T2], and

h(t)≤ h(2τ)+ 2
3α
(C6ε

1/2)3/2 < 2
√

n3+ 1 for t ∈ [2τ, T1+ T2].

Claim 17 (Step 3). If the estimates

γ/3≤ h(t) < 2
√

n3+ 1,

| Å|(t)≤ C6ε
1/2ε−α(t−τ), |H − h|2(t)≤ C6ε

1/2e−α(t−τ)

hold for t ∈ [2τ, S] and S ≥ T1+ T2, then they also hold for t ∈ [2τ, S+ T2].

Proof. The assumptions imply that |A| is bounded, that is,

|A|(t)≤ | Å|(t)+ |H − h|(t)+ h(t)≤31 = 2
√

n3+ 3 for t ∈ [τ, S].

Now we apply Proposition 13 for t = S− τ . By the definition of T2 we have

h(t)≥ γ/6, | Å|(t)≤ C7ε
1/2ε−α(S−τ),

|A|(t)≤ 231, |H − h|(t)≤ C7ε
1/2e−α(S−τ) for t ∈ [S, S+ T2],

where C7 = C1(n, τ, 231)C6. Lemma 14 implies that if we choose ε < ε2 small
enough,

h(t)≥ h(S)e−c(n)C7ε
1/2T2 − c(n)(C7ε

1/2)3/2T2 ≥ γ/4 for t ∈ [S, S+ T2].

By Lemma 15 we have

| Å|(t)≤ e−α(t−τ)| Å|∞(τ )≤ C1ε
1/2e−α(t−τ) for t ∈ [τ, S+ T2].

By Lemma 16 and the definition of C6, we have

|H − h|2 ≤ C2(n, τ, 2
√

n3+ 3)C1ε
1/2e−α(t−τ)

≤ C6ε
1/2e−α(t−τ) for t ∈ [2τ, S+ T2].

By Lemma 14, we have

h(t)≤ h(2τ)+ 2
3α
(C6ε

1/2)3/2 < 2
√

n3+ 1 for t ∈ [2τ, S+ T2],
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and therefore

|A|(t)≤ | Å| + |H − h| + h ≤ 2
√

n3+ 3 for t ∈ [S, S+ T2].

Then by Lemma 14

h(t)≥ h(τ )e−(c(n)/α)C6ε
1/2
− (c(n)/α)(C6ε

1/2)3/2e(c(n)/α)C6ε
1/2

≥ γ/3 for t ∈ [T1, T1+ T2]. �

Step 4. By Claim 17, the flow has long time existence and converges exponentially
fast to a umbilic hypersurface with constant mean curvature, which is a round
sphere since M is compact and orientable. �

Proof of Corollary 4. We follow the arguments in [Huisken and Yau 1996]. Let M
be a compact smooth hypersurface in Bσ for some positive constants δ, σ and
Bi for i = 1, . . . , 4. Then the gradient of the second fundamental form can be
controlled by [Huisken 1984, Lemma 2.2], that is,

|∇A|2 ≤ 3n
2n−2

|∇ Å|2 ≤
c(B3, n)
σ 4+2δ .

Following the arguments in [Huisken and Yau 1996, Propositions 2.1 and 2.2], we
can estimate the mean curvature and the second fundamental form by

|H − n/σ | ≤ c(Bi , n)/σ 1+δ and |A| ≤ c(Bi , n)/σ.

Now we rescale the hypersurface by M̃ = σ−1 M , and the above estimates can be
reduced to

Ṽ ≤ B4, | Ã|g̃ ≤ c(Bi , n), |H̃ − n| ≤
c(Bi , n)
σ δ

,

∫
M̃
|

˚̃A|2g̃ ≤
c(Bi , n)
σ 2δ .

Therefore, the assumptions of Theorem 1 are satisfied if σ is sufficiently large.
This proves the first part of the corollary. The second follows similarly. �

4. Proof of Theorem 5

In this section, we extend the usual ε-regularity of the mean curvature flow to
the case of L2 norm of the traceless second fundamental form. As stated in the
introduction, we prove that under the assumptions of Theorem 5, the flow will
satisfy the condition (1-2) of Theorem 1 after a short time. More precisely:

Proposition 18. Let M0 ⊂ R3 be a compact smooth surface. For any v0, 3, γ >
0 with γ < 3, there exists a constant ε0 = ε0(v0,3, γ) > 0 such that for any
ε ∈ (0, ε0), any solution of the mean curvature flow satisfying

(4-1) 0< γ < h <3, V0 ≥ v0 > 0,
∫

M
|H − h|2 < ε,

∫
M
| Å|2 ≤ ε,
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there exists a T = T (3, γ, v0) such that

(4-2) 1
2γ≤ h≤ 23, V (T )≥ 1

2v0, |A|(T )≤C(3, γ, v0),

∫
M
| Å|2(T )≤ 2ε.

The proof of this proposition is a little long but the argument is fairly standard.
Roughly, we use the ε-regularity to control the L∞ norm of the second fundamental
form by some integral norms, which can be easily bounded along the flow. In
Section 4A, we estimate the integral norms for a short time. In Section 4B, we will
use the integral norms to control the L∞ norm of the second fundamental form. In
Section 4C, we complete the proof.

4A. The L2 norm of traceless second fundamental form. The next two lemmas
show that the L4 norms of | Å| and H−h remain small for a short time under some
integral conditions.

Lemma 19. Suppose exists a numerical constant ε0 > 0 such that if∫
M
| Å|2 ≤ ε and

∫
M
|H − h|2 ≤ ε for t ∈ [0, T ]

whenever ε ∈ (0, ε0), we have the inequality

(4-3)
∫

M
| Å|2(t)+ 1

n

∫ t

0

∫
M

(
|∇ Å|2+h2

|A|2+| Å|4
)
≤

∫
M
| Å|2(0) for t ∈ [0, T ].

Proof. By the inequality (3-15), | Å| satisfies

(4-4) ∂
∂t

∫
M
| Å|2+

∫
M

2|∇ Å|2dVt

≤ −
2
n

∫
M

h2
| Å|2

+ 5
(
h| Å|3+ h|H − h|| Å|2+ |H − h|| Å|3+ |H − h|2| Å|2+ | Å|4

)
.

Note that Schwarz’s inequality implies

(4-5)
∫

M

(
h| Å|3+ h|H − h|| Å|2+ |H − h|| Å|3+ |H − h|2| Å|2+ | Å|4

)
≤

∫
M

(
ε′h2
| Å|2+ c(ε′)| Å|4+ c(ε′)|H − h|2| Å|2

)
.

Now applying the Sobolev inequality, we obtain

(4-6)
∫

M
| Å|4 ≤ c

(∫
M
| Å||∇ Å| + |H || Å|2

)2

≤ c
∫

M
| Å|2

(∫
M
|∇ Å|2+

∫
M
|H − h|2| Å|2+

∫
M

h2
| Å|2

)
,
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and

(4-7)

∫
M
|H − h|2| Å|2

≤ c
(∫

M
|∇H || Å| + |H − h||∇ Å| + |H(H − h)|| Å|

)2

≤ c
∫

M
|∇ Å|2

(∫
M
| Å|2+

∫
M
|H − h|2

)
+ c

∫
M
|H − h|2

∫
M

H 2
| Å|2

≤ c
∫

M
|∇ Å|2

(∫
M
| Å|2+

∫
M
|H − h|2

)
+ c

∫
M
|H − h|2

(∫
M
|H − h|2| Å|2+

∫
M

h2
| Å|2

)
.

Combining the inequalities (4-4)–(4-7), we can choose ε small to arrive at

∂
∂t

∫
M
| Å|2+

∫
M

(
|∇ Å|2+ | Å|4

)
+

1
n

∫
M

h2
| Å|2 ≤ 0 for t ∈ [0, T ].

Integrating from 0 to t , we obtain∫
M
| Å|2(t)+ 1

n

∫ t

0

∫
M

(
|∇ Å|2+ h2

|A|2+ | Å|4
)
≤

∫
M
| Å|2(0). �

Lemma 20. There exists a numerical constant ε0 > 0 such that if∫
M
| Å|2 ≤ ε and

∫
M
|H − h|2 ≤ ε for t ∈ [0, T ]

whenever ε ∈ (0, ε0), then∫
M
(H − h)2(t)+

∫ t

0

(∫
M
|∇H |2+

∫
M
|H − h|4

)
≤ 2e6

∫ t
0 h2
(∫

M
(H − h)2(0)+

∫
M
| Å|2(0)

)
for t ∈ [0, T ].

Proof. By Lemma 8, H − h satisfies the evolution equation

∂
∂t

∫
M
(H−h)2

=

∫
M

2(H−h)(1H+2(H−h)|A|2)−H(H−h)3

=−

∫
M

2|∇H |2+
∫

M
4(H−h)2(| Å|2+ 1

2 H 2)−(H−h)4−h(H−h)3

=−

∫
M

2|∇H |2+
∫

M
4(H−h)2| Å|2+(H−h)4+3h(H−h)3+2h2(H−h)2

≤−

∫
M

2|∇H |2+5
∫

M
(| Å|4+(H−h)4+h2(H−h)2).



346 HAOZHAO LI

We apply the Sobolev inequality to find∫
M
(H − h)4 ≤ c

(∫
M
|H − h||∇H | + |H ||H − h|2

)2

≤ c
∫

M
(H − h)2

∫
M
|∇H |2

+ c
∫

M
(H − h)2

(∫
M
(H − h)4+

∫
M

h2(H − h)2
)
,

where c is a numerical constant. Combining the previous two inequalities, we
choose ε < 1/c small to arrive at

∂
∂t

∫
M
(H − h)2+

∫
M
|∇H |2+ |H − h|4 ≤ 6

∫
M
| Å|4+ h2(H − h)2.

Integrating from 0 to t and applying (4-3) yields the claimed inequality. �

The next lemma shows that the volume and the average of the mean curvature
change slowly near the initial time.

Lemma 21. The volume Vt and the average of the mean curvature h(t) satisfy

Vt ≥ V0− E(t) and |h(t)− h(0)| ≤ 1
V0−E(t)

E(t) for t ∈ [0, T ],

where

(4-8) E(t)=
∫ t

0

∫
M
(H − h)2+ | Å|4+ (H − h)4.

Proof. By (3-12) and the assumption n = 2, we have

(4-9)

Vt
d
dt

h(t)=
∫

M
(H − h)| Å|2− 1

2(H − h)3

≤

(∫
M
(H − h)2

)1/2(∫
M
| Å|4+

∫
M
(H − h)4

)1/2

≤

∫
M
(H − h)2+ | Å|4+ (H − h)4

since the volume satisfies dVt/dt = −
∫

M(H − h)2. Integrating from 0 to t , we
obtain

(4-10) Vt ≥ V0− E(t).

Combining this with (4-9), we have

|h(t)− h(0)| ≤ 1
V0−E(t)

E(t) for t ∈ [0, T ]. �
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4B. The L∞ norm of the second fundamental form. Now we prove that under
some integral conditions, the L∞ norm of | Å| will be bounded after a short time.

Proposition 22. For any given 3, v0, T > 0, there exists an ε0 = ε(3, v0, T ) > 0
such that if

(4-11) 0< h(t)≤3, E(t)≤ ε,
∫

M
(H − h)2(t)≤ 1 for t ∈ [0, T ],

and V0 ≥ v0, where E(t) is given by (4-8), then

sup
t∈[T/2,T ]

|A|2 ≤ C(3, v0, T ).

We prove this proposition by following the argument in [Ecker 1995]. Let
η(t) : R→ R be any nonnegative smooth function with η(0) = 0. For simplicity,
we define cη as a operator satisfying

(4-12) cη f = η′ · ( f η−1)

for any smooth function of the form f = gη with g ∈ C∞(M ×[0,∞)).

Lemma 23. For any p ≥ 1, we have the inequalities(∫ T

0

∫
M
(| Å|2ηs)4p

)1/2
≤ cp

∫ T

0

∫
M
(| Å|2+ H 2

+ h2
+ scη)(| Å|2ηs)2p,(∫ T

0

∫
M
((H − h)2ηs)4p

)1/2
≤ cp

∫ T

0

∫
M
(|A|2+ |h′|ηsp

+ scη)((H − h)2ηs)2p

+ cp
∫ T

0

∫
M
|h′|ηsp(H − h)2.

Here c is a numerical constant and cη is defined by (4-12).

Proof. By Lemma 9, Å satisfies

∂t | Å|2 ≤1| Å|2− 2|∇ Å|2+ 2|A|2| Å|2+ 2h
(
| Å|3+ |H || Å|2

)
≤1| Å|2− 2|∇ Å|2+ 3| Å|4+ 3H 2

| Å|2+ 2h2
| Å|2,

Now we compute the evolution equation of | Å|2p to be

∂t | Å|2p
≤1(| Å|2p)+ 3p(| Å|2+ H 2

+ h2)| Å|2p.(4-13)

Hence f = (| Å|2ηs)p satisfies ∂t f ≤1 f +g f , where g=3p(| Å|2+H 2
+h2
+scη).

Integrating f 2, we get

d
dt

∫
M

f 2
≤

∫
M
(−2|∇ f |2+ (2g+ H(h− H)) f 2).



348 HAOZHAO LI

Integrating from 0 to T yields

(4-14) sup
t∈[0,T ]

∫
M

f 2
+ 2

∫ T

0

∫
M
|∇ f |2 ≤

∫ T

0

∫
M
(2g+ H(h− H)) f 2.

On the other hand, applying the Sobolev inequality and Schwartz’s inequality gives∫ T

0

∫
M

f 4
≤ c

∫ T

0

(∫
M

2| f ||∇ f | + |H | f 2
)2

≤ c sup
t∈[0,T ]

∫
M

f 2
·

∫ T

0

∫
M
(|∇ f |2+ |H 2

| f 2),

where c is a numerical constant. Combining these two inequalities, we obtain(∫ T

0

∫
M

f 4
)1/2
≤ c

∫ T

0

∫
M

g f 2,

which implies the lemma’s first inequality.
Now we prove the second inequality. By Lemma 8, H − h satisfies

∂t(H − h)=1(H − h)+ (H − h)|A|2− h′.

Hence, for any p ≥ 1, we have

∂t(H − h)2p
≤1(H − h)2p

+ 2p(H − h)2p
|A|2− 2p(H − h)2p−1h′

≤1(H − h)2p
+ (2p|A|2+ 2p|h′|)(H − h)2p

+ 2p|h′||H − h|,

where we have used that |H−h|2p−1
≤|H−h|+|H−h|2p for p≥ 1. The function

f = ((H − h)2ηs)p satisfies

∂t f ≤1 f + a f + b,

where a = 2p|A|2+ 2p|h′|ηsp
+ spcη and b = 2p|h′||H − h|ηsp. Integrating the

inequality above, we have

∂
∂t

∫
M

f 2
≤

∫
M
−2|∇ f |2+ (a+ H(h− H)) f 2

+ b f

≤

∫
M
−2|∇ f |2+ (a+ h2

+ p|h′|ηsp) f 2
+ pηsp

|h′|(H − h)2,

where we have used the fact that b f ≤ p|h′|ηsp((H − h)2+ f 2). Integrating from
0 to T , we have

(4-15) sup
t∈[0,T ]

∫
M

f 2
+ 2

∫ T

0

∫
M
|∇ f |2

≤

∫ T

0

∫
M
(a+ h2

+ p|h′|ηsp) f 2
+ p|h′|ηsp(H − h)2.
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Therefore, we have(∫ T

0

∫
M

f 4
)1/2
≤ c

∫ T

0

∫
M
(a+ h2

+ p|h′|ηsp) f 2
+ p|h′|ηsp(H − h)2. �

Lemma 24. There exists a constant ε0= ε0(v0)> 0 such that if E(T )∈ (0, ε0) and

sup
t∈[0,T ]

∫
M
(H − h)2 ≤ 1,

then∫ T

T/4

∫
M
| Å|8+

∫ T

T/4

∫
M
|H − h|8 ≤ c(1+ 1/v0)

2(32
+ 1/T + 1)2 E(T )2,

and

(4-16) sup
t∈[T/4,T ]

|h′| ≤ c/v0.

Proof. Lemma 23 with p = 1 and s = 4 implies(∫ T

0

∫
M
(| Å|2η4)4

)1/2
≤ c

∫ T

0

∫
M
(| Å|2+ (H − h)2+ h2

+ cη)(| Å|2η4)2

≤ c
(∫ T

0

∫
M
(| Å|2η4)4

)1/2((∫ T

0

∫
M
| Å|4

)1/2
+

(∫ T

0

∫
M
(H − h)4

)1/2)
+ c

∫ T

0

∫
M
(cη+32)(| Å|2η4)2.

If E(T ) is sufficiently small, we obtain(∫ T

0

∫
M
(| Å|2η4)4

)1/2
≤ c

∫ T

0

∫
M
(cη+32)(| Å|2η4)2.

Now we take

(4-17) η(t)= η0

( t − T/8
T/4− T/8

)
,

where η0 is a cutoff function in C∞(R,R) such that 0≤ η0 ≤ 1, |η′0| ≤ 2, and

(4-18) η0(t)=
{

0 if t ≤ 0,
1 if t ≥ 1.

We have

(4-19)
(∫ T

T/4

∫
M
| Å|8

)1/2
≤ c

(
32
+

16
T

) ∫ T

T/8

∫
M
| Å|4 ≤ c

(
32
+

16
T

)
E(T ),
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where we have used the fact that

(4-20) cη(| Å|2η4)2 ≤
16
T
| Å|4η7 for t ∈ [0, T ].

Similarly, by Lemma 23 we have

(∫ T

0

∫
M
(|H − h|2η4)4

)1/2

≤

(∫ T

0

∫
M
(|H − h|2η4)4

)1/2((∫ T

0

∫
M
| Å|4

)1/2
+

(∫ T

0

∫
M
(H − h)4

)1/2)
+ c

∫ T

0

∫
M

(
32
+ cη+ sup

t∈[0,T ]
|h′η4
|

)
(|H − h|2η4)2

+ c sup
t∈[0,T ]

|h′η4
|

∫ T

0

∫
M
|H − h|2.

Hence, if E(T ) is sufficiently small we have

(4-21)
(∫ T

0

∫
M
(|H − h|2η4)4

)1/2

≤ c(32
+ 1/T + sup

t∈[0,T ]
|h′η4
|)

∫ T

0

∫
M
|H − h|4+ c sup

t∈[0,T ]
|h′η4
|

∫ T

0

∫
M
|H − h|2.

Here, the cutoff function η is as in (4-17), so cη can be estimated by (4-20).
Next, we estimate supt∈[0,T ]|h

′η4
|. In fact, (4-9) implies

(4-22) Vt |h′| ≤ e(t) :=
∫

M
(H − h)2+ | Å|4+ (H − h)4.

Taking the cutoff function η as in (4-17), the inequality (4-15) implies

(4-23) sup
t∈[0,T ]

∫
M
((H − h)2η4)2

≤

(∫ T

0

∫
M
(|H−h|2η4)4

)1/2((∫ T

0

∫
M
| Å|4

)1/2
+

(∫ T

0

∫
M
(H−h)4

)1/2)
+ c

(
32
+ 1/T + sup

t∈[0,T ]
|h′η4
|
) ∫ T

0

∫
M
|H − h|4

+ c sup
t∈[0,T ]

|h′η4
|

∫ T

0

∫
M
|H − h|2

≤ c sup
t∈[0,T ]

|h′η4
|(E(T )+ E(T )3/2)+ c(32

+ 1/T )(E(T )+ E(T )3/2),
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where we have used the inequality (4-21). By (4-14), we have

(4-24) sup
t∈[0,T ]

∫
M
(| Å|2η4)2

≤

(∫ T

0

∫
M
(| Å|2η4)4

)1/2((∫ T

0

∫
M
| Å|4

)1/2
+

(∫ T

0

∫
M
(H − h)4

)1/2)
+ c(32

+ 1/T )
∫ T

0

∫
M
(H − h)4

≤ c(32
+ 1/T )(E(T )+ E(T )3/2).

Combining the inequalities (4-22)–(4-24) with (4-10) yields

(V0− E(T )) sup
t∈[0,T ]

|h′η4
| ≤ c sup

t∈[0,T ]
|h′η4
|(E(T )+ E(T )3/2)

+ c(32
+ 1/T )(E(T )+ E(T )3/2)+ sup

t∈[0,T ]

∫
M
(H − h)2.

If E(T ) is sufficiently small, we have

(4-25) sup
t∈[0,T ]

|h′η4
| ≤

c
v0
((32
+ 16/T )E(T )+ 1),

which implies (4-16). Combining (4-21) with (4-25), we have

(∫ T

T/4

∫
M
|H − h|8

)1/2
≤ c(1+ 1/v0)(3

2
+ 1/T + 1)E(T ).

The lemma immediately from this and (4-19). �

Proof of Proposition 22. Now Hölder’s inequality implies

(4-26) p
∫ T

0

∫
M
| Å|2(| Å|2η4)2p

≤ p
(∫ T

0

∫
η>0
| Å|8

)1/4(∫ T

0

∫
M
(| Å|2η4)8/3p

)3/4

≤ p
(∫ T

0

∫
η>0
| Å|8

)1/4(∫ T

0

∫
M
(| Å|2η4)4p

)1/4(∫ T

0

∫
M
(| Å|2η4)2p

)1/2

≤

(∫ T

0

∫
η>0
| Å|8

)1/4((∫ T

0

∫
M
(| Å|2η4)4p

)1/2
+ p2

∫ T

0

∫
M
(| Å|2η4)2p

)
.
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Similarly we have the inequality

(4-27) p
∫ T

0

∫
M
(H − h)2(| Å|2η4)2p

≤

(∫ T

0

∫
η>0
(H − h)8

)1/4((∫ T

0

∫
M
(| Å|2η4)4p

)1/2
+ p2

∫ T

0

∫
M
(| Å|2η4)2p

)
.

If we take a cutoff function η with η|[0,T/4] = 0, then Lemma 24 implies∫ T

0

∫
η>0
(H − h)8+

∫ T

0

∫
η>0
| Å|8 ≤ C(3, T, v)E(T )2.

Hence, if E(T ) is sufficiently small, Lemma 23 together with (4-26) and (4-27)
yields

(4-28)
(∫ T

0

∫
M
(| Å|2η4)4p

)1/2
≤ cp2

∫ T

0

∫
M
(32
+ cη)(| Å|2η4)2p,

and

(4-29)
(∫ T

0

∫
M
(|H − h|2η4)4p

)1/2
≤ cp2

∫ T

0

∫
M
(32
+ cη+ v−1)(|H − h|2η4)2p

+ cpv−1
∫ T

0

∫
M
(H − h)2,

where we have used the fact that for any cutoff function η with η|[0,T/4] = 0, the
inequality (4-16) implies

sup
t∈[0,T ]

|h′η4
| ≤ sup

t∈[T/4,T ]
|h′| ≤ c/v0.

For each integer k≥1, let bk=(T/2)(1−1/2k+1) and ηk=η0(t−bk)/(bk+1−bk),
where η0 is given by (4-18). Note that ηk |[0,T/4] = 0 for all k ≥ 1. Hence, we can
choose cηk = 2k+4T−1. Taking η = ηk and p = 2k−1 in (4-28), we have(∫ T

bk+1

∫
M
(| Å|2)2

k+1
)2−(k+1)

≤
(
c22k−2(32

+ 2k+4T−1)
)2−k(∫ T

bk

∫
M
(| Å|2)2

k
)2−k

.

Here we have used the fact that

cηk (| Å|
2η4

k)
2k
≤

2k+4

T
(| Å|2)2

k
ηk .

Iteration yields

(4-30) sup
M×[T/2,T ]

| Å|2 ≤ c(3, T )
(∫ T

T/4

∫
M
| Å|4

)1/2
.
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Similarly, we can obtain the L∞ bound of |H − h|. In fact, we let

Ik =

(∫ T

bk

∫
M
(|H − h|2)2

k
)2−k

.

Then by assumption, (4-29) implies

Ik+1 ≤ ck max{Ik, ε
2−k

0 } ≤ ck max{Ik, 1} ≤max
{

I1

k∏
i=1

ci , sup
1≤i≤k

ci

}
,

where ck = (c(32
+ 1/v+ 2k+4T−1)22k−2)2

−k
. It is easy to see that supk ck <∞

and
∏
∞

i=1 ci <∞. Hence, taking k→∞ in the inequalities above, we have

sup
t∈[T/2,T ]

|H − h|2 ≤ C(3, T, v0).

The proposition follows from this and (4-30). �

4C. The proof of Proposition 18. Suppose M0 satisfies the assumption (4-1). Let
λ > 0 be a parameter and define

t0 := sup
{

0≤ t ≤min{T, λ} : γ/10< h(τ ) < 103,
∫

M
|H − h|2(τ ) < 10ε,∫

M
| Å|2(τ )≤ 10ε for all τ ∈ [0, t)

}
,

where T is the maximal time of smooth existence. By the definition of t0, we have
the inequalities

(4-31)
γ/10< h(t) < 103,∫

M
|H − h|2(t) < 10ε,

∫
M
| Å|2(t)≤ 10ε for t ∈ [0, t0).

Now by Lemma 19, if we choose 10ε < ε0, the assumption (4-1) implies∫
M
| Å|2 ≤ ε and

∫ t

0

∫
M
| Å|4 ≤ 2ε for t ∈ [0, t0).

By Lemma 20 we have

(4-32)
∫

M
(H − h)2(t)+

∫ t

0

∫
M
(H − h)4 ≤ 2εe60032λ < 3ε for t ∈ [0, t0],

where we choose λ < λ1(3) < 1 sufficiently small. Hence we have

(4-33) E(t)=
∫ t

0

∫
M
(H−h)2+| Å|4+(H−h)4≤ 3ελ+5ε < 8ε for t ∈ [0, t0).
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Now Lemma 21 implies

(4-34) h(t)≤3+ 8ε
V0−8ε

< 23

and
h(t)≥ γ− 8ε

V0−8ε
>
γ

2
, Vt ≥ v0− 8ε ≥

v0

2
for t ∈ [0, t0),

where we choose λ< λ2(3, γ, v0) < λ1 small. Now if t0 = λ, then (4-2) holds and
the proposition is proved. Otherwise t0 = T < λ, which contradicts the fact that
under the estimates (4-31)–(4-34), Proposition 22 implies the L∞ that the second
fundamental form is bounded; that is, |A|(T )≤C , and the solution can be extended
beyond T . �
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